
1

Bernoulli
A relational approach to the

compilation of sparse matrix programs

The Problem

• Matrix Algorithms tend to be relatively simple
– Matrix Vector multiplication
– Matrix-Matrix multiplication

• Coding them for sparse matrices is hard
– sparse matrix formats can be hard to work with

• Involve a lot of indirection
• hence iteration space is very complex

– there are lots of matrix formats
• Makes library-based approaches infeasible

Example: Matrix Vector Multiply

• In Dense Form • In Sparse form

Do i = 1, N
Do j = 1, N

Y[i] = Y[i] + A[i j] * X[j];

1 5 623 4 7 81
2
3
5

1
4

Do t = 1, K
Do i = 1, M[t]

Do j = 1, N[t]
Y[R[t,][i]] = Y[R[t,][i]]
+ A[t,][i, j] * X[C[t][y]];

A[1] A[2]R[1] R[2]

C[1]
C[2]

The Solution

• Describe the sparse matrix format
– opt for a declarative specification

• we want to avoid pointer analysis

• Define the algorithm on a dense matrix
– imperative specification (like in SKETCH)
– but on a restricted language

• we want to avoid dependence analysis

– Convert it to a relational query

• Generate the sparse implementation
– must iterate over the matrices in an efficient way
– relational calculus helps us with this

An Example

• CRS Format
– Compressed Row Storage

• What we know
– we can do random access of rows

– within a row we can iterate over the columns

col

row
val

Another Example

• CCS Format
– Compressed Column Storage

• What we know
– we can do random access of columns

– within a column we can iterate over the rows

row

col
val

2

Another Example

• INODE Format

• What we know
– we can do random access of inodes

– within an inode I can iterate over row and column id

• What should we convey to the compiler?

1 5 623 4 7 81
2
3
5

1
4

Description of Sparse Format

• What the compiler needs to know
– what is the hierarchy of indices

– what can I do at each level of the hierarchy
• can I do random access?

• do I have to search sequentially?

– how do I access the next level of the hierarchy

Specifying the hierarchy of indices

• The > operator indicates the nesting of fields
– Example: in CCS, we have i>j because we have to get

the column before we can access an element in the
row

T:= V | F | F>opT | F x F x F x … > T | (F, F, F, …) > T | T U T

Specifying the hierarchy of indices

• The (F1 x … x Fn) operator indicates that the
indices corresponding to the Fi can be
enumerated independently
– Example: Dense storage

(I x J) > V

T:= V | F | F>opT | F x F x F x … > T | (F, F, F, …) > T | T U T

Specifying the hierarchy of indices

• The (F1 , … , Fn) operator indicates that the indices
corresponding to the Fi are stored together as a
list
– Example: Coordinate representation

(I , J) > V

T:= V | F | F>opT | F x F x F x … > T | (F, F, F, …) > T | T U T

i j v

Specifying the hierarchy of indices

• The U operator indicates alternative index
hierarchies
– Example: A combined CSS/CRS format

((i>j) U (j>i))> V

T:= V | F | F>opT | F x F x F x … > T | (F, F, F, …) > T | T U T

col

row
val

row

col
val

3

Hidden fields

• Sometimes hidden fields are needed to specify
additional structure
– Example INODE:

INODE > (i x j) > V

• Note: can’t handle unbounded recursion

1 5 623 4 7 81
2
3
5

1
4

An Example

• CRS Format
– Compressed Row Storage

• What we know
– we can do random access of columns

– within a row we can iterate over the rows

col

row
val

j > i > v

Another Example

• CCS Format
– Compressed Column Storage

• What we know
– we can do random access of rows

– within a column we can iterate over the columns

row

col
val

i > j > v

Another Example

• INODE Format

• What we know
– we can do random access of inodes

– within an inode I can iterate over row and column id

1 5 623 4 7 81
2
3
5

1
4

INODE > (i x j) > v

Access methods

• Must tell the compiler how to get to the actual entries in
the matrix

• Three basic methods
– Search(xk)

• return a pointer to entry containing xk

– Enum()
• enumerate each value together with a pointer to it

– Deref(p)
• get the value referenced by p

• The details vary depending on the level of the hierarchy

Access Method example

• For CRS, for the column
– Search(col) = <true, col>

• Because col storage is dense

– Enum() = {<1,1>, <2,2>, …, <n,n>}

– Deref(col) = rowstart

• For the row on a given column
– Search(row) = <b, i>

• b says whether that row exists, and I is it’s position in row

– Enum()= the row array

– Deref(i) = val

col

row
val

4

What about performance

• So far we haven’t said anything about
performance
– the following two formats are represented by the

same index hierarchy (i x j) > V

– one requires searching to find entries, the other one
does not!

1 5 62
1
4

Performance information

• Each level of the hierarchy we need to provide
the following info
– Cost of searching

– Ordering of indices

– Range of indices

– Type and range of handles

– Arity of dereference

– Kind of dereference

Access Method example

• For CRS, for the column
– Search(col) = <true, col> O(1)

• Because col storage is dense

– Enum() = {<1,1>, <2,2>, …, <n,n>} O(n)

– Deref(col) = rowstart O(1)

• For the row on a given column
– Search(row) = <b, i> O(n)

• b says whether that row exists, and I is it’s position in row

– Enum()= the row array O(1)

– Deref(row) = val O(1)

col

row
val

The algorithm as relational query

• Matrices can be seen as relations (i, j, val)

• The traversal performed by the algorithm is just
a join over different relations
– The P makes Iter.i = Y.i=A.i and Iter.j = A.j = X.j

– Database people could solve this problem

Do i = 1, N
Do j = 1, N

Y[i] = Y[i] + A[i j] * X[j];

P (Iter x Y(I, v) x A(i, j, v) x X(j))

• Only do-all loops are allowed in the spec
– loop iteration order is arbitrary

– eliminates need for dependence analysis

The compiler’s view

• The algorithm as relational query
– how do we get equijoins?

– how do we order them?

– how do we implement joins?

• Implemented in a two level plan
– high-level planning decides how to order the joins

– Low-level planning decides how the joins are to be
implemented

High-level planning: Ordering of joins

• Key idea:
– ordering of joins should respect hierarchy of indices

when possible

– equijoins preferred whenever possible

5

Ordering of loops, Example

• We can define an affine equation to describe the
selection

a = H i H =
a = <i, j, s, t, iy, jx>

• vector a corresponds to actual indices to the matrices

DO i = 1 , n
DO j = 1, n

Y(i) = Y(i) + A(i-j, j)*X(j)

1 -0
0 -1
1 -1
0 -1
1 -0
0 -1

Relational Query

Ordering of loops, Example

• We can rearrange the Matrix using Column operations

a = H’ i H’ =
a = <s, i, j, iy, jx, t>

• Now we can do equijoins easily

DO i = 1 , n
DO j = 1, n

Y(i) = Y(i) + A(i-j, j)*X(j)

1 -0
1 -1
0 1
1 -1
0 -1
0 -1

Relational Query

Low-Level planning

• For this, we can use standard techniques from
databases

• Tradeoffs between space and time
– For example, when you do scatter/gather

• Also guided by the complexity information

Conclusion

• Key Ideas
– We need to provide the compiler with all the

necessary information about the matrix format

– The problem becomes tractable when we push it to a
higher level

• Relational queries in this case

• Just like last week with garbage collection

• Why is nobody using it?

