Bernoulli
A relational approach to the
compilation of sparse matrix programs

The Problem

» Matrix Algorithms tend to be relatively simple
- Matrix Vector multiplication
- Matrix-Matrix multiplication
» Coding them for sparse matrices is hard
- sparse matrix formats can be hard to work with
» Involve a lot of indirection
» hence iteration space is very complex
- there are lots of matrix formats
» Makes library-based approaches infeasible

Example: Matrix Vector Multiply

» InDense Form « In Sparse form
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The Solution

» Describe the sparse matrix format
- opt for a declarative specification
» we want to avoid pointer analysis
» Define the algorithm on a dense matrix
- imperative specification (like in SKETCH)
- but on a restricted lanquage
» we want to avoid dependence analysis

- Convert it to a relational query

» Generate the sparse implementation
- must iterate over the matrices in an efficient way
- relational calculus helps us with this

An Example

» CRS Format col
- Compressed Row Storage

row
val

« What we know
- we can do random access of rows
- within a row we can iterate over the columns

Another Example

» CCSFormat row
- Compressed Column Storage

val
» What we know

- we can do random access of columns
- within a column we can iterate over the rows




Another Example

» INODE Format /Dg
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« What we know
- we can do random access of inodes
- within an inode | can iterate over row and column id

» What should we convey to the compiler?

Description of Sparse Format

» What the compiler needs to know
- what is the hierarchy of indices

- what can | do at each level of the hierarchy
» canldorandom access?
» dolhave to search sequentially?

- how do | access the next level of the hierarchy

Specifying the hierarchy of indices

T:=V [F [F>, T FxFxFx...>T|FFF..)>T|TUT

» The > operator indicates the nesting of fields

- Example: in CCS, we have i>j because we have to get
the column before we can access an element in the
row

Specifying the hierarchy of indices

T=V [F [P T FxFxFx...>T|FFF.)>T|TUT

s The (F, x... xF,) operator indicates that the
indices corresponding to the F;can be
enumerated independently

- Example: Dense storage
(Ix))>V

Specifying the hierarchy of indices

T=V|F |F>OPT|FxeFx...>T|(F,F,F, ...)>T|TUT
» The(F,, ..., F,) operator indicates that the indices
corresponding to the Fare stored together as a
list
- Example: Coordinate representation
ij v (,n>v

Specifying the hierarchy of indices

Ti=V [F [Foo T FxFxFx...>T|FFF.)>T|TUT

» The U operator indicates alternative index
hierarchies

- Example: A combined CSS/CRS format
(=) U G>i))>V
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Hidden fields

» Sometimes hidden fields are needed to specify
additional structure
- Example INODE:
INODE > (ixj)>V
» Note: can't handle unbounded recursion
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An Example

» CRSfFormat col
- Compressed Row Storage

row
val

« What we know
- we can do random access of columns
- within a row we can iterate over the rows

j>i>v

Another Example

« CCSFormat row

- Compressed Column Storage ’
col
val

« What we know
- we can do random access of rows
- within a column we can iterate over the columns

i>j>v

Another Example

» INODE Format S/ ?

(113[4[7]8] A2516)

« What we know
- we can do random access of inodes
- within aninode | can iterate over row and column id

INODE > (ixj)>v

Access methods

» Must tell the compiler how to get to the actual entries in
the matrix

» Three basic methods
- Search(x,)
= return a pointer to entry containing x,
- Enum()
» enumerate each value together with a pointer to it
- Deref(p)

« get the value referenced by p

» The details vary depending on the level of the hierarchy

Access Method example
» For CRS, for the column col
- Search(col) = <true, col>
= Because col storage is dense row

I
- Enum() ={<1,1>,<2,25, ..., <n,n>} v

- Deref{(col) = rowstart
« For the row on a given column
- Search(row) = <b, i>
= bsays whether that row exists, and l is it’s position in row
- Enum()=the row array
- Deref(i) = val




What about performance

» So far we haven't said anything about
performance

- the following two formats are represented by the
same index hierarchy (i xj) >V

- one requires searching to find entries, the other one

Performance information

» Each level of the hierarchy we need to provide
the following info
- Cost of searching
- Ordering of indices
- Range of indices
- Type and range of handles
- Arity of dereference
- Kind of dereference
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Access Method example
« For CRS, for the column col
- Search(col) = <true, col> 0(1)
= Because col storage is dense row

- Enum() ={<1,1>, <2,25, ..., <n,n>} O(n‘)’al
- Deref(col) = rowstart O(1)
» For the row on a given column
- Search(row) = <b, i> O(n)
« b says whether that row exists, and | is it's position in row
- Enum()= the row array O(1)
- Deref(row) = val 0(1)

The algorithm as relational query

» Matrices can be seen as relations (i, j, val)
« The traversal performed by the algorithm is just
a join over different relations
- The ¢, makes Iter.i = Y.i=Aiand Iterj=Aj=X
- Database people could solve this problem
Doi=1,N

Doj=1,N
YIi] = YIi] + Al 1 XIjJ;

*p (Tter x Y(I, v) x A(i, j, v) x X(j) )

= Only do-all loops are allowed in the spec
- loop iteration order is arbitrary
- eliminates need for dependence analysis

The compiler’s view

= The algorithm as relational query
- how do we get equijoins?
- how do we order them?
- how do we implement joins?
» Implemented in a two level plan
- high-level planning decides how to order the joins

- Low-level planning decides how the joins are to be
implemented

High-level planning: Ordering of joins

« Keyidea:
- ordering of joins should respect hierarchy of indices
when possible
- equijoins preferred whenever possible




Ordering of loops, Example

DOi=1,n
DOj=1,n
Y(i) = Y(i) + A(i-j, j)™X()

Relational Query

» We can define an affine equation to describe the
selection
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= vector a corresponds to actual indices to the matrices

Ordering of loops, Example

DOi=1,n
DOj=1,n
Y(i) = Y(i) + Ali-j, j)™X(G)
Relational Query
« We can rearrange the Matrix using Column operations

a=H'i H=
a=<s,ij iy, t>
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» Now we can do equijoins easily

Low-Level planning

» For this, we can use standard techniques from
databases

» Tradeoffs between space and time
- For example, when you do scatter/gather
» Also guided by the complexity information

Conclusion

» Keyldeas
- We need to provide the compiler with all the
necessary information about the matrix format

- The problem becomes tractable when we push it to a
higher level
» Relational queries in this case

» Just like last week with garbage collection

« Why is nobody using it?




