

The Problem

- Matrix Algorithms tend to be relatively simple
 - Matrix Vector multiplication
 - Matrix-Matrix multiplication
- Coding them for sparse matrices is hard
 - sparse matrix formats can be hard to work with
 Involve a lot of indirection
 - hence iteration space is very complex
 - there are lots of matrix formats
 - Makes library-based approaches infeasible

Specifying the hierarchy of indices

 $T := V |f| |f_{\text{op}}T |f x f x f x ... > T | (f, f, f, ...) > T | T U T$

 The > operator indicates the nesting of fields
 Example: in CCS, we have i>j because we have to get the column before we can access an element in the row

Specifying the hierarchy of indices

 $\mathsf{T}:=\mathsf{V} \mid \mathsf{f} \mid \mathsf{f}\mathsf{>_{op}}\mathsf{T} \mid \mathsf{f} \times \mathsf{f} \times \mathsf{f} \times \cdots > \mathsf{T} \mid (\mathsf{f}, \mathsf{f}, \mathsf{f}, \ldots) > \mathsf{T} \mid \mathsf{T} \cup \mathsf{T}$

 The (F₁ x ... x F_n) operator indicates that the indices corresponding to the F_i can be enumerated independently

Example: Dense storage

 (I x J) > V

The compiler's view

- The algorithm as relational query
 - how do we get equijoins?
 - how do we order them?
 - how do we implement joins?
- Implemented in a two level plan
 - high-level planning decides how to order the joins
 - Low-level planning decides how the joins are to be
 - implemented

High-level planning: Ordering of joins

- Key idea:
 - ordering of joins should respect hierarchy of indices when possible
 - equijoins preferred whenever possible

Low-Level planning

- For this, we can use standard techniques from databases
- Tradeoffs between space and time
 For example, when you do scatter/gather
- Also guided by the complexity information

Conclusion

- Key Ideas
 - We need to provide the compiler with all the necessary information about the matrix format
 - The problem becomes tractable when we push it to a higher level
 - Relational queries in this case
 - Just like last week with garbage collection
- Why is nobody using it?