
Formal Linear Algebra 
Methods Environment

Presented by Amir Kamil



Typical Software Development Process

1) Develop algorithm to solve problem.
2) Write code that “implements” the algorithm.
3) Insert assertions, debugging output, etc. to 

verify correctness of code.
4) Run on lots of test cases.



Problems with Typical Process

1) Develop algorithm to solve problem.
o Difficult – requires expert in area.

2) Write code that “implements” the algorithm.
3) Insert assertions, debugging output, etc. to 

verify correctness of code.
4) Run on lots of test cases.



Problems with Typical Process

1) Develop algorithm to solve problem.
2) Write code that “implements” the algorithm.

o Code looks nothing like the algorithm.
o Hard to tell if code actually implements the 

algorithm.
o Linear algebra code prone to index errors.

3) Insert assertions, debugging output, etc. to 
verify correctness of code.

4) Run on lots of test cases.



Problems with Typical Process

1) Develop algorithm to solve problem.
2) Write code that “implements” the algorithm.
3) Insert assertions, debugging output, etc. to 

verify correctness of code.
o Code first, verify later.
o Better to write predicates first, derive code from 

predicates.
4) Run on lots of test cases.



Problems with Typical Process

1) Develop algorithm to solve problem.
2) Write code that “implements” the algorithm.
3) Insert assertions, debugging output, etc. to 

verify correctness of code.
4) Run on lots of test cases.

o Tedious, time consuming.
o No guarantee of coverage, correctness.



A Better Process

1) Derive algorithm using a systematic 
process.

o Determine pre/post-conditions, loop invariants.
o Determine initialization, loop updates that 

preserve the above.
2) Implement using appropriate API so that the 

code looks like the algorithm.



Algorithm Skeleton



Algorithm Derivation

Eight step process to fill in algorithm 
skeleton.
Example – in-place inversion of an m x m 
lower triangular matrix.

A := A-1



Step 1: Pre- and Post-conditions

Determine pre- and 
post-conditions –
essentially input and 
output of algorithm.
Example:
pre: A = Â
post: A = Â-1

(Â is initial matrix)



Step 2.1: Loop invariant
Partition matrix, substitute into post-
condition.
Example: A 

Plugging into post-condition:
ABRABL

ATL

ABRABL

ATL

ÂBRÂBL

ÂTL

Â-1
BR-Â-1

BR ÂBL Â-1
TL

Â-1
TL

= =

-1

(RHS derived using linear algebra identities)



Step 2.2: Loop Invariant
Consider individual operations – decide 
which ones correspond to intermediate 
results.

Programmer decision – different sets of 
completed operations correspond to different 
invariants.

Example:

ABRABL

ATL

ÂBR-ÂBL Â-1
TL

Â-1
TL

=



Possible Invariants



Steps 3-5

3) Determine loop guard.
4) Determine initialization.
5) Determine how to move partition boundary.

All of the above follow from the loop invariant.

ABRABL

ATL A11A10

A21 A22A20

A00



Steps 6-7
6) Determine predicate 

before loop update.
7) Determine predicate 

after loop update.

Determined by 
substituting result of 
step 5 into loop 
invariant and 
simplifying.



Step 8: Loop Update

Compare before 
and after 
predicates, 
determine what 
must be changed 
between the two.



End Result

Predicates can be 
removed, since 
they aren’t needed 
by the algorithm.



Implementation

FLAME provides a set of APIs that provide 
high level linear algebra operations.

Available for many languages.
Algorithm can be coded by transforming 
operations into calls to FLAME.

Code can also be generated automatically from 
algorithm.

Implementation actually looks like algorithm.



Actual Code



Automation

Much of the above process can be 
automated.

For some simple problems, entire process can be 
done automatically.



Automated Steps 1-2

(Step 1) Pre- and post-conditions define 
problem, so must be provided.
(Step 2.1) Partitioned expression must be 
provided.

(Step 2.2) Loop invariant can be automatically 
derived from partitioned expression – select 
subset of operations.



Automated Steps 3-5

(Step 3) Loop guard can be derived from 
invariant – essentially when partition reaches 
the matrix boundaries.
(Step 4) Initialization usually only requires 
placing partition line at the boundaries.
(Step 5) How to move partition boundaries 
can be determined by comparing initialization 
to loop guard.



Automated Steps 6-7

(Step 6) To obtain before predicate:
Substitute result of step 5 into loop invariant – can 
be done automatically.
Simplify – requires symbolic manipulation (e.g. 
Mathematica)

(Step 7) After predicate is similar to above.



Automated Step 8

(Step 8) Determine loop update by comparing 
before and after predicates.

Automation requires pattern matching, symbolic 
manipulation, library of transformation rules.



Status of Automation

Fully automated system exists for limited set 
of linear algebra problems.
Prototype semi-automated system for general 
problems:

Loop invariant required as input.
Output is partially filled skeleton – all but loop 
update computed, and hints provided for what 
needs to be done in loop update.



Benefits of FLAME

Algorithm derivation and implementation can 
now be done in hours instead of months.

Can be done by non-experts.
Performance comparable to vendor-supplied 
libraries.
Implementation is provably correct.
Parallelization of code is trivial – just call 
parallel version of FLAME API.



Future Work

Improve prototype system to generate 
complete algorithm.
Implement stability and performance analysis 
of algorithms.


