
KIDS: A Semi-Automatic
Program Development System

Douglas R. Smith, Kestrel Institute, TSE ’90

CS294-2: Software Synthesis
Presented by Gilad Arnold

1

BEEN THERE, DID THAT. . .

BEEN THERE, DID THAT. . . 2

Bunch of specification languages

➜ recursive functions
➜ SETL
➜ OO + sets
➜ [else?]











declarative (?),
expressive, . . .

Wealth of transformation techniques

➜ simplification
➜ (un)folding
➜ finite differencing
➜ [else?]















correctness preserving,
useful,
complementary, . . .

BEEN THERE, DID THAT. . . 3

SO WHAT’S THE PROBLEM?

SO WHAT’S THE PROBLEM? 4

The missing link
➜ give me one tool

➜ all-in-one synthesizer/optimizer
➜ unified language for spec + transformations (deduction)
➜ IDE: expression highlighting, menus, . . .

➜ does (almost) everything automagically

➜ for the remainder. . .
➜ exhaustive library (theories)
➜ cookbook (design tactics)

SO WHAT’S THE PROBLEM? 5

KIDS: SOFTWARE SYNTHESIS APPLIED

KIDS: SOFTWARE SYNTHESIS APPLIED 6



Functional view: typical use-case

compiler

REFINE

RAINBOW II

lib

spec

tactics

domains

transform

refinement

case analysis

differencing

partial eval

simplification

code gen

control

UI

KIDS: SOFTWARE SYNTHESIS APPLIED 7

Functional view: typical use-case (2)

➀ spec

compiler

REFINE

RAINBOW II

lib

spec

tactics

domains

transform

refinement

case analysis

differencing

partial eval

simplification

code gen

control

UI

KIDS: SOFTWARE SYNTHESIS APPLIED 8

Functional view: typical use-case (3)

➀ spec

➁ design

compiler

REFINE

RAINBOW II

lib

spec

tactics

domains

transform

refinement

case analysis

differencing

partial eval

simplification

code gen

control

UI

KIDS: SOFTWARE SYNTHESIS APPLIED 9

Functional view: typical use-case (4)

➀ spec

➁ design

➂ transform

compiler

REFINE

RAINBOW II

lib

spec

tactics

domains

transform

refinement

case analysis

differencing

partial eval

simplification

code gen

control

UI

KIDS: SOFTWARE SYNTHESIS APPLIED 10

Functional view: typical use-case (5)

➀ spec

➁ design

➂ transform

➃ concretize

compiler

REFINE

RAINBOW II

lib

spec

tactics

domains

transform

refinement

case analysis

differencing

partial eval

simplification

code gen

control

UI

KIDS: SOFTWARE SYNTHESIS APPLIED 11

Functional view: novel parts

compiler

REFINE

RAINBOW II

lib

spec

tactics

domains

transform

refinement

case analysis

differencing

partial eval

simplification

code gen

control

UI

KIDS: SOFTWARE SYNTHESIS APPLIED 12



THE BASICS

THE BASICS 13

REFINE: underlying knowledge-based environment
➜ data management / representation
➜ also defines high-level language: sets, seuqnces, FOL, . . .

RAINBOW II: deductive inference engine

find some(T )(A =⇒ (S(x1, . . . , xm)−→T (xi1
, . . . , xin

)))

➜ directed: =⇒ ⇐= = ≥ ≤

➜ extensive rewrite rules library
➜ “optimality” = semantic distance + complexity heuristic

Specification
function F (x : D) : set(R)

where I(x)

returns {z | O(x, z)}

= body

}

interface
}

implementation

THE BASICS 14

STEP 1: DESCRIBE THE PROBLEM

STEP 1: DESCRIBE THE PROBLEM 15

Real-world example: k-queens
➜ input: k ∈ N

➜ output: set of sequences [3, 1, 4, 2] =

Q

Q

Q

Q

➜ how to express constraints on valid outputs?
➀ unique columns (trivial)
➁ unique rows expressed using bijection

injective(M : seq(integer), S : set(integer)) : boolean
= range(M) ⊆ S ∧ ∀i 6= j ∈ domain(M).M(i) 6= M(j))

bijective(M : seq(integer), S : set(integer)) : boolean
= injective(M, S) ∧ range(M) = S

➂ unique diagonals expressed using diffs/sums
ntqpud (S : set(integer)) : boolean

= ∀i 6= j ∈ domain(S).S(i) − i 6= S(j) − j

STEP 1: DESCRIBE THE PROBLEM 16

Enrich the theory
➜ distributive laws are good practice

∀W1, W2, S.injective(concat(W1, W2), S)

= injective(W1, S)∧ injective(W2, S)∧range(W1)∩range(W2) = ∅

Formal specification

function Queens(k : integer) : set(seq(integer))
where 1 ≤ k

returns {assign | bijective(assign, {1 . . . k})
∧ntqpud (assign)

∧ntqpdd (assign)}

What’s missing?. . .

STEP 1: DESCRIBE THE PROBLEM 17

STEP 2: CONSTRUCT AN ALGORITHM

STEP 2: CONSTRUCT AN ALGORITHM 18



Identify your problem

➀ what kind of algorithm can be used?
➜ our case: global search

➜ partition (abstract) search space
➜ solution extracted/collected bottom-up
➜ pruning (necessary filter)

➜ theorem: consistent specification of global search algorithm
can be obtained from its theory

➁ what form does solution take?
➜ (aka: type of output)
➜ our case: integer sequences of bounded length

How is that helpful?

STEP 2: CONSTRUCT AN ALGORITHM 19

Key idea: solution by reduction

➀ select theory which solves an enumeration of the output type
➜ many provided by library

➁ find substitution which completely reduces your problem to it
➜ verify: ∀x : DA.∃y : DB .∀z : RA.IA(x) ∧ OA(x, z) =⇒ OB(y, z)

➜ instantiate a deductive inference task
➜ theorem: global search theory for problem A can be

obtained from that of B, given BB ≤θ BA

➂ derive necessary filter + create global search algorithm
➜ find parameterized necessary condition:

∃z : R.Satisfies(z, r̂) ∧ O(x, z) =⇒ Φ(x, r̂)
➜ again, another inference task

➜ correctness guaranteed by theorem (previous slide)

STEP 2: CONSTRUCT AN ALGORITHM 20

Our case: m-bounded sequences ≤ k-queens

[]

[x1]...
[x2]

[x2, x1]...
[x2, x2]...

. . . [x2, xk]...

. . . [xk]...

➜ given 〈S, m〉, enumerate all sequences of length ≤ m over set S

➜ to verify:
seq(integer) = seq(α)∧

∀k : integer.∃S : set(integer), m : integer .∀assign : seq(integer).
bijective(assign, {1 . . . k}) ∧ ntqpud (assign) ∧ ntqpdd(assign)

=⇒ range(assign) ⊆ S ∧ length (assign) ≤ m

➜ yields substitution {α 7→ integer , S 7→ {1 . . . k}, m 7→ k}

STEP 2: CONSTRUCT AN ALGORITHM 21

Our case: k-bounded sequences ≤ k-queens (2)

[]

[1]...
[2]

[2, 1]...
[2, 2]...

. . . [2, k]...

. . . [k]...

➜ obtained a global search theory for our problem!

➜ notice a deficiency?

➜ infer necessary condition:
find some(Φ)

1 ≤ k =⇒ ((∃assign.∃r.assign = concat(prefix, r)
∧bijective(assign, {1 . . . k})

∧ntqpud (assign) ∧ ntqpdd(assign))
=⇒ Φ(k, prefix))

STEP 2: CONSTRUCT AN ALGORITHM 22

Our case: k-bounded sequences ≤ k-queens (3)

[]

[1]...
[2]

[2, 1]...
[2, 2] . . . [2, k]...

. . . [k]...

➜ obtained filter predicate:
Φ(k, prefix) = ntqpud (prefix) ∧ ntqpdd(prefix)

∧injective(prefix, {1 . . . k})

➜ prunes away infeasible prefixes

➜ . . . but how to find strongest postcondition?

STEP 2: CONSTRUCT AN ALGORITHM 23

What have we got so far?

➜ domain (global search) theory for our problem

➜ correct algorithm to solve it!
➜ w/ some heuristic to prune unnecessary branching

➜ very high-level, evidently unknowledgeable

➜ therefore quite inefficient. . .

STEP 2: CONSTRUCT AN ALGORITHM 24



STEP 3: IMPROVE THE ALGORITHM

STEP 3: IMPROVE THE ALGORITHM 25

CI-simplification: extreme rewriting

➜ distributivity:

if injective([], {1 . . . k})

∧ntqpud([])∧ ntqpdd([])
then Queens_gs(k, [])

else ∅

9

>

>

=

>

>

;

= Queens_gs(k, [])

➜ and others:
{assign |

ntqpdd(assign)

∧ntqpud (assign)

∧bijective(assign , {1 . . . k})

∧assign = prefix}

9

>

>

>

>

>

=

>

>

>

>

>

;

=

8

>

>

>

<

>

>

>

:

{prefix |
ntqpdd(prefix)

∧ntqpud(prefix)

∧bijective(prefix , {1 . . . k})}

➜ some distributive rules introduce cross-dependencies

STEP 3: IMPROVE THE ALGORITHM 26

CD-simplification: extreme rewriting with contexts

➜ idea: assume all preceding predicates, then simplify

➜ formed as an inference task:
find some(simp)

(ntqpdd(prefix)
∧ntqpud (prefix)

∧injective(prefix, {1 . . . k})

∧length (prefix) ≤ k

∧range(prefix) ⊆ {1 . . . k}

∧1 ≤ k

=⇒ (ntqpdd(prefix) ∧ ntqpud (prefix) ∧ bijective(prefix, {1 . . . k})))
= simp(prefix, k)

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

input assumptions

➜ resulting expression: {1 . . . k} ⊆ range(prefix)

STEP 3: IMPROVE THE ALGORITHM 27

Code after simplification: as clear as can be

function Queens(k)
where . . .

returns . . .

= Queens_gs(k, [])

function Queens_gs(k, prefix)
where . . .

returns . . .

= {prefix | {1 . . . k} ⊆ range(prefix)}

∪
⋃

{

Queens_gs(k, append (prefix, i)) |

i /∈ range(prefix) ∧ i ∈ {1 . . . k}

∧length (prefix) < k

∧cross_ntqpud (prefix , [i])

∧cross_ntqpdd (prefix, [i])
}

STEP 3: IMPROVE THE ALGORITHM 28

Partial evaluation: unfolding with substitution
➜ more opportunities for simplification

➜ . . . otherwise nothing interesting

Finite differencing: incrementalize repeated computations

➜ same as last week’s paper

➜ . . . just slightly different
➜ phased approach: first abstraction, then. . . simplification!
➜ works across functions
➜ reuses common pool of laws

Case analysis: even further simplification

➜ idea: replace e with if P then e else e, then CD-simplify

➜ useful (eg) when joining complementing sets

STEP 3: IMPROVE THE ALGORITHM 29

STEP 4: CONCRETIZE

STEP 4: CONCRETIZE 30



Data type refinement

➜ no single “standard” implementation covers all use cases

➜ idea: extract partial schedule, then find the right data structure

➜ some caveats
➜ may require deriving upper/lower bounds on set cardinality
➜ may require restricting the spec with fixed bounds

Compilation
➜ via Common Lisp

STEP 4: CONCRETIZE 31

AFTERMATH

➜ transformations cut processing time by cubic factor
➜ actual benchmark drops from 1 hours to 1 second

➜ takes 16 high-level informed decisions
➜ conjecture: could be reduced to zero
➜ possibly applying CI-simplify exhaustively?

AFTERMATH 32

SHOWTIME

be back with us after this short demo. . .

SHOWTIME 33

DISCUSSION

➜ adding distributive (and other) laws to high-level theories
➜ how critical are they in practice?

➜ how applicable are reductions to arbitrary problem types?
➜ are they really easier than straightforward coding?

➜ [your question here]

DISCUSSION 34

THANK YOU!

35


