KIDS: A Semi-Automatic

 Program Development SystemDouglas R. Smith, Kestrel Institute, TSE '90

CS294-2: Software Synthesis Presented by Gilad Arnold
\qquad

The missing link
\rightarrow give me one tool
\rightarrow all-in-one synthesizer/optimizer
\rightarrow unified language for spec + transformations (deduction)
\rightarrow IDE: expression highlighting, menus, ...
\rightarrow does (almost) everything automagically
\rightarrow for the remainder...
\rightarrow exhaustive library (theories)
\rightarrow cookbook (design tactics)

KIDS: SOFTWARE SYNTHESIS APPLIED

KIDS: SOFTWARE SYNTHESIS APPLIED 10

KIDS: SOFTWARE SYNTHESIS APPLIED
\qquad

REFINE: underlying knowledge-based environment
\rightarrow data management / representation
\rightarrow also defines high-level language: sets, seuqnces, FOL, ...

RAINBOW II: deductive inference engine

$$
\text { find } \operatorname{some}(T)\left(A \Longrightarrow\left(S\left(x_{1}, \ldots, x_{m}\right) \longrightarrow T\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)\right)\right)
$$

\rightarrow directed: $\Longrightarrow \Longleftarrow=\geq \leq$
\rightarrow extensive rewrite rules library
\rightarrow "optimality" = semantic distance + complexity heuristic
Specification
function $F(x: D): \operatorname{set}(R)$ where $I(x)$
returns $\{z \mid O(x, z)\} \quad\}$ interface
= body $\quad\}$ implementation

THE BASICS

Real-world example: k-queens

\rightarrow input: $k \in \mathbb{N}$
\rightarrow output: set of sequences

\rightarrow how to express constraints on valid outputs?
(1) unique columns (trivial)
(2) unique rows expressed using bijection injective ($M: \operatorname{seq}($ integer $), S: \operatorname{set}($ integer $))$: boolean $=\operatorname{range}(M) \subseteq S \wedge \forall i \neq j \in \operatorname{domain}(M) . M(i) \neq M(j))$ bijective($M: \operatorname{seq}($ integer $), S: \operatorname{set}($ integer $)):$ boolean $=\operatorname{injective}(M, S) \wedge \operatorname{range}(M)=S$
(3) unique diagonals expressed using diffs/sums $\operatorname{ntqpud}(S:$ set(integer)) : boolean $=\forall i \neq j \in \operatorname{domain}(S) \cdot S(i)-i \neq S(j)-j$

Step 2: CONSTRUCT AN ALGORITHM
unction Queens(k : integer) : set(seq(integer))
where $1 \leq k$
returns $\{$ assign | bijective(assign, $\{1 \ldots k\}$)
\wedge ntqpud (assign)
\wedge ntqpdd(assign) $\}$

What's missing?...

Enrich the theory

\rightarrow distributive laws are good practice
$\forall W_{1}, W_{2}, S$.injective (concat $\left(W_{1}, W_{2}\right), S$)

$$
=\operatorname{injective}\left(W_{1}, S\right) \wedge \text { injective }\left(W_{2}, S\right) \wedge \operatorname{range}\left(W_{1}\right) \cap \operatorname{range}\left(W_{2}\right)=\emptyset
$$

Formal specification

Identify your problem

(1) what kind of algorithm can be used?
\rightarrow our case: global search
\rightarrow partition (abstract) search space
\rightarrow solution extracted/collected bottom-up
\rightarrow pruning (necessary filter)
\rightarrow theorem: consistent specification of global search algorithm can be obtained from its theory
(2) what form does solution take?
\rightarrow (aka: type of output)
\rightarrow our case: integer sequences of bounded length

How is that helpful?

Our case: m-bounded sequences $\leq k$-queens

\rightarrow given $\langle S, m\rangle$, enumerate all sequences of length $\leq m$ over set S
\rightarrow to verify:
seq $($ integer $)=\operatorname{seq}(\alpha) \wedge$
$\forall k$: integer. $\exists S$: set(integer), m : integer. \forall assign : seq(integer). bijective (assign, $\{1 \ldots k\}) \wedge$ ntqpud (assign) \wedge ntqpdd (assign) \Longrightarrow range (assign) $\subseteq S \wedge$ length (assign) $\leq m$
\rightarrow yields substitution $\{\alpha \mapsto$ integer, $S \mapsto\{1 \ldots k\}, m \mapsto k\}$

Our case: k-bounded sequences $\leq k$-queens (3)

\rightarrow obtained filter predicate:
$\Phi(k$, prefix $)=n t q p u d($ prefix $) \wedge$ ntqpdd $($ prefix $)$ \wedge injective (prefix, $\{1 \ldots k\}$)
\rightarrow prunes away infeasible prefixes
\rightarrow...but how to find strongest postcondition?

Key idea: solution by reduction
(1) select theory which solves an enumeration of the output type \rightarrow many provided by library
(2) find substitution which completely reduces your problem to it
\rightarrow verify: $\forall x: D_{A} \cdot \exists y: D_{B} . \forall z: R_{A} \cdot I_{A}(x) \wedge O_{A}(x, z) \Longrightarrow O_{B}(y, z)$ \rightarrow instantiate a deductive inference task
\rightarrow theorem: global search theory for problem A can be obtained from that of B, given $\mathcal{B}_{B} \leq_{\theta} \mathcal{B}_{A}$
(3) derive necessary filter + create global search algorithm
\rightarrow find parameterized necessary condition:
$\exists z:$ R.Satisfies $(z, \hat{r}) \wedge O(x, z) \Longrightarrow \Phi(x, \hat{r})$
\rightarrow again, another inference task
\rightarrow correctness guaranteed by theorem (previous slide)

Our case: k-bounded sequences $\leq k$-queens (2)

\rightarrow obtained a global search theory for our problem!
\rightarrow notice a deficiency?
\rightarrow infer necessary condition:
find some (Φ)
$1 \leq k \Longrightarrow((\exists$ assign. $\exists r$. assign $=\operatorname{concat}($ prefix,$r)$ \wedge bijective (assign, $\{1 \ldots k\}$)
\wedge ntqpud (assign) \wedge ntqpdd (assign))
$\Longrightarrow \Phi(k$, prefix $))$

Step 2: CONSTRUCT AN ALGORITHM

What have we got so far?
\rightarrow domain (global search) theory for our problem
\rightarrow correct algorithm to solve it!
$\rightarrow \mathrm{w} /$ some heuristic to prune unnecessary branching
\rightarrow very high-level, evidently unknowledgeable
\rightarrow therefore quite inefficient. . .

Partial evaluation: unfolding with substitution
\rightarrow more opportunities for simplification
\rightarrow... otherwise nothing interesting

Finite differencing: incrementalize repeated computations
\rightarrow same as last week's paper
\rightarrow... just slightly different
\rightarrow phased approach: first abstraction, then. . . simplification!
\rightarrow works across functions
\rightarrow reuses common pool of laws

Case analysis: even further simplification

\rightarrow idea: replace e with if P then e else e, then CD-simplify
\rightarrow useful (eg) when joining complementing sets

Code after simplification: as clear as can be
function Queens (k)
where...
returns...
$=$ Queens_gs(k, [])
function Queens_gs(k, prefix)
where..
returns...
$=\{$ prefix $\mid\{1 \ldots k\} \subseteq$ range $($ prefix $)\}$
$\cup \bigcup\{$ Queens_gs(k, append (prefix, $i)$)
$i \notin$ range $($ prefix $) \wedge i \in\{1 \ldots k\}$
\wedge length (prefix) $<k$
\wedge cross_ntqpud (prefix, [i])
\wedge cross_ntqpdd (prefix, [i])\}

