
Code Synthesis for Automatic Tuning

Kathy Yelick
U.C. Berkeley and Lawrence Berkeley National Laboratory

Richard Vuduc, Lawrence Livermore National Laboratory
James Demmel, U.C. Berkeley
Berkeley Benchmarking and OPtimization (BeBOP) Group
bebop.cs.berkeley.edu

Automatic Performance Tuning
• Motivation: replace hand tuning of computational kernels

– Tedious and difficult
– Too hard to keep up with new architectures, compilers, kernels
– Sometimes tuning must be done at runtime

• Automatic performance tuning:
– Approach

• Generate “space” of candidate algorithms
• Search space for best one

– Examples
• ATLAS – adopted by Matlab and elsewhere
• PHiPAC - ATLAS predecessor
• FFTW – 1999 Wilkinson Prize for Numerical Software
• Spiral – signal processing
• Sparsity/OSKI – sparse matrix-vector multiply

Finding the best block size is like finding a needle in a haystack!

Sun Ultra 2i/333MHz

Dense Matrix-Matrix Multiplication
N

um
be

r o
f r

ow
s

pe
r t

ile
 (r

)

Number of columns per tile (c)

Most Implementations are Not Good

7 numerical methods domain scientific computing

1. Structured Grids (including adaptive)
2. Unstructured Grids
3. Spectral methods (Fast Fourier Transform)
4. Dense Linear Algebra
5. Sparse Linear Algebra
6. Particle Methods
7. Monte Carlo

Well-defined targets from algorithmic,
software, and architecture standpoint

Phillip Colella’s “Seven dwarfs”

Slide from “Defining Software
Requirements for Scientific
Computing”, Phillip Colella, 2004

FFTW
Atlas

1. Structured Grids (including adaptive)
2. Unstructured Grids
3. Spectral methods (Fast Fourier Transform)
4. Dense Linear Algebra
5. Sparse Linear Algebra
6. Particle Methods
7. Monte Carlo

Stencil on Grid Matrix Vector Multiply on Matrix

• Shown for the 2D case, the matrix T is now
– Grid points numbered left to right, top row to bottom row

• Similar to “adjacency matrix” for arbitrary graph

4 -1 -1

-1 4 -1 -1

-1 4 -1

-1 4 -1 -1

-1 -1 4 -1 -1

-1 -1 4 -1

-1 4 -1

-1 -1 4 -1

-1 -1 4

T =
4

-1

-1

-1

-1

Graph and “stencil”

Conversion between a mesh and matrix

Hidden slide:
shown in earlier
lecture on sources
of parallelism

Project Proposal: Stencil Generator

• Stencil operations on regular meshes are very common and
have many variations
– Dimension: 1D (e.g. 3pt), 2D (5pt or 9pt), 3D (7pt or 27pt)
– Shape: 1D (e.g. 3pt), 2D (5pt or 9pt), 3D (7pt or 27pt), they need

not be regular
– Band: just your immediate neighbors (band=1), or their neighbor

(band=2), or…
– Balanced or unbalanced in various directions (isotropic, anisotropic)
– coefficients (NAS MG)

• constant, 1 point and all others
• constant, 1 point and distance-based coefficients
• variable, relative to each position

– Update in place vs. 2nd grid
– Colored algorithms (red-black in 2D)

4

-1

-1

-1

-1

Optimizing Stencils

• Stencil operations have simple structure
– Loop nest with single assignment in the simple case
– Real applications use these and more complicated cases

• Low floating point rate:
– Typically ~1 FLOP per load
– Good spatial locality, but little temporal locality (re-use)
– Run at small fraction of peak (<15%)!

• Optimizations:
– Improve reuse within a sweep through the grid
– Tile to improve chance that previous plane (or row) is still in

cache when the neighboring one is processes

Tiling Stencil Computations

• Several papers on tiling stencil computations
– E.g., Rivera and Tseng SC2002, …

• Old Conventional Wisdom
– Cache misses are the most important factor

Blocked Speedup (Itanium2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

grid size

¨

Itanium2 Lowest Fraction of Cache Misses
with Blocking

0

0.2

0.4

0.6

0.8

1

1.2

Cache misses in blocked/unblocked Time for unblocked/blocked

Stencil Probe Cache Blocking Revisited
New Conventional Wisdom: Prefetching is as important as caching
• Little’s Law (Bailey ‘97): need data in-flight = latency * bandwidth
Cache blocking is useful for
1. large grid sizes: 3 planes do not fit in cache for 3D problem
2. do not cut/block the unit-stride dimension

Best Case Speedup from Rivera Blocking

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

It
an

iu
m

1
2
8

It
an

iu
m

2
5
6

It
an

iu
m

5
1
2

O
p
te

ro
n

1
2
8

O
p
te

ro
n

2
5
6

O
p
te

ro
n

5
1
2

G
5
 1

2
8

G
5
 2

5
6

512x16 256x16512x64
256x32

Blocking Over Time / Iterations

• Can we do better than this?
– Code is still severely limited by memory bandwidth

• For some computations, you can merge across k
sweeps over the grid
– Re-use data k times (as well as re-use within a plane)

• Dependencies produce pyramid patterns

Frigo & Strumpen, ICS05.

time

space x1x0

t1

t0

dx1dx0

The Algorithm - Base Case

If the height is 1 (ie t1-t0=1) then we simply have a line
of points (t0,x) where x0 <= x <= x. Do the kernel on
this set of points. Order does not matter (no
interdependencies).

time

space x1x1

t1
t0

The Algorithm - Space Cut

• If the width <= 2*height, then cut with slope=-1
through the center.

• Do T1, then T2. No point in T1 depends on values
from T2.

time

space x1x1

t1

t0

T1
T2

The Algorithm - Time Cut

• Otherwise, cut trapezoid in half in the time dimension.

• Do T1, then T2. No point in T1 depends on values of
T2.

time

space x1x1

t1

t0

T1

T2

Initial Results - Itanium2

Initial Results - Itanium2

Best Performance

Project Idea Revisited

• Cache oblivious stencils not well tested
– Only limited stencils (3D 7pt)
– Applications use many different stencils

• Requested work by apps folks
– Paper by S. Kamil, Oliker, Shalf so that many optimizations are

needed to make it really work

• Recursion is useful for understanding the algorithm
– Can’t use recursion all the way to the bottom
– A fixed tiling approach may work as well
– Key inside is tile shapes: Pyramids and Parallelopipeds

General Sparse Matrix Case

• If this works for stencils, what about arbitrary
matrices?

• Tuning arbitrary matrices
– Project: code generator that is more flexible, maintainable,

extensible than current approach

• The time-blocked approach extended to matrices
– Ak * x
– Intuition: most of cost in A*x is reading matrix A
– Can we read A once and do k operations with it?

• Notes:
– “Time” is used loosely; this is typically iterations in a solver
– Many numerical “details” to make Ak * x useful [Hoemmen]

A “Familiar” Sparse Matrix
Who am I?

I am a
Big Repository

Of useful
And useless
Facts alike.

Who am I?

(Hint: Not your e-mail
inbox.)

Motivation for Tuning Sparse Matrices

• Sparse matrix kernels can dominate solver time
– Sparse matrix-vector multiply (SpMV)
– SpMV: runs at < 10% of peak

• Improving SpMV’s performance is hard
– Performance depends on machine, kernel, matrix
– Matrix known only at run-time
– Best data structure + implementation can be surprising
– Tuning becoming more difficult over time

• Approach: Empirical modeling and search
– Off-line benchmarking + run-time models
– Up to 4x speedups and 31% of peak for SpMV
– Other kernels: 1.8x triangular solve, 4x ATA⋅x, 2x A2⋅x

OSKI: Optimized Sparse Kernel Interface

• Sparse kernels tuned for user’s matrix & machine
– Hides complexity of run-time tuning
– Low-level BLAS-style functionality
– Includes fast locality-aware kernels: ATA⋅x, Ak⋅x …
– Initial target: cache-based superscalar uniprocessors

• Target users: “advanced” users & solver library writers
• Current focus on uniprocessor tuning

– Shared/distributed memory versions in progress

• Open-source (BSD) C library
– 1.0 available: bebop.cs.berkeley.edu/oski
– Recently integrated into PETSc

Road Map

• Sparse matrix-vector multiply (SpMV) review
– Why doesn’t my compiler solve the problem?

• Historical trends
• Automatic tuning in OSKI
• Future work

Matrix-vector multiply kernel: y(i) y(i) + A(i,j)⋅x(j)Matrix-vector multiply kernel: y(i) y(i) + A(i,j)⋅x(j)

for each row i
for k=ptr[i] to ptr[i+1] do

y[i] = y[i] + val[k]*x[ind[k]]

Compressed Sparse Row (CSR) Storage

Matrix-vector multiply kernel: y(i) y(i) + A(i,j)⋅x(j)

for each row i
for k=ptr[i] to ptr[i+1] do

y[i] = y[i] + val[k]*x[ind[k]]

Ay

x Representation of A

SpMV Historical Trends: Mflop/s

SpMV Historical Trends: Fraction of Peak

Example: The Difficulty of Tuning

• n = 21216
• nnz = 1.5 M
• kernel: SpMV

• Source: NASA
structural analysis
problem

Example: The Difficulty of Tuning

• n = 21216
• nnz = 1.5 M
• kernel: SpMV

• Source: NASA
structural analysis
problem

• 8x8 dense
substructure

What We Expect

• Assume
– Cost(SpMV) = time to read matrix
– 1 double-word = 2 integers
– r, c in {1, 2, 4, 8}

• CSR: 1 int / non-zero
• BCSR(r x c): 1 int / (r*c non-zeros)
• As r*c increases, speedup should

– Increase smoothly
– Approach 1.5

5.111

5.1
),(

, ⎯⎯ →⎯
+

≈= ∞=cr

BCSR

CSR

rc
crT

TSpeedup

What We Get (The Need for Search)

Reference

Best: 4x2

Mflop/s

Mflop/s

SpMV Performance—raefsky3

SpMV Performance—raefsky3

Still More Surprises

• More complicated non-zero
structure in general

Still More Surprises

• More complicated non-zero
structure in general

• Example: 3x3 blocking
– Logical grid of 3x3 cells

Extra Work Can Improve Efficiency!

• More complicated non-zero
structure in general

• Example: 3x3 blocking
– Logical grid of 3x3 cells
– Fill-in explicit zeros
– Unroll 3x3 block multiplies
– “Fill ratio” = 1.5

• On Pentium III: 1.5x speedup!

Historical Trends: Mixed News

• Observations
++ Moore’s law like behavior
---- “Untuned” is 10% peak or less, worsening
++ “Tuned” roughly 2x better today, and growing
---- Tuning is complex

• LINPACK not representative of sparse apps

Road Map

• Sparse matrix-vector multiply (SpMV) in a nutshell
• Historical trends and the need for search
• Automatic tuning in OSKI

– How does OSKI work?
• Current and future work

How OSKI Tunes (Overview)

Benchmark
data

1. Build for
Target
Arch.

2. Benchmark

Heuristic
models

1. Evaluate
Models

Generated
code

variants

2. Select
Data Struct.

& Code

Library Install-Time (offline) Application Run-Time

To user:
Matrix handle
for kernel
calls

Workload
from program

monitoring

Extensibility: Advanced users may write & dynamically add “Code variants” and “Heuristic models” to system.

History
Matrix

Example of a Tuning Heuristic

• Example: Selecting the r x c block size
– Off-line benchmark: characterize the machine

• Precompute Mflops(r,c) using dense matrix for each r x c
• Once per machine/architecture

– Run-time “search”: characterize the matrix
• Sample A to estimate Fill(r,c) for each r x c

– Run-time heuristic model
• Choose r, c to maximize Mflops(r,c) / Fill(r,c)

• Run-time costs
– Up to ~40 SpMVs (empirical worst case)
– Dominated by conversion
– May be amortized if pattern fixed

Accuracy of the Tuning Heuristics (1/4)

NOTE: “Fair” flops used (ops on explicit zeros not counted as “work”)

DGEMV

Accuracy of the Tuning Heuristics (2/4)
DGEMV

NOTE: “Fair” flops used (ops on explicit zeros not counted as “work”)

Calling OSKI: Interface Design

• Support “legacy applications”
– Gradual migration of apps to use OSKI

• Must call “tune” routine explicitly
– Exposes cost of tuning and data structure reorganization

• May provide tuning hints
– Structural: Hints about matrix
– Workload: Hints about frequency of calls, to limit tuning time

• May save/restore tuning results
– To apply on future runs with similar matrix
– Stored in “human-readable” format

How to Call OSKI: Basic Usage

• May gradually migrate existing apps
– Step 1: “Wrap” existing data structures
– Step 2: Make BLAS-like kernel calls

int* ptr = …, *ind = …; double* val = …; /* Matrix, in CSR format */
double* x = …, *y = …; /* Let x and y be two dense vectors */

/* Compute y = β·y + α·A·x, 500 times */
for(i = 0; i < 500; i++)

my_matmult(ptr, ind, val, α, x, β, y);

How to Call OSKI: Basic Usage

• May gradually migrate existing apps
– Step 1: “Wrap” existing data structures
– Step 2: Make BLAS-like kernel calls

int* ptr = …, *ind = …; double* val = …; /* Matrix, in CSR format */
double* x = …, *y = …; /* Let x and y be two dense vectors */
/* Step 1: Create OSKI wrappers around this data */
oski_matrix_t A_tunable = oski_CreateMatCSR(ptr, ind, val, num_rows,

num_cols, SHARE_INPUTMAT, …);
oski_vecview_t x_view = oski_CreateVecView(x, num_cols, UNIT_STRIDE);
oski_vecview_t y_view = oski_CreateVecView(y, num_rows, UNIT_STRIDE);

/* Compute y = β·y + α·A·x, 500 times */
for(i = 0; i < 500; i++)

my_matmult(ptr, ind, val, α, x, β, y);

How to Call OSKI: Basic Usage

• May gradually migrate existing apps
– Step 1: “Wrap” existing data structures
– Step 2: Make BLAS-like kernel calls

int* ptr = …, *ind = …; double* val = …; /* Matrix, in CSR format */
double* x = …, *y = …; /* Let x and y be two dense vectors */
/* Step 1: Create OSKI wrappers around this data */
oski_matrix_t A_tunable = oski_CreateMatCSR(ptr, ind, val, num_rows,

num_cols, SHARE_INPUTMAT, …);
oski_vecview_t x_view = oski_CreateVecView(x, num_cols, UNIT_STRIDE);
oski_vecview_t y_view = oski_CreateVecView(y, num_rows, UNIT_STRIDE);

/* Compute y = β·y + α·A·x, 500 times */
for(i = 0; i < 500; i++)

oski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view);/* Step 2 */

How to Call OSKI: Tune with Explicit Hints

• User calls “tune” routine
– May provide explicit tuning hints (OPTIONAL)

oski_matrix_t A_tunable = oski_CreateMatCSR(…);
/* … */

/* Tell OSKI we will call SpMV 500 times (workload hint) */
oski_SetHintMatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view, 500);
/* Tell OSKI we think the matrix has 8x8 blocks (structural hint) */
oski_SetHint(A_tunable, HINT_SINGLE_BLOCKSIZE, 8, 8);

oski_TuneMat(A_tunable); /* Ask OSKI to tune */

for(i = 0; i < 500; i++)

oski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view);

How the User Calls OSKI: Implicit Tuning

• Ask library to infer workload
– Library profiles all kernel calls
– May periodically re-tune

oski_matrix_t A_tunable = oski_CreateMatCSR(…);
/* … */

for(i = 0; i < 500; i++) {

oski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view);
oski_TuneMat(A_tunable); /* Ask OSKI to tune */

}

Saving and Restoring Tuning Transformations

• May selecting customized, complex transformations
using embedded scripting language (OSKI-Lua)

In file, “my_xform.txt”
Compute Afast = P*A*PT using

Pinar’s reordering algorithm
A_fast, P =

reorder_TSP(InputMat);

Split Afast = A1 + A2, where A1 in 2x2
block format, A2 in CSR

A1, A2 =
A_fast.extract_blocks(2, 2);

return transpose(P)*(A1+A2)*P;

/* In “my_app.c” */
fp = fopen(“my_xform.txt”, “rt”);
fgets(buffer, BUFSIZE, fp);

oski_ApplyMatTransform(A_tunable,
buffer);

oski_MatMult(A_tunable, …);

Additional Features

• Currently 5 tunable kernels
– SpMV, triangular solve, A⋅x & AT⋅w, ATA⋅x, Ak⋅x

• Support for several scalar type combinations
– {32-bit, 64-bit int} x {single, double prec.} x {real, complex}

• “Plug-in” extensibility
– Very advanced users may customize library (at run-time)

• New heuristics (e.g., Buttari, et al.)
• Alternative data structures & code variants (e.g., seg-scan for vector

architectures)

Exploiting Problem-Specific Structure

• Optimizations for SpMV
– Register blocking (up to 4x over CSR)
– Variable block splitting (2.1x over CSR, 1.8x over RB)
– Diagonals (2x over CSR)
– Reordering to create dense structure + splitting (2x over CSR)
– Symmetry (2.8x over CSR, 2.6x over RB)
– Cache blocking (2.2x over CSR)
– Multiple vectors (7x over CSR)
– And combinations…

• Sparse triangular solve
– Hybrid sparse/dense data structure (1.8x over CSR)

• Higher-level kernels
– AAT⋅x, ATA⋅x (4x over CSR, 1.8x over RB)
– A2⋅x (2x over CSR, 1.5x over RB)

Example: Variable Block Structure

2.1x
over CSR

1.8x
over RB

Example: Row-Segmented Diagonals

2x
over CSR

Mixed Diagonal and Block Structure

Example: Sparse Triangular Factor

• Raefsky4 (structural
problem) + SuperLU +
colmmd

• N=19779, nnz=12.6 M

Dense trailing triangle:
dim=2268, 20% of total
nz

Can be as high as 90+%!
1.8x over CSR

Cache Optimizations for AAT*x

• Cache-level: Interleave multiplication by A, AT

• Sparse matrix-vector multiply (SpMV) in a nutshell
• Historical trends and the need for search
• Automatic tuning in OSKI
• Current and future work

• Register-level: ai
T to be r×c block row, or diag row

() ∑
=

=⋅
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=⋅
n

i

T
ii

T
n

T

n
T xaax

a

a
aaxAA

1

1

1)(ΜΛ

dot product“axpy”

• Algorithmic-level transformations for A2*x, A3*x, …

Example applications

• T3P – Accelerator Design – Ko
– Register blocking, Symmetric Storage, Multiple vector
– 1.68x faster on Itanium 2 for one vector
– 4.4x faster for 8 vectors

• Omega3P – Accelerator Design – Ko
– Register blocking, Symmetric storage, Reordering
– 2.1x faster on Power4

• Semiconductor Industry:
– 1.9x speedup over SPOOLES in CG at design firm

• Recent integration of OSKI into PETSc

Status and Future Work

• OSKI Release 1.0 and docs available
bebop.cs.berkeley.edu/oski

• Performance bounds modeling (ongoing)
• Future OSKI work

– Release of PETSc version with OSKI
– Better “low-level” tuning, including vectors
– Automatically tuned parallel sparse kernels

• Development of a new HPC Challenge Benchmark
– Evaluate platforms based on tuned (blocked) SpMV

performance
• Tuning higher level algorithms using Akx

– Models indicate large speedups possible

Current SPMV OSKI Code Generator
#!/bin/bash
#
This script uses some bash extensions.
#

mattype=BCSR

if test x"$1" = x ; then
echo ""
echo "usage: $0 {full, source, makestub}"
echo ""
exit 1

fi

GENSOURCE=''
GENMAKE=''
case $1 in
[fF]*) GENSOURCE=yes ; GENMAKE=yes ;;
[sS]*) GENSOURCE=yes ; GENMAKE=no ;;
[mM]*) GENSOURCE=no ; GENMAKE=yes ;;
*) echo "*** Unknown option, '$1' ***" ; exit 1 ;;
esac

CreateOutfile() {
#---
args: <R> <C> <outfile>
#

R=$1
C=$2
outfile=$3

echo "/**
* \\file ${mattype}_${R}x${C}.c
* \\brief ${mattype} ${R}x${C} SpMV implementation, for all transpose

options.
* \\ingroup MATTYPE_${mattype}
*
* Automatically generated by $0 on `date`.
*/

if test ${GENMAKE} = yes ; then
makestub=Make.${mattype}
echo "#

Automatically generated by $USER@`hostname`
on `date`, running $0
#
" > ${makestub}
fi

for R in 1 2 3 4 5 6 7 8 ; do # row block size
for C in 1 2 3 4 5 6 7 8 ; do # column block size

echo "${MATTYPE} ${R}x${C}..."

outfile=${R}x${C}.c

if test ${GENSOURCE} = yes ; then
CreateOutfile ${R} ${C} ${outfile}

for OP in normal trans conj herm ; do # transpose option
for S in 1 general ; do # stride

WriteKernel ${R} ${C} ${OP} ${S} ${outfile}
done # S

WriteShell_v1 ${OP} ${outfile}
WriteShell ${OP} ${R} ${C} ${outfile}

done # OP

WriteMatReprMult ${R} ${C} ${outfile}
WriteFooter ${outfile}

fi

if test ${GENMAKE} = yes ; then
WriteMakeStub ${R} ${C} ${makestub}

fi

done # C
done # R
exit 0
eof

750 lines total

Project: Improved Code Generation

• Consider common kernels:
– Matrix-vector multiply, triangular solve, etc.

• Different emphasis than Bernoulli
– These are simpler kernels than they were interested in
– Generate code for many formats, not fixed by programmer
– Select between them using

• Performance models
• Search

• Approach may still apply
– Use high level language (Matlab?) to “specify” kernels
– Separate language to specify matrix format

Project Idea: Inter Iteration Tiling

• A2 * x is done in Rich Vuduc’s PhD thesis
• General case in Michelle Strout’s thesis
• Code generation technology would be useful

Inter-Iteration Sparse Tiling (1/3)

• Let A be 6x6 tridiagonal
• Consider y=A2x

– t=Ax, y=At
• Nodes: vector elements
• Edges: matrix elements aij

y1

y2

y3

y4

y5

t1

t2

t3

t4

t5

x1

x2

x3

x4

x5

Inter-Iteration Sparse Tiling (2/3)

• Let A be 6x6 tridiagonal
• Consider y=A2x

– t=Ax, y=At
• Nodes: vector elements
• Edges: matrix elements aij

• Orange = everything needed
to compute y1
– Reuse a11, a12

y1

y2

y3

y4

y5

t1

t2

t3

t4

t5

x1

x2

x3

x4

x5

Inter-Iteration Sparse Tiling (3/3)

• Let A be 6x6 tridiagonal
• Consider y=A2x

– t=Ax, y=At
• Nodes: vector elements
• Edges: matrix elements aij

• Orange = everything needed
to compute y1
– Reuse a11, a12

• Grey = y2, y3
– Reuse a23, a33, a43

y1

y2

y3

y4

y5

t1

t2

t3

t4

t5

x1

x2

x3

x4

x5

Extra slides

Creating Locality: TSP Reordering (Before)

(Pinar ’97;
Moon, et al ‘04)

Creating Locality: TSP Reordering (After)

(Pinar ’97;
Moon, et al ‘04)

Up to 2x
speedups
over CSR

Road Map

• Sparse matrix-vector multiply (SpMV) in a nutshell
• Historical trends and the need for search
• Automatic tuning in OSKI
• Current and future work

Inter-Iteration Sparse Tiling: Issues

• Tile sizes (colored regions)
grow with no. of iterations
and increasing out-degree
– G likely to have a few nodes

with high out-degree (e.g.,
Yahoo)

• Mathematical tricks to limit
tile size?
– Judicious dropping of edges

[Ng’01]

y1

y2

y3

y4

y5

t1

t2

t3

t4

t5

x1

x2

x3

x4

x5

Splitting for Variable Blocks and Diagonals

• Decompose A = A1 + A2 + … At
– Detect “canonical” structures (sampling)
– Split
– Tune each Ai

– Improve performance and save storage
• New data structures

– Unaligned block CSR
• Relax alignment in rows & columns

– Row-segmented diagonals

Historical Trends in SpMV Performance

• The Data
– Uniprocessor SpMV performance since 1987
– “Untuned” and “Tuned” implementations
– Cache-based superscalar micros; some vectors
– LINPACK

• Dense LU factorization
• Top 500 List

Features

• Explicit Hints
– Can suggest particular tuning technique

• Implicit Tuning: Ask library to infer workload
– Library profiles all kernel calls
– May periodically re-tune

• Scripting language for selecting customized
transformations
– Mechanism to save/restore transformations

• “Plug-in” extensibility
– Very advanced users may customize library (at run-time)

Summary of High-Level Themes

• “Kernel-centric” optimization
– Vs. basic block, trace, path optimization, for instance
– Aggressive use of domain-specific knowledge

• Performance bounds modeling
– Evaluating software quality
– Architectural characterizations and consequences

• Empirical search
– Hybrid off-line/run-time models

• Statistical performance models
– Exploit information from sampling, measuring

Related Work

• My bibliography: 337 entries so far
• Sample area 1: Code generation

– Generative & generic programming
– Sparse compilers
– Domain-specific generators

• Sample area 2: Empirical search-based tuning
– Kernel-centric

• linear algebra, signal processing, sorting, MPI, …
– Compiler-centric

• profiling + FDO, iterative compilation, superoptimizers, self-
tuning compilers, continuous program optimization

Next Steps

• BeBOP Current Work
– Public software release
– Impact on library designs: Sparse BLAS, Trilinos, PETSc, …
– Integration in large-scale applications

• Accelerator design, plasma physics (DOE)
• Geophysical simulation based on Block Lanczos (ATA*X; LBL)

– Systematic heuristics for data structure selection?
– Evaluation of emerging architectures

• Revisiting vector micros
– Other sparse kernels

• Matrix triple products, Ak*x
– Parallelism

Future Directions (A Bag of Flaky Ideas)

• Composable code generators and search spaces
• New application domains

– PageRank: multilevel block algorithms for topic-sensitive
search?

• New kernels: cryptokernels
– rich mathematical structure germane to performance; lots of

hardware

• New tuning environments
– Parallel, Grid, “whole systems”

• Statistical models of application performance
– Statistical learning of concise parametric models from traces for

architectural evaluation
– Compiler/automatic derivation of parametric models

Acknowledgements

• Super-advisors: Jim and Kathy
• Undergraduate R.A.s: Attila, Ben, Jen, Jin, Michael,

Rajesh, Shoaib, Sriram, Tuyet-Linh
• See pages xvi—xvii of dissertation.

Road Map

• Sparse matrix-vector multiply (SpMV) in a nutshell
• Historical trends and the need for search
• Automatic tuning techniques
• Upper bounds on performance

– SC’02
• Statistical models of performance

Motivation for Upper Bounds Model

• Questions
– Speedups are good, but what is the speed limit?

• Independent of instruction scheduling, selection
– What machines are “good” for SpMV?

Upper Bounds on Performance: Blocked
SpMV

• P = (flops) / (time)
– Flops = 2 * nnz(A)

• Lower bound on time: Two main assumptions
– 1. Count memory ops only (streaming)
– 2. Count only compulsory, capacity misses: ignore conflicts

• Account for line sizes
• Account for matrix size and nnz

• Charge min access “latency” αi at Li cache & αmem
– e.g., Saavedra-Barrera and PMaC MAPS benchmarks

∑

∑

=
+

=

⋅−+⋅−+⋅=

⋅+⋅≥

κ

κκ

κ

ααααα

αα

1
mem11

1
memmem

Misses)(Misses)(Loads

HitsHitsTime

i
iii

i
ii

Example: Bounds on Itanium 2

Example: Bounds on Itanium 2

Example: Bounds on Itanium 2

Fraction of Upper Bound Across Platforms

Achieved Performance and Machine Balance

• Machine balance [Callahan ’88; McCalpin ’95]
– Balance = Peak Flop Rate / Bandwidth (flops / double)

• Ideal balance for mat-vec: ≤ 2 flops / double
– For SpMV, even less

• SpMV ~ streaming
– 1 / (avg load time to stream 1 array) ~ (bandwidth)
– “Sustained” balance = peak flops / model bandwidth

∑ ⋅−+⋅−+⋅≥ +
i

iii κκααααα Misses)(Misses)(LoadsTime mem11

Where Does the Time Go?

• Most time assigned to memory
• Caches “disappear” when line sizes are equal

– Strictly increasing line sizes

∑
=

⋅+⋅≥
κ

αα
1

memmem HitsHitsTime
i

ii

Execution Time Breakdown: Matrix 40

Speedups with Increasing Line Size

Summary: Performance Upper Bounds

• What is the best we can do for SpMV?
– Limits to low-level tuning of blocked implementations
– Refinements?

• What machines are good for SpMV?
– Partial answer: balance characterization

• Architectural consequences?
– Example: Strictly increasing line sizes

Road Map

• Sparse matrix-vector multiply (SpMV) in a nutshell
• Historical trends and the need for search
• Automatic tuning techniques
• Upper bounds on performance
• Tuning other sparse kernels
• Statistical models of performance

– FDO ’00; IJHPCA ’04a

Statistical Models for Automatic Tuning

• Idea 1: Statistical criterion for stopping a search
– A general search model

• Generate implementation
• Measure performance
• Repeat

– Stop when probability of being within ε of optimal falls below
threshold

• Can estimate distribution on-line

• Idea 2: Statistical performance models
– Problem: Choose 1 among m implementations at run-time
– Sample performance off-line, build statistical model

Example: Select a Matmul Implementation

Example: Support Vector Classification

Example: L2 Misses on Itanium 2

Misses measured using PAPI [Browne ’00]

Example: Distribution of Blocked Non-Zeros

Register Profile: Itanium 2

190 Mflop/s

1190 Mflop/s

Register Profiles: Sun and Intel x86

Ultra 2i - 11% Ultra 3 - 5%

Pentium III-M - 15%Pentium III - 21%

72 Mflop/s

35 Mflop/s

90 Mflop/s

50 Mflop/s

108 Mflop/s

42 Mflop/s

122 Mflop/s

58 Mflop/s

Register Profiles: IBM and Intel IA-64

Power3 - 17% Power4 - 16%

Itanium 2 - 33%Itanium 1 - 8%

252 Mflop/s

122 Mflop/s

820 Mflop/s

459 Mflop/s

247 Mflop/s

107 Mflop/s

1.2 Gflop/s

190 Mflop/s

Accurate and Efficient Adaptive Fill Estimation

• Idea: Sample matrix
– Fraction of matrix to sample: s ∈ [0,1]
– Cost ~ O(s * nnz)
– Control cost by controlling s

• Search at run-time: the constant matters!

• Control s automatically by computing statistical
confidence intervals
– Idea: Monitor variance

• Cost of tuning
– Lower bound: convert matrix in 5 to 40 unblocked SpMVs
– Heuristic: 1 to 11 SpMVs

Sparse/Dense Partitioning for SpTS

• Partition L into sparse (L1,L2) and dense LD:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2

1

2

1

2

1

b
b

x
x

LL
L

D

• Perform SpTS in three steps:

22

1222

111

ˆ)3(

ˆ)2(

)1(

bxL

xLbb

bxL

D =

−=

=

• Sparsity optimizations for (1)—(2); DTRSV for (3)
• Tuning parameters: block size, size of dense triangle

SpTS Performance: Power3

Summary of SpTS and AAT*x Results

• SpTS — Similar to SpMV
– 1.8x speedups; limited benefit from low-level tuning

• AATx, ATAx
– Cache interleaving only: up to 1.6x speedups
– Reg + cache: up to 4x speedups

• 1.8x speedup over register only
– Similar heuristic; same accuracy (~ 10% optimal)
– Further from upper bounds: 60—80%

• Opportunity for better low-level tuning a la PHiPAC/ATLAS

• Matrix triple products? Ak*x?
– Preliminary work

Register Blocking: Speedup

Register Blocking: Performance

Register Blocking: Fraction of Peak

Example: Confidence Interval Estimation

Costs of Tuning

Splitting + UBCSR: Pentium III

Splitting + UBCSR: Power4

Splitting+UBCSR Storage: Power4

Example: Variable Block Row (Matrix #13)

Dense Tuning is Hard, Too

• Even dense matrix multiply can be notoriously difficult
to tune

Dense matrix multiply: surprising performance as register tile size varies.

Preliminary Results (Matrix Set 2): Itanium 2

Web/IR

Dense FEM FEM (var) Bio LPEcon Stat

Multiple Vector Performance

What about the Google Matrix?

• Google approach
– Approx. once a month: rank all pages using connectivity structure

• Find dominant eigenvector of a matrix
– At query-time: return list of pages ordered by rank

• Matrix: A = αG + (1-α)(1/n)uuT

– Markov model: Surfer follows link with probability α, jumps to a
random page with probability 1-α

– G is n x n connectivity matrix [n ≈ 3 billion]
• gij is non-zero if page i links to page j
• Normalized so each column sums to 1
• Very sparse: about 7—8 non-zeros per row (power law dist.)

– u is a vector of all 1 values
– Steady-state probability xi of landing on page i is solution to x = Ax

• Approximate x by power method: x = Akx0
– In practice, k ≈ 25

MAPS Benchmark Example: Power4

MAPS Benchmark Example: Itanium 2

Saavedra-Barrera Example: Ultra 2i

Summary of Results: Pentium III

Summary of Results: Pentium III (3/3)

Execution Time Breakdown (PAPI): Matrix 40

Preliminary Results (Matrix Set 1): Itanium 2

LPFEM FEM (var) AssortedDense

Tuning Sparse Triangular Solve (SpTS)

• Compute x=L-1*b where L sparse lower triangular, x &
b dense

• L from sparse LU has rich dense substructure
– Dense trailing triangle can account for 20—90% of matrix

non-zeros

• SpTS optimizations
– Split into sparse trapezoid and dense trailing triangle
– Use tuned dense BLAS (DTRSV) on dense triangle
– Use Sparsity register blocking on sparse part

• Tuning parameters
– Size of dense trailing triangle
– Register block size

Sparse Kernels and Optimizations

• Kernels
– Sparse matrix-vector multiply (SpMV): y=A*x
– Sparse triangular solve (SpTS): x=T-1*b
– y=AAT*x, y=ATA*x
– Powers (y=Ak*x), sparse triple-product (R*A*RT), …

• Optimization techniques (implementation space)
– Register blocking
– Cache blocking
– Multiple dense vectors (x)
– A has special structure (e.g., symmetric, banded, …)
– Hybrid data structures (e.g., splitting, switch-to-dense, …)
– Matrix reordering

• How and when do we search?
– Off-line: Benchmark implementations
– Run-time: Estimate matrix properties, evaluate performance models

based on benchmark data

Cache Blocked SpMV on LSI Matrix: Ultra 2i

A
10k x 255k
3.7M non-zeros

Baseline:
16 Mflop/s

Best block size
& performance:
16k x 64k
28 Mflop/s

Cache Blocking on LSI Matrix: Pentium 4

A
10k x 255k
3.7M non-zeros

Baseline:
44 Mflop/s

Best block size
& performance:
16k x 16k
210 Mflop/s

Cache Blocked SpMV on LSI Matrix: Itanium

A
10k x 255k
3.7M non-zeros

Baseline:
25 Mflop/s

Best block size
& performance:
16k x 32k
72 Mflop/s

Cache Blocked SpMV on LSI Matrix: Itanium 2

A
10k x 255k
3.7M non-zeros

Baseline:
170 Mflop/s

Best block size
& performance:
16k x 65k
275 Mflop/s

Summary and Questions

• Need to understand matrix structure and machine
– BeBOP: suite of techniques to deal with different sparse structures

and architectures
• Google matrix problem

– Established techniques within an iteration
– Ideas for inter-iteration optimizations
– Mathematical structure of problem may help

• Questions
– Structure of G?
– What are the computational bottlenecks?
– Enabling future computations?

• E.g., topic-sensitive PageRank multiple vector version [Haveliwala
’02]

– See www.cs.berkeley.edu/~richie/bebop/intel/google for more info,
including more complete Itanium 2 results.

Exploiting Matrix Structure

• Symmetry (numerical or structural)
– Reuse matrix entries
– Can combine with register blocking, multiple vectors, …

• Matrix splitting
– Split the matrix, e.g., into r x c and 1 x 1
– No fill overhead

• Large matrices with random structure
– E.g., Latent Semantic Indexing (LSI) matrices
– Technique: cache blocking

• Store matrix as 2i x 2j sparse submatrices
• Effective when x vector is large
• Currently, search to find fastest size

Symmetric SpMV Performance: Pentium 4

SpMV with Split Matrices: Ultra 2i

Cache Blocking on Random Matrices: Itanium

Speedup on four banded
random matrices.

Sparse Kernels and Optimizations

• Kernels
– Sparse matrix-vector multiply (SpMV): y=A*x
– Sparse triangular solve (SpTS): x=T-1*b
– y=AAT*x, y=ATA*x
– Powers (y=Ak*x), sparse triple-product (R*A*RT), …

• Optimization techniques (implementation space)
– Register blocking
– Cache blocking
– Multiple dense vectors (x)
– A has special structure (e.g., symmetric, banded, …)
– Hybrid data structures (e.g., splitting, switch-to-dense, …)
– Matrix reordering

• How and when do we search?
– Off-line: Benchmark implementations
– Run-time: Estimate matrix properties, evaluate performance models

based on benchmark data

Register Blocked SpMV: Pentium III

Register Blocked SpMV: Ultra 2i

Register Blocked SpMV: Power3

Register Blocked SpMV: Itanium

Possible Optimization Techniques

• Within an iteration, i.e., computing (G+uuT)*x once
– Cache block G*x

• On linear programming matrices and matrices with random
structure (e.g., LSI), 1.5—4x speedups

• Best block size is matrix and machine dependent
– Reordering and/or splitting of G to separate dense structure

(rows, columns, blocks)

• Between iterations, e.g., (G+uuT)2x
– (G+uuT)2x = G2x + (Gu)uTx + u(uTG)x + u(uTu)uTx

• Compute Gu, uTG, uTu once for all iterations
• G2x: Inter-iteration tiling to read G only once

Multiple Vector Performance: Itanium

Sparse Kernels and Optimizations

• Kernels
– Sparse matrix-vector multiply (SpMV): y=A*x
– Sparse triangular solve (SpTS): x=T-1*b
– y=AAT*x, y=ATA*x
– Powers (y=Ak*x), sparse triple-product (R*A*RT), …

• Optimization techniques (implementation space)
– Register blocking
– Cache blocking
– Multiple dense vectors (x)
– A has special structure (e.g., symmetric, banded, …)
– Hybrid data structures (e.g., splitting, switch-to-dense, …)
– Matrix reordering

• How and when do we search?
– Off-line: Benchmark implementations
– Run-time: Estimate matrix properties, evaluate performance models

based on benchmark data

SpTS Performance: Itanium

(See POHLL ’02 workshop paper, at ICS ’02.)

Sparse Kernels and Optimizations

• Kernels
– Sparse matrix-vector multiply (SpMV): y=A*x
– Sparse triangular solve (SpTS): x=T-1*b
– y=AAT*x, y=ATA*x
– Powers (y=Ak*x), sparse triple-product (R*A*RT), …

• Optimization techniques (implementation space)
– Register blocking
– Cache blocking
– Multiple dense vectors (x)
– A has special structure (e.g., symmetric, banded, …)
– Hybrid data structures (e.g., splitting, switch-to-dense, …)
– Matrix reordering

• How and when do we search?
– Off-line: Benchmark implementations
– Run-time: Estimate matrix properties, evaluate performance models

based on benchmark data

Optimizing AAT*x

• Kernel: y=AAT*x, where A is sparse, x & y dense
– Arises in linear programming, computation of SVD
– Conventional implementation: compute z=AT*x, y=A*z

• Elements of A can be reused:

() ∑
=

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=
n

k

T
kk

T
n

T

n xaax
a

a
aay

1

1

1)(ΜΛ

• When ak represent blocks of columns, can apply register
blocking.

Optimized AAT*x Performance: Pentium III

Current Directions

• Applying new optimizations
– Other split data structures (variable block, diagonal, …)
– Matrix reordering to create block structure
– Structural symmetry

• New kernels (triple product RART, powers Ak, …)
• Tuning parameter selection
• Building an automatically tuned sparse matrix library

– Extending the Sparse BLAS
– Leverage existing sparse compilers as code generation

infrastructure
– More thoughts on this topic tomorrow

Related Work

• Automatic performance tuning systems
– PHiPAC [Bilmes, et al., ’97], ATLAS [Whaley & Dongarra

’98]
– FFTW [Frigo & Johnson ’98], SPIRAL [Pueschel, et al., ’00],

UHFFT [Mirkovic and Johnsson ’00]
– MPI collective operations [Vadhiyar & Dongarra ’01]

• Code generation
– FLAME [Gunnels & van de Geijn, ’01]
– Sparse compilers: [Bik ’99], Bernoulli [Pingali, et al., ’97]
– Generic programming: Blitz++ [Veldhuizen ’98], MTL [Siek &

Lumsdaine ’98], GMCL [Czarnecki, et al. ’98], …
• Sparse performance modeling

– [Temam & Jalby ’92], [White & Saddayappan ’97], [Navarro,
et al., ’96], [Heras, et al., ’99], [Fraguela, et al., ’99], …

More Related Work

• Compiler analysis, models
– CROPS [Carter, Ferrante, et al.]; Serial sparse tiling [Strout

’01]
– TUNE [Chatterjee, et al.]
– Iterative compilation [O’Boyle, et al., ’98]
– Broadway compiler [Guyer & Lin, ’99]
– [Brewer ’95], ADAPT [Voss ’00]

• Sparse BLAS interfaces
– BLAST Forum (Chapter 3)
– NIST Sparse BLAS [Remington & Pozo ’94]; SparseLib++
– SPARSKIT [Saad ’94]
– Parallel Sparse BLAS [Fillipone, et al. ’96]

Context: Creating High-Performance Libraries

• Application performance dominated by a few
computational kernels

• Today: Kernels hand-tuned by vendor or user
• Performance tuning challenges

– Performance is a complicated function of kernel,
architecture, compiler, and workload

– Tedious and time-consuming

• Successful automated approaches
– Dense linear algebra: ATLAS/PHiPAC
– Signal processing: FFTW/SPIRAL/UHFFT

Cache Blocked SpMV on LSI Matrix: Itanium

Sustainable Memory Bandwidth

Multiple Vector Performance: Pentium 4

Multiple Vector Performance: Itanium

Multiple Vector Performance: Pentium 4

Optimized AAT*x Performance: Ultra 2i

Optimized AAT*x Performance: Pentium 4

Tuning Pays Off—PHiPAC

Tuning pays off – ATLAS

Extends applicability of PHIPAC; Incorporated in Matlab (with rest

Register Tile Sizes (Dense Matrix Multiply)

333 MHz Sun Ultra 2i

2-D slice of 3-D space;
implementations color-
coded by performance
in Mflop/s

16 registers, but 2-by-3
tile size fastest

High Precision GEMV (XBLAS)

High Precision Algorithms (XBLAS)
• Double-double (High precision word represented as pair of doubles)

– Many variations on these algorithms; we currently use Bailey’s
• Exploiting Extra-wide Registers

– Suppose s(1) , … , s(n) have f-bit fractions, SUM has F>f bit fraction
– Consider following algorithm for S = Σi=1,n s(i)

• Sort so that |s(1)| ≥ |s(2)| ≥ … ≥ |s(n)|
• SUM = 0, for i = 1 to n SUM = SUM + s(i), end for, sum = SUM

– Theorem (D., Hida) Suppose F<2f (less than double precision)
• If n ≤ 2F-f + 1, then error ≤ 1.5 ulps
• If n = 2F-f + 2, then error ≤ 22f-F ulps (can be >> 1)
• If n ≥ 2F-f + 3, then error can be arbitrary (S ≠ 0 but sum = 0)

– Examples
• s(i) double (f=53), SUM double extended (F=64)

– accurate if n ≤ 211 + 1 = 2049
• Dot product of single precision x(i) and y(i)

– s(i) = x(i)*y(i) (f=2*24=48), SUM double extended (F=64) ⇒
– accurate if n ≤ 216 + 1 = 65537

