
1

CS294-2 Software Synthesis
Spring 2006

Ras Bodik
office hours: Tue 11-12, Thu 3-4

Outline

• nature of this cs294
• software synthesis

– what it is and why study it now
• my interests in synthesis

– sample of what problems it can solve
• course format
• course agenda
• overview of papers

– how broad is synthesis in this course?
• student introductions
• plan for coming lectures

Nature of this CS294

• starter for a long-term research project
• Berkeley tradition: OSQ, ROC, IRAM, RISC
• purpose:

– bring together students with diverse backgrounds
• not all to work in the project after cs294

– learn the field:
• prior work, failures, successes

– set a research agenda
• refine it with cool course projects

• “grad school experience in one semester”

What is software synthesis?

• Sibling to verification
– verification: write code; verify it meets the spec
– synthesis: generate code that meets the spec
– so, we get both correctness and productivity
– my bias towards productivity (neglected)

• Synthesis techniques: a diverse spectrum
– from fancy compiler optimizations, to deductive

synthesis, to genetic programming

• Often a form of search is involved
– “when in doubt, use brute force,” Ken Thomson

Why synthesis now?

• Need:
– software development pain became unbearable
– productivity, correctness > performance
– everybody is a programmer
– parallel machines everywhere, how to program them?

• Opportunity:
– verification technology maturing

• one view: synthesis = verification + search
– software process becoming more formal

• programmers more willing to write specs
– moore’s law allows search
– parallelizable search
– domains bigger DSL more economical
– DSL: declarative, models easier to synthesize

How I got interested in synthesis

Problem 1: Scientific computing
– parallel programs written from scratch

– minor change to algorithm causes major rewrite

– automatic parallelization not a success in practice

Vivek Sarkar posed a problem:
“How could a domain expert and the parallel hacker

collaborate? Two roles, two aspects?”
• domain expert (bio, crypto, nukular): designs the algo

• hacker: knows caches, vectors, communication

2

How I got interested in synthesis

Problem 2: Object-oriented API programming
– API’s are useful, indispensable …

– … but have 10,000s of methods

– learning curve, like climbing a glass wall

• Doug Kimelman, Mark Wegman asked:
“Can you mine examples of API usage and index them?”

• My alternative view, more ambitious:
“synthesize desired code in response to a query”

How I got interested in synthesis

Summary:
– my interest in synthesis problem-driven

– only in part an evolution of past interests, expertise

– means: I know nothing about synthesis

– no better way to learn than in cs294

Course format

• Read papers and discuss them
– discuss, or ideally brainstorm

– for that, we need to a set of challenge problems

– more on this later

• To prepare for class
– read the paper and email me a brief summary

– summary: may include provocative questions, etc

Course format

• Each student will present one paper
– rather than preparing lecture write-ups

– if you want, think of it as leading a discussion
• with powerpoint

– I will discuss with you lecture outline beforehand

• Each week, one student presentation
– Some guest lectures, too (TBD)

Course format

• Projects: the usual
– literature review

– algorithm design, proofs

– implementation

– or all of the above

• Class presentation + written report

Course research agenda

• What do we want to learn about the papers?
– good to have a problem in mind that we hope these

problems will solve

• Some of my favorite problems: how to develop …
– general-purpose synthesis,
– … embeddable in Java, FORTRAN
– … teachable in CS4

• Your favorite problems here (dreaming allowed):
–
–

3

Topics

• Archeology
– Old fun classics
– Questions: why not in Eclipse, Visual Studio by now?

• Successful (working) systems
– What did they do right?
– Can be adopted to other problems?

• New problems
– potentially solvable with synthesis

• New technologies
– Scalable solvers, modern theorem provers

• New mindsets
– Semi-automatic is good enough, or better

Overview of papers (initial list)

• Deductive software synthesis:
– prove that desired program exists
– the (constructive) proof is the program
– often, counterexample is the proof

• Papers:
– “Toward automatic program synthesis”

• 1971

– “KIDS: A Semi-Automatic Program Development System”
– Amphion (NASA)

• Two real systems

Overview of papers

• Transformational synthesis
– ex.: transform recursion into iteration (Fibonacci)

• Papers:
– “A Transformation System for Developing Recursive

Programs”, 1977

– “Program improvement by internal specialization”, ‘81

– Synthesis of concurrent garbage collectors (guest)
• prove GC correct by instantiation from a simple one

Overview of papers

• Program differentiation
– “Finite Differencing of Computable Expressions” ‘82

– “Incrementalization across object abstraction” ’05
• write OO containers in specification style

• ex.: hashtable.size() iterates and counts the elements

• then automatically incrementalize to an efficient version

• hashtable maintains a _size field, updated by insert(), …

Overview of papers

• Superoptimizers:
– a search for the best assembly code sequence

• Papers
– “Superoptimizer: a look at the smallest program”

• enumerate and test for correctness

• supplemental reading

– “Denali: a goal-directed superoptimizer”
• derive and schedule optimally

– demo: Aha (documentation), code

Overview of papers

• Programming by demonstration, scenarios:
– Learning Shell Scripts with Version Spaces

– Come, Let's play
• reactive systems

• ask Ras for the book

– Watch What I do
• a list of interesting papers

• book online

4

Overview of papers

• Synthesis with partial programs:
– programs with holes (templates)

• Papers
– Program synthesis as machine learning: ALisp

• programs implement agents

• holes synthesized via learning

– Programming by Sketching
• high-performance kernels

• holes synthesized s.t. program behaves like the spec

Overview of papers

• Scientific computing
– Synthesis of irregular codes

• 50 or so sparse matrix representations

• how do you generate the code for them?

– FLAME: Formal Linear Algebra Methods Environment

– sparse code synthesis (Yelick et al)

• Schema-based synthesis:
– AutoBayes

Overview of papers

• Object-oriented programming, components:
– A pragmatic approach to software synthesis

– Prospector

– Application generators

• Genetic programming:
– paper TBD

Student introductions

• name, research project and advisor
• why are you taking or auditing the course?
• a problem in your work that synthesis may solve?

– security,
– bebop (sparse matrix codes)
– CAD simulation codes, fault-free code, parallel embedded

• multimedia, automotive
– visualization, high-level languages, usability, DSLs
– distributed data structures
– refactoring
– verification
– ALisp

Next two weeks

• Lectures: establish some challenge problems
– Thu: Sketching (Ras)

– Tue: Prospector (Ras)

– Thu: TBD,
• maybe brainstorm on course projects

• maybe talk about research agenda

First homework

• Homework for Thu:
– no reading, but go over papers listed on the web site

– understand the scope of synthesis as defined in cs294

– task: find another paper we may want to civer
• ok to broaden the scope of what we mean by synthesis

• no need to be interested in presenting the paper yourself

– email me:
• the link to the paper

• justification why this paper concerns software synthesis

– I will add some of the papers to the list

5

Sign up for paper presentations

• By Tue next week:
– sign up for a paper,

– more details later

