
1

Prospector: Navigating the API Jungle

with Jungloid Mining and Synthesis

David Mandelin, Lin Xu, Ras Bodik, Doug Kimelman (IBM)

2

Administrativia: coming up

• Tue next week: transformational synthesis
– a classic paper (TBD)

– Ras presents

• Thu: Synthesis of garbage collectors [PLDI’06]
– guest speaker Eran Yahav

• Tue: synthesis of sparse scientific codes
– a paper from the Bernoulli project

– a student presenter?

• Thu: similar topic
– guest speaker: Prof. Kathy Yelick

3

Administrativia

• Paper summaries
– submit for each paper by email by 7pm the evening before

– directions now on the web site

• Signing up for papers
– sign for topics; we’ll agree on a paper later

– email your ranked preferences today

4

Administrativia

• Challenge problems (this Thursday)
– 5-to-10-minute presentations, show-and-tell style

– describe a dream language/tool/system

– posed problem need not be solvable soon, or even well-stated

– but should be motivated by a real problem

• Sign up now
1. Ras

2. Dave Mandelin

3. Alan

4. Amir + Jimmy

5. Rusty

6. AJ

7. Armando

5

Prospector: fits same “sketching formula”

sketch multiple implementations,
each different behavior,
user chooses one,
indirectly providing the spec

spec

specification:
hard to write,
so not provided

+

6

Software reuse: the promise

• Software reuse success stories
– productivity increased up to 900%

– defect rate improves dramatically once 80% of code reused

• Can we reuse even more? Some key obstacles [Lampson]:
– only three components easily extensible (OS, DB, web browser)

– rest is hard to (1) sell, (2) compose, (3) understand

• Recent trends solved some problems
☺ Sell: it pays to make them free: J2EE, Eclipse

☺ Compose: extensibility via design patterns, …

/ Understand: flexibility demands many fine-grain “LEGO pieces”

2

7

IFile file = …
ICompilationUnit cu = JavaCore.createCompilationUnitFrom(file);
ASTNode node = AST.parseCompilationUnit(cu, false);

Software reuse: the reality

Using Eclipse 2.1, parse a Java file into an AST

IFile file = …

ASTNode node = ?

Productivity < 1 LOC/hour Why so low?

1. follow expected design? two levels of file handlers

2. class member browsers? two unknown classes used

3. grep for ASTNode? method returns subclass: CompilationUnit

IFile file = …
ICompilationUnit cu = JavaCore.createCompilationUnitFrom(file);
ASTNode node = AST.parseCompilationUnit(cu, false);

IFile file = …
ICompilationUnit cu = JavaCore.createCompilationUnitFrom(file);
ASTNode node = AST.parseCompilationUnit(cu, false);

IFile file = …
ICompilationUnit cu = JavaCore.createCompilationUnitFrom(file);
ASTNode node = AST.parseCompilationUnit(cu, false);

8

Our goal: Synthesize desired code

• Programmer expresses intent, system supplies code

• But programmer’s intent is often vague
– “parse my file”

• Idea: Let programmer supply partial intent
– System will synthesize several candidate code snippets

– Programmer only needs to select desired code

• User’s experience is like a search engine
– (Remember, the system will synthesize, not search)

9

Problem Statement

• Input from data sources: knowledge about API
– API declarations (class declarations, method signatures)

• Prospector I: basic synthesizer (first part of talk)

– Sample client code
• Prospector II: enhanced synthesizer (second part of talk)

• Input from user: specification of intent
– easy for programmer, yet specific enough for synthesizer

• Output: API client code
– synthesized code, ready for insertion into program

– several candidates, ranked

10

Input specification: have-want query

• 1st observation
– Many reuse problems can be described with a

have-one-want-one query q=(h,w):

“What code will transform
a (single) object of (static) type h into
a (single) object of (static) type w?”

• Our parsing example: q = (IFile, ASTNode)
IFile file = …
ICompilationUnit cu = JavaCore.createCompilationUnitFrom(file);
ASTNode node = AST.parseCompilationUnit(cu, false);

11

Output code: jungloid

• 2nd observation:
– most queries can be answered with a jungloid

• jungloid:
– a unary expression composed of unary expressions:

• field access

• call to an instance method with 0 arguments

• call to a static method or constructor with 1 argument

• widening conversion (i.e., conversion to supertype)

IFile file = …
ICompilationUnit cu = JavaCore.createCompilationUnitFrom(file);
ASTNode node = AST.parseCompilationUnit(cu, false);

12

Decomposing complex code into jungloids

m(• , •)

g(•) k(•)

h(•)

f(•)

A non-jungloid code snippet (depicted as data flow graph):

a method of one argument,
whose input is the result of h()

Jungloid 1

Jungloid 2

m(• , fv)

free variable – a place where
another jungloid may be attached

3

13

Coverage

An informal experiment:
– using 16 coding headaches, collected by us

• Can the query express interesting problems?
– yes, for 12 out of 16 coding problems

• Can queries be answered with a jungloid?
– yes, all 12 queries answered with jungloids

• 9 of them need one jungloid

• 3 of them composed from multiple jungloids

Jungloid Synthesis

15

Synthesis: Type signature graph

Any path from h to w is a (h,w)-jungloid

• 3rd observation:
– desired jungloid typically among k shortest paths (k=5)

IFile CompilationUnit
ICompilationUnit

ASTNode
IClassFile

JavaCore.createCompilationUnitFrom()

AST.parseCompilationUnit()
widening

AST.parseCompilationUnit()

JavaCore.createClassFileFrom()

IJavaElement IResource

widening conversion

getResource()

IContainer

getParent()

16

Integrating synthesis with IDEs

• How do we present jungloid synthesis to programmers?

• Integrate with IDE “code completion”

17

Integrating synthesis with IDEs

• How do we present jungloid synthesis to programmers?

• Integrate with IDE “code completion”

want type

have types

Queries: (IFile, ASTNode)
(IEditorPart, ASTNode)

Demo

4

Prospector II

Prospector I + jungloid mining

20

Object (dynamic type Target)

Hashtable

Object

Hashtable (get() returns Target)

Jungloids with downcasts

Project project = …;
Hashtable targets = project.getTargets();
Target t = (Target) targets.get(name);

Project
.getReference(string).getTargets()

Target

_.get(string)

downcast
Object

refined
types

Example from Ant
(an extensible Java make)

21

Refining the signature graph

• How do we find refined types for the graph?

• Potential solutions
– example: parametric type inference

• Our solution
– mine a corpus of API uses for legal downcasts

22

Hashtable

Object

Mining jungloids with downcasts (example)

_.getTargets()

_.get(string)
Hashtable

Object

Project
_.getTargets()

downcast
Target

_.get(string)

Project

Target

Hashtable’

Object’

Signature GraphExample JungloidJungloid Graph

23

Long examples miss jungloids

Hashtable

Object

Project
_.getTargets()

_.get(string)

_.getProject()

Hashtable

Object

Project
_.getTargets()

downcast
Target

_.get(string)

ProjectComponent
_.getProject()

Target

ProjectComponent

Hashtable’

Object’

Project’

no
path

Example too long → fail to synthesize desired jungloid
24

Short examples make bad jungloids

Hashtable

Object

Project
_.getTargets()

_.get(string)

_.getProject()

Object

Hashtable

downcast
Target

_.get(string)

Target

ProjectComponent

Object’

Example too short → synthesize jungloids that throw exceptions

5

25

Finding the right example “context”

Hashtable

Object

Project
_.getTargets()

downcast
Target

_.get(string)

ProjectComponent
_.getProject()

Hashtable

Object

Project
_.getProperties()

downcast
Property

_.get(string)

ProjectComponent
_.getProject()

Rule: find min context that uniquely determines downcast

26

Mining jungloids with downcasts

• Algorithm overview
– Select a corpus of API client code

– Extract jungloids containing downcasts

– Find best context for extracted jungloids

– Refine signature graph with extracted jungloids

• Ideally, only correct jungloids are synthesized
– correct = it is possible to write a client code in which the

jungloid’s downcast succeeds

• In the limit, we meet the ideal
– limit = infinitely large, bug-free corpus

– bug-free = no ClassCastException for at least one input

Evaluation

28

Experiment 1 (ranking test)

• hypothesis:
– to find desired code, user needs to examine only top 5 candidate jungloids

• experimental design:
– used 20 real-world coding tasks

– collected from FAQs, newsgroups, practice, emails

10010Not found

90104

80153

65102

55551

Cumulative %% at rankRank

29

Experiment 2 (user study)

hypothesis:
– Prospector-equipped programmers solve API problems

• in less time

• with more concise code

methodology:
– 4 problems, each user did 2 with Prospector and 2 without

– sample problem:
“We will provide you a string containing a URL that points to a sound file.

Write code to play the sound.”

30

Experiment 2 (user study). Results.

0

5

10

15

20

25

0 1 2 3 4 5

Problem

Ti
m

e
ta

ke
n

(m
in

ut
es

)

Baseline
Prospector

6

31

Experiment 2 (user study). Results.

• Prospector helps enable reuse
– non-Prospector users sometimes reimplemented

• Prospector helps avoid mistakes
– Reimplemented class does not satisfy its interface contract

– Some non-prospector users used a bad cast

– Prospector’s mined solution was correct

32

Summary and Related Work

• Synthesize API client code
– Constraint-based synthesis: Steffen, et al. (1994)

– Type-based synthesis (Demeter, Persephone): Lieberherr, et al.

• Have-want queries describe reuse problems
– Signature matching queries: Zaremski and Wing; Fischer and Ye

– Context queries (Hipikat, Strathcona): Murphy et al., Holmes (2005)

– Type-based queries

• Mining jungloids for downcasts
– extract and clean up examples to use in synthesis

33

Future Work

• Synthesis for new kinds of reuse problems

– e.g. “I called method foo(), observed no output”

– synthesize code to make foo() behave correctly

• Mining to solve more analysis problems

– e.g., infer String “subtypes” (URL, date, …)

34

Solving the “sketching equation”

spec +

1. Implementation Gap (StreamBit, SKETCH)
• implementation is an “optimization” of the spec

2. Spec selection (Prospector)
• easier to select the spec than to write it

