Transformational Synthesis

Ras Bodik

CS294-2 Software Synthesis Spring 2006

Motivation, example

dot product:

 $dot(x,y,n) \Leftarrow if n=0 then 0 else <math>dot(x,y,n-1) + x[n]y[n]$

• we want to compute (specification):

 $f(a,b,c,d,n) \leftarrow dot(a,b,n) + dot(c,d,n)$

synthesis optimizes it into this (implementation):

$$f(a,b,c,d,n) \leftarrow \text{if } n=0 \text{ then } 0$$

else $f(a,b,c,d,n-1) + a[n]b[n] + c[n]d[n]$

benefit:

one recursion (loop) rather than two

Notation

 $f(x) \leftarrow \text{if } x=0 \text{ or } x=1 \text{ then } 1 \text{ else } f(x-1)+f(x-2) \text{ fi}$

is rewritten as

 $f(1) \leftarrow 1$

 $f(x+2) \leftarrow f(x+1)+f(x)$

Notation

 $concat(x,y) \leftarrow if x=nil then y$

else cons(car(x), concat(cdr(x), y))

is rewritten as

 $concat(nil, z) \leftarrow z$

 $concat(cons(x,y), z) \leftarrow cons(x,concat(y,z))$

Inference (transformation) rules

- 1. Definition:
 - introduce a new recursive equation
 - $ex.: f(a,b,c,d,n) \leftarrow dot(a,b,n) + dot(c,d,n)$
- 2. Instantiation:
 - substitute into an existing equation
 - $f(a,b,c,d,n) \leftarrow dot(a,b,n) + dot(c,d,n)$ becomes $f(a,b,c,d,0) \leftarrow dot(a,b,0) + dot(c,d,0)$

Inference (transformation) rules

- 3. Unfolding:
 - substitution of an equation on the right-hand side
 - given: $g(x+1) \leftarrow g(x)+1$
 - $f(a) \leftarrow h(g(y+1))$ unfolds into $f(a) \leftarrow h(g(y)+1)$

Inference (transformation) rules

4. Folding:

- the inverse to folding
- given lhs ← rhs, replace an instance of rhs with lhs
- $f(a) \Leftarrow h(\underline{g(y)+1})$ is folded with $g(x+1) \Leftarrow g(x)+1$ into $f(a) \Leftarrow h(\underline{g(y+1)})$

Inference (transformation) rules

5. Abstraction:

- introduce a where clause
- $f(a) \Leftarrow h(\underline{g(y)+1})$ becomes $f(a) \Leftarrow h(\underline{u+y})$ where $\langle u,v \rangle = \langle g(y),1 \rangle$

Inference (transformation) rules

Laws:

- rewrite rhs with a law such as associativity

Synthesis strategy

- 1. make necessary definitions
- 2. instantiate
- 3. for each instantiation unfold repeatedly, after each unfold:
 - a. apply laws and where-abstraction
 - b. fold repeatedly

User involvement:

- Invention needed in 1, 2.
- Discretion needed in a.
- rest is mechanical.

Example 1:

Spec:

- fact(0) ← 1
- $fact(n+1) \Leftarrow (n+1)*fact(n)$
- factlist(0) ← nil
- factlist(n+1) ← cons(fact(n+1),factlist(n))

Derivation:

- 5. $g(n) \leftarrow \langle fact(n+1), factlist(n) \rangle$
 - def (eureka)
- 6. g(0) ← ⟨fact(1),factlist(0)⟩ instantiate 5 with n=0

⇐ ⟨1,nil⟩

unfold 2, 1, law "*", unfold 4

Example 1, cont'd

```
7. g(n+1) \Leftarrow \langle fact(n+2), factlist(n+1) \rangle

inst. 5 with n=n+1

\Leftrightarrow \langle (n+2)^* fact(n+1), cons(fact(n+1), factlist(n)) \rangle

un 2,4

\Leftrightarrow \langle (n+2)^* u, cons(u,v) \rangle where \langle u,v \rangle = \langle fact(n+1), factlist(n) \rangle

abstract

\Leftrightarrow \langle (n+2)^* u, cons(u,v) \rangle where \langle u,v \rangle = g(n)

fold with 5

8. factlist(n+1) \Leftrightarrow cons(fact(n+1), factlist(n))

\Leftrightarrow cons(u,v) \rangle where \langle u,v \rangle = \langle fact(n+1), factlist(n) \rangle

abstract

\Leftrightarrow cons(u,v) \rangle where \langle u,v \rangle = \langle fact(n+1), factlist(n) \rangle

fold with 5
```

Strategies for applying the transformations

- Goal:
 - avoid enumerating all possible transformations
 - by restricting explored transformation sequences
 - it's still a search
 - still can be called synthesis ⊕
- Interesting questions:
 - some loss of generality
 - i.e., not complete wrt to given definitions, rewrite rules

Observations

- almost all optimizations are sequences of
 - unfoldings, followed by
 - rewriting by lemmas, followed by
 - foldings
- associativity, commutativity, where-abstraction
 - performed just before folding
 - so, perform only to enable a fold (called forced fold)

Algorithm 1

- 1. perform an arbitrary unfold or a rewrite
 - repeat, terminating arbitrarily
- 2. perform an arbitrary forced fold
 - repeat while folds are possible

The prototype

the user enters:

- 1. equations, including the "eureka" definitions
- 2. rewriting lemmas
- 3. list of instantiated left hand sides of equations

the system will start its derivations from (3)

Example interaction with the system

See Example 1

Folding

- uses a matching routine:
 - given expressions e and e',
 - find substitution σ that transforms e into e'
- example:

```
e = n+m+k
e' = m+(n+1+k)
\sigma(n) = n+1
```

Folding with where-abstraction

- Example (Fibonacci):
 - 1. $f(0) \Leftarrow 1$
 - 2. $f(1) \Leftarrow 1$
 - 3. $f(x+2) \Leftarrow f(x+1) + f(x)$
 - 4. $g(x) \leftarrow \langle f(x+1), f(x) \rangle$
- now the system instantiates and unfolds
 - 5. $g(x+1) \leftarrow \langle f(x+1)+f(x), f(x+1) \rangle$
- and tries to fold (5) with (4)
 - components of (4) are available, yielding $g(x+1) \Leftarrow \langle u+v, u \rangle$ where $\langle u,v \rangle = \langle f(x+1), f(x) \rangle$ $\Leftarrow \langle u+v, u \rangle$ where $\langle u,v \rangle = g(x)$

Future developments (as of 1977)

- Automate development of auxiliary functions
 - i.e., where does $g(x) \leftarrow \langle f(x+1), f(x) \rangle$ come from?
- The problem, again, simplified:
 - given a specification f $f(x+1) \Leftarrow \dots f(x) \dots f(x) \dots$
 - synthesize g, a more efficient implementation of f
 g(x+1) ← ... g(x) ...
- More precisely, we want
 - 1. allow more general substitutions: $g(\sigma(x)) \leftarrow \dots g(x) \dots$
 - 2. f to be expressible in terms of g: $f(\sigma'(x)) \Leftarrow \dots g(x) \dots$

Example: factlist

```
fact(n+1) \iff (n+1)^*fact(n)
factlist(n+1) \iff cons(fact(n+1), factlist(n))
factlist(n+2)
factlist(n+1)
```

fact(n+1)

factlist(n)

σ(n) = n+1 relates levels of the tree
 if we choose g(n) ← ⟨fact(n+1), factlist(n)⟩

then g(n+1) can be expressed in terms of g(n)