Transformational Synthesis

Ras Bodik

CS294-2 Software Synthesis
Spring 2006

Motivation, example

« dot product:
dot(x,y,n) < if n=0 then 0 else dot(x,y,n-1) + x[n]y[n]
» we want to compute (specification):
f(a,b,c.d.n) < dot(a,b,n) + dot(c,d,n)
« synthesis optimizes it into this (implementation):

f(a,b,c.dn) <if n=0then 0
else f(a,b,c.d,n-1) + a[n]b[n] + c[n]d[n]

« benefit:
one recursion (loop) rather than two

Notation

f(x) < if x=0 or x=1 then 1 else f(x-1)+f(x-2) fi
is rewritten as
flo) <1

f1) <1
f(x+2) < f(x+1)+f(x)

Notation

concat(x,y) < if x=niltheny
else cons(car(x), concat(cdr(x), y))

is rewritten as

concat(nil, z) =z

concat(cons(x,y), z) < cons(x,concat(y,z))

Inference (transformation) rules

1. Definition:

= introduce a new recursive equation

- ex.f(ab,cdn) < dot(a,bn) +dot(cdn)
2. Instantiation:

= substitute into an existing equation

« f(a,b,cdn) < dot(a,b,n) + dot(c,d,n) becomes
f(a,b,c,d,0) < dot(a,b,0) + dot(c,d,0)

Inference (transformation) rules

3. Unfolding:
» substitution of an equation on the right-hand side
- given: g(x+1)<=g(x)+1
- f(a) = h(g(y+1)) unfoldsinto f(a) < h(g(y)+1)

Inference (transformation) rules

Inference (transformation) rules

4. Folding:
» theinverse to folding
» given lhs < rhs, replace an instance of rhs with lhs

= fla) = h(gly)+1) is folded with g(x+17) < g(x)+1
into f(a) < h(gly+1))

5. Abstraction:
- introduce a where clause

- fla) < h(g(y)+1) becomes
f(a) < h(u+v) where(uv)={g(y),1)

Inference (transformation) rules

Synthesis strategy

6. Laws:
- rewrite rhs with a law such as associativity

1. make necessary definitions
2. instantiate
3. for each instantiation unfold repeatedly,
after each unfold:
a. apply laws and where-abstraction
b. fold repeatedly

User involvement:
- Invention neededin1,2.
- Discretion needed in a.
- restis mechanical.

Example 1:

Example 1, cont'd

Spec:
- fact(0) <=1
- fact(n+1) < (n+1)*fact(n)
- factlist(0) < nil
- factlist(n+1) < cons(fact(n+1),factlist(n))
Derivation:
5 gln) <« (fact(n+1)factlist(n))
def (eureka)
6. g(0) <« (fact(1)factlist(0))
instantiate 5 with n=0
< (1,nil)
unfold 2, 1, law ™", unfold 4

7. g(n+1) < (fact(n+2) factlist(n+1))
inst. 5 with n=n+1
& ((n+2)*fact(n+1), cons(fact(n+1), factlist(n))
un24
< ((n+2)*y, cons(u,v)) where (u,v) = (fact(n+1),factlist(n))
abstract
< ((n+2)"u, cons(u,v)) where (u,v) = g(n)
fold with 5
8. factlist(n+1) < cons(fact(n+1) factlist(n))
this is def 4, copied
< cons(u, v) where (u,v) = (fact(n+1),factlist(n))
abstract
< cons(u, v) where (u,v) =g(n)
fold with 5

Strategies for applying the transformations

» Goal:
- avoid enumerating all possible transformations
» by restricting explored transformation sequences
- it's still a search
» still can be called synthesis ©
» Interesting questions:

- some loss of generality
» i.e, not complete wrt to given definitions, rewrite rules

Observations

» almost all optimizations are sequences of
- unfoldings, followed by
- rewriting by lemmas, followed by
- foldings

» associativity, commutativity, where-abstraction
- performed just before folding
- so, perform only to enable a fold (called forced fold)

Algorithm 1

1. perform an arbitrary unfold or a rewrite
= repeat, terminating arbitrarily

2. perform an arbitrary forced fold
= repeat while folds are possible

The prototype

the user enters:
1. equations, including the "eureka” definitions
2. rewriting lemmas
3. list of instantiated left hand sides of equations

the system will start its derivations from (3)

Example interaction with the system

» See Example 1

Folding

« uses a matching routine:

- given expressions e and e,

- find substitution ¢ that transforms einto e’
« example:

e=n+m+k

e’ =m+(n+1+k)

a(n)=n+1

Folding with where-abstraction

Future developments (as of 1977)

= Example (Fibonacci):
1. o) <1
2 A1) <1
3. flx+2) < f(x+1)+f(x)
4. glx) < (flx+T1), f(x))
« now the system instantiates and unfolds
5 glx+1) &< (Ffx+1)+f(x), fix+1))
» and tries to fold (5) with (4)
- components of (4) are available, yielding
g(x+1) < (u+v, u) where (u,v)=(f(x+1), f(x))
& (u+v, u) where (u,v)=g(x)

» Automate development of auxiliary functions
- ie, where does g(x) < (f(x+1), f(x)) come from?
s The problem, again, simplified:
- given a specification f
fix+1)<=...f(x)... f(x)...
- synthesize g, a more efficient implementation of f
glx+1)<=...9(x) ...
» More precisely, we want
1. allow more general substitutions: g(o(x))< ... g(x)...
2. f tobeexpressiblein termsofg: f(o'(x)<...g(x)...

Example: factlist
fact(n+1) < (n+1)*fact(n)
factlist(n+1) < cons(fact(n+1),factlist(n))
factlist(n+2)
fact(n+2) factlist(n+1)

\A

fact(n+1)
» g(n) =n+1 relates levels of the tree
if we choose g(n) < (fact(n+1), factlist(n))
then g(n+1) can be expressed in terms of g(n)

factlist(n)

