
Sketching with Partial Programs

Armando Solar-Lezama, Liviu Tancau, David Turner, Rastislav Bodik, Vijay Saraswat∗, Sanjit Seshia
UC Berkeley ∗IBM Research

Abstract
Sketching is a software synthesis approach where the programmer
develops a partial implementation — a sketch — and a separate
specification of the desired functionality. The synthesizer then com-
pletes the sketch to behave like the specification. The synthesized
implementation is correct by construction, which allows, among
other benefits, rapid sketching of many implementations without
the fear of introducing bugs.

We developSKETCH, a language for finite programs with lin-
guistic support for sketching. Finite programs include many high-
performance kernels, including cryptocodes. In contrast to prior
work, where sketches were meta-level rewrite rules, our sketches
are simple-to-understand partial programs. Partial programs are
programs with “holes” that are filled by the synthesizer. The un-
specified behavior of partial programs is modeled with a single
non-deterministic operator that we show to be surprisingly versa-
tile. We also develop a synthesizer that is complete for the class
of finite programs: it is guaranteed to complete any sketch in the-
ory, and in practice has scaled to complex real-world programming
problems.

1. Introduction
When programming by sketching, the programmer develops only
a skeleton of the desired implementation, called asketch, and a
synthesizer completes the sketch such that it is equivalent to a
separate specification of the desired behavior.

The goal of sketching is to bridge the abstraction gap between
a high-level task and its low-level implementation. Sketches sit
between the two extremes: unlike specifications, sketches spell
out the implementation strategy, and unlike implementations, they
omit low-level details. By separating correctness and performance,
sketches allow the abstraction gap to widen: First, sketching en-
courages cleaner specifications because it relies on specification
only for behavioral specification. Second, sketching enables com-
plex implementations that may be too tedious to develop and main-
tain without automatic synthesis of low-level detail.

We introduced the concept of sketching in StreamBit, a system
for bit-stream programming [14]. In StreamBit, sketching proved to
be very effective. We implemented, in a single afternoon, an imple-
mentation of the DES cipher that nearly matched the performance
of the best public-domain DES implementation. In another exper-
iment, a sketched implementation of a cipher was produced twice
as a fast as a C implementation, and ran 50% faster.

Unfortunately, we were unable to transfer the success of sketch-
ing from the lab to real programmers. Even though the concept of
sketching was easy to explain, sketching as embedded in StreamBit
required significant training. In fact, only one of the authors of [14]
was able to write non-trivial sketches.

This paper attacks programmability challenges observed in
StreamBit: (1) Programmers could not express sketches directly
in the implementation language. Instead, they had to sketch the

desired implementation by means of meta-level rewrite rules that
translated the specification into the desired implementation. (2) The
implementation strategy had to be often decomposed hierarchically
into multiple sketches with onerous dependences. For example, the
sketch specifying word-level parallelism had to plan the implemen-
tation carefully so that the sketch for bit-level parallelism would
apply. (3) Sketches had to be inserted into the rewrite sequence
of a baseline compiler. The awareness of the baseline compiler
made the meta-level nature of rewrite rules even more confound-
ing. (4) Sketching was embedded into a dataflow programming
language [15]. While the dataflow programming model helped syn-
thesis and subsequent parallelization, novice programmers faced
sketching simultaneously with another new programming model.

This paper develops linguistic support that sidesteps these four
issues. First, sketches are expressed aspartial programs, or pro-
grams with “holes.” As a result, sketches are not meta-rules but
straighforward code templates. Second, the desired implementa-
tion can now be sketched in a single sketch, without decomposi-
tion. Third, there is no baseline compiler to cooperate with. Finally,
sketching is embedded into an imperative language with a familiar
programming model.

Besides programmability limitations, sketching in [14] was also
restricted in expressiveness. (1) Except for some high-level refac-
torings, sketching worked only for programs that computed (semi)-
permutations of bit-vectors. While this sufficed for DES, the mod-
ern block cipher standard, AES, was beyond our power. (2) The
sketched implementations themselves could not implement permu-
tations using non-permutations instructions, such as additions. This
limitation prevented us from exploiting some efficient DES imple-
mentation strategies.

In contrast, theSKETCH language presented in this paper is
complete. We can bothspecifyany finite program andsketchany
implementation of it. A finite program is any program whose input
is bounded in size and the program is guaranteed to terminate on
any input. Most high-performance kernels have this property.

In SKETCH, sketches are partial programs, i.e., programs where
code fragments to be synthesized are indicated with a non-deterministic
operator??. The operator is defined as returning a non-deterministically
chosen integer value; the synthesizer replaces the operator with a
suitable integer such that the resolved sketch behaves like the spec-
ification. The?? operator is more versatile than it may seem: it can
automatically derive values of hard-to-compute constants, such as
bitmasks; it can be used to divide the work in a divide-and-conquer
algorithm; and it can be used to synthesize the number of iterations
of a loop. It can also be used to to synthesize a polynomial, which
is useful in implementing big-integer multiplications algorithms.

Programming with non-determinism can be thought of as taking
program verification one step further. In fact, if the sketch is fully
deterministic, i.e., it is a regular program, then we are left with a
simple verification problem where the compiler has to prove that
an implementation is equivalent to the specification. However, the
non-determinism allows us to use the verifier not just to prove that

1 2006/1/16

the program is correct but to help us write it, by searching the space
of sketch completions.

The SKETCH language is supported by a new synthesis algo-
rithm that is complete in that it can resolve an arbitrary sketch. The
algorithm reduces the synthesis problem to a quantified Boolean
satisfiability (SAT) problem with one quantifier alternation. Our
solver for this problem uses a counterexample-driven iteration
over a synthesize-verify loop built from two communicating SAT
solvers [12]. We show that although the problem is harder than
NP-complete, the counterexample-driven search terminates on real
problems after solving only a few SAT instances.

We also present an empirical evaluation of our system. We show
that sketch can describe a very concise implementation of an AES
stage, and that our solver resolves the sketch very fast, in about a
minute.

In summary, this paper makes the following contributions:

• We develop a language for implementing a sketching high-
performance kernels. Sketches are expressed as partial pro-
grams with a single, versatile non-deterministic operator that
be used to synthesize, for example, bitmasks, control flow deci-
sions, and polynomials.

• We build and evaluate a complete synthesizer: it can resolve in
theory all sketches written in theSKETCH language. In practice,
the solver scales extremely well for the cipher problems it was
designed, and surprisingly well also for some harder problems.

• We developed a cookbook of programming with sketches (Sec-
tion 2), implemented a spectrum of kernels inSKETCH, and
evaluated the solver on these kernels.

Section 2 presents a tutorial on programming with sketches.
Section 3 defines the language formally. Section 4 describes the
syntehsizer. Section 5 evaluates the solver and describes our pro-
gramming experience. Section 6 discusses related work.

2. Overview
The SKETCH language is a C-like procedural language with no
pointers but with support for sketching. The language is targeted
towards integer kernels over finite inputs. To support this domain,
we support arrays. Vector operations are provided for arrays of bits,
to give access to bitwise integer machine instructions.

This section gives a tutorial of theSKETCH language, going
from simple to more complex kernels. All sketches in this section
are beyond the power of [14].

Isolate Rightmost Bit The following example is simple, but it
already benefits from the ability of theSKETCH language to verify
and sketch implementations.

The problem at hand is to isolate the rightmost 0-bit. For exam-
ple, given a word1010 0111, we return the bit mask0000 1000.
The functionisolate0 below is a straightforward specification of
the task. Like a good specification, the function is readable at the
cost of efficiency.

bit[W] isolate0 (bit[W] x) { // W: word size
bit[W] ret=0;
for (int i = 0; i < W; i++)

if (!x[i]) { ret[i] = 1; break; }
return ret;

}

Like isolate0, eachSKETCH specification is executable and can
be invoked by clients until a better implementation of the specifi-
cation is developed.

The functionisolate0Fast is such a better implementation;
it exploits bitvector parallelism by relying on a little bit of alge-
bra [16].

bit[W] isolate0Fast (bit[W] x) implements isolate0 {
return ~x & (x+1);

}

The implementation achieves performance at the expense of clar-
ity. While the correctness of this implementation is not imme-
diately obvious, the keywordimplements insists that the func-
tion isolate0Fast implements specificationisolate0. The equiv-
alence of the two functions is verified by the compiler, which guar-
antees that ifi implements s, implementationi must produce the
same output as the specifications on all inputs, and thus be free of
all bugs.1

The ability to verify an implementation gives robustness, but
the main contribution ofSKETCH is the power to synthesize an
implementation from a sketch. The functionisolate0Sketched
illustrates a sketch. The “holes” in the sketch are indicated by the
?? operators. These operators will be replaced with a value, in this
example, a bit vector.

bit[W] isolate0Sketched(bit[W] x) implements isolate0{
return ~(x + ??) & (x + ??);

}

In isolate0Sketched, the first?? will be synthesized to the value
0, while the second one will be synthesized to the value1.

In addition to sparing the user from having to derive some of
the low level details of the implementation, the?? operator also
makes the sketches more reusable. For example, the user can excise
the sketch above into a separate function and use it to produce an
implementation not just forisolate0, but also for the dual problem
of isolating the rightmost 1-bit, specified byisolate1, whose code
we do not show.

bit[W] expression (bit[W] x) {
return ~(x + ??) & (x + ??);

}

bit[w] isolate0Sketched (bit[W] x) implements isolate0 {
return expression(x);

}

bit[w] isolate1Sketched (bit[W] x) implements isolate1 {
return expression(x);

}

We have two call sites ofexpression: In the first, the synthe-
sizer resolvesexpression to ~x & (x + 1); in the second to
~(x - 1) & x. The semantics of caling a function inSKETCH
is thus that of cloning, which can be implemented by inlining
the function into the call site.expression alone is anunresolved
sketch, one that is not asked to implement a particular specification;
such a sketch can be thought of having many different behaviors
from which the synthesizer must select one when the sketch is
bound.

Population Count. We now show how sketching can be used to
synthesize a tricky divide-and-conquer algorithm. The problem at
hand is to compute the population count of 1-bits in a word. The
obvious specification is here:

1 Clearly,implements is not be confused with the same keyword in Java,
which enforces (only) type-signature equivalence.

2 2006/1/16

bit[W] pop (bit[W] x) pop
{

int count = 0;
for (int i = 0; i < W; i++) {

if (x[i]) count++;
}
return count;

}

An efficient implementation uses a “divide and conquer” strategy,
in which the original problem of summingk bits is divided into
two problems of summingk/2 bits, and so on recursively. After
the subproblems are solved, their results are added [16, 13].

The key to efficiency is solving the smaller problems (of the
same size) all in parallel, SIMD-style. Let us illustrate on the
smallest problem: we want to sum the number of 1-bits in the0th
bit (the sum is either0 or 1) with the number of bits in the1st
bit, and store the result in these two bits; the same for all adjacent
pairs of bits. To perform these sums simultaneously with a single
addition instruction, the programmer must make the instruction
mimic SIMD semantics: even and odd bits must be aligned by
shifting and suitable bit masks must prevent the propagation of the
carry bit across the pairs of bits. The same must be accomplished
for the larger subproblems, only with different shift amounts and
bitmasks.

With sketching, writing the algorithm is easy. TheSKETCH
compiler synthesizes the loop bound and the suitable masks and
shift amounts for each iteration of the loop.

bit[W] popSketched (bit[W] x) implements pop
{

loop (??) {
x = (x & ??) + ((x >> ??) & ??);

}
return x;

}

Notice that the sketch does not spell out details of the “divide”
strategy: in particular, the desire to divide the problem recursively
in two equal halves is not made explicit.

For word sizeW = 16, the loop iterates 4 times. The synthesized
code, unrolled, is shown below.

x = (x & 0x5555) + ((x >> 1) & 0x5555);
x = (x & 0x3333) + ((x >> 2) & 0x3333);
x = (x & 0x0077) + ((x >> 8) & 0x0077);
x = (x & 0x000F) + ((x >> 4) & 0x000F);
return x;

Because the sketched offers a lot of freedom, the synthesized code
is not identical to the textbook version — which shifts in the
expected sequence(1, 2, 4, 8) rather than in(1, 2, 8, 4) — but the
algorithm behaves as desired and is equally efficient.

Another implementation, suitable when the word is populated
sparsely, is to keep resetting the rightmost 1-bit until the word
is zero [17]. The sketch below accomplishes this by invoking the
sketched functionexpression, which we previously used to syn-
thesize an implementation ofisolate0 and also ofisolate1.

int popSparseSketched (bit[W] in) implements pop {
int ret;
for (ret = 0; in; ret++) { in &= ~expression(in); }
return ret;

}

Notice thatexpression will be resolved to isolate the rightmost 1-
bit even though the synthesizer is not instructed to do so; the only
constraint given to the syntehsizer is thatpopSparseSketched must
implementpop.

AES. This next problem is a filter from the AES cipher. The
filter computes a multiplication of(in ∗ 02) mod P in the Galois
field of polynomials in{0, 1}. Note that multiplication with02
can be expressed as a shift by one. Then the filter reduces by the
polynomialP = x8+x4+x3+x+1. Since the new polynomial is
of degreed ≤ 8, we only have to check ifd = 8, and if so, subtract
P .

bit[8] GFMul02 (bit[8] in) {
bit[9] tin= in;
tin = tin >> 1;

bit[9] P = {1,1,0,1,1,0,0,0,1};
if(tin[8] == 1){
tin = tin ^ P;

}
return (bit[8])tin;

}

The specification above is inefficient on modern processors due
to the unpredictable branch. The sketch below replaces the branch
with a logical sequence that distributes the 8th bit to the positions
defined by the polynomial. The sketch is efficient because it ex-
ploits the symmetry of 1-bits in the polynomial: the idea is to dis-
tribute the bit to multiple positions simultaneously. The sketch can
be written even more compactly (and more generally) with a loop,
but the unrolled sketch is easier to explain.

bit[8] GFMul02sk(bit[8] in) implements GFMul02 {
bit [8] t1 = in >> ??;
bit [8] m1 = (in<<??) & ??;
bit [8] m2 = (m1>>??) | m1;
bit [8] m3 = (m2>>??) | m2;
return t1 ^ m3;

}

In the full AES cipher, there is a large stage that applies this
function together with other seven similar ones to a stream of data
in blocks of size 32. The full stage, however, can be implemented
efficiently with the sketch shown below. Therot function is a
rotation, and the synthesizer is able to resolve the sketch in less
than 8 minutes, which is impressive given that we are sketching the
implementation of one third of this complex cipher.

bit[32] MCSketch(bit[32] in) implements MixColumns{
bit [32] t1 = (in >> ??);
bit [32] m1 = (in<<??) & ??;
loop (2) { m1 = (m1>>??) | m1; }
bit [32] o1 = (t1 & ??)^((in) & ??)^(m1 & ??);
bit [32] o2 = (t1 & ??)^((in) & ??)^(m1 & ??);
bit [32] o3 = (t1 & ??)^((in) & ??)^(m1 & ??);
return o1 ^

rot(o2, ??*8) ^
rot(o3, ??*8) ^
rot(o3, ??*8);

}

Often, filters can be implemented efficiently with table lookups.
SKETCH can also synthesize the content of these tables, and our
synthesizer scales easily to tables of size 2048 bits.

3 2006/1/16

// <N> is a template, paremeterizing word size
bit[N*2] k<N>(bit[N] x, bit[N] y) implements mult<N>{
if (N<2) return x*y;
bit[N/2] x1, x2, y1, y2;
bit[2*N] t11=0, t12=0, t22=0, r=0;
x1 = x[0:N-1]; x2 = x[N:2*N-1];
y1 = y[0:N-1]; y2 = y[N:2*N-1];
t11 = k<N/2>(x1, y1);
t12 = poly<N/2>(2, x1, x2, y1, y2);
t22 = k<N/2>(x2, y2);
loop(5){
// {||} non-deterministically selects one of its operands
bit[2*N] t = (t11 {||} t22 {||} t12) << (N/2*??);
r = r + (t {||} -t);

}
return r;
}

bit[2*N] poly<N>(int n, bit[N] x0, x1, x2, x3) {
if (n<=0) return ??;
return k<N>(

(x0 {||} -x0 {||} 0) + (x1 {||} -x1 {||} 0)
+ (x2 {||} -x2 {||} 0) + (x3 {||} -x3 {||} 0)
, poly(n-1, x0,x1, x2, x3));

}

Figure 1. Sketch for Karatsuba’s multiplication.

Karatsuba Multiplication SKETCH was designed to work only
for finite programs. However, the following example will show that
it can be leveraged to help the user write code even for programs
with recursion and unbounded input sizes.

The Karatsuba multiplication algorithm is used to multiply
large integers because its complexity isO(N1.5), as opposed to
O(N2) for the standard algorithm. The algorithm uses a divide-
and-conquer approach based on the fact that one can expressN -
digit numbers asX = X1 + X2b

N/2, whereX1 and X2 are
N/2-digit numbers andb is the basis.

The key idea is that one can multiply two numbersX ∗ Y by
performing three (large) multiplications of their halves, instead of
the usual four multiplications. The sketch expresses the fact that
the three multiplications are going to beX1 ∗ Y1, X2 ∗ Y2, and a
polynomial that is going to be the product of two sums of terms.
The three terms then have to be added together and multiplied by
various powers ofN/2.

The idea behind sketching this complex algorithm is to (i) con-
strain the implementation to perform no more than three large mul-
tiplications; and (ii) synthesize the polynomials needed to make the
three-multiplication version equivalent to the classical long integer
multiplication. The idea is encoded in the sketch in figure 1. (We
will provide a more detailed explanation of the sketch in the final
paper.)

Our system currently resolves and verifies the sketch forN =
6 in about a minute. However, the programmer knows that the
algorithm is the same regardless of the value ofN , so he can use
the code synthesized forN = 6 and use it correctly for anyN .

3. Language definition
This section describesSKETCH, our sketching language. We first
define the base language, which supports neither verification nor
sketching. We then add theimplements construct, which verifies
equivalence of two functions, and the?? operator needed for the
construction of sketches.

3.1 The Base Language

SKETCH is a C-like language without pointers. We model the
sketch-free subset ofSKETCH using a formal language with three
syntactic categories,expressions, commandsand functions. The
formal language is a standard imperative language over bits,
Booleans, integers, and arrays, with some set of unary and binary
operators, assignment, conditionals, loops, and function calls:

(Expr) e ::= v | x | x[e] | unop e | e binop e | f(e)
(Comm) c ::= x = e | skip | if (e) then c else c

loop(e) c | c ; c | return e
(Func) f ::= def f(x) c

We have chosen this language to keep the technical development as
simple as possible while focusing on the new ideas (sketching).

In the rest of this paper we shall take the liberty of writing con-
crete programs that use local variables, global variables, for loops,
recursive function definitions, and functions with multiple argu-
ments. The semantics of these constructs is completely standard
— even in the presence of sketching operators — and omitted from
this paper for reasons of space and simplicity.

The features ofSKETCH have been selected so that the language
can express anyfinite program. A program is finite if (i) its input is
bounded and (ii) the program terminates on all inputs. For example,
a matrix multiplication over matrices of sizes known at compile
time is a finite program, but a search on an arbitrary binary tree is
not. Important for our work is that finite programs can be viewed
as Boolean functions that map a vector of input bits to a vector
of output bits. (Note that this functional view does not preclude
finite programs from implementing an internal finite state machine,
if that’s what the programmer desires.)

3.2 The Sketching Constructs

We now extend the syntax with sketching constructs:

(Expr) e ::= ??
(Func) f ::= def f(x) implements g c

Intuitively, ?? introduces non-determinism by requiring the im-
plementation to pick some number, whileimplements constrains
these choices.f implements g requires that the choices made in
the body off must be such that the resulting program is function-
ally equivalent tog. We also enforce the static semantic restriction
that g must not contain any occurrences of the?? operator in its
dynamic extent.

To define the meaning ofimplements more formally, it helps
to rely on the notion of refinement. An implementationi is said
to refine a specifications if every behavior ofi can be exhibited
by s [10, 8]. A specification may thus in general permit multiple
implementations. For example, a specifications : f(x) ≥ 0
permits implementationsf(x) = x ∗ x as well asf = abs(x).

In SKETCH, whenever we havei implements s, the compiler
verifies thati refiness. However, sinces permits only one behavior
(s is a finite program, and hence a Boolean function), refinement
implies that thei and s are functionally equivalent, a complete
verification.

3.3 Formal Semantics

Recall from Section 2 that the synthesizer translates a sketch into
a base program by replacing??’s with suitably chosen integers.
We capture this formally by defining the operational semantics
of SKETCH in terms of oracles modeled as lists of values (see
Figure 2). Whenever a?? is encountered during execution, an
oracle is consulted. The value returned by the oracle is a number
popped from the list. Therefore a?? that appears inside a loop can
resolve to a different value on each iteration.

4 2006/1/16

〈n, σ, O〉 ⇓ 〈n, O〉 〈x, σ, O〉 ⇓ 〈σ(x), O〉

〈??, σ, O〉 ⇓ 〈head O, tail O〉
〈e1, σ, O〉 ⇓ 〈v1, O

′〉 〈e2, σ, O′〉 ⇓ 〈v2, O
′′〉

〈e1 op e2, σ, O〉 ⇓ 〈v1 op v2, O
′′〉

〈e, σ, O〉 ⇓ 〈v, O′〉
〈x = e, σ, O〉 ⇓ 〈σ[x := v], O′〉

〈e, σ, O〉 ⇓ 〈v, O′〉
〈return e, σ, O〉 ⇓ 〈σ[retval := v], O′〉

〈c1, σ, O〉 ⇓ 〈σ′, O′〉 〈c2, σ
′, O′〉 ⇓ 〈σ′′, O′′〉

〈c1; c2, σ, O〉 ⇓ 〈σ′′, O′′〉
〈e, σ, O〉 ⇓ 〈true, O′〉 〈c1, σ, O′〉 ⇓ 〈σ′, O′′〉
〈if e then c1 else c2, σ, O〉 ⇓ 〈σ′, O′′〉

〈e, σ, O〉 ⇓ 〈false, O′〉 〈c2, σ, O′〉 ⇓ 〈σ′, O′′〉
〈if e then c1 else c2, σ, O〉 ⇓ 〈σ′, O′′〉

〈e, σ, O〉 ⇓ 〈0, O′〉
〈loop (e) c, σ, O〉 ⇓ 〈σ, O′〉

〈e, σ, O〉 ⇓ 〈n, O′〉 n > 0 〈c; loop(n− 1) c, σ, O′〉 ⇓ 〈σ′, O′′〉
〈loop (e) c, σ〉 ⇓ 〈σ′, O′′〉

Figure 2. The operational semantics ofSKETCH programs. In
addition to the standard program stateσ we add the oracleO, which
is a list of values.

If the number of iterations of a loop depends on the input, then
the oracle’s list must be long enough to satisfy the largest possible
number of iterations. This implies the existence of an upper bound
on iterations, hence our restriction to finite programs.

The programmer can think of an unbound sketch as a program
that executes in the context of an arbitrary (non-deterministic) or-
acle. A sketch can be partially evaluated with respect to its oracle,
producing a residual program for each possible oracle. The deriva-
tion of one such residual program from an unbound sketch is shown
in Figure 3.

The definition ofimplements can now be stated in terms of
oracles:

∃O. fO ≈ g

f implements g

wherefO meansf executed in the context of the oracleO and≈
denotes functional equivalence. In words, this means that binding a
sketch involves finding an oracle (one for all inputs) such that the
sketch evaluates to the same result as the spec on all possible inputs.
The problem of checking this functional equivalence reduces to
SAT, and the problem of synthesizing a suitable oracle reduces to a
generalized SAT problem, as will be shown in Section 4.

4. Synthesis
This section develops the synthesis process that resolves a sketch
to make it functionally equivalent to the specification. First, we
describe how programs are translated to Boolean functions. This
functional representation of programs is the basis for detecting
equivalence of specifications and (resolved) sketches. Second, we
phrase synthesis as a quantified Boolean satisfiability problem and

x =??; loop(x) y = y&?? →
x = 2; loop(x) y = y&?? →
x = 2; y = y&??; loop(2− 1) y = y&?? →
x = 2; y = y&13; loop(2− 1) y = y&?? →
x = 2; y = y&13; y = y&??; loop(1− 1) y = y&?? →
x = 2; y = y&13; y = y&7; loop(1− 1) y = y&?? →
x = 2; y = y&13; y = y&7

Figure 3. Partial evaluation of the sketch “x=??; loop(x) y=y&??”
using the oracle [2,13,7]

show that sketch resolution is decidable. Third, we describe a
counterexample-driven solver for the satisfiability problem. The al-
gorithm reduces the synthesis problem into two efficient SAT prob-
lems that iterate by exchanging information. Fourth, we show how
the obtained solution is used to generate the resolved sketch in the
C language. Next, we develop several scalability optimizations for
the solver. We also describe how to deal with unscalable sketches
at the programmer level, by heuristically identifying aspects of the
sketch that may need to be specified by the programmer rather
than synthesized by the solver. Finally, we empirically evaluate the
counterexample-driven synthesis algorithm and its optimizations.

4.1 Programs as Boolean Functions

The synthesizer manipulates programs represented as Boolean
functions. Both specifications and sketches are translated to Boolean
functions with the same procedure, except that sketches produce
functions withk additionalcontrol inputs; these inputs model val-
ues produced by the non-deterministic expressions??. The spec-
ification is translated to a functionP : {0, 1}m → {0, 1}n; the
sketch is translated to a functionS : {0, 1}(m+k) → {0, 1}n. As
described in Section 4.2, the goal of synthesis is to find acontrol—
i.e., an assignment to the control arguments — such that the sketch
computes the same function as the specification.

The translation to Boolean functions is done using the same
standard approach used by many verification systems. In these
systems, expressions corresponding tok-bit integers are modeled
as a function from a set of named input bits to a vector ofk output
bits. Side effects are modeled as transformations of the program
stateσ, which is simply a map from variable names to Boolean
functions. Our system also uses another less standard encoding
for some integers and represent them in sparse form as pairs of
values and guard functions(v, b); we distinguish between the two
representations by giving all expressions a type, eitherbin for those
encoded in standard binary form, orspar for those encoded in
sparse form.

Unlike verification systems, our transformation also needs to
keep track of which control inputs correspond to which execution
of the ?? expression. We do this by keeping a queueo where
we push the fresh variable names produced by?? every time it
is executed. After synthesizing the correct values for the control
inputs, the variable names ino are replaced with their actual values,
ando can now serve as an oracle during code generation, producing
the correct value for a?? every time one is encountered.

We use the notation〈e, σ, o〉 → 〈e′, σ′, o′〉 to denote that a
program fragmente in stateσ and with oracleo produces a Boolean
expressione′ in stateσ′ with oracleo′. We use the notationo.v to
indicate a new queue that contains all the values thato contained,
followed by the valuev. For example, the rule for the?? operator
is shown below.

ĉ1, . . . , ĉk are fresh variables.

〈??, σ, o〉 → 〈[ĉ1, . . . , ĉk], σ, o.ĉ1.ĉk〉.

5 2006/1/16

Since expressions don’t affect the state, we will abbreviate the
rules for expressions as〈e, σ, o〉 → 〈e′, o〉. In our language, state-
ments don’t produce Boolean functions, so they will be abbreviated
as〈e, σ, o〉 → 〈σ, o〉.

The meaning of a procedure

[o1, . . . , ok]fun(in1, . . . , inm){c}
with input parametersin1, . . . , inm and output parameterso1, . . . , ok

is defined in terms of the Boolean functions thatc assigns to the
output variables when executed starting from a state where only the
input variables have been assigned values.

[o1, . . . , ok]fun(in1, . . . , inm){c}
〈c, {(in1 := σ(x1) . . . (ink := xk)}〉 → σ′

〈fun(x1, . . . , xk), σ〉 → [σ′(o1), . . . , σ
′(ok)]

To get the Boolean function for a sketch or a specification, we
simply evaluate them as a function call, using as the start state the
state that only maps the input variables to themselves.

The other noteworthy features of the translation, in addition to
the?? operator, are the modeling of arrays, loops and conditionals.

4.1.1 Arrays and sparse integer expressions

The sparse integer representation described above is mainly in-
tended to model array operations precisely and efficiently. It is very
similar to the guarded location sets used by Saturn [18] to represent
pointers (Saturn does not model arrays). In this representation, an
integer is represented as a set ofguarded valuesof the form(v, b),
wherev is a value known at compile time and theguard b is a
Boolean function.

The key invariant that we want to maintain for values in this
representation is that at any given time, at most one guard will
be true. Similarly, it is assumed that all the valuesvi of all the
guarded values in the set are unique. If in the process of evaluating
an expression, two terms appear that have the samev, (v, b1) and
(v, b2), they are implicitly replaced with a single term(v, b1 ∨ b2).
Also, as a matter of convention, when writing a set of guarded
values, we will assume that the first element in the set is the one
with the smallest value.

For example, in this representation, an integer constantn evalu-
ates to a valuen guarded by the functiontrue, i.e. the function that
returns true on any input.

〈n : spar, σ〉 → [(n, true)]

Arithmetic expressions are handled by applying the arithmetic
operation on pairs of values from the two operands, and guarding
them with the conjunction of their respective conditions.

〈e1 : spar, σ〉 → [(v1
1 , b1

1), . . . (v
1
k, b1

k)]
〈e2 : spar, σ〉 → [(v2

1 , b2
1), . . . (v

2
k, b2

k)]

〈e1 ope2 : spar, σ〉 → [(v1
i opv2

j , b1
i ∧ b2

j)]

Another very important property of the sparse integer representa-
tion is that integer expressions get partially evaluated in a very
precise manner. In fact, at any point in the program, if an ex-
pressione : spar does not depend on any inputs or control val-
ues, thene = [(n, true)] for some constantn. In practice, we
only do trivial minimizations on the guards as we construct the
functions, so the internal representation would more likely be
e = [(n1, f1), (n2, f2), . . . (nk, fk)], wheref1 is a tautology and
f2, . . . , fk are unsatisfiable.

The conversion from binary to sparse representation is poten-
tially exponential, since the sparse form is essentially a unary rep-
resentation.

〈e : bin, σ〉 → [b1, . . . bk]

〈e : bin, σ〉 → [(i, ([b1, . . . bk] == i))∀i ∈ {0 . . . 2k − 1}] : spar

However, with some analysis it is possible to look at the places
where the generated expression will be used and put a tighter bound
on the number of terms. For example, if after the conversion the
integer is used only to access an array of sizeN , then the sparse
representation needs to keep at mostN + 1 terms—all the terms
smaller thanN , plus a term to model the point when the array
goes out of bounds. Our current implementation leaves to the user
the decision about the representation by having two different data
types for the two different representations and forcing users to do
conversions explicitly.

As was mentioned earlier, the main rationale for the sparse
representation was to make array accesses more efficient. AnN
element array is modeled in our system as a tuple ofN expressions,
which can be either in binary

form

ar : bin = [[b1
1, . . . , b

1
k], . . . , [bn

1 , . . . , bn
k]]

or in sparse form.

ar : spar = [[(v1
1 , b1

1), . . . , (v
1
i , b1

i)], . . . , [(v
n
1 , bn

1), . . . , (vn
i , bn

i)]]

Given an index expressione = [(x1, f1), . . . (xk, fk)] we define
the array access for arrays in binary form by using eachxi to select
an element in the array, and applying anand of that element with
the correspondingfi, and then taking the disjunction of all such
terms.

〈e : spar, σ〉 → [(x1, f1), . . . (xk, fk)]
σ(ar) = [[b1

1, . . . , b
1
k], . . . , [bn

1 , . . . , bn
k]]

〈ar[e] : bin, σ〉 → [(
∨

(bxi
1 ∧ fi)), . . . , (

∨
(bxi

k ∧ fe
i))]

For arrays with sparse elements, the indexing is also straight-
forward; for each(xj , fj) in the in the index expression, we select
the expression corresponding to thexi entry in the array ar[xj], and
create new guarded values by taking each value(v

xj

i , b
xj

i) ∈ar[xj]
and making its guard the conjunction of its original guard withfi

to get(v
xj

i , b
xj

i ∧ fj).

〈e : spar, σ〉 → [(x1, f1), . . . (xk, fk)]
σ(ar) = [[(v1

1 , b1
1), . . . , (v

1
i , b1

i)], . . . , [(v
n
1 , bn

1), . . . , (vn
i , bn

i)]]

〈ar[e] : spar, σ〉 → [(v
xj

i , b
xj

i ∧ fj)∀i ≤ m, j ≤ k]
.

4.1.2 Conditionals and Loops

The treatment of conditionals is again fairly standard. It is actu-
ally simpler than what is used for verification because we are not
interested in proving assertions from within the conditionals. This
means, that in the case of anif statement, for example, we don’t
need to keep track of the branch condition while translating the two
branches; we only need it at the join point where the two branches
merge back together.

To handleif statements, we evaluate the two branches indepen-
dently from the same initial stateσ to get two new states,σ1 and
σ2. The two states are merged into a new state that maps each vari-
ablex into the function(b∧ σ1(x))∨ (¬b∧ σ2(x)). Note that this
expression reduces toσ(x) whenx is not modified in any branch
of the conditional because in that caseσ(x) = σ1(x) = σ2(x).

〈e : bin, σ〉 → [b] 〈c1, σ〉 → σ1 〈c2, σ〉 → σ2

〈if e then c1 else c2, σ〉 → λx.(b ∧ σ1(x)) ∨ (¬b ∧ σ2(x))

In the special case wheree evaluates to eithertrue or false,
we only evaluate one of the branches and ignore the other one.
Combined with the partial evaluation that takes place automatically

6 2006/1/16

for sparse integers, this allows us to handle recursive function calls
for which the level of recursion can be bounded at compile time.

Loops are somewhat more involved. They are handled essen-
tially by unrolling, but we can take advantage of the sparse repre-
sentation to get better bounds on how much to unroll, and where to
place loop exit branches.

〈e, σ〉 → [(0, true)]

〈loop (e : spar) c, σ〉 → σ

〈e, σ〉 → [(n, b1)]
e′ = [(n− 1, true)] 〈c, σ〉 → σ1 〈loop (e′) c, σ1〉 → σ2

〈loop (e : spar) c, σ〉 → σ2

〈loop(e′′)c; if (e > e′′) then (loop(e′)c), σ〉 → σ2

〈e : spar, σ〉 → [(v1, b1), . . . , (vk, bk)]
e′ = [(v2 − v1, b2), . . . , (vk − v1, bk)] e′′ = [(v1, true)]

〈loop (e) c, σ〉 → σ2

For this last rule, note that the unrolling is guaranteed to termi-
nate becausee′ has strictly less terms thane. Finally, note that if all
the vi in e are non-negative, they will remain non-negative, since
we are assumingv1 is the smallest one. Also, note that ife satisfies
the invariant that at most oneb is true, this will also be true fore′.

4.1.3 A simple example

As an example of the application of these rules, consider the loop:

loop(??){
b = b ^ in[??];

}

And assume the unknown is fixed at two bits. Then we have that

?? → [ĉ1, ĉ2]

Which must be converted to sparse form to produce

?? : spar→ [(0,¬ĉ1∧¬ĉ2), (1, ĉ1∧¬ĉ2), (2,¬ĉ1∧ĉ2), (3, ĉ1∧ĉ2)]

After repeated application of the unrolling rule, we get that the
semantics of the original loop will be equivalent to the semantics
of:

if(e_0 > 0)
b = b \oplus in[\Star]$;
if(e_1 > 1)
b = b \oplus in[\Star];

if(e_2 > 1)
b = b \oplus in[\Star];

wheree0 is the expression we got from??, and each subsequent e
we get by subtracting the first term from the rest of the terms.

e0 = [(0,¬ĉ1 ∧ ¬ĉ2), (1, ĉ1 ∧ ¬ĉ2), (2,¬ĉ1 ∧ ĉ2), (3, ĉ1 ∧ ĉ2)]

e1 = [(1, (ĉ1 ∧ ¬ĉ2)), (2, (¬ĉ1 ∧ ĉ2)), (3, (ĉ1 ∧ ĉ2))]

e2 = [(1, (¬ĉ1 ∧ ĉ2)), (2, (ĉ1 ∧ ĉ2))]

4.2 Synthesis as QBF

Having obtained functional representations of the specification and
the sketch, we phrase synthesis as an instance of the quantified
Boolean formula satisfiability problem (QBF). QBF is a general-
ization of the Boolean satisfiability problem (SAT) in which both
existential and universal quantifiers can be applied to a Boolean
formula. Formally, the sketchS can be resolved to the specification
P if there exists a controlc such that the specification and sketch

function synthesize(sketch S, speci�cation P)
// Synthesize control that resolves S for a random input;
// check if the control also works for all other inputs. If not,
// add counterexample input to the set of inputs and repeat.
I = {}
x = random()
do

I = I ∪ {x}
c = synthesizeForSomeInputs(I)
if c = nil then exit(�buggy sketch�)
x = verifyForAllInputs(c)

until x 6= nil
return c

function synthesizeForSomeInputs(set of inputs I)
// Synthesize controls c that make the sketch equivalent to the
// speci�cation on all inputs from I, i.e., ∀x ∈ I.P (x) = S(x, c)
if ∧

x∈I P (x) = S(x, c) is satis�able then
return c that satis�es the formula

else // sketch S cannot be resolved
return nil

end if
function verifyForAllInputs(control c)

// Verify if sketch S resolved with controls c is functionally
// equivalent to the speci�cation P . If not, return the witness
// (counterexample) x, i.e., P (x) 6= S(x, c).
if P (x) 6= S(x, c) is satis�able then

return x satisfying the formula
else

return nil
end if

Figure 4. The counterexample-driven synthesis algorithm.

are functionally identical, i.e., when the following formula is satis-
fiable.

∃c ∈ {0, 1}k, ∀x ∈ {0, 1}m; P (x) = S(x, c) (4.1)

This problem is decidable, becausec andx range over finite do-
mains. Consequently, for any sketch expressed in our language, we
can either resolve the sketch or show that the sketch is buggy.

4.3 Counterexample-Driven Solver

Problem (4.1) is decidable but intractable. In general, QBF is
PSPACE-complete, and can be solved in time exponential in the
number of quantified variables. However, Problem (4.1) is a re-
stricted form of QBF with only one quantifier alternation (of the
form ∃ ∀), a problem known as 2QBF. The computational com-
plexity of this problem isΣ2-complete, falling in the polynomial
hierarchy between NP and PSPACE.

Existing solvers for 2QBF employ two SAT solvers, one for
each quantifier, that communicate with each other [12]. Our solver
also relies on two SAT solvers, co-operating in a synthesize-verify
loop. First, a random inputx is generated and the synthesizing
solver attempts to find controlc that makes the sketch equal to
the specification on the inputx. If such control cannot be found,
the sketch is buggy. Otherwise, the controlc is given to the verify-
ing solver, which attempts to verify that the sketch is equivalent to
the specification on all inputs. If so, the sketch can be resolved and
controlc is the result of the synthesis. Otherwise, a counterexample
input provided by the verifier is added to the set of inputs consid-
ered by the synthesizer and the process repeats. The algorithm is
shown in Figure 4.

The algorithm will terminate because, in the worst case, each of
the2m inputs will appear as a counterexample, at which point the
synthesizer’s answer no longer needs to be verified. This reduction
of 2QBF to two SAT solvers does not come free: the algorithm
requires more than polynomial space but the trade-off is that we can

7 2006/1/16

employ the efficient techniques embedded in modern SAT solvers.
Other solvers tailored to 2QBF make the same trade-off [12].

4.4 Generating Code for a Resolved Sketch

Given a synthesized controlc, we are ready to resolve the sketch
and translate it to a C program. The translation uses the oracles in-
troduced earlier. For each oracle, we have a list of variables in the
order in which values were required from it; these variables can
be replaced with actual values, which are to be used in the exe-
cution of the program. The code generator then takes the original
function, and adds a declaration of an arrayoracle[] that is going
to represent the oracle, together with an array initializer contain-
ing all its values, and an index to keep track of the current value.
Each instance of the?? operator is then replaced with the expres-
sionoracle[idx++]. After this, traditional compiler optimizations
can be used to propagate constants, and specialize the code for the
generated values.

4.5 Scalability Optimizations

The synthesizer described so far scales only for very small pro-
grams. Here we describe the reasons and develop optimizations for
making the synthesizer significantly more scalable. We evaluate the
benefits if these optimizations in Section 5.2.

Increasing ranges of non-deterministic values.The translation
of some language constructs leads to exponentially large Boolean
functions, for example inloop(*)), where the loop is controlled
by a non-deterministic value unknown at the time of translation.
Our solution is to initially restrict the range of non-deterministic
values, and attempt synthesis. When synthesis fails, we re-translate
the sketch with a larger range.

Random counterexamples.The counter-examples generated by
the SAT solver sometimes don’t lead to rapid convergence. Our
solution is seed the set of inputsI with several random inputs.
Adding more random inputs can reduce the number of iterations
of the synthesize-verify loop at the expense of making each iter-
ation more expensive. For this reason, this optimization is mainly
beneficial in cases where the loop takes many iterations, but each
iteration is very fast. This issue will be analyzed in further detail in
the full paper.

4.6 Diagnostics

When there are bugs in the sketches, the compiler reports that
the sketch can not be satisfied, but it may be difficult for the
programmer to find what the problem is. The main diagnostic tool
of our compiler, is to allow the user to select a set of outputs, and
ask the compiler for an assignment of the controls, together with a
set of inputs and outputs such that the output of the sketch and the
spec differs only for the selected outputs. We have found this to be
a useful tool for isolating bugs in the sketches because it allows the
user to understand why the sketch cannot be satisfied.

5. Evaluation
To evaluate our work, we ask four questions: (1) Can theSKETCH
language be used in practically interesting domains? (2) Is our syn-
thesizer scalable enough for real-world problem sizes? (3) What
kinds of code fragments can be synthesized with the sketching
support provided inSKETCH, and what is the programmer experi-
ence? (4) Does a sketched implementation match the performance
of hand-written code?

5.1 Expressiveness of theSKETCH language

Here we examine the expressiveness of theSKETCH language,
leaving the examination of its synthesis power to Section 5.2.

SKETCH is sufficiently powerful for both specifying and imple-
menting finite programs, but do finite programs extend to prac-
tically interesting domains? We believe thatSKETCH applies at
least in private key cryptography, public key cryptography, error
correction, signal processing, vision and graphics. The reason is
finite programs cover three broad (albeit vaguely defined) classes
of programs, which have substantial use in the above domains:
(i) programs mapping a few words to a few words, such as encrypt-
ing a fixed sized message; (ii) array-manipulating programs, with
known array sizes, such as matrix multiplication; and (iii) stateless
streaming programs, such as encrypting a variable-length message.
Technically, streaming programs manipulate unbounded streams,
so they are not finite, but they are typically composed of (finite)
filters that process the stream a few bytes at a time. Note that in our
work on bitstreaming, we sketched precisely these filters [14]. We
can also implement stateful filters (i.e., those that compute a “run-
ning” function on a stream), by restricting ourselves to the (finite)
filter wrapped inside the feedback loop.

We implementedSKETCH programs that span these classes. Ta-
ble ?? lists the programs that we use for evaluation in this section.
The programs are divided into three categories: word manipulation
routines, streaming kernels, and programmability tests. The first
group includes, in addition to some of the kernels we have men-
tioned already,log2, a routine that computes thelog2 of a number
in logarithmic time with respect to the word size, andparity, a
routine that computes the parity bit for a word.

The second group includesCRC, a kernel that computes a cyclic
redundancy check,DES.IP, the initial permutation from DES, and
AES.MixColumns, one stage of AES that is based on operations on
the Galois fieldGF (28).

The last group evaluates the ease of sketching on complex
problems that go beyond error correction and cryptography. This
group is also a good stress test for the synthesizer, which is not
designed to scale on sketches multiplications of two integers larger
than 16 bits or so. It includes the version of Karatsuba we saw
earlier, andpoly, a simple sketch that finds the coefficients of a
degree 4 polynomial of degree 5.

5.2 Scalability of the Synthesizer

Here we report the scalability of the synthesizer on our sketches.
We divide sketches into two groups: those within the (intended)
power of the synthesizer, and those containing synthesis problems
beyond what we envisioned for the synthesizer in this paper.

The performance of the synthesizer is given in Figure 9. For
each benchmark, we show the number of controls we are trying
to synthesize, The total number of iterations of the synthesize-
verify loop, and the total ammount of time spent on synthesize and
verify. For a few benchmarks, we include the scaling behavior as
we increase the input size.

We now examine the synthesizer on the stress tests. A distin-
guishing feature of these sketches is that they contain multiplica-
tions whose both operands are relatively wide integers. An exam-
ple is the polynomial synthesis sketch. It is well known that SAT
solvers do not handle multiplications gracefully, and so we did not
expect these sketches to scale to large word sizes with the SAT-
based synthesizer solver.

The synthesis of sketches exceeded our expectations. The run-
ning times are shown also in Figure 9.

Another interesting point to note is the scaling behavior of the
number of iterations, vs the time to solve each individual iteration.
For example, for problems like Karatsuba, the number of iterations
grows very slowly compared with the exponential growth in the
amount of time it takes to solve each individual SAT problem. For
CRC-table, on the other hand we can see the exponential behavior
on the number of iterations as well.

8 2006/1/16

Figure 5. The running time of the syntehsizer.

Figure 6. Karatsuba

Figure 7. Log2

Figure 8. Parity

5.3 Programming with Sketches

One factor in the evaluation of linguistic support for sketching is
whether sketches can be used to synthesize non-trivial implemen-
tations. We have shown the range of sketchable constructs in Sec-
tion ??. All sketches shown in that section can also be syntehsized
with our current synthesizer.

Another evaluation factor is programability. Perhaps contrary
to intuition, our experience shows that sketches are much easier to
develop than the specifications. Once the specification is debugged,
the sketch can be obtained easily, and much faster than teh specifi-
cation. Sketching alternative implementaitons takes even less time.

One experience with sketching worth elaborating on is revising
non-scalable sketches. For some sketches with a large number of??
operators, the synthesizer would not terminate in a reasonable time
(a few minutes). In these sketches, it was typically easier for the
programmer to make the sketch somewhat less non-deterministic,
by giving the sketch some more specific constraints.

6. Related Work
Synthesis based on partial programs has been explored in the AI
community. For example, ALisp [1], developed by Andre and Rus-
sell program Reinforcement Learning Agents is a form of Lisp
extended with non-deterministic constructs. In ALisp, the behav-
ior of the non-deterministic branches is defined through learning, a
domain-specific approach.

The sketch resolution problem is a constraint satisfaction prob-
lem similar to those studied by the constraint programming com-
munity [7].

Schema-based program synthesizers automatically compile a
high-level declarative specification into code; an example is the
AUTOBAYES system which compiles a statistical model into
code [5]. However, these synthesizers are highly domain-specific
and are not based on a general formal notion of partial programs as
introduced in this paper.

The Denali superoptimizer [9] was one of the first systems to
leverage the progress in SAT solving for code optimization. Denali

9 2006/1/16

Figure 9. Parity

focused on optimizing straight-line code. While our system does
not look for the optimal way to resolve a sketch, it applies to a
more general class of programs.

Many recent program verification projects are also SAT-based,
including CBMC [6] and Saturn [18]. Our work uses SAT solving
not just for program verification, but also for program synthesis.

It is likely that we will hit the capacity limits of current SAT
solvers, such as zChaff [11], for larger word sizes involving oper-
ations such as integer multiplication. We anticipate being able to
scale further by using two strategies. The first involves switching
to word-level solvers(also knownbit-vector decision procedures).
These solvers avoid exploding a word of sizew into w Boolean
variables by using either word-level axioms and simplification rules
(e.g., [2, 3]) or efficient, special-purpose data structures (e.g., [4]).
The second strategy is based on employing analyses that general-
ize a synthesis obtained for a smaller word or array size to larger
sizes by exploiting symmetries and dependences in control and in-
put variables.

7. Conclusion
We have designed a language that supports sketches in a natural
way, designed a general solver for synthesizing sketched imple-
mentations, and evaluated the generality of the linguistic support
as well as the scalability of the solver. We implemented a signifi-
cant fraction of the AES cipher; the sketch is suprisingly concise
and the solver scales extremely well on this benchmark.

References
[1] D. Andre and S. Russell. Programmable reinforcement learning

agents. Advances in Neural Information Processing Systems, 13,
2001. MIT Press.

[2] C. W. Barrett, D. L. Dill, and J. R. Levitt. A decision procedure for
bit-vector arithmetic. InProceedings of the35th Design Automation
Conference (DAC ’98), pages 522–527. Association for Computing
Machinery, June 1998.

[3] S. Berezin, V. Ganesh, and D. Dill. A decision procedure for fixed-
width bit-vectors. Technical report, Computer Science Department,
Stanford University, April 2005.

[4] Y.-A. Chen and R. E. Bryant. An efficient graph representation for
arithmetic circuit verification. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 20(12):1442–1454,
December 2001.

[5] Y.-A. Chen and R. E. Bryant. Autobayes: a system for generating
data analysis programs from statistical models.Journal of Functional
Programming, 13(3):483–508, May 2003.

[6] E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C
programs. InProc. 10th Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 2004.

[7] P. V. Hentenryck and V. Saraswat. Strategic directions in constraint
programming.ACM Comput. Surv., 28(4):701–726, 1996.

[8] C. A. R. Hoare. Proof of correctness of data representations.Acta
Inf., 1:271–281, 1972.

[9] R. Joshi, G. Nelson, and K. H. Randall. Denali: A goal-directed
superoptimizer. InPLDI, pages 304–314, 2002.

[10] R. Milner. An algebraic definition of simulation between programs.
In Proc. of the 2nd International Joint Conference on Artificial
Intelligence, 1971.

[11] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. In38th Design Automation
Conference (DAC ’01), pages 530–535, June 2001.

[12] D. P. Ranjan, D. Tang, and S. Malik. A comparative study of 2qbf
algorithms. InThe Seventh International Conference on Theory and
Applications of Satisfiability Testing (SAT 2004), May 2004.

[13] E. M. Reingold, J. Nievergelt, and N. Deo.Combinatorial Algorithms
– Theory and Practice. Prentice-Hall, 1977.

[14] A. Solar-Lezama, R. Rabbah, R. Bodik, and K. Ebcioglu. Pro-
gramming by sketching for bit-streaming programs. InPLDI ’05:
Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, pages 281–294, New York, NY,
USA, 2005. ACM Press.

[15] W. Thies, M. Karczmarek, and S. Amarasinghe. Streamit: A language
for streaming applications. InInternational Conference on Compiler
Construction, Grenoble, France, Apr. 2002.

[16] H. S. Warren. Hacker’s Delight. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002.

[17] P. Wegner. A technique for counting ones in a binary computer.
Commun. ACM, 3(5):322, 1960.

[18] Y. Xie and A. Aiken. Scalable error detection using boolean
satisfiability. InProceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), pages
351–363, 2005.

10 2006/1/16

