Sketching with Partial Programs

Armando Solar-Lezama, Liviu Tancau, David Turner, Rastislav Bodik, Vijay Saras@anjit Seshia
UC Berkeley *IBM Research

Abstract desired implementation by means of meta-level rewrite rules that

Sketching is a software synthesis approach where the programmetansiated the specification into the desired implementa®Tie
develops a partial implementation — a sketch — and a Separate!mpleme_ntatlon strategy had to be often decomposed hierarchically
specification of the desired functionality. The synthesizer then com- |nkto rr;]ultlple_slgetchesdwllth olnermljls lc_jepehnddencels. F(;]r ?Xa“pp'e' the
pletes the sketch to behave like the specification. The synthesized>Ketch specifying word-level parallelism had to plan the implemen-

implementation is correct by construction, which allows, among tation carefully so that the sketch for bit-level parallelism would
other benefits, rapid sketching of many implementations without apply. @) S_ketches _had to be inserted into the rewrite sequence
the fear of introducing bugs. of a baseline compiler. The awareness of the baseline compiler

We developSKETCH, a language for finite programs with lin- made the meta-level nature of rewrite rules even more confound-

ot ; . ; ; ing. (4) Sketching was embedded into a dataflow programming
guistic support for sketching. Finite programs include many high- IN9: ¢ . .
performance kernels, including cryptocodes. In contrast to prior Iang_uage [15]. While the datafIO_N programming model helped syn-
work, where sketches were meta-level rewrite rules, our sketchesthesiS and subsequent paralielization, novice programmers faced
are simple-to-understand partial programs. Partial programs areSkeiching simultaneously with another new programming model.
programs with “holes” that are filled by the synthesizer. The un- This paper develops linguistic support that sidesteps these four

specified behavior of partial programs is modeled with a single 'SSU€S- Eltrr]st‘:hslTetquis are expl)tresie??]mal progretlms (t)r prlo- but
non-deterministic operator that we show to be surprisingly versa- gtrarlnshfm do esoi ts a {etsu SS etc destr?redno' rr&e.a-nlj es ;’
tile. We also develop a synthesizer that is complete for the class Stra!ghiorward code tempiates. second, the desired implementa-

of finite programs: it is guaranteed to complete any sketch in the- 1N %f?]r.‘ govr‘]’ be .sketct?ed l[n a singlgel sketch, without qu('):mpclalsi-
ory, and in practice has scaled to complex real-world programming tion. Third, there Is no baseline compiler to cooperate with. Finally,
problems. sketching is embedded into an imperative language with a familiar

programming model.

Besides programmability limitations, sketching in [14] was also
1. Introduction restricted in expressivenesg) Except for some high-level refac-
torings, sketching worked only for programs that computed (semi)-
permutations of bit-vectors. While this sufficed for DES, the mod-
ern block cipher standard, AES, was beyond our pov®rThe
sketched implementations themselves could not implement permu-
tations using non-permutations instructions, such as additions. This
limitation prevented us from exploiting some efficient DES imple-
mentation strategies.
In contrast, theSKETCH language presented in this paper is

When programming by sketching, the programmer develops only
a skeleton of the desired implementation, callegkatch and a
synthesizer completes the sketch such that it is equivalent to a
separate specification of the desired behavior.

The goal of sketching is to bridge the abstraction gap between
a high-level task and its low-level implementation. Sketches sit
between the two extremes: unlike specifications, sketches spell

O e iaon saleg, and ke mplementatons €Y compete. We can boipeciyany i progtam andietchany
- By sep g P "implementation of it. A finite program is any program whose input

sketches allow the abstraction gap to widen: First, sketching en- is bounded in size and the program is guaranteed to terminate on
courages cleaner specifications because it relies on specificationany input. Most high-performance kernels have this property.
only for behavioral specification. Second', sketching enables com-— SKE.TCH, sketches are partial programs, i.e., programs Where
fe{?ri(\;vrﬂﬁfur?zmgm)aﬂ?ctza;mg;/ig%;[?gv\t/ﬁgi?eulSdtec;a?i?velop and main- code fragments to be syn_thesi_zed are indica_ted with a non-de_te_rministic
We introduced the cgncept of sketching in StreémBit a system operator?. The operator is deflned_as returning a non-determ|n|§tlcally

for bit-stream programming [14]. In StreamBit sketching,proved o ch_osen integer value; the synthesizer replaces the operator with a

. : S L - suitable integer such that the resolved sketch behaves like the spec-
be Very effective. We |m_plemented, in a single afternoon, an imple- ification. The?? operator is more versatile than it may seem: it can
mentation of the DES C|.pher thaq nearly matphed the performance automatically derive values of hard-to-compute constants, such as
of the best public-domain DES implementation. In another exper- bitmasks; it can be used to divide the work in a divide-and-conquer

iment, a sketched implementation of a cipher was produced twice algorithm; and it can be used to synthesize the number of iterations

i i 0,
as %fa;sttas atCI |mplementat|ogl, atndtran ?O /tohfaster. f sketch of a loop. It can also be used to to synthesize a polynomial, which
niortunately, we were unable to transter the SUCCESS Of SKEICh-;q safy jn implementing big-integer multiplications algorithms.

ing ffom the lab to real programmers. Even though the_concept Of. Programming with non-determinism can be thought of as taking
sketching was easy to explain, sketching as embedded in Streaml?"tprogram verification one step further. In fact, if the sketch is fully
required S|gn|f|_cant training. In fact, only one of the authors of [14] deterministic, i.e., it is a regular program, then we are left with a
was able to write non-trivial sketches. . simple verification problem where the compiler has to prove that
This paper attacks programmability challenges observed in an implementation is equivalent to the specification. However, the

StreamBlt: 0 Progyammers could not express sketches directly non-determinism allows us to use the verifier not just to prove that
in the implementation language. Instead, they had to sketch the

1 2006/1/16

the program is correct but to help us write it, by searching the space
of sketch completions.

The SKETCH language is supported by a new synthesis algo-
rithm that is complete in that it can resolve an arbitrary sketch. The
algorithm reduces the synthesis problem to a quantified Boolean
satisfiability (SAT) problem with one quantifier alternation. Our
solver for this problem uses a counterexample-driven iteration
over a synthesize-verify loop built from two communicating SAT
solvers [12]. We show that although the problem is harder than
NP-complete, the counterexample-driven search terminates on rea
problems after solving only a few SAT instances.

We also present an empirical evaluation of our system. We show
that sketch can describe a very concise implementation of an AES

The functionisolateOFast IS such a better implementation;
it exploits bitvector parallelism by relying on a little bit of alge-
bra [16].

bit[W] isolateOFast (bit[W] x) implements isolate0 {
return ~x & (x+1);

}

The implementation achieves performance at the expense of clar-
ity. While the correctness of this implementation is not imme-
diately obvious, the keywordmplements insists that the func-
tion isolateOFast implements specificationsolate0. The equiv-
alence of the two functions is verified by the compiler, which guar-

stage, and that our solver resolves the sketch very fast, in about aantees that if implements s, implementatiori must produce the

minute.
In summary, this paper makes the following contributions:

* We develop a language for implementing a sketching high-
performance kernels. Sketches are expressed as partial pro
grams with a single, versatile non-deterministic operator that
be used to synthesize, for example, bitmasks, control flow deci-
sions, and polynomials.

* We build and evaluate a complete synthesizer: it can resolve in
theory all sketches written in tH&KETCH language. In practice,
the solver scales extremely well for the cipher problems it was
designed, and surprisingly well also for some harder problems.

* We developed a cookbook of programming with sketches (Sec-
tion 2), implemented a spectrum of kernelsSRETCH, and
evaluated the solver on these kernels.

Section 2 presents a tutorial on programming with sketches.
Section 3 defines the language formally. Section 4 describes the
syntehsizer. Section 5 evaluates the solver and describes our pro
gramming experience. Section 6 discusses related work.

2. Overview

The SKETCH language is a C-like procedural language with no
pointers but with support for sketching. The language is targeted
towards integer kernels over finite inputs. To support this domain,
we support arrays. Vector operations are provided for arrays of bits,
to give access to bitwise integer machine instructions.

This section gives a tutorial of thBKETCH language, going
from simple to more complex kernels. All sketches in this section
are beyond the power of [14].

Isolate Rightmost Bit The following example is simple, but it
already benefits from the ability of tHeKETCH language to verify
and sketch implementations.

The problem at hand is to isolate the rightmost 0-bit. For exam-
ple, given a wordi010 0111, we return the bit mask0o00 1000.
The functionisolate0 below is a straightforward specification of
the task. Like a good specification, the function is readable at the
cost of efficiency.

bit[W] isolateO (bit[W] x) { // W: word size
bit[W] ret=0;
for (int i 0; 1 < W; i++)
if (!x[i]) { ret[i] = 1; break; }
return ret;

Like isolate0, eachSKETCH specification is executable and can
be invoked by clients until a better implementation of the specifi-
cation is developed.

same output as the specificatioon all inputs, and thus be free of
all bugs?

The ability to verify an implementation gives robustness, but
the main contribution ofSKETCH is the power to synthesize an

implementation from a sketch. The functidBolate0OSketched

. illustrates a sketch. The “holes” in the sketch are indicated by the

?? operators. These operators will be replaced with a value, in this
example, a bit vector.

bit[W] isolateOSketched(bit[W] x) implements isolateOf{
return ~(x + ??) & (x + ??);

}

In isolateOSketched, the first?? will be synthesized to the value
0, while the second one will be synthesized to the value

In addition to sparing the user from having to derive some of
the low level details of the implementation, tfi@ operator also
makes the sketches more reusable. For example, the user can excise

the sketch above into a separate function and use it to produce an
implementation not just fatsolate0, but also for the dual problem

of isolating the rightmost 1-bit, specified bigolatel, whose code

we do not show.

bit[W] expression (bit[W] x) {
return ~(x + ??) & (x + ??);

3

bit[w] isolateOSketched (bit[W] x) implements isolate0O {
return expression(x);

}

bit[w] isolatelSketched (bit[W] x) implements isolatel {
return expression(x);

}

We have two call sites oéxpression: In the first, the synthe-
sizer resolvesexpression t0 ~x & (x + 1); in the second to
~(x - 1) & x. The semantics of caling a function BKETCH

is thus that of cloning, which can be implemented by inlining
the function into the call siteexpression alone is anunresolved
sketch, one that is not asked to implement a particular specification;
such a sketch can be thought of having many different behaviors
from which the synthesizer must select one when the sketch is
bound.

Population Count. We now show how sketching can be used to
synthesize a tricky divide-and-conquer algorithm. The problem at
hand is to compute the population count of 1-bits in a word. The
obvious specification is here:

1Clearly, implements is not be confused with the same keyword in Java,
which enforces (only) type-signature equivalence.

2006/1/16

bit[W] pop (bit[W] x) pop Notice thatexpression will be resolved to isolate the rightmost 1-

{ bit even though the synthesizer is not instructed to do so; the only
int count = 0; constraint given to the syntehsizer is thapSparseSketched must
for (int i = 0; i < W; i++) { implementpop.
if i T+ . .) .
} i (x[1]) count++ AES. This next problem is a filter from the AES cipher. The
return count: filter computes a multiplication dfin « 02) mod P in the Galois
} field of polynomials in{0,1}. Note that multiplication with02

can be expressed as a shift by one. Then the filter reduces by the
polynomial P = 28 +z* + 2+ z + 1. Since the new polynomial is

An efficient implementation uses a “divide and conquer” strategy, of degreel < 8, we only have to check if — 8, and if so, subtract

in which the original problem of summing bits is divided into
two problems of summing:/2 bits, and so on recursively. After
the subproblems are solved, their results are added [16, 13].

The key to efficiency is solving the smaller problems (of the ~ bit[8] GFMul02 (bit[8] in) {
same size) all in parallel, SIMD-style. Let us illustrate on the bit[9] tin= in;
smallest problem: we want to sum the number of 1-bits inCte tin = tin >> 1;
bit (the sum is eithed or 1) with the number of bits in thast .
bit, and store the result in these two bits; the same for all adjacent bit(9] P = {1,1,0,1,1,0,0,0,1};
pairs of bits. To perform these sums simultaneously with a single if(_tln[8]_ ==1){
addition instruction, the programmer must make the instruction tin = tin A P;
mimic SIMD semantics: even and odd bits must be aligned by .)
shifting and suitable bit masks must prevent the propagation of the return (bit[8])tin;

carry bit across the pairs of bits. The same must be accomplished ¥
for the larger subproblems, only with different shift amounts and

bitmasks. The specification above is inefficient on modern processors due
With sketching, writing the algorithm is easy. TI8XETCH to the unpredictable branch. The sketch below replaces the branch
compiler synthesizes the loop bound and the suitable masks andwith a logical sequence that distributes the 8th bit to the positions
shift amounts for each iteration of the loop. defined by the polynomial. The sketch is efficient because it ex-
ploits the symmetry of 1-bits in the polynomial: the idea is to dis-
bit[W] popSketched (bit[W] x) implements pop tribute the bit to multiple positions simultaneously. The sketch can
{ be written even more compactly (and more generally) with a loop,
loop (?7) { but the unrolled sketch is easier to explain.
X=X&??) + ((x> ??) & ??);
} bit[8] GFMulO2sk(bit[8] in) implements GFMul02 {
return x; bit [8] t1 = in >> ?7;
} bit [8] ml = (in<<??) & ?7;
bit [8] m2 = (m1>>??) | ml;
Notice that the sketch does not spell out details of the “divide” bit [8] m3 = (m2>>??) | m2;
strategy: in particular, the desire to divide the problem recursively return t1 A m3;
in two equal halves is not made explicit. ¥
For word sizew = 16, the loop iterates 4 times. The synthesized
code, unrolled, is shown below. In the full AES cipher, there is a large stage that applies this
function together with other seven similar ones to a stream of data
X = (x & 0x5555) + ((x >> 1) & 0x5555); in blocks of size 32. The full stage, however, can be implemented
X = (x & 0x3333) + ((x >> 2) & 0x3333); efficiently with the sketch shown below. Thet function is a
x = (x & 0x0077) + ((x >> 8) & 0x0077); rotation, and the synthesizer is able to resolve the sketch in less
X = (x & OX000F) + ((x >> 4) & 0X000F); than 8 minutes, which is impressive given that we are sketching the
return x; implementation of one third of this complex cipher.

Because the sketched offers a lot of freedom, the synthesized code bit[32] MCSketch(bit[32] in) implements MixColumns{

is not identical to the textbook version — which shifts in the bit [32] t1 = (in >> 7?7);
expected sequend#, 2, 4, 8) rather than in(1, 2, 8,4) — but the bit [32] ml = (in<<??) & ?7;
algorithm behaves as desired and is equally efficient. loop (2) { ml = (m1>>??) | ml; }
Another implementation, suitable when the word is populated bit [32] ol = (t1 & ??)A((in) & ??)A(ml & ?7);
sparsely, is to keep resetting the rightmost 1-bit until the word bit [32] 02 = (t1 & ??)A((in) & ??)A(ml & ?7);
is zero [17]. The sketch below accomplishes this by invoking the bit [32] 03 = (t1 & ??)A((in) & ??)A(ml & ??);
sketched functiorxpression, which we previously used to syn- return ol *
thesize an implementation @§olate0 and also ofisolatel. rot(o2, ??%8) A
rot(o3, ??x8) A
int popSparseSketched (bit[W] in) implements pop { rot(o3, ??7x8);
int ret; 3
for (ret = 0; in; ret++) { in &= ~expression(in); }
return ret; Often, filters can be implemented efficiently with table lookups.
3 SKETCH can also synthesize the content of these tables, and our

synthesizer scales easily to tables of size 2048 hits.

3 2006/1/16

// <N> is a template, paremeterizing word size

bit[N#2] k<N>(bit[N] x, bit[N] y) implements mult<N>{

if (N<2) return x=vy;

bit[N/2] x1, x2, v1, Vv2;

bit[2+N] t11=0, t12=0, t22=0, r=0;
x1 = x[0:N-1]; x2 = x[N:2%N-1];

yl = y[0:N-1]; y2 = y[N:2xN-1];

t1ll = k<N/2>(x1, v1);

t12 poly<N/2>(2, x1, x2, v1, v2);
t22 = k<N/2>(x2, v2);

loop(5){

// {||} non-deterministically selects one of its operands

bit[2+N] t = (t11 {||} t22 {||} t12) << (N/2%??);
r=r+ (t {II} -t);

}

return r;

}

bit[2%N] poly<N>(int n, bit[N] x0, x1, x2, x3) {
if (n<=0) return ?7;
return k<N>(
x0 {11 -x0 {113} 00 + (xL {II} -x1 {lI} O
+ x2 {11} x2 {11} 0) + x3 {II} -x3 {ll} 0)
, poly(n-1, x0,x1, x2, x3));

Figure 1. Sketch for Karatsuba’s multiplication.

Karatsuba Multiplication SKETCH was designed to work only
for finite programs. However, the following example will show that

3.1 The Base Language

SKETCH is a C-like language without pointers. We model the
sketch-free subset @KETCH using a formal language with three
syntactic categoriesgxpressionscommandsand functions The
formal language is a standard imperative language over bits,
Booleans, integers, and arrays, with some set of unary and binary
operators, assignment, conditionals, loops, and function calls:

(Expr) e == w|xz|zle]|unope|ebinope]| f(e)

(Comm) ¢ == z=ce|skip|if (e) then celse c
loop(e) c|c; c|return e

(Func) f == def f(x)c

We have chosen this language to keep the technical development as
simple as possible while focusing on the new ideas (sketching).

In the rest of this paper we shall take the liberty of writing con-
crete programs that use local variables, global variables, for loops,
recursive function definitions, and functions with multiple argu-
ments. The semantics of these constructs is completely standard
— even in the presence of sketching operators — and omitted from
this paper for reasons of space and simplicity.

The features 08KETCH have been selected so that the language
can express arfinite program A program is finite if (i) its input is
bounded and (ii) the program terminates on all inputs. For example,
a matrix multiplication over matrices of sizes known at compile
time is a finite program, but a search on an arbitrary binary tree is
not. Important for our work is that finite programs can be viewed
as Boolean functions that map a vector of input bits to a vector
of output bits. (Note that this functional view does not preclude
finite programs from implementing an internal finite state machine,
if that’s what the programmer desires.)

it can be leveraged to help the user write code even for programs3.2 The Sketching Constructs

with recursion and unbounded input sizes.

The Karatsuba multiplication algorithm is used to multiply
large integers because its complexity@¢ N'-%), as opposed to
O(N?) for the standard algorithm. The algorithm uses a divide-
and-conquer approach based on the fact that one can exjress
digit numbers asX = X; + X,bN/2, where X; and X, are

N/2-digit numbers and is the basis.

The key idea is that one can multiply two numbéfs« Y by
performing three (large) multiplications of their halves, instead of
the usual four multiplications. The sketch expresses the fact that
the three multiplications are going to B& * Y7, X» * Y2, and a
polynomial that is going to be the product of two sums of terms.
The three terms then have to be added together and multiplied byto

various powers ofV/2.

The idea behind sketching this complex algorithm is to (i) con-
strain the implementation to perform no more than three large mul-
tiplications; and (ii) synthesize the polynomials needed to make the
three-multiplication version equivalent to the classical long integer
multiplication. The idea is encoded in the sketch in figure 1. (We
will provide a more detailed explanation of the sketch in the final

paper.)

Our system currently resolves and verifies the sketch\oe
6 in about a minute. However, the programmer knows that the
algorithm is the same regardless of the value\gfso he can use
the code synthesized fé¥ = 6 and use it correctly for anyv.

3. Language definition

This section describeSKETCH, our sketching language. We first

We now extend the syntax with sketching constructs:

(Expr) e == 77
(Func) f == def f(x) implements g c

Intuitively, 77 introduces non-determinism by requiring the im-
plementation to pick some number, whilégplements constrains
these choicesf implements g requires that the choices made in
the body of f must be such that the resulting program is function-
ally equivalent tog. We also enforce the static semantic restriction
that g must not contain any occurrences of tteeoperator in its
dynamic extent.

To define the meaning afmplements more formally, it helps
rely on the notion of refinement. An implementatiois said

to refine a specification if every behavior ofi can be exhibited
by s [10, 8]. A specification may thus in general permit multiple
implementations. For example, a specification: f(z) > 0
permits implementationg(z) = = * x as well asf = abs(z).

In SKETCH, whenever we haveé implements s, the compiler
verifies that refiness. However, since permits only one behavior
(s is a finite program, and hence a Boolean function), refinement
implies that the: and s are functionally equivalent, a complete
verification.

3.3 Formal Semantics

Recall from Section 2 that the synthesizer translates a sketch into
a base program by replacirgg’s with suitably chosen integers.
We capture this formally by defining the operational semantics
of SKETCH in terms of oracles modeled as lists of values (see

define the base language, which supports neither verification norFigure 2). Whenever &2 is encountered during execution, an

sketching. We then add thimplements construct, which verifies
equivalence of two functions, and tire operator needed for the

construction of sketches.

oracle is consulted. The value returned by the oracle is a number
popped from the list. Thereforeza that appears inside a loop can
resolve to a different value on each iteration.

2006/1/16

(n,0,0) § (n,0) (z,0,0) { {o(2),0)

(??7,0,0) | (head O, tail O)
<617 g, O> 4 <U1, O/> <627 g, O/> 4 <U27 ON>
<61 op €2,0, O> ‘U’ <'L)1 op v2, OH>

(e,0,0) | (v,0")
(x =e,0,0) || (o[:=v],0")

(e,0,0) | (v,0")
(return e, o, 0) |} {o[retval :==v],0")
<017 g, O> U <0_/7 O/> <627 OJ, Ol> U’ <O'//, OH>
<Cl; C2, O, O> ‘u <0—”7 O”>

(e,d,0) |} ({true,O") {c1,0,0") |} (c',0")
(if e then ci else ca,0,0) | (o/,0")

(e,0,0) I (false,0') (c2,0,0") I {0’,0")

x =77 loop(z) y = y&?? —

x = 2; loop(z) y = y&?? —

x =2; y=y&??; loop(2 —1) y = y&?7 —

x=2; y =y&13; loop(2 — 1) y = y&?? —

x=2; y =y&13; y =y&?7; loop(l — 1) y = y&?7? —
x=2; y =y&l13; y = y&T7; loop(1 — 1) y = y&?? —
x=2; y=y&l3; y =y&7

Figure 3. Partial evaluation of the sketch “x=7?; loop(x) y=y&??"
using the oracle [2,13,7]

show that sketch resolution is decidable. Third, we describe a
counterexample-driven solver for the satisfiability problem. The al-
gorithm reduces the synthesis problem into two efficient SAT prob-
lems that iterate by exchanging information. Fourth, we show how
the obtained solution is used to generate the resolved sketch in the
C language. Next, we develop several scalability optimizations for
the solver. We also describe how to deal with unscalable sketches
at the programmer level, by heuristically identifying aspects of the
sketch that may need to be specified by the programmer rather
than synthesized by the solver. Finally, we empirically evaluate the
counterexample-driven synthesis algorithm and its optimizations.

(e,0,0) | (0,0
{loop (e) ¢,0,0) || (o,0")

4.1 Programs as Boolean Functions

The synthesizer manipulates programs represented as Boolean
functions. Both specifications and sketches are translated to Boolean
functions with the same procedure, except that sketches produce
functions withk additionalcontrol inputs these inputs model val-
ues produced by the non-deterministic expressithsThe spec-
ification is translated to a functiofr : {0,1}" — {0,1}"; the
sketch is translated to a functigh: {0,1}(™% — {0,1}". As
described in Section 4.2, the goal of synthesis is to fiodrarol—
i.e., an assignment to the control arguments — such that the sketch
If the number of iterations of a loop depends on the input, then computes the same function as the specification.
the oracle’s list must be long enough to satisfy the largest possible The translation to Boolean functions is done using the same
number of iterations. This implies the existence of an upper bound standard approach used by many verification systems. In these
on iterations, hence our restriction to finite programs. systems, expressions corresponding:toit integers are modeled
The programmer can think of an unbound sketch as a program as a function from a set of named input bits to a vectdt ofitput
that executes in the context of an arbitrary (non-deterministic) or- bits. Side effects are modeled as transformations of the program
acle. A sketch can be partially evaluated with respect to its oracle, states, which is simply a map from variable names to Boolean
producing a residual program for each possible oracle. The deriva-functions. Our system also uses another less standard encoding
tion of one such residual program from an unbound sketch is shown for some integers and represent them in sparse form as pairs of
in Figure 3. values and guard functior{, b); we distinguish between the two
The definition ofimplements can now be stated in terms of representations by giving all expressions a type, eiifwefor those
oracles: encoded in standard binary form, epar for those encoded in

30. fo ~ g sparse form.
_ Unlike verification systems, our transformation also needs to
f implements g keep track of which control inputs correspond to which execution
where fo meansf executed in the context of the oracleand~ of the 7?7 expression. We do this by keeping a queuevhere
denotes functional equivalence. In words, this means that binding awe push the fresh variable names produced?byevery time it
sketch involves finding an oracle (one for all inputs) such that the is executed. After synthesizing the correct values for the control
sketch evaluates to the same result as the spec on all possible inputsnputs, the variable names rare replaced with their actual values,
The problem of checking this functional equivalence reduces to ando can now serve as an oracle during code generation, producing
SAT, and the problem of synthesizing a suitable oracle reduces to athe correct value for &7 every time one is encountered.
generalized SAT problem, as will be shown in Section 4. We use the notatiore, o,0) — (€’,0’,0’) to denote that a
program fragment in stateo and with oracle produces a Boolean
4. Synthesis expressiore’ in states’ with oracleo’. We use the notation.v to
indicate a new queue that contains all the values draintained,

This section develops the synthesis process that resolves a sketchy)|owed by the valuey. For example, the rule for th&? operator
to make it functionally equivalent to the specification. First, we s shown below. '

describe how programs are translated to Boolean functions. This

(6,0,0) I (n,0") n >0 (g loop(n—1)c,o,0) (0"
(loop (e) ¢, o) § (o', 0")

Figure 2. The operational semantics GKETCH programs. In
addition to the standard program statee add the oracl®, which
is a list of values.

functional representation of programs is the basis for detecting é1,..., ¢ are fresh variables.
equivalence of specifications and (resolved) sketches. Second, we
phrase synthesis as a quantified Boolean satisfiability problem and (??,0,0) — ([é1,...,Ek],0,0.C1.....).

5 2006/1/16

Since expressions don't affect the state, we will abbreviate the
rules for expressions ds, o,0) — (€', 0). In our language, state- (e:bin, o) — [b1,...by]
ments don’t produce Boolean functions, so they will be abbreviated (e : bin, o) — [(4, ([b1,...bx] == i))Vi € {0... 2F _ 1}] : spar
as(e,o0,0) — (o, 0).

The meaning of a procedure

However, with some analysis it is possible to look at the places
where the generated expression will be used and put a tighter bound
[01,...,0k] fun(ing, ..., inm,){c} on the number of terms. For example, if after the conversion the
integer is used only to access an array of sizethen the sparse
representation needs to keep at mdyst+ 1 terms—all the terms
smaller thanN, plus a term to model the point when the array
goes out of bounds. Our current implementation leaves to the user
the decision about the representation by having two different data
types for the two different representations and forcing users to do
conversions explicitly.

, ; As was mentioned earlier, the main rationale for the sparse
(fun(z1,...,xx),0) = [0'(01), ..., 0" (0r)] representation was to make array accesses more efficienty An

] o element array is modeled in our system as a tupl¥ epressions,
To get the Boolean function for a sketch or a specification, we which can be either in binary

simply evaluate them as a function call, using as the start state the form

state that only maps the input variables to themselves.])) o ”
The other noteworthy features of the translation, in addition to ar:bin = [[by,...,bg],..., [b7,...,b%]]

the?? operator, are the modeling of arrays, loops and conditionals. g i, sparse form.

with input parametergn, . . ., in,, and output parametess, . . . , o

is defined in terms of the Boolean functions thaissigns to the
output variables when executed starting from a state where only the
input variables have been assigned values.

[01,...,0k] fun(ing, ..., inm,){c}
(e, {(in1 :=o(z1) ... (ink :=z1)}) — o

4.1.1 Arrays and sparse integer expressions ar: spar = [[(v1,b1),..., (v, b)), ..., (v, b7), ..., (v, b1)]]

The sparse integer representation described above is mainly in-Given an index expression = [(x1, f1), ... (xx, fx)] we define
tended to model array operations precisely and efficiently. Itis very the array access for arrays in binary form by using eado select
similar to the guarded location sets used by Saturn [18] to representan element in the array, and applying @nd of that element with
pointers (Saturn does not model arrays). In this representation, anthe corresponding;, and then taking the disjunction of all such

integer is represented as a segofrded valuesf the form(v, b), terms.
wherew is a value known at compile time and tigeard b is a
Boolean function. (e :spar,o) — [(z1, f1), ... (zk, f&)]
The key invariant that we want to maintain for values in this o(an) = [[bi,...,bi],...,[bF,...,b}]]
representation is that at any given time, at most one guard will (arle] : bin, o) — [(V(BT" A £2)), ..., (V(BL" A F))]

be true. Similarly, it is assumed that all the valugsof all the
guarded values in the set are unique. If in the process of evaluating
an expression, two terms appear that have the sarte b1) and

(v, b2), they are implicitly replaced with a single ter, b1 V b2).

Also, as a matter of convention, when writing a set of guarded
values, we will assume that the first element in the set is the one

For arrays with sparse elements, the indexing is also straight-
forward; for each(z;, f;) in the in the index expression, we select
the expression corresponding to theentry in the array dx;], and
create new guarded values by taking each vélgé, b7) carfz;]
and making its guard the conjunction of its original guard wfith

with the smallest value. to get(v;?,b;" A f;).

For example, in this representation, an integer constavalu- (e v,) — [(z1, f1) (@, fo)]
ates to a value guarded by the functiotrue, i.e. the function that \©span,g) T QL S ks TR
returns true on any input. U(ar) = H(Uh bl), cees (Ui ,b;)L cees [(7)1 , bY)7 cees (Ui ,b;)”

(arle] : spar, o) — [(v;7,0;7 A f5)Vi <m,j <K]

i 074

(n: spar, o) — [(n, true)] 4.1.2 Conditionals and Loops

The treatment of conditionals is again fairly standard. It is actu-
ally simpler than what is used for verification because we are not
interested in proving assertions from within the conditionals. This
means, that in the case of an statement, for example, we don't
{e1 : spar,) — [(v1,b1),... (vi,b)] need to keep track of the branch condition while translating the two
(e2 : spar, o) — [(v%,b%),... (v2,b3)] branches; we only need it at the join point where the two branches
merge back together.

To handleif statements, we evaluate the two branches indepen-
Another very important property of the sparse integer representa- dently from the same initial staie to get two new states;; and
tion is that integer expressions get partially evaluated in a very o,. The two states are merged into a new state that maps each vari-
precise manner. In fact, at any point in the program, if an ex- ablex into the function(b A o1 (z)) V (—b A o2(z)). Note that this
pressione : spar does not depend on any inputs or control val- expression reduces to(x) whenz is not modified in any branch

Arithmetic expressions are handled by applying the arithmetic
operation on pairs of values from the two operands, and guarding
them with the conjunction of their respective conditions.

(e1 Opey : spar, o) — [(v; opv3,b; Ab3)]

ues, thene = [(n,true)] for some constant. In practice, we of the conditional because in that caser) = o1(x) = o2(x).
only do trivial minimizations on the guards as we construct the

functions, so the internal representation would more likely be (e:bin,o) — [b] (c1,0) — 01 (c2,0) — 02

e = [(n1, f1), (n2, f2), ... (nk, f&)], wheref; is a tautology and (if e then c1 else ca,0) — Ax.(bAo1(z)) V (—b A oz2(x))
f2, ..., fr are unsatisfiable.

The conversion from binary to sparse representation is poten- In the special case where evaluates to eithetrue or false,
tially exponential, since the sparse form is essentially a unary rep- we only evaluate one of the branches and ignore the other one.
resentation. Combined with the partial evaluation that takes place automatically

6 2006/1/16

for sparse integers, this allows us to handle recursive function calls
for which the level of recursion can be bounded at compile time.

Loops are somewhat more involved. They are handled essen-

tially by unrolling, but we can take advantage of the sparse repre-
sentation to get better bounds on how much to unroll, and where to
place loop exit branches.

(e,0) — [(0, true)]
(loop (e : spar) ¢,0) — o

(e,0) — [(n,b1)]

{c,0) — a1 (loop (€') ¢,01) — o2

e =[(n—1,true)]
(loop (e : spar) ¢,0) — 02

(loop(e”)c; if (e > €") then (loop(€’)c), o) — o2
(e : spar, o) — [(v1,b1), ..., (Vk, bk)]
e =[(v2 —v1,b2),..., (vk —v1,bx)] € = [(v1,true)]
(loop (e) ¢,0) — o2

For this last rule, note that the unrolling is guaranteed to termi-
nate becaus€ has strictly less terms than Finally, note that if all
thev; in e are non-negative, they will remain non-negative, since
we are assuming; is the smallest one. Also, note thatigatisfies
the invariant that at most ortds true, this will also be true fot'.

4.1.3 A simple example
As an example of the application of these rules, consider the loop:
loop(??){
b =b A in[??];

}
And assume the unknown is fixed at two bits. Then we have that
7?7 — [¢é1,)
Which must be converted to sparse form to produce
7?7 : spar — [(0, —|CA1/\—|CA2)7 (1, CAl/\—‘CAQ), (2, —|CA1/\CA2), (3, CAl/\CAQ)}

After repeated application of the unrolling rule, we get that the
semantics of the original loop will be equivalent to the semantics
of:

if(e_0 > 0)
b = b \oplus in[\Star]$;
if(e,1 > 1)
b = b \oplus in[\Star];
if(e.2 > 1)
b = b \oplus in[\Star];

whereey is the expression we got froffY, and each subsequent e
we get by subtracting the first term from the rest of the terms.
€0 = [(07 ¢t A _'62)7 (17 & A _‘62)7 (27 ¢t A CA2)7 (3, & A 62)]
er = [(1, (& A =c2)), (2, (261 A &2)), (3, (61 A 2))]
€2 = [(17 (_'61 A CAQ))7 (27 (cAl A 62))}
4.2 Synthesis as QBF
Having obtained functional representations of the specification and

function synthesize(sketch S, specification P)
// Synthesize control that resolves S for a random input;
// check if the control also works for all other inputs. If not,
// add counterexample input to the set of inputs and repeat.

I=1{}
x = random()
do

I=1U{z}

¢ = synthesizeForSomelnputs(1)
if ¢ = nil then exit(“buggy sketch”)
x = verifyForAlllnputs(c)
until z # nil
return ¢
function synthesizeForSomelnputs(set of inputs I)
// Synthesize controls c that make the sketch equivalent to the
// specification on all inputs from I, i.e., Vo € I.P(x) = S(x,c)
if \,c; P(x) = S(z,c) is satisfiable then
return c that satisfies the formula
else // sketch S cannot be resolved
return nil
end if
function verifyForAlllnputs(control c)
// Verify if sketch S resolved with controls c is functionally
// equivalent to the specification P. If not, return the witness
// (counterexample) x, i.e., P(x) # S(z,c).
if P(z) # S(z,c) is satisfiable then
return z satisfying the formula
else
return nil
end if

Figure 4. The counterexample-driven synthesis algorithm.

are functionally identical, i.e., when the following formula is satis-
fiable.

Je € {0,1}F vz € {0,1}™; P(z) = S(z, ¢) (4.1)

This problem is decidable, becaus@ndx range over finite do-
mains. Consequently, for any sketch expressed in our language, we
can either resolve the sketch or show that the sketch is buggy.

4.3 Counterexample-Driven Solver

Problem (4.1) is decidable but intractable. In general, QBF is
PSPACE-complete, and can be solved in time exponential in the
number of quantified variables. However, Problem (4.1) is a re-
stricted form of QBF with only one quantifier alternation (of the
form 3 V), a problem known as 2QBF. The computational com-
plexity of this problem isX;-complete, falling in the polynomial
hierarchy between NP and PSPACE.

Existing solvers for 2QBF employ two SAT solvers, one for
each quantifier, that communicate with each other [12]. Our solver
also relies on two SAT solvers, co-operating in a synthesize-verify
loop. First, a random input is generated and the synthesizing
solver attempts to find contral that makes the sketch equal to
the specification on the input. If such control cannot be found,
the sketch is buggy. Otherwise, the conird given to the verify-
ing solver, which attempts to verify that the sketch is equivalent to
the specification on all inputs. If so, the sketch can be resolved and
controlc is the result of the synthesis. Otherwise, a counterexample
input provided by the verifier is added to the set of inputs consid-
ered by the synthesizer and the process repeats. The algorithm is

the sketch, we phrase synthesis as an instance of the quantifiedshown in Figure 4.

Boolean formula satisfiability problem (QBF). QBF is a general-
ization of the Boolean satisfiability problem (SAT) in which both
existential and universal quantifiers can be applied to a Boolean
formula. Formally, the sketcH can be resolved to the specification
P if there exists a contrat such that the specification and sketch

The algorithm will terminate because, in the worst case, each of
the 2™ inputs will appear as a counterexample, at which point the
synthesizer’'s answer no longer needs to be verified. This reduction
of 2QBF to two SAT solvers does not come free: the algorithm
requires more than polynomial space but the trade-off is that we can

2006/1/16

employ the efficient techniques embedded in modern SAT solvers.

Other solvers tailored to 2QBF make the same trade-off [12].

4.4 Generating Code for a Resolved Sketch
Given a synthesized contro] we are ready to resolve the sketch

SKETCH is sufficiently powerful for both specifying and imple-
menting finite programs, but do finite programs extend to prac-
tically interesting domains? We believe th&ktETCH applies at
least in private key cryptography, public key cryptography, error
correction, signal processing, vision and graphics. The reason is

and translate it to a C program. The translation uses the oracles in-finite programs cover three broad (albeit vaguely defined) classes
troduced earlier. For each oracle, we have a list of variables in the Of programs, which have substantial use in the above domains:
order in which values were required from it; these variables can (i) programs mapping a few words to a few words, such as encrypt-
be replaced with actual values, which are to be used in the exe-ing a fixed sized message; (i) array-manipulating programs, with
cution of the program. The code generator then takes the original Known array sizes, such as matrix multiplication; and (jii) stateless
function, and adds a declaration of an arsagcle[] that is going streaming programs, such as encrypting a variable-length message.
to represent the oracle, together with an array initializer contain- Technically, streaming programs manipulate unbounded streams,
ing all its values, and an index to keep track of the current value. SO they are not finite, but they are typically composed of (finite)

Each instance of th&? operator is then replaced with the expres-
sionoracle[idx++]. After this, traditional compiler optimizations

filters that process the stream a few bytes at a time. Note that in our
work on bitstreaming, we sketched precisely these filters [14]. We

can be used to propagate constants, and specialize the code for thean also implement stateful filters (i.e., those that compute a “run-

generated values.

4.5 Scalability Optimizations
The synthesizer described so far scales only for very small pro-

grams. Here we describe the reasons and develop optimizations fo
making the synthesizer significantly more scalable. We evaluate the

benefits if these optimizations in Section 5.2.

Increasing ranges of non-deterministic values.The translation

r

ning” function on a stream), by restricting ourselves to the (finite)
filter wrapped inside the feedback loop.

We implemente®KETCH programs that span these classes. Ta-
ble ?7? lists the programs that we use for evaluation in this section.
The programs are divided into three categories: word manipulation
routines, streaming kernels, and programmability tests. The first
group includes, in addition to some of the kernels we have men-
tioned alreadylog2, a routine that computes tlieg. of a number
in logarithmic time with respect to the word size, aputity, a

of some language constructs leads to exponentially large Booleanroutine that computes the parity bit for a word.

functions, for example ioop(+)), where the loop is controlled
by a non-deterministic value unknown at the time of translation.
Our solution is to initially restrict the range of non-deterministic

The second group includegc, a kernel that computes a cyclic
redundancy checlgEs. IP, the initial permutation from DES, and
AES.MixColumns, one stage of AES that is based on operations on

values, and attempt synthesis. When synthesis fails, we re-translatehe Galois fielda F/(28).

the sketch with a larger range.

Random counterexamples. The counter-examples generated by
the SAT solver sometimes don'’t lead to rapid convergence. Our
solution is seed the set of inpufswith several random inputs.

The last group evaluates the ease of sketching on complex
problems that go beyond error correction and cryptography. This
group is also a good stress test for the synthesizer, which is not
designed to scale on sketches multiplications of two integers larger
than 16 bits or so. It includes the version of Karatsuba we saw

Adding more random inputs can reduce the number of iterations
of the synthesize-verify loop at the expense of making each iter-
ation more expensive. For this reason, this optimization is mainly
beneficial in cases where the loop takes many iterations, but each
iteration is very fast. This issue will be analyzed in further detail in
the full paper.

earlier, andpoly, a simple sketch that finds the coefficients of a
degree 4 polynomial of degree 5.

5.2 Scalability of the Synthesizer

Here we report the scalability of the synthesizer on our sketches.
)) We divide sketches into two groups: those within the (intended)
4.6 Diagnostics power of the synthesizer, and those containing synthesis problems
When there are bugs in the sketches, the compiler reports thatbeyond what we envisioned for the synthesizer in this paper.
the sketch can not be satisfied, but it may be difficult for the ~ The performance of the synthesizer is given in Figure 9. For
programmer to find what the problem is. The main diagnostic tool €ach benchmark, we show the number of controls we are trying
of our compiler, is to allow the user to select a set of outputs, and to synthesize, The total number of iterations of the synthesize-
ask the compiler for an assignment of the controls, together with a verify loop, and the total ammount of time spent on synthesize and
set of inputs and outputs such that the output of the sketch and theverify. For a few benchmarks, we include the scaling behavior as
spec differs only for the selected outputs. We have found this to be We increase the input size.
a useful tool for isolating bugs in the sketches because it allowsthe ~ We now examine the synthesizer on the stress tests. A distin-
user to understand why the sketch cannot be satisfied. guishing feature of these sketches is that they contain multiplica-
tions whose both operands are relatively wide integers. An exam-

5. Evaluation ple is the polynomial synthesis sketch. It is well known that SAT

) solvers do not handle multiplications gracefully, and so we did not
To evaluate our work, we ask four questions: (1) Can3keTcH expect these sketches to scale to large word sizes with the SAT-
language be used in practically interesting domains? (2) Is our syn- hased synthesizer solver.

thesizer scalable enough for real-world problem sizes? (3) What The synthesis of sketches exceeded our expectations. The run-
kinds of code fragments can be synthesized with the sketching ning times are shown also in Figure 9.

support provided irSKETCH, and what is the programmer experi- Another interesting point to note is the scaling behavior of the
ence? (4) Does a sketched implementation match the performancenumber of iterations, vs the time to solve each individual iteration.
of hand-written code? For example, for problems like Karatsuba, the number of iterations
grows very slowly compared with the exponential growth in the
amount of time it takes to solve each individual SAT problem. For
Here we examine the expressiveness of 8xETCH language, CRC-table, on the other hand we can see the exponential behavior
leaving the examination of its synthesis power to Section 5.2. on the number of iterations as well.

5.1 Expressiveness of th8KETCH language

2006/1/16

Karatsuba |Log2 24 [LogCount |parity reverse _|tblcrc tblcrc2 AES MixCqDES.IP POLY 16
Input size 6 24 8 24 64 3 8 32 64 16
Iterations 5 94 9 14 51 4 255 3 16 17
Synthesize] 11347] 1268455 4322 1502 193160 4892| 244932 442984| 692808| 617930
Veritfy 5916 2684 99 258 67291 1370 8644 77305 87319 272473
unknowns 63 409 109 45 522 32 2048 2602 178 96
Figure 5. The running time of the syntehsizer.
8 12000
7 /
/‘\ 10000 /
6
2 T 2 8000
5, < —e—Find
E
2, F 4000
1 2000
0 1 2 3 4 5 6 7 o 5 4 6 s
input size input size
Figure 6. Karatsuba
100 300000
90 -
80 / 250000 /
2 70 — @ 200000 f/
g 801 /'/ £ / —e—Find
£ s0 £ 150000 -
= 40 GE: —=— Check
5 5] = 100000 1
?8] 50000 -
0 S ' ' ' ' 0 ‘ ‘ P—
0 5 10 15 20 25 30 0 5 10 15 20 25
input size input size
Figure 7. Log2
16 1600
14 1400 +
w 121 / » 1200
§ 10 & 1000 o
ﬁ E —e— FIn
2 8 /\/ 2 800 / —=— Check
E 6 e -:2 600 /
4 400
2 / 200 .4’_-/—1/.
0 : : : : : 0 - : . . .
0 5 10 15 20 25 30 0 5 10 15 20 25 30
input size input size

Figure 8. Parity

5.3 Programming with Sketches 6. Related Work

One factor in the evaluation of linguistic support for sketching is Synthesis based on partial programs has been explored in the Al
whether sketches can be used to synthesize non-trivial implemen-community. For example, ALisp [1], developed by Andre and Rus-
tations. We have shown the range of sketchable constructs in Secsell program Reinforcement Learning Agents is a form of Lisp
tion ??. All sketches shown in that section can also be syntehsized extended with non-deterministic constructs. In ALisp, the behav-
with our current synthesizer. ior of the non-deterministic branches is defined through learning, a
Another evaluation factor is programability. Perhaps contrary domain-specific approach.
to intuition, our experience shows that sketches are much easierto The sketch resolution problem is a constraint satisfaction prob-
develop than the specifications. Once the specification is debugged)em similar to those studied by the constraint programming com-
the sketch can be obtained easily, and much faster than teh specifimunity [7].
cation. Sketching alternative implementaitons takes even less time. Schema-based program synthesizers automatically compile a
One experience with sketching worth elaborating on is revising high-level declarative specification into code; an example is the
non-scalable sketches. For some sketches with a large numidzer of AUTOBAYES system which compiles a statistical model into
operators, the synthesizer would not terminate in a reasonable timecode [5]. However, these synthesizers are highly domain-specific
(a few minutes). In these sketches, it was typically easier for the and are not based on a general formal notion of partial programs as
programmer to make the sketch somewhat less non-deterministic,introduced in this paper.
by giving the sketch some more specific constraints. The Denali superoptimizer [9] was one of the first systems to
leverage the progress in SAT solving for code optimization. Denali

2006/1/16

Karatsuba |Log2 24 [LogCount |parity reverse _|tblcrc tblcrc2 AES MixCqDES.IP POLY 16
Input size 6 24 8 24 64 3 8 32 64 16
Iterations 5 94 9 14 51 4 255 3 16 17
Synthesize] 11347| 1268455 4322 1502| 193160 4892| 244932| 442984| 692808| 617930
Veritfy 5916 2684 99 258 67291 1370 8644 77305 87319 272473
unknowns 63 409 109 45 522 32 2048 2602 178 96

Figure 9. Parity

focused on optimizing straight-line code. While our system does [11] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:

not look for the optimal way to resolve a sketch, it applies to a Engineering an efficient SAT solver. BBth Design Automation
more general class of programs. Conference (DAC '01)pages 530-535, June 2001.

Many recent program verification projects are also SAT-based, [12] D. P. Ranjan, D. Tang, and S. Malik. A comparative study of 2gbf
including CBMC [6] and Saturn [18]. Our work uses SAT solving aIgo;ithms. InThe _Se_ver_n_h International Conference on Theory and
not just for program verification, but also for program synthesis. Applications of Satisfiability Testing (SAT 200klay 2004.

It is likely that we will hit the capacity limits of current SAT ~ [13] E. M. Reingold, J. Nievergelt, and N. Dedombinatorial Algorithms
solvers, such as zChaff [11], for larger word sizes involving oper- — Theory and PracticePrentice-Hall, 1977. _
ations such as integer multiplication. We anticipate being able to [14] A. Solar-Lezama, R. Rabbah, R. Bodik, and K. Ebcioglu. Pro-
scale further by using two strategies. The first involves switching gramming by sketching for bit-streaming programs. PItDI *05:

Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementatipages 281-294, New York, NY,
USA, 2005. ACM Press.
[15] W. Thies, M. Karczmarek, and S. Amarasinghe. Streamit: A language
for streaming applications. limternational Conference on Compiler
Construction Grenoble, France, Apr. 2002.

to word-level solvergalso knownbit-vector decision procedures
These solvers avoid exploding a word of sizeinto w Boolean
variables by using either word-level axioms and simplification rules
(e.g., [2, 3]) or efficient, special-purpose data structures (e.g., [4]).
The second strategy is based on employing analyses that general-
ize a synthesis obtained for a smaller word or array size to larger [16] H. S. Warren. Hacker's Delight Addison-Wesley Longman
sizes by exploiting symmetries and dependences in control and in- Publishing Co., Inc., Boston, MA, USA, 2002.

put variables. [17] P. Wegner. A technique for counting ones in a binary computer.

Commun. ACM3(5):322, 1960.
7. Conclusion [18] Y. Xie and A. Aiken. Scalable error detection using boolean

h desi dal h ketches i | satisfiability. InProceedings of the 32nd ACM SIGPLAN-SIGACT
We have designed a language that supports sketches in a natural Symposium on Principles of Programming Languages (POPages

way, designed a general solver for synthesizing sketched imple- 351-363, 2005.
mentations, and evaluated the generality of the linguistic support

as well as the scalability of the solver. We implemented a signifi-

cant fraction of the AES cipher; the sketch is suprisingly concise

and the solver scales extremely well on this benchmark.

References

[1] D. Andre and S. Russell. Programmable reinforcement learning
agents. Advances in Neural Information Processing Systel3s
2001. MIT Press.

[2] C. W. Barrett, D. L. Dill, and J. R. Levitt. A decision procedure for

bit-vector arithmetic. IrProceedings of th85" Design Automation

Conference (DAC '98)pages 522-527. Association for Computing

Machinery, June 1998.

S. Berezin, V. Ganesh, and D. Dill. A decision procedure for fixed-

width bit-vectors. Technical report, Computer Science Department,

Stanford University, April 2005.

Y.-A. Chen and R. E. Bryant. An efficient graph representation for

arithmetic circuit verification. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Syste@(12):1442-1454,

December 2001.

[5] Y.-A. Chen and R. E. Bryant. Autobayes: a system for generating
data analysis programs from statistical modétsirnal of Functional
Programming 13(3):483-508, May 2003.

[6] E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C
programs. IrProc. 10" Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TAGR8D4.

[7] P. V. Hentenryck and V. Saraswat. Strategic directions in constraint
programming ACM Comput. Sury28(4):701-726, 1996.

[8] C. A. R. Hoare. Proof of correctness of data representatifiota
Inf., 1:271-281, 1972.

[9] R. Joshi, G. Nelson, and K. H. Randall. Denali: A goal-directed
superoptimizer. IPLDI, pages 304-314, 2002.

[10] R. Milner. An algebraic definition of simulation between programs.

In Proc. of the 2nd International Joint Conference on Artificial
Intelligence 1971.

13

—_

[4

[l

10 2006/1/16

