A Taxonomy of General Purpose Approximate Computing Techniques

Thierry Moreau†, Joshua San Miguel‡, Mark Wyse†, James Bornholt‡, Armin Alaghi†, Luis Ceze†, Natalie Enright Jerger‡ and Adrian Sampson§

†University of Washington — ‡University of Toronto — §Cornell University

Abstract—Approximate computing is the idea that systems can gain performance and energy efficiency if they expend less effort on producing a “perfect” answer. Approximate computing techniques propose various ways of exposing and exploiting accuracy–efficiency trade-offs. We present a taxonomy that classifies approximate computing techniques according to salient features: visibility, determinism, and coarseness. These axes allow us to address questions about the correctability, reproducibility, and control over accuracy–efficiency tradeoffs of different techniques. We use this taxonomy to inform research challenges in approximate architectures, compilers, and applications.

I. INTRODUCTION

Approximate computing encompasses a broad spectrum of techniques that relax accuracy to improve efficiency. Although the term is new, the principle is not: floating-point numbers, for example, efficiently but approximately represent the real numbers in the digital domain. Efficiency–accuracy trade-offs are also commonplace in digital signal processing, where techniques such as quantization and decimation are crucial for tractable designs.

Opportunities abound for exploiting efficiency–accuracy trade-offs at every layer of the system stack, from compilers to circuit design. Cross-cutting concerns about energy efficiency and the future of CMOS scaling have created a boom in approximate computing research. While exciting, the multitude of approaches complicates discussions and obscures common patterns. A single monolithic “approximate computing” label, spanning ideas as disparate as voltage over-scaling [9], tweaking floating-point precision [24], and code perforation [33], is too broad to identify the foundations of the field.

This paper presents a taxonomy of general-purpose approximate computing techniques. An approximate computing technique is deemed general if it is not specific to a given algorithm or application domain. We classify techniques along three axes: correctability of the approximation effects, reproducibility of the approximate results, and control over the efficiency–accuracy trade-offs.

II. MOTIVATION

Our taxonomy characterizes approximation techniques around three practical concerns:

1) **Correctability**: How can the effects of an approximation technique be detected and corrected?

2) **Reproducibility**: How easily can the results of an approximation technique be reproduced for testing?

3) **Control**: How much confidence over the error magnitude does an approximation technique provide?

In this section, we present examples to highlight the importance of these questions and demonstrate how they distinguish techniques that may seem similar at first glance.

A. Correctability of the Approximation Effects

Correctability reflects the cost and complexity of detecting and compensating for approximation errors. The degree of correctability varies widely between techniques. For example, consider two seemingly similar techniques: (1) low supply voltage SRAM [9], which allows for soft errors when accessing data in SRAM; and (2) low refresh DRAM [18], which allows for soft errors in DRAM data cells. For low supply voltage SRAM, errors are introduced when an instruction reads or writes the data. A precise check can thus be invoked on each approximate load and store instruction in order to recover from a faulty operation. On the other hand, for low refresh DRAM, the error can be introduced at any point in the lifetime of the data independent of any instruction’s execution.

This uncertainty makes error management more costly and less prompt. Our taxonomy distinguishes these two approaches (Section III-A) in terms of their architectural visibility.

B. Reproducibility of the Approximate Results

Reproducibility is the degree to which error can be measured during development and generalized to production. It can be difficult to reason about the error introduced by an approximation technique. We often rely on measurements from test systems to decide whether or not the error is within an acceptable range. For example, code perforation [33] is an approximation technique that omits instructions during execution. In general, its impact on error is the same regardless of the underlying system on which it is executed, so its reproducibility is straightforward. On the other hand, synchronization elision [7] omits calls to synchronization primitives like locks. We can measure the error of synchronization elision on a test system and deem it satisfactory, but we may find that error increases on a different production system. Our taxonomy distinguishes reproducibility between *deterministic* techniques like code perforation and *nondeterministic* techniques like synchronization elision (Section III-B).
classified along these three dimensions. In this table, note that
lists a set of recent approximation techniques we surveyed and
definition, examples and discuss practical implications. Table I
grained terministic vs. nondeterministic, (3) coarse-grained vs. fine-
(1) architectural visibility vs. invisibility, (2) de-
— and list three orthogonal taxonomy axes that
to characterize control over errors, our taxonomy distinguishes
guarantee control over the error introduced by the technique.
 traditional techniques such as interval analysis can be used to
small as one or two instructions or as large as entire functions,
similar, yet they offer very different error–efficiency trade-
fuzzy floating-point instructions [3]. Both techniques seem
program either via fuzzy function memoization [21] or via

C. Control over the Accuracy–Efficiency Tradeoffs

Control reflects how easily a technique can trade accuracy
for efficiency gains. All approximate computing tech-
niques enable such a trade-off. However, they fall all along
the accuracy–efficiency curve; some favor efficiency while others favor accuracy. Consider a program that performs
many floating-point computations. We can approximate this
program either via fuzzy function memoization [21] or via
fuzzy floating-point instructions [3]. Both techniques seem
similar, yet they offer very different error–efficiency trade-
offs. Function memoization can elide code regions that are as
small as one or two instructions or as large as entire functions,
which can lead to arbitrary errors if not tested exhaustively.
Fuzzy floating-point instructions, on the other hand, limit
efficiency gains due to control overheads but also confine
errors to the execution of individual instructions, meaning that
traditional techniques such as interval analysis can be used to
guarantee control over the error introduced by the technique.
To characterize control over errors, our taxonomy distinguishes
between techniques based on their granularity (Section III-C).

III. TAXONOMY

We guide our taxonomy with the motivation questions
detailed in Section II—(1) correctness, (2) reproducibility,
(3) control—and list three orthogonal taxonomy axes that
address them: (1) architectural visibility vs. invisibility, (2) de-
terministic vs. nondeterministic, (3) coarse-grained vs. fine-
grained. For each taxonomy dimension, we provide a formal
definition, examples and discuss practical implications. Table I
lists a set of recent approximation techniques we surveyed and
classified along these three dimensions. In this table, note that
we classify techniques as software or hardware; we do not
elaborate on this as a taxonomy axis since it does not inform
any interesting new insights or properties.

A. Correctability: Architecturally Visible vs. Invisible

Definition 1. Consider a program as a sequence of in-
structions that operate on data. An approximation technique
is architecturally invisible if it can introduce error even
when the sequence of instructions is null. Otherwise it is an
architecturally visible technique.

Architecturally visible techniques introduce errors during
the execution of a specific instruction, and architecturally
invisible techniques introduce errors silently. Naturally, visible
errors are simple to detect: they can be traced to a specific
moment in time. On the other hand, invisible errors are
attributed to a phenomenon that occurs below the architectural
stack, e.g., a micro-architectural event, or a physical event
occurring at the circuit level. Consequently, architecturally
invisible techniques can require expensive error detection and
correction mechanisms and are harder to monitor dynamically.

Revisiting the examples in Section II-A, low supply voltage
SRAM [9] is architecturally visible. It approximates (via
bit upsets) only upon memory operations; thus, detecting
and managing error is straightforward. For write upsets, for
example, adding a precise check after a write operation can im-
mediately catch (and roll back) any erroneous approximations.
On the other hand, invisible approximations are performed in the
background. For example, the Doppelgänger cache [31] is an
architecturally invisible technique; since it yields bit flips at arbitrary times, a precise
check after a write operation cannot draw any conclusions
about error. Even if the precise check passes, an erroneous
bit-flip can still occur some time later.

Though errors are invisible, an advantage of architecturally
invisible techniques is that they are not on the critical path;
thus their latency costs can be made invisible as well. Archi-
terribly visible techniques can introduce run time overheads,
whereas invisible approximations can be performed in the
background. For example, the Doppelgänger cache [31] is an
architecturally invisible technique; it generates approximate
values silently upon a microarchitectural event without stalling
memory requests.

This taxonomy axis informs trade-offs in error correctabil-
ity. Architecturally visible techniques benefit from errors
which are easier to detect and correct. On the other hand,
architecturally invisible techniques benefit from generating
approximations off the critical path of program execution.

B. Reproducibility: Deterministic vs. Nondeterministic

Definition 2. An approximation technique is deterministic
if, given the same initial state, for every input I_j, it yields
constant error E_j. An approximation technique is nondeter-
ministic if, given the same initial state, there exists some input I_j for which it yields more than one error value $E_{j0}, ..., E_{jn}$.

Nondeterministic techniques can pose a challenge for testing
and debugging. When developing techniques, the conventional
approach is to evaluate error and efficiency on a test system
and extrapolate to production systems. This is effective for

<table>
<thead>
<tr>
<th>Software Technique</th>
<th>Visible</th>
<th>Deterministic</th>
<th>Coarse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximate GPU Kernels [17, 26]</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Approximate Synthesis [6, 20]</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Algorithm Selection [4, 5]</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Code Perforation [23]</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Lossy Compression / Packing [26]</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Parallel Pattern Replacement [25]</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Bit-Width Reduction [24]</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Float-to-Fixed Conversion [1]</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Approximate Parallelization [7]</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Statistical Query [2]</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Synchronization Elision [7]</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hardware Technique</th>
<th>Visible</th>
<th>Deterministic</th>
<th>Coarse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Neural Acceleration [10]</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Interpolated Memoization [21]</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Approximate Warp Deduplication [39]</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Bit-Width Reduction [15]</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Clock Overgating [14]</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Load Value Approximation [32]</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Approximate Cache Coherence [22]</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Instruction Memoization [3]</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Precision Scaling [12], [13], [37]</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Logical Simplifications [38]</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Reduced-Precision FPU [36]</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Analog Neural Acceleration [35]</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Approx. Processors [16], [40]</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Voltage Overscaling [9], [15]</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Stochastic Logic [11]</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Approx. PCM Multi-Level Cells [28]</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>SRAM Soft Error Exposure [9]</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Approximate Value Dedup. [30], [31]</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Approx. PCM Failed Cells [28]</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Low-Refresh DRAM [18]</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

TABLE I: Taxonomy of approximate computing techniques.
deterministic techniques since they produce the same approximations regardless of the underlying system; errors are reproducible. It is possible for a user to declare any error threshold ϵ and concretely evaluate whether or not it is always satisfied for a given input. However, this is not true for nondeterministic techniques. For a given input, error can only be probabilistically evaluated; ϵ must be accompanied by some probability and confidence.

Nondeterministic techniques have limited reproducibility. Such approximations are possible via exposing analog noise, asynchrony and race conditions to the program. Revisiting the examples in Section II-B, synchronization elision [7] is a nondeterministic technique while code perforation [33] is deterministic. Whereas perforating computations yields the same output on any system, eliding synchronization primitives exposes race conditions. This increases the number of possible outputs and limits reproducibility. The amount of error via synchronization elision can vary greatly across systems depending on the amount of thread-level parallelism. Nondeterministic techniques can also expose analog noise. For example, voltage-overscaled ALUs [9] generate approximations by risking exposure to the analog domain. This has low reproducibility; error cannot be concretely evaluated and must be empirically measured. In comparison, precision-scaled ALUs [37] are deterministic. Scaling precision in the digital representation of data yields the same output on any system.

As a trade-off, nondeterministic techniques can generally offer more opportunity for efficiency gains. By exposing the stochastic nature of the physical world, they avoid the expensive digital abstraction tax. For example, voltage-overscaled ALUs significantly improve efficiency by relaxing the safety margins enforced by digital circuitry.

This taxonomy axis informs trade-offs in reproducibility. Deterministic techniques benefit from high reproducibility, simplifying testing and debugging. On the other hand, nondeterministic techniques benefit from more opportunities for approximation that only exist outside the digital domain.

C. Error Control: Coarse-Grained vs. Fine-Grained

Definition 3. An approximation technique is coarse-grained if it reduces the data footprint or the number of dynamic instructions in a program. Otherwise, it is fine-grained.

Control over the error introduced by a technique depends on the granularity at which an approximation technique is employed. Fine-grained techniques lower the cost of executing an instruction or storing a word of data. Coarse-grained techniques replace a set of instructions or a block of data with a more efficient or compact representation.

Coarse-grained techniques offer more opportunity for error-efficiency trade-offs. Revisiting the examples in Section II-C, fuzzy floating-point instructions [36] are fine-grained while fuzzy function memoization [21] is coarse-grained. Whereas the former improves the efficiency of individual instructions, the latter can improve the efficiency of an entire block or function. The latter, in the most extreme case, can memoize the entire program for the highest efficiency. In terms of storage, fine-grained techniques, such as low refresh DRAM [18], generate approximations in individual bits. Coarse-grained techniques, such as approximate deduplication [31], reduce data footprint. The latter can be more aggressively tuned for efficiency gains, to the point where the entire data footprint is deduplicated into a single data block.

Naturally, the coarser the granularity of a technique, the higher the risk of error. Fine-grained techniques do not remove any data nor instructions. Conversely, coarse-grained techniques risk information loss as more data and more instructions are omitted. In the previous examples, though memoizing an entire program yields highest efficiency, it also yields highest error. Holistically approximating regions of code can disregard rarely-used control-flow paths when not exercised. Neural approximation [10] is an example of a coarse-grained technique that can subsume entire functions, including potentially complex control flow. This coarseness makes testing and analysis challenging.

This taxonomy axis informs trade-offs in error control. Coarse-grained techniques benefit from greater opportunities for aggressive efficiency gains. On the other hand, fine-grained techniques can limit error and are generally better suited for programs where quality constraints are conservative.

IV. DISCUSSION

We highlight the applicability of our proposed taxonomy by suggesting how it can inform future research in approximate computing. We formulate a three-pronged answer that address the questions across layers of the compute stack: (1) architecture, (2) compilers and runtimes and (3) applications.

A. How Can It Inform Architecture Research?

Research on new approximation techniques motivates the need for approximation-aware ISAs (A-ISA). Since the days of the IBM System/360, architects have distinguished between architecture and implementation to guarantee the forward-compatibility of their hardware. An A-ISA can express instruction-level error bounds that need to be respected when deployed on current or future hardware. Such an abstraction layer would allow hardware designers to modify the implementation of approximations down the road in a way that remains invisible to the software. We make a distinction between two types of A-ISAs: strict A-ISAs and statistical A-ISAs. Strict A-ISAs are applicable to deterministic fine-grained techniques and provide strict error bounds on the execution of an instruction. Examples of A-ISAs include the Quality-Programmable ISA [37], which provides strict error bounds relative to the maximum output value of the instruction. Statistical A-ISAs, on the other hand, are applicable to nondeterministic fine-grained techniques and provide statistical failure guarantees. Such an ISA would have to include probability bounds as well as confidence bounds.

B. How Can It Inform Compilers/Runtimes Research?

Research on approximation techniques motivates the development of frameworks to make approximations safe to use. Such frameworks include new languages, compilers and runtimes. We discuss how each taxonomy can inform the applicability of framework proposals.
Architectural visibility is relevant to frameworks that focus on detecting and recovering from hardware faults. Relax [8], for instance, can only work on top of architecturally visible techniques because errors must be locally correctable [34]. Online monitoring proposals [23] that rely on precise replay are also only applicable to architecturally visible techniques.

Determinism and coarseness are relevant to formulating statically-derived or empirically-observed application-level error bounds. Nondeterministic techniques require statistical methods like probabilistic assertions [29], while deterministic techniques can rely on hard assertions. Fine-grained techniques can inherit from the wealth of tools developed in numerical analysis research [24]. More specifically, deterministic fine-grained techniques have the advantage of providing strict error bounds at an instruction granularity. Thus, they can provide hard worst-case error bounds for many algorithmic patterns, as opposed to empirically derived average-case error bounds. Coarse-grained techniques have seen a wealth of frameworks [4], [5], [19], [25], [27] that generally rely on empirical error measurements to provide varying levels of error guarantees via quality autotuning.

C. How Can It Inform Applications Research?

Research on new approximation techniques motivates better understanding on the applicability of such techniques. Application designers care about (1) whether a technique can be applied to their algorithms, and (2) whether a technique can meet the quality guarantees they wish to enforce.

Coarseness correlates to how general a technique is to algorithmic patterns. Fine-grained techniques are broadly generalizable: any approximate floating-point algorithm can make use of reduced-precision FPUs. Coarse-grained techniques, on the other hand, have to adhere to specific code patterns: neural acceleration only applies to precise-pure regions of code, while loop-perforation applies to loops free of early exits [27].

Determinism and coarseness will both determine the error behavior that the application will see. Nondeterministic techniques generally yield large rarely-occurring errors while deterministic techniques yield small frequently-occurring errors. Nondeterministic techniques would generally not be used in mission-critical systems. The magnitude of an error is generally better controlled on deterministic fine-grained techniques as opposed to deterministic coarse-grained techniques.

V. Conclusion

A wealth of approximate computing techniques has been proposed in architecture, circuits, languages, and compilers research. We present a taxonomy that categorizes approximate computing techniques based on their most salient properties: visibility, determinism, and coarseness, to better inform cross-stack research in architecture, tools, and applications.

REFERENCES