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Abstract
Digital signal processors (DSPs) offer cutting-edge energy ef-
ficiency for embedded multimedia computations, but writing
high-performance DSP code requires expert tuning. Program-
mers need to work at a low level of abstraction, manually
tailoring vendor-specific instructions to enable vector and
VLIW parallelism. Diospyros is a synthesizing compiler that
searches for optimal data layouts to enable efficient vector-
ized code on DSPs. Preliminary results show that for small
fixed-size matrix multiply and 2D convolution, Diospyros
achieves a 6.4–7.6× speedup compared to vendor-provided
optimized kernels, and a 6.5–31.3× speedup over loop-based
kernels optimized with the vendor’s included compiler.
CCSConcepts. • Software and its engineering→ Source
code generation.
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1 Introduction
Compute-heavy multimedia applications, from embedded
vision for augmented reality to 5G networking, have driven
interest in DSPs as accelerators in embedded systems on
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for (int oRow = 0; oRow < outRows; oRow++) {
for (int oCol = 0; oCol < outCols; oCol++) {
for (int fRow = 0; fRow < fRows; fRow++) {

for (int fCol = 0; fCol < fCols; fCol++) {
// ...
o[oRow][oCol] += in[iRow][iCol] * f[fRowT][fColT];

(a) Portable C implementation. Simple index computations for iRow,
iCol, fRowT, and fColT are omitted.

VEC_LOAD(I_0_4, I, 0, 16);
// ...
gathered_I = VEC_SELECT(I_0_4, Z, {1, 1, 2, 6});
gathered_F = VEC_SHUFFLE(F_0_4, {2, 3, 2, 2});
VEC_MULTIPLY_ACCUMULATE(O_0_4, gathered_I, gathered_F);
// ...
VEC_STORE(O, O_0_4, 0, 16);

(b) Tuned C with intrinsics for the Fusion G3.
Figure 1. Two implementations of a 2D convolution kernel.
For a fixed matrix size, the tuned code (b) is 31.3× faster than
the baseline (a) on a specific DSP.

chip (SoCs). DSPs optimize for extreme power efficiency
at the cost of programmability. Their efficiency relies on a
simple, in-order core design with exotic VLIW and vector in-
struction sets. Even state-of-the-art compiler techniques for
vectorization underperform expert-written code. For peak
performance, programmers must manually tailor intrinsic
function calls to control vector registers and data layouts.

Figure 1 shows target-specific tuned code that outperforms
a straightforward implementation by an order of magnitude.
Figure 1a shows a standard implementation of 2D convolu-
tion, and Figure 1b previews an intrinsic-laden fast imple-
mentation for the Tensilica Fusion G3 DSP [6]. The tuned im-
plementation manually loads data into vector registers (e.g.,
I_0_4), shuffles the data, and performs a target-optimized
MAC instruction using vector intrinsics. The result outper-
forms the naive loop nest by 27.5× (Section 4.2).
The key to the optimized code’s performance is its data

layout. The Fusion G3 has 4-wide SIMD vector instructions,
and the code needs to maximize their utilization. It works by
irregularly packing parts of the matrix and filter operands
into vector registers to set up for 4 simultaneous opera-
tions with VEC_MULTIPLY_ACCUMULATE. The VEC_SELECT
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and VEC_SHUFFLE intrinsics use a vector of indices into the
input registers—here, the “magic numbers” {1,1,2,6}.

Finding these advantageous vector packing schemes—and
implementing them using target-specific intrinsics—is a chal-
lenging task that requires both insight into the computation
and deep knowledge of the hardware. We present ongoing
work on Diospyros, a compiler that automates the search
for high-performance DSP kernels using program synthesis.
Diospyros automatically discovers vector packing schemes
for a given computation and hardware target and generates
implementations in intrinsic-based C.

Diospyros will enable programmers to use portable, high-
level implementations while providing nearly the perfor-
mance of expert-tuned kernels. Diospyros targets fixed-size
matrix kernels to replace hot loops in large applications. In
order to scale to larger kernels, we are working towards both
more efficient synthesis encodings and decomposition of
data into subproblems that can be solved iteratively.

2 Related Work
Classical vectorization techniques—from loop dependency
analysis [1] to modern auto-vectorization techniques [10,
11]—typically do not attempt to aggressively shuffle data into
irregular patterns. Existing techniques prioritize efficient
compilation over optimality: they are designed to run on
millions of lines of code but miss vectorization opportunities.

Previous work has used the Halide image processing lan-
guage [13] to target DSPs, but has not supported exploration
of a large search space of irregular data movement strate-
gies [15]. Other approaches can generate target-specific shuf-
fles to implement known permutations, but do not find the
permutation strategies themselves [8, 9]. While our search
strategy comes at the cost of compilation time, Diospyros
aims to automate more of the process of producing code that
is competitive with hand-tuned implementations.

3 The Diospyros Synthesis Workflow
Diospyros synthesizes efficient DSP kernels using the work-
flow in Figure 2. Diospyros requires an unoptimized refer-
ence implementation of a kernel and a sketch—a syntactic
template for the target program. Diospyros then uses an off-
the-shelf program synthesizer [14] to fill in the template with
an efficient implementation. Finally, it lowers the completed
template from the DSL into concrete DSP instructions.

3.1 Vector DSL
Diospyros optimizes DSP efficiency by searching for an opti-
mal data layout and associated movement. DSP architectures
are typically in-order cores with wide vector instructions. To
extract high performance, hand-tuned DSP kernels use in-
tricate data layouts and movements to pack data into vector
registers and reach maximum utilization of the architecture’s
resources for a fixed input size, output size, and operation.
This hand tuning is necessarily specialized to the particular
DSP architecture and application, and so is rarely portable.
Diospyros focuses on movement by defining a platform-

agnostic domain-specific language (DSL) for vector opera-
tions. The DSL includes common vectorized operations such
as memory loads and stores, arithmetic, and data shuffles.
However, it abstracts away concrete details of the DSP ar-
chitecture, deferring them to a later architecture-specific
instruction selection phase (Figure 2). For example, Diospy-
ros’s DSL includes a vector shuffle operation:
(vec-shuffle id indices inputs)

that takes as input an array of indices defining where to
move each element of inputs. The DSL does not restrict the
possible values of indices, offering the flexibility to discover
optimal data layouts. Lowering this instruction to the target
DSP architecture requires selecting an instruction sequence
that achieves this desired movement using the architecture’s
available shuffle operations.

3.2 Sketch Selection and Synthesis
Diospyros uses program synthesis to search for a more ef-
ficient implementation of a reference kernel. Program syn-
thesis is the task of automatically generating a program that
satisfies a specification; here, the specification is equivalence
to the reference program.
To make this search tractable, Diospyros applies syntax-

guided synthesis [2], which uses a syntactic template called
a sketch to direct the search. The sketch is a program in
the target DSL, but with some missing expressions called
holes for the synthesizer to fill in. For example, a sketch
could use the vec-shuffle instruction above, but with a
hole in place of the indices argument. The synthesizer
would then search for indices (i.e., where to move the data)
that makes the completed sketch equivalent to the reference
implementation. Diospyros uses the Rosette solver-aided
language [14], which extends Racket with synthesis support.
Given a sketch, Rosette fills the holes by using an off-the-
shelf satisfiability modulo theories (SMT) solver [4] to search
for completions that satisfy the reference implementation.

Constructing a good sketch is critical to the scalability of
any syntax-guided synthesis tool. If the sketch has too many
holes, the search space is too large to explore in reasonable
time; if it has too few holes, it does not offer enough flexi-
bility to generate novel solutions. Diospyros sketches focus
on data layout and movement, while avoiding the need for



the synthesizer to rediscover implementation details such
as moving data into the final output registers. A Diospyros
sketch comprises a fixed function prologue and epilogue,
with holes for the synthesizer to generate the instructions in
between. For example, the loop body of a sketch for 2D con-
volution might comprise two vectorized shuffle instructions
with unknown indices, followed by a multiply–accumulate
that outputs to an unknown register:
(vec-shuffle 'reg-I (??indices) (list 'I 'Z))
(vec-shuffle 'reg-F (??indices) (list 'F 'Z))
(vec-mac (??reg) 'reg-I 'reg-F)

Here, the ??indices and ??reg functions create holes that
can be filled by indices and a register, respectively.

While a sketch defines the search space for a synthesizer,
any program equivalent to the reference is a valid solution.
To guide the search towards efficient solutions, Diospyros
augments the synthesis process with a cost function [3]. The
cost function assigns a cost to each instruction in the vector
DSL–currently, proportional to how many vector registers
must be gathered to implement the data movement. The
synthesizer searches for a solution that both matches the
reference specification and minimizes the cost function.
Good sketches are necessarily specific to an application,

because they capture problem-specific high-level insights. In
the 2D convolution example, the sketch captures the essence
of a convolution—data movement followed by multiply–
accumulates—without fixing the details of how data is packed
or moved. These sketches therefore still require domain ex-
pertise. However, Diospyros maximizes the reuse of a sketch
using sketch generation. A Diospyros sketch is parametric in
the size of its inputs, so while a synthesized Diospyros kernel
is specific to a desired input size, a programmer needing a
new combination can simply re-run synthesis on the same
sketch using the new parameters. This flexibility avoids the
need for expert hand-tuning for every new DSP application.

3.3 Instruction Selection
Diospyros’s DSL is not architecture-specific, so a synthesized
program is not immediately executable. The final phase of
Diospyros’s compilation is to perform instruction selection
for a concrete architecture. This lowering phase translates
abstract vector operations into C++ compiler intrinsics that
can then be compiled using the DSP’s standard SDK.
Currently, Diospyros targets Tensilica’s Fusion G3 DSP

processor [6]. Diospyros’s unrestricted shuffles, for exam-
ple, are lowered to target Tensilica’s VEC_SHUFFLE (single-
register) and VEC_SELECT (two-register) intrinsic functions.
Diospyros uses nested VEC_SELECT instructions to imple-
ment arbitrary shuffles with more than two registers—an
inefficiency that is reflected in the target-specific cost model.

4 Preliminary Evaluation
Our preliminary evaluation addresses these questions:

Q1 Can Diospyros compete with hand-tuned implementa-
tions for fixed-sized matrices?

Q2 What are Diospyros’s current scalability limitations?

4.1 Methodology
We report cycle counts from Tensilica’s cycle-level simulator
for the Fusion G3 DSP processor [6]. All implementations
(baseline loop-based functions, library-provided functions,
and Diospyros-generated functions) are compiled from C
source code with Tensilica’s provided compiler at the highest
optimization level, -O3. We run experiments on a machine
with two Intel Xeon E5-2620v4 CPUs running CentOS 7.6.

We compare Diospyros’s performance with the Nature
DSP library included with Tensilica processors. Nature pro-
vides well-optimized kernels that perform better than naive
C++; however, their performance is limited by the need to
be generic over matrix sizes.

4.2 Performance Results
We demonstrate the potential of Diospyros on two floating
point matrix computations: matrix multiply and 2D convo-
lution (detailed in Section 4.3). We compare Diospyros ker-
nels with baseline loop-based implementations (with both
parametric sizes and inlined fixed sizes to facilitate more
aggressive -O3 optimizations), the Nature DSP library func-
tions, and in the case of matrix multiply, expert-written code
hand-tuned for the fixed size. We show both the first solution
found by Diospyros (without minimizing the cost model),
and the best solution found within a 30 minute timeout.
To answer Q1, both kernels outperform the baselines at

small matrix sizes. The Diospyros-generated matrix multiply
is 6.5× faster than the naive loop nest, with performance
within 12% of the expert kernel (Figure 3a). Figure 3a also
demonstrates that highly-optimized code such as Nature can
perform poorly on small kernels due to the control overhead
of the parametrized unrolling. The Diospyros-generated 2D
convolutions are 20.6–31.3× faster than the naive baseline
and 6.4–7.6× faster than the Nature kernel (Figure 3b).

However, our evaluation showsDiospyros’s initial scalabil-
ity limitations (Q2). Diospyros finds the first implementation
of the matrix multiply in 9 seconds. However, our prototype
does not find a solution to larger convolutions in 30 minutes.
We address ongoing scalability work in Section 5.1.

4.3 Case Study: 2D Convolution
Convolution is a ubiquitous computer vision primitive. The
kernel takes input and filter matrices and produces weighted
sums of element-wise multiplications. Naive implementa-
tions use a deep loop nest to iterate over both the output’s
and the filter’s rows and columns (Figure 1a).

The Nature library’s 2D convolution makes extensive use
of vector intrinsics for loads, stores, and arithmetic opera-
tions. However, because the matrices are dynamically pro-
vided, the implementation is limited to general vectorization
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Figure 3. Simulated running time in cycles for two benchmarks. Naive is a naive loop nest, Naive (fixed size) is a loop nest
with fixed bounds, Nature is a vendor-supplied library function, Diospyros (first) is the first solution found by our system,
Diospyros (fastest) is the best solution found by our system, and Expert is hand-tuned vectorized code (where available).

techniques such as loop unrolling. The library function in-
cludes outer partially unrolled loops, with additional loops
for boundary conditions when the unrolling factor does not
evenly divide the matrix sizes. In contrast, Diospyros is able
to exploit the fixed matrix sizes to enable aggressive data
movement to keep vector lanes full, even in cases where the
register width unevenly divides the loop boundaries. In fact,
the Diospyros-generated code contains no control flow at all
because it is able to fully unroll to straightline code.

Given a sketch and fixed sizes of 4×4 for the input, 2×2 for
the filter, and vector width 4, Diospyros generates a solution
that is 27.5× faster than the baseline at an -O3 optimization
level (Section 4.2) and 6.4× faster than the Nature library.
Figure 1b demonstrates a section of the C/C++ code with
intrinsics generated by Diospyros.

While an expert might find an even faster solution, doing
so requires manually determining esoteric data shuffles—
there is no obvious way to vectorize this kernel when the
vector width does not evenly divide the matrix sizes. Diospy-
ros thus enables near-expert-level vectorized performance,
without manually specifying irregular data movement.

5 Future Directions
Diospyros optimizeswell for small kernels on a Tensilica DSP,
but we have ongoing work left to move beyond a prototype.

5.1 Scalability
A fundamental challenge in the development of synthesis-
aided compilers is scaling to larger programs [12]. We see
three avenues for improving scalability: decomposing com-
pilation into smaller subproblems, improving solving time
during synthesis, and parallelizing the search.
We plan to partition the target program into subprob-

lems that can be solved separately. For example, many DSP
kernels have a nested loop structure, and experts extract
performance via unrolling. Rather than rediscovering this
unrolled structure, we could instead perform the synthesis in
two steps: first, synthesize a single iteration of the loop body,
then synthesize an unrolled version that maximizes reuse

but does not otherwise alter data movement. This approach
may be suboptimal because it does not explore the entire
search space, but will be necessary to solve larger problems.
Decomposition also enables parallelism, which synthesizers
are otherwise lackluster at exploiting.

5.2 Programmability
To use the current version of Diospyros, programmers need
to specify both a reference implementation and a program
sketch in our DSL. Constructing a sketch requires significant
domain-specific knowledge and effort, although that effort
can be reused across many different matrix sizes. To ease
adoption of Diospyros, we are exploring symbolic lifting to
automatically extract specifications and sketches from ex-
isting C/C++ programs. We plan to leverage existing binary
analysis tools [5] and provide programmers with a pragma
annotation to automatically extract an annotated program
region for synthesis.

5.3 Target Independence
Diospyros aims to generate code for multiple target archi-
tectures using a portable, high-level specification. Targeting
multiple architectures requires us to build an intermediate
representation (IR) that can abstractly reason about target
specific constraints. For example, the Hexagon DSP [7] ex-
poses only hard-coded data reorganization primitives while
Tensilica cores allow for arbitrary shuffles. Furthermore, dif-
ferent architectures might have different cost models for
different instructions. Currently, Diospyros exposes a flex-
ible vec-shuffle primitive that can arbitrarily move data.
We plan to extend Diospyros to target multiple architectures
and build a robust IR.
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