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Abstract
Embedded applications extract the best power–performance

trade-off from digital signal processors (DSPs) by making

extensive use of vectorized execution. Rather than hand-

writing the many customized kernels these applications use,

DSP engineers rely on auto-vectorizing compilers to quickly

produce effective code. Building these compilers is a large

and error-prone investment, and each new DSP architecture

or application-specific ISA customization must repeat this

effort to derive a new high-performance compiler.

We present Isaria, a framework for automatically gen-

erating vectorizing compilers for DSP architectures. Isaria

uses equality saturation to search for vectorized DSP code

using a system of rewrite rules. Rather than hand-crafting

these rules, Isaria automatically synthesizes sound rewrite

rules from an ISA specification, discovers phase structure
within these rules that improve compilation performance,

and schedules their application at compile time while prun-

ing intermediate states of the search. We use Isaria to gener-

ate a compiler for an industrial DSP architecture, and show

that the resulting kernels outperform existing DSP libraries

by up to 6.9× and are competitive with those generated by

expert-built compilers. We also demonstrate how Isaria can

speed up exploration of new ISA customizations by automat-

ically generating a high-quality vectorizing compiler.

CCS Concepts: • Hardware→ Digital signal processing;
• Software and its engineering→ Retargetable compil-
ers; • Theory of computation→ Equational logic and
rewriting.

Keywords: Vectorization, DSPs, Equality Saturation, Rewrite
Rules, Program Synthesis
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1 Introduction
Low-power embedded applications such as remote sensing

and virtual reality make extensive use of digital signal pro-
cessors (DSPs) to meet tight energy and performance targets.

DSPs meet these targets by using simple but heavily vector-

oriented architectures. Large DSP kernels make easy use of

these vector units by calling into off-the-shelf linear algebra

libraries like Nature or Eigen [10]. But recent work [35] has

observed an Amdahl’s law effect in which DSP applications

are increasingly bottlenecked by a long tail of small, custom

kernels not available off the shelf. This effect means that

the barrier to deploying DSP applications is compiling cus-

tom kernels to efficient vectorized code. The compilation

challenge is amplified by the wide range of DSP instruction-

set variations offered by vendors, each of which requires

its own vectorizing compiler, and application-specific ISA

customizations that necessitate building a compiler for a

bespoke instruction set.

To address this problem, recent work has developed new

techniques for automatically vectorizing these kernels, in-

cluding program synthesis [1], pattern matching [7], and au-

totuning [30]. In this paper we focus on the promising equal-
ity saturation [32] approach to auto-vectorization pioneered

by Diospyros [35]. With Diospyros, the compiler writer

defines a system of rewrite rules to transform scalar pro-

grams into vectorized ones. To compile a program, Diospy-

ros searches the space of vectorized programs using equality

saturation, which effectively applies the rewrite rules in all

possible orders simultaneously [37] using congruence clo-

sure on an E-graph data structure [19]. Diospyros then ex-

tracts themost efficient vectorized program from the E-graph

using an abstract cost model. This approach achieves excel-

lent performance, with kernels 3.1× faster than off-the-shelf

DSP libraries and competitive with expert-written custom

kernels.

While these results are encouraging, the equality satura-

tion approach places several burdens on the compiler writer

(or the DSP engineer, for application-specific extensions).

First, crafting effective rewrite rules for equality saturation

https://doi.org/10.1145/3617232.3624873
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is a delicate balancing act [18]: the author must develop rules

whose congruence closure reaches interesting programs,

while using fragile heuristics to avoid rules that might loop

infinitely or provoke NP-complete associativity and commu-

tatively problems [4]. In practice, the best way to design a

system of rewrite rules for vectorization today is through

trial and error, but even this is difficult as “error” often means

waiting for hours-long timeouts and manually examining

E-graphs with millions of nodes. Second, the rewrite rules

must be sound for the compiler to be correct, but correctness

bugs in compiler rewrite rules are common even for widely

adopted toolchains and architectures [13, 15, 38]. Finally, a

system of rewrite rules is necessarily specific to an instruc-

tion set, and so this manual effort slows the exploration of

customized instructions for an application and of new in-

struction set designs for future DSPs. In short, low-power

DSP applications require not just a single effective vector-

izing compiler, but a productive approach to designing and

evolving the compiler itself.

This paper introduces the Isaria framework for develop-

ing vectorizing compilers for DSP architectures. At a high

level, Isaria follows the approach of (and is based on) the

Diospyros compiler [35], reducing the vectorization prob-

lem to a search problem using equality saturation. But Isaria

takes a radically different approach to developing the com-

piler itself: rather than manually crafting rewrite rules and

heuristics for applying them, Isaria automatically generates

a suitable system of rewrite rules offline, and then sched-

ules their application during equality saturation at compile

time to generate a vectorized program. Concretely, the Is-

aria framework takes as input a specification of the target

instruction set, implemented as an executable interpreter

in the Rosette solver-aided language [33], together with an

abstract cost model for the ISA’s instructions. Given these

inputs, Isaria automatically generates a system of rewrite

rules and a schedule for them, and builds these results into

Diospyros to produce a vectorizing compiler for the target

architecture.

Isaria’s key insight is that rewrite rules for vectorization

fall into natural phases: some rules expand the program to

expose vectorization opportunities, others simplify the pro-

gram tomake vector execution faster, and still others perform

the actual vectorization transformations. On the surface, this

insight contradicts the common motivation for equality sat-

uration in compilers, as an antidote to the “phase ordering”

problem of choosing a good ordering for applying destructive

program transformations [32]. But unlike existing compilers,

Isaria discovers these phases automatically, from only an

ISA specification and an abstract cost model. The resulting

phases are far more coarse-grained than traditional com-

pilers, and Isaria’s equality saturation uses these automatic

phases to make vectorization tractable at compile time.

The Isaria workflow comprises three parts: generation

of candidate rewrite rules, analysis and phase selection for

those rules, and application of the rules at compile time. To

generate candidate rewrite rules, Isaria extends the Ruler

synthesis engine [18], which synthesizes sound rewrite rules

from a language specification, with support for tractable syn-

thesis with lane-wise vector instructions. Ruler is effective

at generating candidate rules, but perhaps too effective—

realistic DSP instruction sets are so large that it generates

hundreds of candidate rules, making equality saturation, and

therefore vectorization, intractable. To mitigate this explo-

sion of rules, Isaria groups them into phases by analyzing

their effect on program performance using the abstract cost

model. Importantly, it is not sufficient to only select rewrites

that strictly decrease program cost; rules that (temporarily)

increase cost are useful to reach different parts of the search

space [28], but must be used judiciously to avoid fruitless or

redundant exploration. Finally, at compile time, Isaria per-

forms multiple iterations of equality saturation, scheduling

rules into different iterations based on their phase. Between

iterations, Isaria greedily prunes the search by extracting an

optimal intermediate program from the saturated E-graph

and discarding the rest. This pruning sacrifices completeness,

but keeps the size of the E-graph in check, allowing Isaria

to find interesting vectorizations while avoiding resource

exhaustion.

We evaluate Isaria by generating a vectorizing compiler

targeting Tensilica DSPs. We show that kernels compiled

with this compiler outperform equivalent Tensilica SDK li-

braries by up to 6.9×, and the Tensilica clang-based auto-

vectorizer by up to 25×. The kernels have similar perfor-

mance to Diospyros’s hand-crafted compiler—34% faster on

average, although this average is skewed by a few large

kernels—despite the Isaria-based compiler being automati-

cally generated from the ISA specification. Isaria vectorizes

most kernels in just a few minutes, although compilation is

an average of 2.1× slower than Diospyros. We also demon-

strate how Isaria helps DSP engineers experiment with cus-

tomized instructions by exploring two new instructions to

speed up a kernel without any manual compiler changes.

In summary, this paper makes the following contributions:

• The Isaria approach to automatically generating a vec-

torizing compiler for low-power architectures.

• A new phase-oriented approach to selecting and ap-

plying rewrite rules for equality saturation.

• An evaluation on an industrial DSP architecture show-

ing that Isaria-based compilers outperform commercial

tools and match the state of the art in manually crafted

tools.

2 Rewriting for Vectorization
This section gives an overview of the Diopsyros [35] ap-

proach to vectorization on which Isaria builds. We show

how equality saturation can produce efficient vectorized
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programs by searching with small, local rewrite rules. How-

ever, crafting these rewrite rules is a challenging task that

makes it difficult for DSP engineers to realize the benefits

of new architectures or custom ISA extensions. In this sec-

tion we describe the key challenges in using rewrite rules

for vectorization. Then in Section 3 we present the Isaria

framework automatically building a vectorizing compiler for

a DSP architecture, and show how it solves these challenges

by specializing equality saturation to the vectorization do-

main.

2.1 Vectorization via Equality Saturation
Isaria follows the Diospyros [35] approach to vectorization

using equality saturation. To see how this approach works,

consider vectorizing this trivial program whose output is a

4-wide vector:

var r0 = x[0] + y[0];
var r1 = x[1] + y[1];
var r2 = x[2] + y[2];
var r3 = x[3];
return {r0 , r1, r2, r3};

The Diospyros compiler starts by lifting this program to an

expression using symbolic evaluation [33] to remove vari-

ables and control flow, leaving a program reflecting the out-

put vector but written in the Diospyros vector DSL in Fig. 1:

(Vec
(+ x[0] y[0])
(+ x[1] y[1])
(+ x[2] y[2])
x[3])

Here, the Vec term represents a 4-wide vector value, where

each lane can be a separate arbitrary expression. Such an

instruction does not exist directly in the hardware for most

DSPs; each vector lane must instead be constructed sepa-

rately and moved into the vector register. Isaria uses Vec
terms to abstract away the details of shuffle and data move-

ment instructions of the DSP; these instead are handled by a

lowering pass after equality saturation.

There are many potential vectorizations of this program.

Traditional auto-vectorization approaches like superword-

level parallelism [12] would analyze the program and apply

a fixed sequence of program transformations to produce vec-

torized code. These techniques are often effective for regular

kernels, but embedded DSP applications tend to be bottle-

necked by smaller custom kernels like this irregular vector

addition example. For these kernels, the best approaches

to auto-vectorization [1, 7, 35] instead search the space of

vectorizations to find an efficient one.

The Diospyros approach to vectorization starts with a set

of small, local rewrite rules crafted by hand for a particular

DSP architecture. A rewrite rule (+ 𝑎 𝑏)⇝ (+ 𝑏 𝑎) says that

the term (+ 𝑎 𝑏) can be replaced with (+ 𝑏 𝑎) anywhere it

appears in the program. Here, 𝑎 and 𝑏 are wildcards that
match any expression, and so for example this rule allows

rewriting the program (+ (- 𝑥 𝑦) 𝑧) to (+ 𝑧 (- 𝑥 𝑦)) by binding

𝑎 to (- 𝑥 𝑦) and 𝑏 to 𝑧.

When combined in the right order, local rewrite rules can

produce a vectorization of the program. For example, given

two rewrite rules:

(Vec (+ 𝑎0 𝑏0) (+ 𝑎1 𝑏1) (+ 𝑎2 𝑏2) (+ 𝑎3 𝑏3))

⇝ (VecAdd (Vec 𝑎0 𝑎1 𝑎2 𝑎3) (Vec 𝑏0 𝑏1 𝑏2 𝑏3))

and

𝑎0⇝ (+ 𝑎0 0)

the example program can be vectorized by applying the sec-

ond rule to x[3], which then makes the first rule applicable,

yielding a vectorized program

(VecAdd (Vec x[0] x[1] x[2] x[3])
(Vec y[0] y[1] y[2] 0))

that computes the result with a vector add instruction.

But how did we know to apply the rewrite rules in this

order? A traditional compiler fixes an ordering to apply

transformations, but Diospyros instead uses equality sat-
uration [32] to search the space of rewrite orderings. Rather

than applying rewrite rules destructively, equality saturation

applies them to an E-graph data structure [19], which con-

cisely represents a large set of programs and equivalences

between them. Equality saturation repeatedly applies the

rules to the E-graph until it stops changing, at which point

we say the E-graph has saturated and contains all programs

reachable by applying the rewrite rules in any order (in-

cluding repeated applications) to the original program. The

optimal solution can then be extracted from the E-graph by

using a cost function that assigns a cost to each program

in the graph, and selecting one with minimal cost. Diospy-

ros showed that equality saturation is especially effective

at vectorizing irregular DSP kernels, achieving an average

of 3.1× better performance than hand-crafted linear algebra

libraries.

2.2 Synthesizing Rewrite Rules
While Diospyros demonstrates the promise of equality sat-

uration for vectorization, it places a heavy burden on the

compiler writer. Crafting a set of rewrite rules for equal-

ity saturation requires striking a delicate balance between

discovering novel vectorizations and being so general that

saturation becomes intractable. For example, the rewrite rule

𝑎0 ⇝ (+ 𝑎0 0) above was essential to vectorize the exam-

ple, but must be used carefully, as in principle it matches

any term and so can be applied infinitely often. As a more

complex example, the AC-matching problem [4] of check-

ing whether two terms are equivalent up to associativity or

commutativity is NP-complete, and so rewrite rules for asso-

ciative or commutative identities can dramatically increase

the size of the E-graph and prevent saturation [17].



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Samuel Thomas and James Bornholt

⟨prog⟩ ::= (List ⟨expr⟩+) | ⟨expr⟩

⟨expr⟩ ::= ⟨scalar⟩ | ⟨vector⟩

⟨scalar⟩ ::= ⟨integer⟩ | ⟨variable⟩
| (+ ⟨scalar⟩ ⟨scalar⟩) | (- ⟨scalar⟩ ⟨scalar⟩)
| (* ⟨scalar⟩ ⟨scalar⟩) | (/ ⟨scalar⟩ ⟨scalar⟩)
| (sgn ⟨scalar⟩) | (sqrt ⟨scalar⟩) | (- ⟨scalar⟩)
| (Get ⟨variable⟩ ⟨integer⟩)

⟨vector⟩ ::= (Vec ⟨scalar⟩+) | (Concat ⟨vector⟩ ⟨vector⟩)
| (VecAdd ⟨vector⟩ ⟨vector⟩) | (VecMinus ⟨vector⟩ ⟨vector⟩)
| (VecMul ⟨vector⟩ ⟨vector⟩) | (VecDiv ⟨vector⟩ ⟨vector⟩)
| (VecMAC ⟨vector⟩ ⟨vector⟩ ⟨vector⟩)
| (VecSgn ⟨vector⟩) | (VecSqrt ⟨vector⟩)
| (VecNeg ⟨vector⟩)

Figure 1. The Diospyros vector DSL. This is the DSL that

Isaria automatically learns rules over. A top-level program

is a (possibly singleton) list of outputs. Expressions operate

over both scalars and vectors.

Diospyros works around these problems by first carefully

hand-writing its rewrite rules to avoid them, and then equip-

ping many of its rewrite rules with custom scheduling logic

for when and how to apply them during saturation. This

work does not generalize to different DSP architectures,

which each need a new set of hand-crafted rules. The diffi-

culty of producing rewrite rules also prevents DSP engineers

from exploring potential customized instructions, as they

need to extend the compiler with new rewrite rules and

scheduling logic to support the new instructions.

One solution to this problem would be to use a general-

purpose tool for synthesizing rewrite rules such as Ruler [18].

These tools take as input a language specification and an

oracle for validating rewrite rules, and output a set of sound

rewrite rules over the language. In principle, applying these

rewrite rules using equality saturation would then yield a

vectorizing compiler: saturation would find all possible ways

to rewrite the scalar target program according to the rules,

including some that are vectorized, and we could extract the

fastest program from the saturated E-graph using the cost

model. In practice, however, the synthesized sets of rewrite

rules for DSP architectures are too general and large to be

useful. For example, we applied Ruler directly to Diospyros’s

vector language, which synthesized 300 rewrite rules. Trying

to use these rules to vectorize a small 2×2 by 2×2 2D matrix

convolution causes equality saturation to exhaust 64GiB of

memory without producing any results. Some tweaking of

equality saturation can reduce this memory usage, but even

then it fails to find any vectorized program after an hour of

searching. In contrast, Isaria finds a fast vectorized solution

in only 3 seconds while using 0.2 GiB of memory.

2.3 E-graph Explosion
Why are rewrite rules synthesizedwith off-the-shelf tools not

sufficient to build a high-quality vectorizing compiler? As an

example, suppose the rewrite synthesis tool generates three

rules about vector addition (using 2-wide vector instructions

for clarity):

(Vec (+ 𝑎0 𝑎1) (+ 𝑏0 𝑏1))

⇝ (VecAdd (Vec 𝑎0 𝑏0) (Vec 𝑎1 𝑏1)) (1)

(VecAdd (Vec 𝑎0 𝑎1) (Vec 𝑏0 𝑏1))

⇝ (Vec (+ 𝑎0 𝑏0) (+ 𝑎1 𝑏1)) (2)

(VecAdd 𝑎 𝑏)⇝ (VecAdd 𝑏 𝑎) (3)

Consider applying these rules using equality saturation to

this program that sums four elements of two arrays:

(Vec (+ (+ X[0] X[1])
(+ X[2] X[3]))

(+ (+ Y[0] Y[1])
(+ Y[2] Y[3])))

One potential ordering of rule applications first vectorizes

the outer additions using rule 1:

(VecAdd
(Vec (+ X[0] X[1]) (+ Y[0] Y[1]))
(Vec (+ X[2] X[3]) (+ Y[2] Y[3])))

Next we can apply rule 3 to commute the lanes of the vector

addition:

(VecAdd
(Vec (+ X[2] X[3]) (+ Y[2] Y[3]))
(Vec (+ X[0] X[1]) (+ Y[0] Y[1])))

Finally, applying rule 2 undoes the vectorization, yielding a

permutation of the original program:

(Vec (+ (+ X[2] X[3])
(+ X[0] X[1]))

(+ (+ Y[2] Y[3])
(+ Y[0] Y[1])))

Since this rule ordering is possible, equality saturation will

explore it, along withmany other orderings that result in sim-

ilar permutations of the same unvectorized program. These

redundant explorations will blow up the size of the E-graph,

preventing saturation within reasonable time and therefore

preventing vectorization.

This example highlights two problems with applying a

general-purpose rule synthesizer to the vectorization prob-

lem. First, these rules can go backwards during search: be-

cause the tools do not understand the goal of vectorization

(to produce a vectorized version of a scalar program), they

synthesize rules that are cyclic and can undo vectorization,

yielding a permutation of the unvectorized input program. In

fact, equality saturation guarantees that the search will even-

tually explore every reachable permutation of the unvector-

ized input program. These variants are helpful in principle, as

theymight expose future vectorization opportunities. But the
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usefulness of these permutations is the second problem: the

rules are redundant, with many paths to reach the same per-

mutation, including by vectorizing and then unvectorizing

the program. In the example, a simple scalar addition com-

mutativity rule (+ 𝑎0 𝑎1)⇝ (+ 𝑎1 𝑎0) would have reached the

same final program without round-tripping through a vec-

torization.

The key insight from this example is that to make syn-

thesized rewrite rules for vectorization scale, we must avoid

this E-graph explosion by carefully controlling which rules

are applied and when. Indeed, Diospyros does this by hand,

with manual heuristics to apply certain rewrite rules only at

certain points during the search. With Isaria, we aim to au-

tomate this entire process, so that DSP engineers can experi-

ment with new architectures and new custom instructions

without first manually building a vectorizing compiler.

3 Phase-Oriented Rule Synthesis
The Isaria framework automates the development of rewrite

rules for vectorizing compilers. By synthesizing rewrite rules

automatically, Isaria makes it easier to build an effective

compiler for a new DSP architecture, or to extend an existing

architecture with application-specific custom instructions.

Figure 2 shows an overview of the Isaria workflow. It takes

as input the semantics of the target instruction set (i.e., an

interpreter) and an abstract cost model for programs in that

instruction set (both inputs that the Diospyros compiler re-

quires). Given these inputs, the Isaria workflow comprises

three parts: generation of a set of candidate rewrite rules,

analysis and arrangement of those rules into phases, and

application of the rules by phase at compile time. This ap-

proach takes advantage of the insight that not all rewrite

rules are equally useful for vectorization. Rather than trying

to compute the congruence closure of a prohibitively large

rule set, Isaria instead subsets the rules into distinct, coarse-

grained phases and applies equality saturation to each phase

independently.

3.1 Rewrite Rule Generation
To generate a candidate set of rewrite rules for vectoriza-

tion, Isaria uses the Ruler synthesis engine [18]. Ruler takes

as input an interpreter for the target language and aims

to generate a small, sound set of useful rewrite rules over

that language. It does so by enumerating terms in the tar-

get language up to equivalence, generating rewrite rules

between those terms using a test-based filtering approach,

and then shrinking that set of rules by using equality satu-

ration to remove rules derivable from other candidates. To

ensure soundness, Ruler augments test-based filtering with

an SMT-based verifier that checks rule soundness under the

semantics defined by the input interpreter. Nandi et al. [18]

showed that Ruler can synthesize small, useful sets of rules

for rewriters in an SMT solver [3] and a numerical analysis

tool [23].

For Isaria, the target language is the instruction set of the

DSP architecture. This language is not especially large—DSPs

are simple processors by design—but includes both scalar

and vector variants of many instructions, as well as a general

Vec instruction (Section 2.1) that abstracts data movement.

Ruler can synthesize a set of sound rewrite rules for this

language, and its filtering is effective at reducing the size of

the set. In the example in Section 2.2, Ruler considered 7,735

rewrite rules but its final synthesized rule set contained only

300 rules. However, even this filtered rule set is an order of

magnitude larger than Diospyros’s 28 hand-written rules for

the same DSP, creating a scalability challenge we address in

Section 3.2.

Vector lane generalization. Ruler struggles to learn ef-

fective rewrite rules for vectorized lane-wise instructions

like VecAdd. This is because it has no built-in knowledge

that these instructions have the same effect on each lane, and

that the lanes do not interact. As a result, Ruler spends most

of its time rediscovering rules like associativity and commu-

tativity for each lane and each combination of lanes, making

little progress towards discovering interesting vectorization

rules.

To avoid this redundant work, Isaria extends Ruler with

the ability to generalize synthesized rules across vector lanes.
At rule synthesis time, Isaria reduces the vector instructions

in the ISA to a single lane. This allows Ruler to discover

per-lane behavior only once and so make deeper progress

into the search space. After synthesis, Isaria generalizes the

vector instructions in the synthesized rules back to the ar-

chitecture’s actual vector width, replicating arguments from

the first lane into the others but with fresh wildcards for

each lane. This generalization risks creating unsound rules

for vector instructions that have cross-lane interactions (e.g.,

reductions), but the DSP architectures we studied have few

of these rules, and they are mostly data movement instruc-

tions that Isaria abstracts out of the language with Vec. To
mitigate this risk, we use the executable ISA specification to

formally verify the soundness of the expanded rules [15, 33],

and drop rules that fail to verify (although there are no such

rules in our experiment, owing to the simple nature of DSP

architectures).

3.2 Discovering Rule Phases
While Ruler successfully synthesizes candidate rewrite rules,

its rule sets are too large to be used for equality-saturation-

based compilation directly (Section 2.3). To make vectoriza-

tion with synthesized rewrite rules tractable, Isaria analyzes

and categorizes the candidate rules produced by Ruler. This

analysis builds on the observation that because our target

language (the DSP instruction set) contains both scalar and

vector instructions, a rewriting-based vectorization approach
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Cost model

ISA specification
Candidate rule 

generation Phase selection
Compiler

Input program

Vectorized program

Figure 1 §3.2 §3.3, §4

Offline compiler generation Compile time

Rewrite 
rules

Expansion 
rules

Compilation 
rules

Optimization 
rules

Figure 2. The Isaria workflow for automatically generating a vectorizing DSP compiler. Isaria takes as input an ISA specification

and a cost model, and in an offline stage, synthesizes vectorization rewrite rules and organizes them into phases. At compile

time, Isaria uses the synthesized rules and cost model to vectorize the program. Shaded boxes are inputs and outputs; unshaded

boxes are provided by Isaria.

has natural phases, with different rules being useful during

each phase. The intuition for these phases is that the pro-

gram being vectorized starts out as a fully scalar term but

ends (hopefully) as a fully vector term. An individual rewrite

rule is small and so cannot vectorize the entire program in a

single step. Therefore, the rewriting process must gradually

transition (parts of) the program from scalar to vector form.

As these transitions happen, scalar-to-scalar rewrites be-

come less useful, since there are fewer scalar parts of the pro-

gram, while vector-to-vector rewrites become more useful.

But a naive equality saturation approach has no way to take

advantage of this progression, and will continue trying to

apply (for example) scalar-to-scalar rules to terms that have

already been profitably vectorized. This work occurs because

a node in an E-graph represents all equivalent programs ac-

cording to the equalities (rewrite rules) applied to the graph

so far, and so the node for a vectorized term is still eligible

to have more scalar rewrites applied to it. In theory, these

additional rewrites are actually desirable, as futher scalar

rewrites may expose a better vectorization later in the satu-

ration process. But empirically we have observed that this

outcome is rare—once a term has a vectorized form, it gen-

erally profits only from vector rewrites (i.e., optimizations).

We can therefore make equality saturation more tractable by

preventing this interference between scalar and vector rules.

Three rule phases. To make concrete this intuition about

the effectiveness of rules, Isaria arranges candidate rewrite

rules into three phases:

1. Expansion rules explore different ways of representing

an unvectorized program.

2. Compilation rules lower unvectorized parts of a pro-

gram onto vector instructions.

3. Optimization rules explore more efficient vectoriza-

tions of a vectorized program.

These phases roughly echo the workflow of a modern com-

piler, which applies independent optimizations at multiple

levels of intermediate representations rather than trying to

both lower and optimize the program at the same time.

The goal of these phases is to reduce the interference

effect discussed above. For example, we can resolve the two

problems in Section 2.3 by arranging for the three rules to be

in different phases, so that they are not saturated together.

Note that the names we give these phases have no semantic

meaning but are just convenient labels for the types of rules

typically involved. The important distinction between the

phases is their effects on the cost of the program, as described

next.

Cost-based phase assignment. Isaria assigns candidate
rewrite rules to phases by analyzing them with the abstract

cost model provided as input. The abstract cost model as-

signs a natural number cost to every program in the target

language (the DSP instruction set).

Definition 1 (Cost function). Let L be a target language. A
cost function is a function 𝐶 : L → N that assigns a cost to
each program in L.
The cost model represents the expected performance of the

program (e.g., cycle count). It need not be precise, but its faith-

fulness to the hardware affects the quality of the output of

an Isaria compiler, which chooses a vectorized program that

minimizes the cost function. Cost functions can be recursive.

For example, the cost of a Vec term needs to be proportional

to the cost of constructing the vector in hardware, and so

needs to incorporate the cost of its subexpressions—a con-

stant vector is cheaper to construct than one with distinct

intermediate values, which in hardware must be loaded into

a vector register one lane at a time.

As is common in equality-saturation-based compilers, we

require the cost function to be strictly monotonic to avoid
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the need to consider zero-cost variations of a program when

extracting the optimal solution from equality saturation (Sec-

tion 2.1).

Definition 2 (Strict monotonicity). A cost function 𝐶 is
strictly monotonic if, whenever a program 𝑃 ∈ L is a subex-
pression of another program 𝑄 ∈ L, 𝐶 (𝑃) < 𝐶 (𝑄).

Given a strictly monotonic cost function, Isaria’s phase se-

lection step assigns each candidate rewrite rule (Section 3.1)

to one of the three rule phases by analyzing the cost of both

sides of the rule. This analysis computes two metrics about

a candidate rule: its cost differential and its aggregate cost.

Definition 3 (Cost differential). Let 𝑃 ⇝ 𝑄 be a rewrite
rule, where 𝑃,𝑄 ∈ L. The cost differential of the rule 𝑃 ⇝ 𝑄 ,
written 𝐶𝐷 (𝑃 ⇝ 𝑄), is 𝐶 (𝑃) −𝐶 (𝑄).

Definition 4 (Aggregate cost). Let 𝑃 ⇝ 𝑄 be a rewrite rule,
where 𝑃,𝑄 ∈ L. The aggregate cost of the rule 𝑃 ⇝ 𝑄 , written
𝐶𝐴 (𝑃 ⇝ 𝑄), is 𝐶 (𝑃) +𝐶 (𝑄).

Isaria uses the cost differential and aggregate cost to assign

candidate rewrite rules to compilation phases using two

parameters 𝛼 and 𝛽 that are part of the cost model. The

assignment happens in two steps:

1. Rules with large cost differential 𝐶𝐷 (𝑃 ⇝ 𝑄) > 𝛼 are

compilation rules, because they are rules that signifi-

cantly lower the cost of the program.

2. Otherwise, rules with large aggregate cost 𝐶𝐴 (𝑃 ⇝
𝑄) > 𝛽 are expansion rules, while rules with small

aggregate cost 𝐶𝐴 (𝑃 ⇝ 𝑄) ≤ 𝛽 are optimization rules.

The intuition for this process is that rules with high cost

differential are likely to be rules that transition from scalar

to vector programs. For example, a rule like:

(Vec (+ 𝑎0 𝑏0) (+ 𝑎1 𝑏1))

⇝ (VecAdd (Vec 𝑎0 𝑎1) (Vec 𝑏0 𝑏1))

has much higher cost on the left-hand side than the right-

hand side, as the left-hand side does multiple scalar adds

versus one vector add. Rules with low cost differential are

likely scalar-to-scalar or vector-to-vector rules, and the cost

aggregate allows Isaria to distinguish those two cases and

assign them to the expansion or optimization phases, respec-

tively.

The parameters 𝛼 and 𝛽 control how Isaria allocates rules

to phases. In the limit, very high or low values of 𝛼 and 𝛽

reduce a Isaria compiler to a single phase, approximating

the Diospyros approach. In practice, these parameters can be

selected by inspecting the cost model. For example, 𝛽 should

be between the costs of a scalar and vector addition, and 𝛼

should be at least as big as the difference in cost of any two

scalar operations. We explore this further in Section 5.5.

An alternative strawman approach for assigning rules to

phases would be purely syntactic: look at whether the root

node of the AST on each side of the rule is scalar or vector

1: function Compile(P, R)

2: 𝐶Old ← Cost(𝑃)
3: loop
4: 𝐸 ← EGraph(𝑃)
5: 𝐸 ← EqSat(𝐸, 𝑅Expansion)
6: 𝐸 ← EqSat(𝐸, 𝑅Compilation)
7: 𝑃,𝐶New ← Extract(𝐸,𝐶)
8: if 𝐶New = 𝐶Old then
9: break
10: 𝐶Old ← 𝐶New

11: 𝐸 ← EGraph(𝑃)
12: 𝐸 ← EqSat(𝐸, 𝑅Optimization)
13: 𝑃, _← Extract(𝐸,𝐶)
14: return 𝑃

Figure 3. The Isaria compilation algorithm takes as input a

scalar program 𝑃 and returns a compiled program. Compile

is parameterized by a cost function 𝐶 and a set of phased

rewrite rules 𝑅 generated offline. The EGraph, EqSat, and

Extract procedures are provided by an E-graph library.

and categorize accordingly. While this approach is simple,

it fails in practice for two reasons. First, it struggles to deal

with Vec literals, which abstract data movement. Some Vec
rules are expansions, while others are compilation rules;

separating the two is important for tractability as shown

in Section 2.3. Second, it does not deal well with nested

rules, which automated synthesis tools like Ruler can often

generate. For example, a rule with VecAdd on both sides

might in fact be optimizing a scalar addition nested inside

an inner Vec literal, and so the rule is actually an expansion

rule (transforming the scalar part of a partially vectorized

program). Isaria’s cost-based approach automatically handles

these cases.

3.3 Scheduling Rule Phases at Compile Time
Once rule generation and phase discovery have been per-

formed offline, Isaria emits a compiler equipped with the

phased rule set. At compile time, this compiler takes as input

a scalar program, and vectorizes it by applying the rules. This

application process takes advantage of the phases inferred

in Section 3.2 to make equality saturation tractable.

Figure 3 shows the Isaria compilation algorithm. An Isaria

compiler is parameterized by a cost function𝐶 (Definition 1)

and the set of rewrite rules 𝑅 divided into phases using cost

function 𝐶 (Section 3.2), both of which are produced offline.

The same cost function is used for dividing rules into phases

and extraction. Given these parameters, Compile takes as

input a scalar program 𝑃 and applies multiple iterations of

equality saturation using different phases of rules, rather

than a single instance of equality saturation as in Diospyros.
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The Compile algorithm has two key elements that solve the

challenges in Section 2.3. First, it separates phases of com-

pilation, preventing expensive interference between rules.

Second, it prunes intermediate states of the E-graph to avoid

redundant exploration of paths to the same program.

Phase scheduling. Compile applies the three phases of
rewrite rules in separate calls to EqSat. First, at lines 5 and

6, it applies the expansion and then compilation rules in

sequence. This approach is distinct from a single equality

saturation on the union of the two rule sets, as it consid-

ers only rule orderings that first do expansion and then do

compilation. In essence, separating the expansion and com-

pilation phases creates an explore–exploit distinction, where

we first explore as many ways to rewrite the scalar program

as possible (ignoring vectorizations), and then try to exploit

that search to find a vectorization without considering fur-

ther scalar permutations. After these two phases complete

looping (discussed next), we apply a single phase of optimiza-

tion rules at line 12 to try to further improve the vectorized

program.

Pruning. Even after separating equality saturation into

multiple phases, compilation is still not tractable for the

benchmarks we use in Section 5 because the E-graph grows

too large to saturate in reasonable time. To address this explo-

sion, we introduce a pruning loop in the Compile algorithm.

The loop applies a timeout to the EqSat calls on lines 5 and

6, and then extracts (Section 2.1) a solution from the E-graph

at line 7 that minimizes our cost-function 𝐶 . If the extracted

program improves, we repeat the loop, starting from a fresh

E-graph containing only the extracted program. Eventually,

this loop stops improving the program, at which point we

break out and finish with optimization rules.

This loop has the effect of removing more expensive pro-

grams from the E-graph, focusing future loop iterations on a

profitable path of rewrites. This pruning is greedy, sacrificing

completeness by committing to a single rewrite path each

time around the loop, and so loses the ability to consider

other paths that might eventually reach cheaper solutions.

However, this exploration can still happen within a single

round of equality saturation. We show in Section 5.2 that

pruning makes compilation dramatically more tractable with

only minor impact on the optimality of compiled code.

4 Implementation
We implement the Isaria framework as an extension to the

Diospyros compiler [35], targeting the Tensilica Fusion G3

digital signal processor [5]. Specifically, Isaria reuses Diospy-

ros’s front-end, which lifts imperative DSP kernels into the

abstract expression language we use for rewrite rules, and

its back-end, which lowers that expression language onto

Fusion G3 intrinsics. Isaria replaces the manually written

Table 1. Lines of code for different components of Isaria,

excluding comments and empty lines.

Component LoC

ISA specification 73

Cost function 90

Offline framework 1113

Compile implementation 819

Total 2095

rewrite rules and custom rule application logic from Diospy-

ros with the Compile algorithm in Fig. 3. Like Diospyros,

Isaria uses the egg [37] library for E-graphs and equality

saturation. We also use the Ruler tool [18], which also builds

from egg, for synthesizing initial candidate rewrite rules.

Table 1 shows a breakdown of the lines of code in the Is-

aria framework. We separate out the inputs to Isaria (the ISA

specification and cost function) from the implementations

of the offline (Sections 3.1 and 3.2) and compile-time (Sec-

tion 3.3) parts. For our experiments in Section 5, we reuse

the ISA specification (Fig. 1) and cost function for the Fusion

G3 from Diospyros, but modify the cost function to more

closely reflect the cost of Vec expressions when lowered to

hardware.

5 Evaluation
We evaluate Isaria’s effectiveness as a technique for auto-

matically building vectorizing compilers by addressing five

research questions:

1. How does code compiled by Isaria-based compilers

compare to Diospyros and hand-written kernels, in

terms of performance and compile times? (Section 5.1)

2. How do Isaria’s rule phasing and pruning techniques

affect the tractability of compilation and the perfor-

mance of compiled code? (Section 5.2)

3. How does the amount of time spent in offline rule

generation affect the quality of Isaria-compiled code?

(Section 5.3)

4. How can Isaria help DSP engineers to explore potential

ISA customizations? (Section 5.4)

5. How do values of 𝛼 and 𝛽 affect performance of Isaria?

Benchmarks. The benchmarks used in our evaluation

are the same as those used by Diospyros [35]. They are a

collection of kernels inspired by use cases in computer vi-

sion and machine perception. For 2D convolution (2DConv),
matrix multiplication (Matrix Mul), and QR decomposition

(QrD) benchmarks, we compile a specialized kernel for each

of a range of input sizes, as most high-performance linear

algebra libraries will choose among several available imple-

mentations based on size. For the quarternion product (QP)
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benchmark we include only a single size commonly used in

pose estimation.

Methodology. To measure performance of compiled code,

we report cycle counts from Tensilica’s cycle-level simulator

for the Fusion G3 DSP, version 2021.8, in its default memory

configuration. We run rule synthesis and compilation exper-

iments on an AWS r5.8xlarge EC2 instance (Intel Xeon

Platinum 8259CL CPU, 16 cores/32 threads, 256GiB RAM)

running Ubuntu 22.04 with Linux 5.15.

Equality saturation tools are prone to either timing out or

running out of memory. In our default configuration we run

Isaria’s offline phase with a one day timeout, and a 220GiB

memory limit. Section 5.3 evaluates the impact of these time-

outs on the quality of the compiler. We also apply a 180

second timeout to individual EqSat calls at compile time;

increasing this timeout by 10× had minimal effect on our

results.

5.1 How does Isaria-compiled code compare to
existing compilers and hand-written kernels?

Figure 4 shows the performance of code compiled by the

Isaria-generated compiler for the Tensilica Fusion G3 across

our benchmark suite. We report speedup over an unvector-

ized C++ baseline compiled by the xt-clang Clang compiler

provided with version 2021.8 of the Xtensa toolchain for

the Fusion G3. We compare Isaria to three existing tools:

the same xt-clang compiler with auto-vectorization en-

abled, the hand-written Nature kernels provided with the

Tensilica SDK, and the output of the Diospyros [35] equality-

saturation-based compiler. Not all kernels have a Nature

comparison as the library omits some smaller irregular sizes.

Code compiled by Isaria performs comparably to the out-

put of Diospyros: Isaria kernels are an average of 34% faster,

but this average is skewed by large kernels where Diospy-

ros runs out of memory before finding a good vectorization.

Isaria kernels are 1.0–6.9× faster than expert-written Nature

kernels (mean of 3.5× and median of 4.8×). These results

show that Isaria produces similar results to state-of-the-art

DSP vectorization approaches despite the compiler being

generated automatically from an ISA specification. High-

quality automatic compiler generation makes it easy for de-

velopers to experiment with ISA extensions and quickly get

an accurate picture of the potential performance improve-

ments, as we evaluate in Section 5.4.

Since the results reported by the Diospyros paper [35], the

Tensilica toolchain’s Clang-based auto-vectorization appears

to have improved significantly, and so we report those results

separately to the Clang baseline in Figure 4. The evaluation

shows that it performs well for the regular kernels of matrix

multiplication and quarterion product, but is stymied by

more complex kernels. For large kernels, both Diospyros and

Isaria fall behind the hand-written Nature kernels, which

are able to use loops rather than unrolling the kernel.

Scalability to larger kernels. To probe the limits of Is-

aria’s scalability, we tested compiling larger 2DConv and

MatMul kernels. For 2DConv we were able to compile ker-

nels up to 30 × 30 with a 5 × 5 filter, and for MatMul up to

22 × 22, before the compiler ran out of memory. However,

although Isaria could compile these largest kernels, the Ten-

silica cycle-level simulator ran out of memory and so we

could not extract performance results. The compiled kernel

was for 2DConv was 77K lines of C in a single function, and

MatMul was 32K lines, because Isaria fully unrolls loops

to expose parallelization opportunities. These results show

that making Isaria scale to larger kernels would require the

ability to reason about and emit loops without unrolling.

Compile times. Figure 5 reports the time to compile our

benchmarks using both Isaria and Diospyros (we omit com-

pile times for the other baselines as they are mostly trivial).

Isaria’s automation comes with an average 2.1× slowdown
in compilation time. This slowdown is due to the larger size

of the Isaria-generated rewrite rules compared to Diospyros.

Although phasing and pruning reduce the impact of this size

difference (Section 5.2), Isaria compilation time is often domi-

nated by a small number of the calls to our equality saturation

engine at lines 5 and 6 in Figure 3. On average, a compilation

makes 6 calls to EqSat, but 1 or 2 of these calls take most

of the compile time. Overall, while Isaria compilation times

are worse than the manually written Diospyros compiler, we

believe the productivity gain from an automated compiler

framework is worth the trade-off.

5.2 Are rule phasing and pruning effective at
making compilation tractable?

Isaria uses rule phases (Section 3.2) and compile-time prun-

ing (Section 3.3) to make equality saturation tractable with

an automatically generated set of rewrite rules. To under-

stand the significance of these techniques, we experimented

with disabling them in the Isaria workflow.

Rule phases. We removed rule phases from Isaria by re-

placing Compile (Fig. 3) with just a single call to equality

saturation on the entire set of rules generated by Ruler. In this

configuration, even our smallest benchmark quickly runs out

of memory, and no benchmark successfully saturates. It is

possible to use intermediate states of the E-graph to extract

a solution during the search before running out of memory.

However, none of these solutions for any benchmark used

any vector instructions. Phases are therefore essential to

making Isaria practical on even the smallest benchmarks.

Pruning. We removed E-graph pruning from Isaria by

modifying Compile (Fig. 3) to retain the E-graph 𝐸 across

iterations of the loop at line 4, rather than creating a fresh

E-graph each time. This approach effectively alternates be-

tween expansion and compilation phases without discarding

the intermediate results.
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Figure 4. Performance of DSP kernels compiled by Isaria, compared to Clang auto-vectorization, the hand-written Nature

kernels provided with the Tensilica SDK, and the Diospyros [35] manually written compiler. We measure performance with a

cycle-level simulator, and normalize to a naive C++ loop nest implementation compiled by the Tensilica Clang-based toolchain

with auto-vectorization disabled.
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Figure 5. Compilation time for benchmarks using Diospy-

ros and Isaria. Benchmarks are in the same order as Fig. 4.

Striped bars indicate benchmarks that took longer than 800s

to complete. Isaria-based compilers are slower, but the pro-

cess of developing a Isaria compiler is far more automated, a

worthwhile productivity trade-off.

Figure 6 shows the improvement of enabling pruning in

both kernel performance and compile time across our 2D

convolution kernel benchmarks. In a majority of cases, dis-

abling pruning causes compilation to run out of memory

(indicated by stripes across the bars). For the smaller bench-

marks that succeed, disabling pruning can find a slightly

better kernel at the cost of more compile time. This is ex-

pected because, as described in Section 3.3, pruning gives

up some completeness in exchange for much better scalabil-

ity. For the larger benchmarks, pruning allows Isaria to go
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Figure 6. Improvement in kernel performance and compile

time with pruning enabled (Section 3.3). Striped bars ran

out of memory at compile time when pruning was disabled

(no benchmarks ran out of memory with pruning enabled).

Pruning gives up completeness on smaller kernels, finding

slightly worse results, but enables compiling much larger

kernels without running out of memory.

deeper into the search to find a faster program, because the

E-graph stays smaller.

This experiment highlights an interesting difference be-

tween synthesized and hand-written rewrite rules. When

inspecting these results, we found that the synthesized rules

were often “shortcut” rules that combine what would have

been several rules if naturally hand-written. Shortcuts are

a double-edged sword: they can cause the E-graph to grow

much more quickly by adding larger terms (risking running
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Figure 7. Impact of the timeout for rule generation on perfor-

mance of kernels compiled by Isaria. Investingmore time into

rule generation has little impact for small kernels, although

larger kernels benefit from finding more vectorization rules.

out of memory), but also allow the search to explore further

in fewer iterations. Pruning helps control the downside of

these rules while still enabling the upside of deeper explo-

ration.

5.3 How does time spent in offline rule generation
affect the quality of an Isaria compiler?

The Isaria workflow comprises an offline part, which synthe-

sizes and analyzes vectorization rewrite rules (Sections 3.1

and 3.2), and a compile-time part that applies those rules

(Section 3.3). Investing larger amounts of compute into the

offline part can improve the quality of the generated rewrite

rules by giving rule synthesis longer to explore. Since this

step runs only once per instruction set, rather than once per

compiled program, the cost of this additional compute can

be amortized over many compiled programs.

Figure 7 shows the performance of the 2D convolution

benchmarks as a function of the timeout for offline rule gen-

eration (other benchmarks follow a similar trend). In general,

investing more compute in rule generation has little benefit,

with up to 2.5× speedup (mean of 1.4×) by going from 60

seconds to 60,000 seconds. In fact, in a few small benchmark

cases, spending more time actually reduces the quality of the

compiler. These cases are dominated by VLIW scheduling

effects that are not captured by our abstract cost model, and

so a more accurate cost model would likely eliminate this

effect. At large benchmark sizes, investing more rule genera-

tion time improves compiler quality because the exploration

finds better vectorization rules for the compilation phase.

We have experimented with timeouts beyond one day but

did not see further improvements.

5.4 How can Isaria help DSP engineers to explore
potential ISA customizations?

Isaria’s automated compiler development intends to help

DSP engineers explore potential customizations and changes

to their instruction set. This customization is often neces-

sary to fit embedded applications within a power and per-

formance budget. Today, such customization is difficult, as it

requires co-designing a compiler that can make effective use

of the extra functionality. Isaria makes this process easier by

automatically incorporating the new instructions into the

compiler with high-quality vectorization.

We explored adding two new instructions to the Fusion G3

DSP as a way to illustrate this exploration process. Our focus

was on accelerating the QR decomposition benchmark. First,

we manually inspected the compiled code to identify poten-

tial instruction patterns that might benefit from hardening.

We decided to test two new customized instructions:

1. A vectorized multiply-subtract instruction VecMulSub,
like a multiply-accumuate but subtracting instead of

adding.

2. A vectorized square-root-sign-product instruction Vec-
SqrtSgn that computes

√
𝑎 × sign(−𝑏).

These unusual operations were common in QR decomposi-

tion, and so might benefit from vectorized variants.

To add new instructions to an Isaria compiler, the DSP

engineer need only add them to the ISA specification and

the cost model (Fig. 2). The ISA specification changes are

just a few lines of code in a Rosette interpreter; for example,

for VecSqrtSgn we add scalar and vector semantics:

(match inst
...
[(sqrt -sgn e1 e2) (* (sqrt e1) (sgn (- e2)))]
[(vector -sqrt -sgn e1 e2)

(for/list ([e1 v1] [e2 v2])
(sqrt -sgn e1 e2))]

...)

The cost model changes are similarly simple, just adding a

new case to the function 𝐶 (Definition 1).

With these changes made, we re-ran the offline part of

Isaria to synthesize a new compiler. To isolate the benefits

of each instruction, we synthesized compilers for all four

combinations of the two new instructions (both added, nei-

ther added, etc). This synthesis process is expensive—about

a day in Isaria’s default configuration—although Section 5.3

showed it can be sped up to minutes for exploration purposes

with little effect on the final results.

Finally, with the new compilers, we re-compiled the QR

decomposition benchmark and pushed the generated code

through the Fusion G3 cycle-level simulator. To make this

experiment easier, we did not add the new instructions to the

(closed-source) simulator, but instead replaced each instance

of them with an instruction that we expect would have the
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Table 2. Speedup of QR decomposition when the Fusion

G3 is customized with new VecMulSub and VecSqrtSgn in-

structions, normalized to the base instruction set. Each case

reflects a new compiler synthesized with Isaria after adding

the instruction(s) to the ISA specification and cost model.

VecMulSub No VecMulSub

VecSqrtSgn 2.0% 1.7%

No VecSqrtSgn 0.5% —

same cycle latency. Table 2 shows the speedup of the ker-

nels compiled by each of the four compilers. We see that the

VecSqrtSgn instruction improves QR decomposition perfor-

mance by 1.7%, while VecMulSub improves performance by

only 0.5%. Adding both instructions to the DSP improves

performance by 2%. Overall, these results demonstrate how

Isaria helps DSP engineers experiment with architecture

customizations without manually crafting compiler changes.

5.5 How sensitive is Isaria to the phase assignment
of rules?

Isaria allocates automatically synthesized rewrite rules into

three phases based on an analysis of their costs that depends

on two parameters 𝛼 and 𝛽 (Section 3.2). We chose the values

for these parameters manually in our experiments. Fig. 8

shows all 294 rules that Isaria generated for the Diospyros

language, plotted by their aggregate cost and cost differential,

alongwith ourmanually chosen values of𝛼 and 𝛽 . This graph

shows that the rules fall into clear clusters. Nonetheless, we

would prefer to generate the phase boundaries automatically

if possible.

To understand how sensitive Isaria is to these parameters

and how easy they would be to choose automatically, we

ran an ablation study over the parameter space for 𝛼 and 𝛽 .

Fig. 9 shows estimated cycle count for the 2d-conv 16
2 × 42

benchmark over a range of values for 𝛼 and 𝛽 . The large dark

space in this graph (darker is better) suggests that although

the 𝛼 and 𝛽 boundaries are important, they are not espe-

cially difficult to choose, with a wide space of high-quality

parameters. However, there are still regions of the space to

avoid. For example, in the top right corner of Fig. 9, Isaria

assigns all rules to the optimization phase, which reduces to

a single equality saturation that times out before finding a

good vectorized program.

6 Related Work
Vectorizing compilers. The Halide scheduling language

[26] has been extended to target DSPs [36], giving precise

(manual) control over the scheduling of loop nests. Franchetti

and Püschel [9] describe a term rewriting technique (not us-

ing equality saturation) that vectorizes small matrix kernels
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Figure 8. The 294 rules synthesized by Isaria for the Diospy-

ros language, plotted by their aggregate cost and cost differ-

ential (Section 3.2). Points are colored by the phase Isaria

assigns them to, and are jittered by 1 unit to better show

their distribution.
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Figure 9. Estimated cycle count for a range of 𝛼 , 𝛽 values on

the 2d-conv 16
2 × 42 benchmark. Compilation for the light

gray squares timed out after 180 seconds. The red square

highlights 𝛼 = 15, 𝛽 = 12.

as part of the SPIRAL project [25]. Neither of these tech-

niques deal well with irregular kernels like the ones we

target here. SLinGen [30], also part of the SPIRAL project,

does focus on small kernels, using hand-crafted templates

and autotuning. Diospyros [35] pioneered the technique of

using equality saturation to efficiently vectorize DSP code

and deal with irregular data patterns. It produces results

better than expert-written specialized kernels and vendor-

supplied libraries. However, as we have previously discussed,

tools like SLinGen and Diospyros still place a large burden

on the DSP engineer to come up with a good set of rewrite

rules. Isaria extends Diospyros with automatic rule synthesis

and phasing to automate the construction of DSP compilers.

Auto-vectorization techniques for general-purpose com-

pilers perform well in certain situations. Techniques range
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from vectorizing loops by automatically detecting dependen-

cies between iterations [2], to superword-level parallelism

that finds parallelism at the level of basic blocks [11, 16, 22].

What unites most of these techniques is that they focus on

regular kernels, and so benefit most from techniques such

as polyhedral loop nest analysis [34]. In contrast, Isaria (like

Diospyros) focuses on irregular or small kernels that are not

well supported by off-the-shelf libraries or general-purpose

auto-vectorization.

Rule synthesis. Isaria synthesizes a collection of rewrite

rules to automatically discover vectorization approaches. Be-

cause term rewriting systems are ubiquitous, rewrite rule

synthesis is a well studied problem. Nötzli et al. [21] syn-

thesize rewrite rules for an SMT solver’s simplification pass

using enumerative syntax-guided synthesis. SWAPPER [29]

synthesizes simplification rules for logic formulas from a

corpus of examples. Newcomb et al. [20] synthesize rewrite

rules for the Halide scheduling language [26] using a special-

ized synthesis pipeline. Ruler [18] is a more general-purpose

tool for synthesizing rewrite rules given a specification of

a term language. It uses equality saturation to improve the

speed and quality of rule synthesis. Isaria uses an extended

version of Ruler to generate an initial set of candidate rules,

but using this set off the shelf makes equality saturation in-

tractable, so we also introduce new techniques for mitigating

this explosion. We expect these techniques would generalize

to other applications of Ruler for compilation.

Rewrite-based optimizers. Outside the vectorization do-

main, a number of compiler optimization techniques use

rewrite rules in a similar style to Isaria. STOKE [28] uses

a Monte-Carlo Markov Chain (MCMC) sampler to search

the space of straight-line assembly code for faster imple-

mentations of a given code fragment. It uses local rewrites

like adding or deleting instructions as the proposal distribu-

tion for the MCMC search. Peephole optimizers [14, 15] are

widely used in compilers, and are essentially large corpuses

of rewrite rules. Souper [27] is a tool that automatically syn-

thesizes peephole optimizations by mining LLVM code for

common patterns.

7 Conclusion
Isaria is a framework for automatically generating a high-

quality vectorizing compiler for digital signal processors. At

the core of this automation are new insights into how to

automatically synthesize rewrite rules for a new architec-

ture, and how to schedule the application of those rules at

compile time to ensure tractability. We showed that Isaria-

based compilers generate high-quality code, often better than

hand-written examples and competitive with state-of-the-art

manually crafted auto-vectorizers. By automating compiler

generation, Isaria makes it easier for DSP engineers to ex-

periment with new instruction sets and application-specific

customizations.

7.1 Future Work
We anticipate future work to improve Isaria in three ways.

Continuing to scale. Today, Isaria’s scalability is bottle-

necked by aggressive inlining and unrolling, which produce

massive kernels. Even setting aside the effect of kernel size

on equality saturation, the Diospyros backend and Xtensa

toolchain struggle with our largest kernels. Two promis-

ing directions to look for scalability are to allow equality

saturation to optimize looping code, and to automatically

detect common sub-routines that can be factored out and op-

timized independently. Cranelift, an optimizing backend for

WebAssembly, uses E-graphs to implement a general com-

piler optimization framework [8]. Extending their encoding

of control flow to the vectorizing compiler domain would

be an interesting direction for future work. E-graphs have

also been used for library learning [6], which could be inte-

grated into Isaria to automatically identify common patterns

that would benefit from being factored out. Finally, Isaria

throws away the entire E-graph for every pruning operation

(line 7 in Fig. 3). We expect that we could save computation

and therefore improve scalability by throwing away only

“unimportant” parts of the E-graph at pruning time.

CPU architectures. We would also like to extend Isaria

beyond specialized DSP processors. CPUs have long used

specialized vector units to accelerate bulk computations, and

in principle Isaria could generate kernels for these archi-

tectures as well. We are particularly interested in exploring

compilation for ARM’s Scalable Vector Extension [31] where

the vector width is not fixed. We think that Isaria could help

automatically explore an optimal vector width configuration

for a particular program.

Better rule generation. Isaria can only generate rules

that operate on vector lanes uniformly. We would like to

explore extending the rule synthesis process so that we can

scalably support learning more complicated rules that move

data between lanes or compute across lanes. This would both

expand Isaria’s ability to find novel vectorizations, akin to

Swizzle Inventor’s ability to invent novel shuffles [24], and

reduce the complexity of the Diospyros backend.
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