
Scaling symbolic evaluation for automated
verification of systems code with Serval

Luke Nelson

University of Washington

James Bornholt

University of Washington

Ronghui Gu

Columbia University

Andrew Baumann

Microsoft Research

Emina Torlak

University of Washington

Xi Wang

University of Washington

Abstract
This paper presents Serval, a framework for developing au-

tomated verifiers for systems software. Serval provides an

extensible infrastructure for creating verifiers by lifting in-

terpreters under symbolic evaluation, and a systematic ap-

proach to identifying and repairing verification performance

bottlenecks using symbolic profiling and optimizations.

Using Serval, we build automated verifiers for the RISC-V,

x86-32, LLVM, and BPF instruction sets. We report our ex-

perience of retrofitting CertiKOS and Komodo, two systems

previously verified using Coq and Dafny, respectively, for

automated verification using Serval, and discuss trade-offs

of different verification methodologies. In addition, we apply

Serval to the Keystone security monitor and the BPF compil-

ers in the Linux kernel, and uncover 18 new bugs through

verification, all confirmed and fixed by developers.

ACM Reference Format:
Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Em-

ina Torlak, and Xi Wang. 2019. Scaling symbolic evaluation for

automated verification of systems code with Serval. InACM SIGOPS
27th Symposium on Operating Systems Principles (SOSP ’19), October
27–30, 2019, Huntsville, ON, Canada. ACM, New York, NY, USA,

18 pages. https://doi.org/10.1145/3341301.3359641

1 Introduction
Formal verification provides a general approach to proving

critical properties of systems software [48]. To verify the

correctness of a system, developers write a specification of its

intended behavior, and construct a machine-checkable proof

to show that the implementation satisfies the specification.

This process is effective at eliminating entire classes of bugs,

ranging from memory-safety vulnerabilities to violations of

functional correctness and information-flow policies [49].

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6873-5/19/10.

https://doi.org/10.1145/3341301.3359641

But the benefits of formal verification come at a consider-

able cost. Writing proofs requires a time investment that is

usually measured in person-years, and the size of proofs can

be several times or even more than an order of magnitude

larger than that of implementation code [49: §7.2].

The push-button verification approach [65, 74, 75] frees

developers from such proof burden through co-design of

systems and verifiers to achieve a high degree of automation,

at the cost of generality. This approach asks developers to

design interfaces to be finite so that the semantics of each in-

terface operation (such as a system call) is expressible as a set

of traces of bounded length (i.e., the operation can be imple-

mented without using unbounded loops). Given the problem

of verifying a finite implementation against its specification,

a domain-specific automated verifier reduces this problem
to a satisfiability query using symbolic evaluation [32] and

discharges the query with a solver such as Z3 [31].

While promising, this co-design approach raises three

open questions: How can we write automated verifiers that

are easy to audit, optimize, and retarget to new systems?

How can we identify and repair verification performance

bottlenecks due to path explosion? How can we retrofit sys-

tems that were not designed for automated verification? This

paper aims to answer these questions.

First, we present Serval, an extensible framework for writ-

ing automated verifiers. In prior work on push-button ver-

ification [65, 74, 75], a verifier implements symbolic evalu-

ation for specific systems, which both requires substantial

expertise and makes the resulting verifiers difficult to reuse.

In contrast, Serval developers write an interpreter for an

instruction set using Rosette [80, 81], an extension of the

Racket language [35] for symbolic reasoning. Serval lever-

ages Rosette to “lift” an interpreter into a verifier; we use the

term “lift” to refer to the process of transforming a regular

program to work on symbolic values [76].

Using Serval, we build automated verifiers for RISC-V [85],

x86-32, LLVM [54], and Berkeley Packet Filter (BPF) [37].

These verifiers are simple and easy to understand, and inherit

from Rosette vital optimizations for free, such as constraint

caching [18], partial evaluation [45], and state merging [52].

They are also reusable and interoperable; for instance, we ap-

ply the RISC-V verifier to verify the functional correctness of

1

https://doi.org/10.1145/3341301.3359641
https://doi.org/10.1145/3341301.3359641


SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Luke Nelson et al.

security monitors, and (together with the BPF verifier) to find

bugs in the Linux kernel’s BPF just-in-time (JIT) compilers.

Second, the complexity of systems software makes auto-

mated verification computationally intractable. In practice,

this complexity manifests as path explosion during symbolic

evaluation, which both slows down the generation of verifi-

cation queries and leads to queries that are too difficult for

the solver to discharge. A key to scalability is thus for veri-

fiers to minimize path explosion, and to produce constraints

that are amenable to solving with effective decision proce-

dures and heuristics. Both of these tasks are challenging, as

evidenced by the large body of research addressing each [5].

To address this challenge, Serval adopts recent advances in

symbolic profiling [13], a systematic approach to identifying

performance bottlenecks in symbolic evaluation. By manu-

ally analyzing profiler output, we develop a catalog of com-

mon performance bottlenecks for automated verifiers, which

arise from handling indirect branches, memory accesses, trap

dispatching, etc. To repair such bottlenecks, Serval intro-

duces a set of symbolic optimizations, which enable verifiers

to exploit domain knowledge to improve the performance of

symbolic evaluation and produce solver-friendly constraints

for a class of systems. As we will show, these symbolic opti-

mizations are essential to scale automated verification.

Third, automated verifiers restrict the types of properties

and systems that can be verified in exchange for proof au-

tomation. To understand what changes are needed to retrofit

an existing system to automated verification and the limi-

tations of this methodology, we conduct case studies using

two state-of-the-art verified systems: CertiKOS [30], a se-

curity monitor that provides strict isolation on x86 and is

verified using the Coq interactive theorem prover [79], and

Komodo [36], a security monitor that provides software en-

claves on ARM and is verified using the Dafny auto-active

theorem prover [56]. Our case studies show that the inter-

faces of such low-level, lightweight security monitors are

already finite, making them a viable target for Serval, even

though they were not designed for automated verification.

We port both systems to a unified platform on RISC-V.

The ported systems run on a 64-bit U54 core [73] on a HiFive

Unleashed development board. Like the original efforts, we

prove the monitors’ functional correctness through refine-

ment [53] and higher-level properties such as noninterfer-

ence [39]; unlike them, we do so using automated verifica-

tion of the binary images. We make changes to the original

interfaces, implementations, and verification strategies to

improve security and achieve proof automation, and sum-

marize the guidelines for making these changes. As with the

original systems, the ported monitors do not provide formal

guarantees about concurrency or side channels (see §3).

In addition, Serval generalizes to use cases beyond stan-

dard refinement-based verification. As case studies, we apply

Serval to two existing systems, the Keystone security mon-

itor [55] and the BPF JIT compilers targeting RISC-V and

x86-32 in the Linux kernel. We find a total of 18 new bugs,

all confirmed and fixed by developers.

Through this paper, we address the key concerns facing

developers looking to apply automated verification: the ef-

fort required to write verifiers, the difficulty of diagnosing

and fixing performance bottlenecks in these verifiers, and

the applicability of this approach to existing systems. Serval

enables us, with a reasonable effort, to develop multiple ver-

ifiers, apply the verifiers to a range of systems, and find pre-

viously unknown bugs. As an increasing number of systems

are designed with formal verification in mind [29, 55, 71, 88],

we hope that our experience and discussion of three rep-

resentative verification methodologies—CertiKOS, Komodo,

and Serval—will help better understand their trade-offs and

facilitate a wider adoption of verification in systems software.

In summary, the main contributions of this paper are as

follows: (1) the Serval framework for writing reusable and

scalable automated verifiers by lifting interpreters and ap-

plying symbolic optimizations; (2) automated verifiers for

RISC-V, x86-32, LLVM, and BPF built using Serval; and (3)

our experience retrofitting two prior security monitors to

automated verification and finding bugs in existing systems.

2 Related work
Interactive verification. There is a long and rich history of
using interactive theorem provers to verify the correctness

of systems software [48]. These provers provide expressive

logics for developers to manually construct a correctness

proof of an implementation with respect to a specification.

A pioneering effort in this area is the KIT kernel [8], which

demonstrates the feasibility of verification at the machine-

code level. It consists of roughly 300 lines of instructions and

is verified using the Boyer-Moore theorem prover [14].

The seL4 project [49, 50] achieved the first functional

correctness proof of a general-purpose microkernel. seL4 is

written in about 10,000 lines of C and assembly, and verified

using the Isabelle/HOL theorem prover [66]. This effort took

11 person-years, with a proof-to-implementation ratio of 20:1.

The proof consists of two refinement steps: from an abstract

specification to an executable specification, and further to the

C implementation. Assembly code (e.g., register save/restore

and context switch) and boot code are assumed to be correct

and unverified. Extensions include propagating functional

correctness from C to machine code through translation

validation [72], co-generating code and proof from a high-

level language [2, 67], and a proof of noninterference [64].

CertiKOS presents a layered approach for verifying the

correctness of an OS kernel with a mix of C and assembly

code [40]. CertiKOS adapts CompCert [58], a verified C com-

piler, to both reason about assembly code directly, as well as

prove properties about C code and propagate guarantees to

the assembly level. CertiKOS thus verifies the entire kernel,

including assembly and boot code, all using the Coq theorem

2



Scaling symbolic evaluation for automated verification of systems code with Serval SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

prover [79]. An extension of CertiKOS achieves the first func-

tional correctness proof of a concurrent kernel [41], which is

beyond the scope of this paper. We use the publicly available

uniprocessor version of CertiKOS, described by Costanzo

et al. [30], as a case study for retrofitting systems to auto-

mated verification; unless otherwise noted, “CertiKOS” refers

to this version. It includes a proof of noninterference.

Despite the manual proof burden, the expressiveness of in-

teractive theorem provers enables developers to verify prop-

erties of complex data structures, such as tree sequences in

the FSCQ file system [21, 22]. It is also effective in estab-

lishing whole-system correctness across layers. Two notable

examples are Verisoft [1], which provides formal guaran-

tees for a microkernel from source code down to hardware

at the gate level [9]; and Bedrock [24], which verifies web

applications for robots down to the assembly level.

Auto-active verification. In contrast to interactive theo-

rem provers, auto-active theorem provers [57] ask develop-

ers to write proof annotations [33] on implementation code,

such as preconditions, postconditions, and loop invariants.

The prover translates the annotated code into a verification

condition and invokes a constraint solver to check its validity.

The use of solvers reduces the proof burden for develop-

ers, whose task is instead to write effective annotations to

guide the proof search. This approach powers a variety of

verification efforts for systems software, such as security

invariants in ExpressOS [62] and type safety in the Verve

OS [87]. Ironclad [43] marks a milestone of verifying a full

stack from application code to the underlying OS kernel. The

verification takes two steps: first, developers write high-level

specifications, implementations, and annotations, all using

the Dafny theorem prover [56]; next, an untrusted compiler

translates the implementation to a verifiable form of x86

assembly, which the Boogie verifier [6] checks against a low-

level specification converted from the high-level Dafny one.

The final code runs on Verve. This effort took 3 person-years

and achieved a proof-to-implementation ratio of 4.8:1.

Komodo [36] is a verified security monitor for software

enclaves. It proves functional correctness and noninterfer-

ence properties that preclude the OS from affecting or being

influenced by enclave behavior. Like Ironclad, the specifica-

tion and some proofs are written in Dafny. Unlike Ironclad,

the implementation is written in a structured form of ARM

assembly using Vale [12], which enables Komodo to run on

bare hardware. We use Komodo as a case study in this paper.

Push-button verification. The push-button approach con-

siders automated verification as a first-class design goal for

systems, redirecting developers’ efforts from proofs to inter-

face design, specification, and implementation. To achieve

this goal, developers design finite interfaces that can be im-

plemented without using unbounded loops. An automated

verifier then performs symbolic evaluation over implemen-

tation code to generate constraints and invokes a solver for

verification. In contrast to auto-active verification, this ap-

proach favors proof automation by limiting the properties

and systems that can be verified. Examples of such systems

include the Yggdrasil file systems [74], Hyperkernel [65], and

extensions to information-flow control using Nickel [75].

These automated verifiers are implemented using Python,

with heuristics to avoid path explosion during symbolic eval-

uation. Inspired by these efforts, Serval builds on the Rosette

language [80, 81], which powers a range of symbolic reason-

ing tools [13: §5]. Rosette provides a formal foundation for

Serval, enabling a systematic approach for scaling both the

development effort and performance of automated verifiers.

Bugfinding. Both symbolic execution [27, 47] and bounded

model checking [10] can be used to find bugs in systems

code, using tools like KLEE [17], S2E [23], and SAGE [38];

see Baldoni et al. [5] for a survey. These tools are effective

at finding bugs, but usually cannot prove their absence.

It is possible to use bug-finding tools to exhaust all execu-

tion paths and thus do verification in some settings. Exam-

ples include verifying memory safety of a file parser using

SAGE [25] and verifying software dataplanes using S2E [34].

Like these tools, Serval uses symbolic evaluation to encode

the semantics of implementation code. Unlike them, Serval

provides refinement-based verification and more expressive

properties (e.g., functional correctness and noninterference).

To improve the performance of symbolic evaluation, re-

search has explored better heuristics for state merging [52]

and transformations of implementation code [16, 82]. Serval

uses symbolic profiling [13] to identify performance bottle-

necks in verifiers and provides symbolic optimizations that

exploit domain knowledge to repair these bottlenecks.

3 The Serval methodology
Our goal is to automate the verification of systems code.

This section illustrates how Serval helps achieve this goal by

providing an approach for building automated verifiers. We

start with an overview of the verification workflow (§3.1),

followed by an example of how to write, profile, and opti-

mize a verifier for a toy instruction set (§3.2), and how to

prove properties (§3.3). Next, we describe Serval’s support

for verifying systems code (§3.4). We end this section with a

discussion of limitations (§3.5).

3.1 Overview
Figure 1 shows the Serval verification stack. With Serval, de-

velopers implement a system using standard languages and

tools, such as C and gcc. Theywrite a specification to describe

the intended behavior of the system in the Rosette language,

which provides a decidable fragment of first-order logic:

booleans, bitvectors, uninterpreted functions, and quanti-

fiers over finite domains. Serval provides a library to simplify

the task of writing specifications, including state-machine

refinement and noninterference properties.

3



SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Luke Nelson et al.

Serval framework:

specification library, symbolic optimizations, support for systems code

Rosette:

symbolic evaluation, symbolic profiling, symbolic reflection

SMT solver:

constraint solving, counterexample generation

system

specification

RISC-V

instructions

x86-32

instructions

LLVM

instructions

BPF

instructions

RISC-V

verifier

x86-32

verifier

LLVM

verifier

BPF

verifier

Figure 1. The Serval verification stack. Curved boxes denote
verification input and rounded-corner boxes denote verifiers.

An automated verifier, also written in Rosette, reduces the

semantics of the implementation code (e.g., in the form of

machine instructions) into symbolic values through symbolic

evaluation. Like previous push-button approaches, this step

requires loops to be bounded [65], since otherwise symbolic

evaluation diverges. When symbolic evaluation is slow or

hangs, system developers invoke the Rosette symbolic pro-

filer [13]. The output identifies the parts of the verifier that

cause performance bottlenecks under symbolic evaluation,

but it still requires expertise to diagnose the root cause and

come up with a fix. Serval provides a set of reusable symbolic

optimizations that are sufficient to enable the verifiers from

Figure 1 to scale to all the systems studied in this paper. Sym-

bolic optimizations examine the structure of symbolic values

(via symbolic reflection [81: §2.3]) and use domain knowledge

to rewrite them to be more amenable to verification.

Serval employs Rosette to produce SMT constraints from

symbolic values (that encode the meaning of specifications

or implementations) and invoke a solver to check the satis-

fiability of these constraints for verification. If verification

fails (e.g., due to insufficient specification or incorrect imple-

mentation), the solver generates a counterexample, which is

visualized by Rosette for debugging.

We emphasize two benefits of the Serval approach. First,

it keeps the code and specification cleanly separated, which

allows system developers to use standard system languages

(C and assembly) and toolchains (gcc and binutils) for imple-

mentation; in contrast, other approaches require developers

to use specific compilers and languages that are tailored

for verification (§6). Second, Serval makes the proof steps

fully automatic, requiring no code-level annotations such as

loop invariants. This is made possible by requiring systems

to have finite interfaces, which enables Serval to generate

verification conditions using all-paths symbolic evaluation.

3.2 Growing an automated verifier
Serval comes with automated verifiers for RISC-V, x86-32,

LLVM, and BPF. Writing a new verifier in Serval boils down

instruction description semantics

ret end execution pc ← 0; halt

bnez rs, imm branch if nonzero pc ← if (rs , 0) then imm else pc + 1
sgtz rd, rs set if positive pc ← pc + 1; rd ← if (rs > 0) then 1 else 0

sltz rd, rs set if negative pc ← pc + 1; rd ← if (rs < 0) then 1 else 0

li rd, imm load immediate pc ← pc + 1; rd ← imm

Figure 2. An overview of the ToyRISC instruction set.

0: sltz a1, a0 ; a1 <- if (a0 < 0) then 1 else 0
1: bnez a1, 4 ; branch to 4 if a1 is nonzero
2: sgtz a0, a0 ; a0 <- if (a0 > 0) then 1 else 0
3: ret ; return
4: li a0, -1 ; a0 <- -1
5: ret ; return

Figure 3. A ToyRISC program for computing the sign of a0.

to writing an interpreter and applying symbolic optimiza-

tions. As an example, we use a toy instruction set called

ToyRISC (simplified from RISC-V), which consists of five

instructions (Figure 2). A ToyRISC machine has a program

counter pc and two integer registers, a0 and a1. For simplic-

ity, it does not have system registers or memory operations.

Figure 3 shows a program in ToyRISC, which computes the

sign of the value in register a0 and stores the result back in

a0, using a1 as a scratch register.

Writing an interpreter. Figure 4 lists the full ToyRISC in-

terpreter. It is written in the Rosette language. The syntax

is based on S-expressions. For example, (+ 1 pc) returns

the value of one plus that of pc. A function is defined using

(define (name args) body ...) and the return value is the re-

sult of the last expression in the body. For example, the fetch

function returns the result of (vector-ref program pc). Here

vector-ref and vector-set! are built-in functions for read-

ing and writing the value at a given index of a vector (i.e., a

fixed-length array), respectively.

At a high level, this interpreter defines the CPU state as

a structure with pc and a vector of registers regs. The core

function interpret takes a CPU state and a program, and

runs in a fetch-decode-execute loop until it encounters a ret

instruction. We assume the program is a vector of instruc-

tions that take the form of 4-tuples (opcode, rd, rs, imm); for

instance, “li a0, -1” is stored as (li, 0, #f,−1), where #f de-
notes a “don’t-care” value. The fetch function retrieves the

current instruction at pc, and the execute function updates

the CPU state according to the semantics of that instruction.

Functions provided by Serval are prefixed by “serval:”

for clarity. The ToyRISC interpreter uses two such functions:

bug-on specifies conditions under which the behavior is un-

defined (e.g., pc is out of bounds); and split-pc concretizes

a symbolic pc to improve verification performance, which

will be detailed later in this section.

Lifting to a verifier. The interpreter behaves as a regular
CPU emulator when it runs with a concrete state. For in-

stance, running it with the code in Figure 3 and pc = 0,a0 =
42,a1 = 0 results in pc = 0,a0 = 1,a1 = 0.

4



Scaling symbolic evaluation for automated verification of systems code with Serval SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

1 #lang rosette
2

3 ; import serval core functions with prefix "serval:"
4 (require (prefix-in serval: serval/lib/core))
5

6 ; cpu state: program counter and integer registers
7 (struct cpu (pc regs) #:mutable)
8

9 ; interpret a program from a given cpu state
10 (define (interpret c program)
11 (serval:split-pc [cpu pc] c
12 ; fetch an instruction to execute
13 (define insn (fetch c program))
14 ; decode an instruction into (opcode, rd, rs, imm)
15 (match insn
16 [(list opcode rd rs imm)
17 ; execute the instruction
18 (execute c opcode rd rs imm)
19 ; recursively interpret a program until "ret"
20 (when (not (equal? opcode 'ret))
21 (interpret c program))])))
22

23 ; fetch an instruction based on the current pc
24 (define (fetch c program)
25 (define pc (cpu-pc c))
26 ; the behavior is undefined if pc is out-of-bounds
27 (serval:bug-on (< pc 0))
28 (serval:bug-on (>= pc (vector-length program)))
29 ; return the instruction at program[pc]
30 (vector-ref program pc))
31

32 ; shortcut for getting the value of register rs
33 (define (cpu-reg c rs)
34 (vector-ref (cpu-regs c) rs))
35

36 ; shortcut for setting register rd to value v
37 (define (set-cpu-reg! c rd v)
38 (vector-set! (cpu-regs c) rd v))
39

40 ; execute one instruction
41 (define (execute c opcode rd rs imm)
42 (define pc (cpu-pc c))
43 (case opcode
44 [(ret) ; return
45 (set-cpu-pc! c 0)]
46 [(bnez) ; branch to imm if rs is nonzero
47 (if (! (= (cpu-reg c rs) 0))
48 (set-cpu-pc! c imm)
49 (set-cpu-pc! c (+ 1 pc)))]
50 [(sgtz) ; set rd to 1 if rs > 0, 0 otherwise
51 (set-cpu-pc! c (+ 1 pc))
52 (if (> (cpu-reg c rs) 0)
53 (set-cpu-reg! c rd 1)
54 (set-cpu-reg! c rd 0))]
55 [(sltz) ; set rd to 1 if rs < 0, 0 otherwise
56 (set-cpu-pc! c (+ 1 pc))
57 (if (< (cpu-reg c rs) 0)
58 (set-cpu-reg! c rd 1)
59 (set-cpu-reg! c rd 0))]
60 [(li) ; load imm into rd
61 (set-cpu-pc! c (+ 1 pc))
62 (set-cpu-reg! c rd imm)]))

Figure 4. A ToyRISC interpreter using Serval (in Rosette).

What is more interesting is that given a symbolic state,

Rosette runs the interpreter with a ToyRISC program un-

der symbolic evaluation; this encodes all possible behaviors
of the program, lifting the interpreter to become a verifier.

Consider the following code snippet:

(define-symbolic X Y integer?) ; X and Y are symbolic
(define c (cpu 0 (vector X Y))) ; symbolic cpu state
(define program ...) ; the sign program
(interpret c program) ; symbolic evaluation

pc 7→ 0

a0 7→ X
a1 7→ Y

s0

pc 7→ 1

a0 7→ X
a1 7→ 1

s1 pc 7→ 1

a0 7→ X
a1 7→ 0

s2

pc 7→ 1

a0 7→ X
a1 7→ ite(X < 0, 1, 0)

s3

0: sltz a1, a0

X < 0

0: sltz a1, a0

¬(X < 0)

pc 7→ 4

a0 7→ X
a1 7→ ite(X < 0, 1, 0)

s4 pc 7→ 2

a0 7→ X
a1 7→ ite(X < 0, 1, 0)

s5

pc 7→ ite(X < 0, 4, 2)
a0 7→ X
a1 7→ ite(X < 0, 1, 0)

s6

1: bnez a1, 4

X < 0

1: bnez a1, 4

¬(X < 0)

pc 7→ 4

a0 7→ X
a1 7→ ite(X < 0, 1, 0)

s7

split-pc

X < 0

pc 7→ 5

a0 7→ −1
a1 7→ ite(X < 0, 1, 0)

s8

pc 7→ 0

a0 7→ −1
a1 7→ ite(X < 0, 1, 0)

s9

4: li a0, -1

5: ret

pc 7→ 2

a0 7→ X
a1 7→ ite(X < 0, 1, 0)

s10

split-pc

¬(X < 0)

pc 7→ 3

a0 7→ 1

a1 7→ ite(X < 0, 1, 0)

s11 pc 7→ 3

a0 7→ 0

a1 7→ ite(X < 0, 1, 0)

s12

pc 7→ 3

a0 7→ ite(X > 0, 1, 0)
a1 7→ ite(X < 0, 1, 0)

s13

2: sgtz a0, a0

X > 0

2: sgtz a0, a0

¬(X > 0)

pc 7→ 0

a0 7→ ite(X > 0, 1, 0)
a1 7→ ite(X < 0, 1, 0)

s14

pc 7→ 0

a0 7→ ite(X < 0,−1, ite(X > 0, 1, 0))
a1 7→ ite(X < 0, 1, 0)

s15

3: ret

Figure 5. Symbolic evaluation of the sign program (Figure 3)

using the ToyRISC interpreter (Figure 4).

The snippet uses the built-in define-symbolic expression to

create two symbolic integers X and Y , which represent ar-

bitrary values of type integer. The two symbolic integers

are assigned to registers a0 and a1, respectively, as part of
a symbolic state. Figure 5 shows the process and result of

running the interpreter with the symbolic state. Here “ite”
denotes a symbolic conditional expression; for example, the

value of ite(X < 0, 1, 0) is 1 if X < 0 and 0 otherwise.

We give a brief overview of the symbolic evaluation pro-

cess. Like other symbolic reasoning tools [19], Rosette re-

lies on two basic strategies: symbolic execution [27, 47] and

boundedmodel checking [10]. The former explores each path

separately, which creates more opportunities for concrete

evaluation but can lead to an exponential number of paths;

the latter merges the program state at each control-flow join,

which creates compact encodings (polynomial in program

size) but can lead to constraints that are difficult to solve [52].

Rosette employs a hybrid strategy [81], which works well

in most cases. For instance, after executing sltz in Figure 5,

Rosette merges the states for the X < 0 and ¬(X < 0) cases,

resulting in a single state s3; without merging, it would have

to explore twice as many paths.

However, no single evaluation strategy is optimal for

all programs. This is a key challenge in scaling symbolic

tools [13]. For example, pc in state s6 becomes symbolic due

5



SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Luke Nelson et al.

to state merging of both cases of bnez. A symbolic pc slows
down the verifier—the fetch function will explore many in-

feasible paths—and can even prevent symbolic evaluation

from terminating, if the condition at line 20 in Figure 4 be-

comes symbolic and leads to unbounded recursion. To avoid

this issue, the verifier uses the split-pc symbolic optimiza-

tion to force a split on each possible (concrete) pc value.

Diagnosing performance bottlenecks. Suppose that the

code in Figure 4 did not invoke split-pc, causing verification

to be slow or even hang. How can we find the performance

bottleneck? This is challenging since common profiling met-

rics such as time or memory consumption cannot identify

the root causes of performance problems in symbolic code.

Symbolic profiling [13] addresses this challenge with a

performance model for symbolic evaluation. To find the bot-

tleneck in the ToyRISC verifier, we run it with the Rosette

symbolic profiler, which produces an interactive web page.

The page shows statistics of symbolic evaluation for each

function (e.g., the number of symbolic values, path splits,

and state merges), and ranks function calls based on a score

computed from these statistics to suggest likely bottlenecks.

We find the ranks particularly useful. For example, when

profiling the ToyRISC verifier without split-pc, the top

two functions suggested by the profiler are execute within

interpret and vector-ref within fetch. The first location is

not surprising as execute implements the core functionality,

but vector-ref is a red flag. Combined with the statistics

showing a large number of state merges in vector-ref, one

can conclude that this function explodes under symbolic eval-

uation due to a symbolic pc, producing a merged symbolic

instruction that represents all possible concrete instructions

in the program. This, in turn, causes the verifier to execute

every possible concrete instruction at every step.

Symbolic profiling offers a systematic approach for identi-

fying performance bottlenecks during symbolic evaluation.

However, symbolic profiling cannot identify performance

issues in the solver, which is beyond its scope. One such ex-

ample is the use of nonlinear arithmetic, which is inherently

expensive to solve [46]; one may adopt practice from prior

verification efforts to sidestep such issues [36, 43, 65].

Applying symbolic optimizations. Having identified veri-
fication performance bottlenecks, where and how should we

fix them? Optimizations in the solver are not effective for

fixing bottlenecks during symbolic evaluation. More impor-

tantly, fixing bottlenecks usually requires domain knowledge

not present in Rosette or the solver, such as the set of feasible

values for a symbolic pc.
Serval provides symbolic optimizations for a verifier to

fine-tune symbolic evaluation using domain knowledge. Do-

ing so can both improve the performance of symbolic evalua-

tion and reduce the complexity of symbolic values generated

by a verifier; the latter consequently leads to simpler SMT

constraints and faster solving.

As for the ToyRISC verifier, state merging on the pc slows
down symbolic evaluation, while state merging on other

registers is useful for compact encodings. Therefore, the

verifier applies split-pc to the program counter, leaving

registers a0 and a1 unchanged. After this change, vector-ref
disappears from the profiler’s output. We use this process

to identify other common bottlenecks and develop symbolic

optimizations (§4).

3.3 Verifying properties
With the ToyRISC verifier, we show examples of properties

that can be verified using Serval.

Absence of undefined behavior. As shown in Figure 4, a

verifier uses bug-on to insert checks based on undefined be-

havior specified by the instruction set. Serval collects each

bug-on condition and proves that it must be false under the

current path condition [84: §3.2.1]. Serval’s LLVM verifier

also reuses checks inserted by Clang’s UndefinedBehavior-

Sanitizer [78] to detect undefined behavior in C code.

State-machine refinement. Serval provides a standard def-
inition of state-machine refinement for proving functional

correctness of an implementation against a specification [53].

It asks system developers for four specification inputs: (1)

a definition of specification state, (2) a functional specifica-

tion that describes the intended behavior, (3) an abstraction

function AF that maps an implementation state (e.g., cpu in

Figure 4) to a specification state, and (4) a representation

invariant RI over an implementation state that must hold

before and after executing a program.

Consider implementation state c and the corresponding

specification state s such that AF(c) = s . Serval reduces the
resulting states of running the implementation from state c
and running the functional specification from state s to sym-

bolic values, denoted as fimpl(c) and fspec(s), respectively. It
checks that the implementation preserves the representation

invariant: RI (c) ⇒ RI (fimpl(c)). Refinement is formulated

so that the implementation and the specification move in

lock-step: (RI (c) ∧ AF(c) = s) ⇒ AF(fimpl(c)) = fspec(s).
For example, to prove the functional correctness of the sign

program in Figure 3, one may write a (detailed) specification

in Serval as follows:

(struct state (a0 a1)) ; specification state

; functional specification for the sign code
(define (spec-sign s)
(define a0 (state-a0 s))
(define sign (cond
[(positive? a0) 1]
[(negative? a0) -1]
[else 0]))

(define scratch (if (negative? a0) 1 0))
(state sign scratch))

; abstraction function: impl. cpu state to spec. state
(define (AF c)

(state (cpu-reg c 0) (cpu-reg c 1)))

; representation invariant for impl. cpu state
(define (RI c)

(= (cpu-pc c) 0))

6



Scaling symbolic evaluation for automated verification of systems code with Serval SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

This example shows one possible way to write a functional

specification. One may make the specification more abstract,

for example, by simply havocing a1 as a “don’t care” value,
or by further abstracting away the notion of registers.

Safety properties. As a sanity check on functional specifi-

cations, developers should prove key safety properties of

those specifications [69]. Safety properties are predicates on

specification states. This paper considers two kinds of safety

properties: one-safety properties that are predicates on a

single specification state, and two-safety properties that are

predicates on two specification states [77]. Serval provides

definitions of common one- and two-safety properties, such

as reference-count consistency [65: §3.3] and noninterfer-

ence properties [39], respectively.

Take the functional specification of the sign program as

an example. Suppose one wants to verify that its result de-

pends only on register a0, independent of the initial value
in a1. One may use a standard noninterference property, step
consistency [70], which asks for an unwinding relation ∼ over
two specification states s1 and s2:

(define (~ s1 s2)
(equal? (state-a0 s1) (state-a0 s2))) ; filter out a1

Step consistency is formulated as: s1 ∼ s2 ⇒ spec-sign(s1) ∼
spec-sign(s2). One may write it using Serval as follows:

(theorem step-consistency
(forall ([s1 struct:state]

[s2 struct:state])
(=> (~ s1 s2)

(~ (spec-sign s1) (spec-sign s2)))))

Serval’s specification library provides the forall construct

for writing universally quantified formulas over user-defined

structures (e.g., state).

3.4 Verifying systems code
Having illustrated how to verify a toy program with Serval,

we now describe how to extend verification to a real system.

Execution model. Figure 6 shows a typical execution sce-

nario of a system such as an OS kernel or a security monitor.

Upon reset, the machine starts in privileged mode, runs boot

code (either in ROM or loaded by the bootloader), and ends

with an exit to unprivileged mode. From this point, it al-

ternates between running application code in unprivileged

mode and running trap handlers in privileged mode (e.g.,

in response to system calls). Like many previously verified

systems [30, 36, 49, 65, 75], we assume that the system runs

on a single core, with interrupts disabled in privileged mode;

therefore, each trap handler runs in its entirety.

For automated verification, a Serval verifier reduces the

system implementation, which consists of trap handlers and

boot code, to symbolic values through symbolic evaluation.

For trap handlers, the verifier starts from an architecturally

defined state upon entering privileged mode. For instance,

it sets the program counter to the value of the trap-vector

reset
. . .

boot code trap handler

app code app code

Figure 6. System execution: the lower half and the higher

half denote execution in privileged and unprivileged modes,

respectively; and arrows denote privilege-level transitions.

register and general-purpose registers to hold arbitrary, sym-

bolic values, as it makes no assumptions about application

code. The verifier then performs symbolic evaluation over

the implementation until executing a trap-return instruction.

Similarly, for boot code, the verifier starts symbolic evalu-

ation from the reset state as defined by the architecture or

bootloader (e.g., the program counter holding a predefined

value), and ends upon executing a trap-return instruction.

A verifiermay implement a decoder to disassemble instruc-

tions from a binary image of the implementation. Serval’s

RISC-V verifier takes a validation approach [83: §5.3]: it in-

vokes objdump, a standard tool in binutils, to decode instruc-

tions; it also implements an encoder, which is generally sim-

pler and easier to audit than a decoder, and validates that

the encoded bytes of each decoded instruction matches the

original bytes in the binary image. Doing so avoids the need

to trust objdump, the assembler, or the linker.

Memory model. Serval provides a unified memory model

shared by verifiers. Thememorymodel specifies the behavior

of common memory access operations, such as load and

store. It supports low-level memory operations (e.g., byte-

addressing) and is amenable to automated verification.

The Serval memory model borrows ideas from KLEE [17]

and CompCert [59]. Like these models, Serval represents

memory as a set of disjoint blocks, enabling separate reason-

ing about updates to different blocks. Unlike them, Serval

allows system developers to choose an efficient represen-

tation for each block, by recursively constructing it using

three types of smaller blocks: structured blocks (a collec-

tion of blocks of possibly different types), uniform blocks

(a sequence of blocks of the same type), and cells (an un-

interpreted function over bitvectors); these block types are

analogous to structs, arrays, and integer types in C, respec-

tively. For instance, if the implementation accesses a memory

region mostly as an array of 64-bit bitvectors or struct types,

choosing a block of the same representation reduces the num-

ber of generated constraints in common cases, compared to a

naïve model that represents memory as a flat array of bytes.

To free system developers from manually choosing the

best memory representations, Serval automates the selection.

Using objdump, it scans the implementation’s binary image

and extracts top-level memory blocks from symbol tables

based on their addresses and sizes; for each top-level block, it

produces a memory representation using structured blocks,

7



SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Luke Nelson et al.

uniform blocks, and cells, based on types from debugging

information. The Serval library performs validity checks on

extracted representations (e.g., disjointness and alignment

of memory blocks) to avoid the need to trust objdump.

3.5 Assumptions and limitations
Serval assumes the correctness of its specification library, the

specifications written by system developers, the underlying

verification toolchain (Rosette and the solver), and hardware.

That said, we discovered two bugs in the U54 RISC-V CPU

and implemented workarounds (§6.4).

A verifier written using Serval is a specification of the

corresponding instruction set and is trusted to be correct.

Since such verifiers are also executable interpreters, we write
unit tests and reuse existing CPU validation tests [3] to im-

prove our confidence in their correctness. A verifier does

not need to trust the development toolchain (gcc and binu-

tils) if it supports verification on binary images, for example,

by implementing either a decoder or validation through an

encoder (e.g., Serval’s RISC-V verifier).

Serval does not support reasoning about concurrent code,

as it evaluates each code block in its entirety. We assume the

security monitors studied in this paper run on a single core

with interrupts disabled while executing monitor code; the

original systems made similar assumptions.

The U54 CPU we use is in-order and so not susceptible

to recent microarchitectural attacks [15, 51, 61]. But Serval

does not support proving the absence of information leakage

through such side channels.

Serval explicitly favors proof automation at the cost of

generality. It requires systems to be finite (e.g., free of un-

bounded loops) for symbolic evaluation to terminate; all

the systems studied in this paper satisfy this restriction. In

addition, it cannot specify properties outside the decidable

fragment of first-order logic supported by the specification

library (§3.1). The Coq and Dafny theorem provers employ

richer logics and can prove properties beyond the expres-

siveness of Serval, such as noninterference properties using

unbounded traces; in §6 we describe such examples and al-

ternative specifications that are expressible in Serval.

4 Scaling automated verifiers
Developing an automated verifier using Serval consists of

writing an interpreter to be lifted as a baseline verifier and

applying symbolic optimizations to this verifier to fine-tune

its symbolic evaluation. Knowing where and what symbolic

optimizations to apply is key to verification scalability—none

of the refinement proofs of the security monitors terminate

without symbolic optimizations (§6.4).

In this section, we summarize common verification per-

formance bottlenecks from our experience with using Serval

and how to repair them using symbolic optimizations. To

strike a balance between being able to generalize to a class of

systems and being effective in exploiting domain knowledge,

Serval provides a set of symbolic optimizations as a reusable

library that can be tailored for specific systems.

We highlight that symbolic optimizations occur during
symbolic evaluation, in order to both speed up symbolic

evaluation and reduce the complexity of generated symbolic

values. Other components in the verification stack perform

more generic optimizations: for example, both Rosette and

solvers simplify SMT constraints. Symbolic optimizations

are able to incorporate domain knowledge by exploiting the

structure of symbolic values, as detailed next.

Symbolic program counters. When the program counter

becomes symbolic, evaluation of subsequent instruction fetch

and execution wastes time exploring infeasible paths, result-

ing in complex constraints or divergence. Figure 5 shows

that state merging can create a symbolic pc in the form of

conditional ite values. The bottleneck is repaired by apply-

ing split-pc provided by Serval to the pc . This symbolic

optimization recursively breaks an ite value, evaluates each
branch separately using a concrete value, and merges the

results as more coarse-grained ite values; doing so effec-

tively clones the program state for each concrete value, max-

imizing opportunities for partial evaluation. A computed

address (e.g., a function pointer) can also cause the pc to
become an ite value and can be repaired similarly.

It is possible for a symbolic program counter to be wholly

unconstrained, for instance, if a system blindly jumps to

an address from untrusted sources without checking (i.e.,

an opaque symbolic value); in this case split-pc does not

apply and verification diverges. An unconstrained program

counter usually indicates a security bug in the system.

Applying split-pc before every instruction fetch is suffi-

cient for verifying all the systems studied in this paper. How-

ever, choosing an optimal evaluation strategy is challenging

in general andmay require exploiting domain-specific heuris-

tics [52], for example, by selectively applying split-pc to

certain program fragments.

Symbolic memory addresses. When a memory address is

symbolic (e.g., due to integer-to-pointer conversion or a com-

puted memory offset), it is difficult for a verifier to decide

which memory block the address refers to; in such cases,

the verifier is forced to consider all possible memory blocks,

which can be expensive [17]; some prior verifiers simply

disallow integer-to-pointer conversions [65: §3.2].

As an example, suppose the system maintains an array

called procs; each element is a struct proc of C0 bytes, and a

field f resides at offset C1 of struct proc. Given a symbolic

pid value and a pointer to procs[pid]. f (i.e., field f of the

pid-th struct proc), a verifier computes an in-struct offset to
decide what field this pointer refers to, with the following

symbolic value: (C0 × pid +C1)modC0. Subsequent memory

accesses with this symbolic value cause the verifier to pro-

duce constraints whose size is quadratic in the number of

8



Scaling symbolic evaluation for automated verification of systems code with Serval SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

fields, as it has to conservatively consider all possible fields

in the struct. Note that Rosette does not rewrite this symbolic

value toC1, because the rewrite is unsound due to a possible

multiplication overflow.

The root cause of this issue is a missed concretization [13]:

while procs[pid]. f in the source code clearly refers to field f ,
such information is lost in low-level memory address com-

putation. To reconstruct the information, Serval implements

the following symbolic optimization: it matches any sym-

bolic in-struct offset in the form of (C0 × pid +C1)modC0,

optimistically rewrites it to C1, and emits a side condition

to check that the two expressions are equivalent under the
current path condition; if the side condition does not hold,

verification fails. Doing so allows the verifier to produce

constraints with constant size for memory accesses. Serval

implements such optimizations for common forms of sym-

bolic addresses in the memory model (§3.4); all the verifiers

inherit these optimizations for free.

Symbolic system registers. Low-level systems manipulate

a number of system registers, such as a trap-vector register

that holds the entry address of trap handlers and memory

protection registers that specify memory access privileges.

Verifying such systems requires symbolic evaluation of trap

handlers starting from a symbolic state (§3.4), where system

registers hold symbolic values. As the specification of system

registers is usually complex (e.g., they may be configured in

several ways), symbolic evaluation using symbolic values

in system registers can explore many infeasible paths and

produce complex constraints, leading to poor performance.

However, many system registers are initialized to some

value in boot code and never modified afterwards [28], such

as a fixed address in the trap-vector register. To speed up ver-

ification by exploiting this domain knowledge, Serval reuses

the representation invariant, which is written by system de-

velopers as part the refinement proof, to rewrite symbolic

system registers (or part of them) to take concrete values.

Monolithic dispatching. Trap dispatching is a critical path
in OS kernels and security monitors for handling exceptions

and system calls. Upon trap entry, dispatching code examines

a register that holds the cause (e.g., the system-call number)

and invokes a corresponding trap handler. Symbolic eval-

uation over trap dispatching produces a large, monolithic

constraint that encodes all possible trap handlers, since the

cause register holds an opaque symbolic value for verifi-

cation. Proving a property that must hold across trap dis-

patching is difficult since the solver lacks information to

decompose the problem into more manageable parts.

Serval provides split-cases to decompose verification

properly using domain knowledge. Given a symbolic value x ,
this optimization asks system developers for a list of concrete

values C0,C1, . . . ,Cn−1, such as system-call numbers, and

rewrites x to the following equivalent form using ite values:
ite(x = C0,C0, ite(x = C1,C1, . . . ite(x = Cn−1,Cn−1, x) . . . )).

component (in Rosette) lines of code

Serval framework 1,244

RISC-V verifier 1,036

x86-32 verifier 856

LLVM verifier 789

BPF verifier 472

total 4,397

Figure 7. Lines counts of the Serval framework and verifiers.

Similarly to split-pc, it then proves a property using con-

straints produced by symbolic evaluation of each branch.

Note x appears in the last branch of the generated ite, which
makes this rewrite sound. But it also means that the optimiza-

tion leads to effective partial evaluation only when applied

to dispatching code that itself consists of a set of paths con-

ditioned on the concrete values C0,C1, . . . ,Cn−1. Applied to

such code, this optimization avoids a monolithic constraint

and enables reasoning about each trap handler separately.

5 Implementation
Figure 7 shows the code size for the Serval framework and

the four verifiers built using Serval, all written in Rosette.

The RISC-V verifier implements the RV64I base integer in-

struction set and two extensions, “M” for integer multipli-

cation and division and “Zicsr” for control and status regis-

ter (CSR) instructions. The x86-32 verifier models general-

purpose registers only and implements a subset of instruc-

tions used by the Linux kernel’s BPF JIT for x86-32. The

LLVM verifier implements the same subset of LLVM as the

one in Hyperkernel [65: §3.2]. The BPF verifier implements

the extended BPF instruction set [37], with limited support

for in-kernel helper functions.

As a comparison, prior push-button LLVM verifiers [65,

75] consist of about 3,000 lines of Python code and lack

corresponding optimizations. This shows that verifiers built

using Serval are simple to write, understand, and optimize.

6 Retrofitting for automated verification
As case studies on retrofitting systems for automated verifica-

tion, we port CertiKOS (x86) and Komodo (ARM) to a unified

RISC-V platform and make changes to their interfaces, imple-

mentations, and verification strategies accordingly; we use

superscript “s” to denote our ports, CertiKOS
s
and Komodo

s
.

Like the original efforts, we prove functional correctness and

noninterference properties, using Serval’s RISC-V verifier

on the CertiKOS
s
and Komodo

s
binary images. This section

reports our changes and discusses the trade-offs of the three

verification methodologies.

6.1 Protection mechanisms on RISC-V
As shown in Figure 8, both CertiKOS

s
and Komodo

s
run

in machine mode (M-mode), the most privileged mode on

9



SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Luke Nelson et al.

process process process

security monitor

app app

OS kernel

enclave

security monitorM-mode

S-mode

U-mode

(a) CertiKOSs (b) Komodo
s

Figure 8. Two security monitors ported to RISC-V (shaded

boxes), which aim to protect legitimate components (white

boxes) from adversaries (crosshatched boxes).

RISC-V, eliminating the need to further trust lower-level

code. Processes or enclaves run in supervisor mode (S-mode),

rather than in user mode (U-mode) as in the original systems;

doing so enables them to safely handle exceptions [7, 65].

The monitors utilize physical memory protection (PMP)

and trap virtual memory (TVM) on RISC-V [85]. PMP allows

M-mode to create a limited number of physical memory re-

gions (up to 8 on a U54 core) and specify access privileges

(read, write, and execute) for each region; the CPU performs

PMP checks in S- or U-mode. TVM allows M-mode to trap

accesses in S-mode to the satp register, which holds the ad-

dress of the page-table root. We will describe how CertiKOS
s

and Komodo
s
use the two mechanisms later in this section.

For verification, we apply Serval’s RISC-V verifier to mon-

itor code running in M-mode, with a specification of PMP

and a three-level page walk to model memory accesses in

S- or U-mode; we do not explicitly reason about (untrusted)

code running in S- or U-mode.

We do not consider direct-memory-access (DMA) attacks

in this paper, where adversarial devices can bypass mem-

ory protection to access physical memory. RISC-V currently

lacks an IOMMU for preventing DMA attacks. We expect

protection mechanisms similar to previous work [71] to be

sufficient once an IOMMU is available.

6.2 CertiKOS
CertiKOS as described by Costanzo et al. [30] provides strict

isolation amongmultiple processes on x86. It imposes a mem-

ory quota on each process, which may consume memory or

spawn child processes within its quota. It statically divides

the process identifier (PID) space such that each process

identified by pid owns and allocates child PIDs only from

the range [N × pid + 1,N × pid +N ], where N is configured

as the maximum number of children a process can spawn.

There is no inter-process communication or resource recla-

mation. A cooperative scheduler cycles through processes

in a round-robin fashion. The monitor interface consists of

the following calls:

• get_quota: returns current process’s memory quota;

• spawn(elf _id, quota): creates a child process using an ELF

file identified by elf _id and a specified memory quota, and
returns the PID of the child process; and

• yield: switches to the next process.

process1 process2 process3

op
1

op
2

op
3

yield1→2 yield2→3

yield3→1

Figure 9. Actions by processes in CertiKOS; opi denotes
either get_quota, spawn, or a memory access by process i .

Security. CertiKOS formalizes its security using noninter-

ference, specifically, step consistency (§3.3). The intuition is

that a process should behave as if it were the only process in

the system. To categorize the behavior of processes, we say a

small-step action to mean either a monitor call or a memory

access by a process; and a big-step action to mean either a

small-step action that does not change the current process,

or a sequence consisting of a yield from the current process,

a number of small-step actions from other processes, and a

yield back to the original process. Take Figure 9 for example:

both “op
1
” and “yield

1→2
; op∗

2
; yield

2→3
; op∗

3
; yield

3→1
” are

big-step actions (star indicates zero or more actions).

Using step consistency, CertiKOS proves that the execu-

tion of any big-step action by a process should depend only

on the portion of the system state observable by that pro-

cess (e.g., the registers and memory it has access to). More

formally, we say that two system states s1 and s2 are indis-
tinguishable to a process p, denoted as s1 ∼p s2, to mean

that the portions of the states observable to p are the same.

Let step(s,a) denote the resulting state of executing action a
from state s . Step consistency is formulated so that a pro-

cess p invoking any big-step action a from two indistinguish-

able states s1 and s2 must result in two indistinguishable

states: s1 ∼p s2 ⇒ step(s1,a) ∼p step(s2,a).
This noninterference specification describes the behavior

of each process from the point at which it is spawned. It

rules out information flows between any two existing pro-

cesses. However, it does not restrict information flows from

a process to its newly created child during spawn.

The CertiKOS methodology. CertiKOS takes a modular ap-

proach to decompose the system into 32 layers: the top layer

is an abstract, functional specification of the monitor and the

bottom layer is an x86 machine model. Each layer defines an

interface of operations; except for the bottom layer, a layer

also includes an implementation, which is a module of the

system written in a mixture of C and x86 assembly using the

operations from lower layers.

CertiKOS’ developers design the layers and split the sys-

tem implementation into the layers, and write interface spec-

ifications and proofs in Coq. Given an implementation in C,

they use the clightgen tool from the CompCert compiler [58]

to translate it into a Coq representation of an abstract syntax

tree (AST) in the Clight intermediate language [11]. Each

layer proves that the implementation refines the interface.

10



Scaling symbolic evaluation for automated verification of systems code with Serval SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

CertiKOS obtains a proof of functional correctness by com-

posing the refinement proofs across the layers.

CertiKOS proves noninterference over the functional spec-

ification at the top layer and augments each layer with a

proof that refinement preserves noninterference; doing so

propagates the guarantee to the bottom layer. Proving non-

interference boils down to proving step consistency for any

big-step action. CertiKOS decomposes the proof into prov-

ing three separate properties, each about a single, small-step
action [30: §5]. The three properties are the following, using

process1 in Figure 9 as an example:

• If process1 performs a small-step action (op1 or yield1→2
)

from two indistinguishable states, the resulting states must

be indistinguishable.

• If any process other than process1 performs a small-step

action (op
2
, yield

2→3
, or op

3
), the states before and after

the action must be indistinguishable to process1.

• If process1 is yielded to (yield3→1
) from two indistinguish-

able states, the resulting states must be indistinguishable.

By induction, the three properties together imply step con-

sistency for any big-step action of process1.

CertiKOS uses CompCert to compile the Clight AST to an

x86 assembly AST; this process is verified to be correct by

CompCert. It then pretty-prints assembly code and invokes

the standard assembler and linker to produce the final binary;

the pretty printer, assembler, and linker are trusted to be

correct. To ensure consistency between the verified code and

the proof, CertiKOS’ developers delete the original C code

and keep the Clight AST in Coq only.

CertiKOS extends CompCert for low-level reasoning; read-

ers may refer to Gu et al. [40] for details. Below we describe

two examples. One, CompCert models memory as an in-

finite number of blocks [59]. This model does not match

systems where the memory is limited. CertiKOS alleviates

this by using a single memory block of fixed size to repre-

sent the entire memory state; this also simplifies reasoning

about virtual address translation. Two, CompCert assumes

a stack of infinite size, while CertiKOS uses a 4KiB page

as the stack for executing monitor calls. To rule out stack

overflows, CertiKOS checks the stack usage at the Clight

level and augments CompCert to prove that stack usage is

preserved during compilation [20].

Retrofitting. Themonitor interface of CertiKOS is finite and

amenable to automated verification. We make two interface

changes to close potential covert channels.

First, CertiKOS’ specification of spawn models loading an

ELF file as a no-op and does not deduct the memory quota

consumed by ELF loading; as a result, the quota in the speci-

fication does not match that in the implementation. This is

not caught by the refinement proof because CertiKOS trusts

ELF loading to be correct and skips the verification of its

implementation. One option to fix the mismatch is to ex-

plicitly model memory consumed by ELF loading, but this

complicates the specification due to the complexity of ELF.

CertiKOS
s
chooses to remove ELF loading from the monitor

so that spawn creates a process with minimum state, similarly

to Hyperkernel [65: §4.2]; ELF loading is delegated to an un-

trusted library in S-mode instead. This also removes the need

to trust the unverified ELF loading implementation—any bug

in the S-mode library is confined within that process.

Second, spawn in CertiKOS allocates consecutive PIDs: it

designatesN×pid+nr_children+1 as the child PID, where pid
identifies the calling process and nr_children is the number

of children it has spawned so far. This scheme mandates that

a process disclose its number of children to the child; that is, it

allows the child to learn information about an uncooperative

parent process through a covert channel. This is permitted

by CertiKOS’ noninterference specification, which does not

restrict parent-to-child flows in spawn. CertiKOSs eliminates

this channel by augmenting spawn with an extra parameter

that allows the calling process to choose a child PID; spawn

fails if the calling process does not own the requested PID.

Note that this change does not allow the calling process to

learn any secret about other processes, as the ownership of

PIDs is statically determined and public.

For implementation, CertiKOS
s
provides the samemonitor

calls as CertiKOS, except for the above two changes to spawn;

a library in S-mode provides compatibility, allowing us to

simply recompile existing applications to run on CertiKOS
s
.

Compared to the original system, there are two main differ-

ences in the implementation of CertiKOS
s
. First, CertiKOS

uses paging for memory isolation. To make it easier to im-

plement ELF loading in S-mode, CertiKOS
s
configures the

PMP unit to restrict each process to a contiguous region of

physical memory and delegates page-table management to

S-mode; the size of a process’s region equals its quota. The

use of PMP instead of paging does not impact the flexibility

of the system, as CertiKOS does not support memory recla-

mation. Second, CertiKOS
s
uses a single array of struct proc

to represent the process state, whereas CertiKOS splits it

into multiple structures across layers.

For verification, Serval proves the functional correctness

of CertiKOS
s
following the steps outlined in §3.4. As for non-

interference, we cannot express CertiKOS’ specification in

Serval, because it uses a big-step action, which can contain an

unbounded number of small-step actions (§3.5). Instead, we

prove two alternative noninterference specifications that are

expressible in Serval. First, as mentioned earlier, CertiKOS de-

velops three properties that together imply noninterference;

each property reasons about a small-step action. We reuse

and prove these properties as the noninterference specifica-

tion for CertiKOS
s
. In addition, we prove the noninterference

specification developed in Nickel [75]; it is also formulated as

a set of properties, each using a small-step action. This spec-

ification supports a more general form of noninterference

called intransitive noninterference [64, 70], which enabled

us to catch the PID covert channel in spawn.

11



SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Luke Nelson et al.

6.3 Komodo
Komodo [36] is a software reference monitor that imple-

ments an SGX-like enclave mechanism on an ARM Trust-

Zone platform in verified assembly code. The Komodo moni-

tor runs in TrustZone’s secure world, and is thus isolated from
an untrusted OS. It manages secure pages, which can be used

only by enclaves; and insecure pages, which can be shared by

the OS and enclaves. Komodo provides two sets of monitor

calls: one used by the OS to construct, control the execution

of, and communicate with enclaves; and the other used by an

enclave to perform remote attestation, dynamically manage

enclave memory, and communicate with the OS.

Below we briefly describe the lifetime of an enclave in

Komodo. For construction, the OS first creates an empty en-

clave and page-table root using InitAddrspace. It adds to the

enclave a number of idle threads using InitThread, 2nd-level

page tables using InitL2PTable, and secure and insecure data

pages using MapSecure and MapInsecure, respectively. Upon

completion, the OS switches to enclave execution by invok-

ing either Enter to run an idle thread or Resume to continue a

suspended thread. Control returns to the OS upon an enclave

thread either invoking Exit or being suspended (e.g., due to

an interrupt). For reclamation, theOS invokes Stop to prevent

further execution in an enclave and Remove to free its pages.

Security. Like CertiKOS (§6.2), Komodo specifies noninter-

ference as step consistency with big-step actions. A big-step

action in Komodo both starts and ends with the OS. For exam-

ple, both “op
OS
” and “EnterOS→1; op∗1; Exit1→OS” in Figure 10

are big-step actions. Unlike CertiKOS, Komodo considers two

types of observers: (1) an enclave and (2) an adversary consist-
ing of the OS with a colluding enclave. The intuition is that

an adversary can neither influence nor infer secrets about

any big-step action. Formally, noninterference is formulated

so that any big-step action a from two indistinguishable

states s1 and s2 to an observer L must result in two indistin-

guishable states to L: s1 ∼L s2 ⇒ step(s1,a) ∼L step(s2,a).
A subtlety is that Komodo permits legitimate informa-

tion flows (e.g., intentional declassification [60]) between

an enclave and the OS, which violates step consistency. For

example, an enclave can return an exit value, which declassi-

fies part of its data. Komodo addresses this issue by relaxing

its noninterference specification with additional axioms.

The Komodomethodology. Komodo’s developers first built

an unverified prototype of the monitor in C, before using a

combination of the Dafny [56] and Vale [12] languages to

specify, implement, and verify the monitor. Specifications

are written in Dafny, including a formal model of a subset of

the ARMv7 instruction set, the functional specification of the

security monitor, and the specification of noninterference.

Themonitor’s implementation is written in Vale, and consists

of structured assembly code together with proof annotations,

such as pre- and post-conditions and invariants.

enclave1 enclave2

OS

op
OS

op
1

op
2

Exit1→OS

Enter/ResumeOS→1

Exit2→OS

Enter/ResumeOS→2

Figure 10. Actions by enclaves and the OS in Komodo; opi
and op

OS
denote either monitor calls or memory accesses by

enclave i and by the OS, respectively.

To simplify proofs about control flow, the ARM specifica-

tion does not explicitly model the program counter; there are

no jump or branch instructions. Instead, it models structured

control flow: if-statements, while-loops, and procedure calls

that correspond to language features in Vale.

The Vale tool is not trusted. It emits a Dafny representation

of the program, alongwith a purported proof (generated from

the annotations) of its correctness, which are checked by

the Dafny theorem prover. A small (trusted) Dafny program

pretty-prints the assembly code for the verified monitor by

emitting the appropriate labels and jump instructions, and

inlining subprocedure bodies at call sites.

The Komodo implementation uses Vale similarly to a

macro assembler with proof annotations. Each procedure

consists of a small number of instructions (typically 10 or

fewer, to maintain acceptable verification performance), with

explicit Hoare-style pre- and post-conditions. Procedures

take explicit arguments referring to concrete operands (ma-

chine registers or compile-time constants) and abstract val-

ues (“ghost variables”) that are used in proof annotations but

do not appear in the final program.

Register allocation is managed by hand. Low-level proce-

dures with many call-sites (e.g., the procedure that updates a

page-table entry) take their parameters in arbitrary registers

with explicit preconditions that require the registers to be

disjoint. Higher-level procedures (e.g., portions of the sys-

tem call handlers) use explicit hard-coded register allocations.

This makes code reuse challenging, but improves verification

times, since the verifier need not consider the alternatives.

In practice, it is manageable for a RISC architecture with a

large register set, but cumbersome.

Retrofitting. Komodo
s
is a RISC-V port of the unverified

C prototype of Komodo. We choose the C prototype over

the Vale implementation because it is easier to reuse and

understand. The C prototype lacks attestation and SGX2-like

dynamic memory management [63], and so does Komodo
s
.

The Komodo interface is finite and amenable to automated

verification. We make two changes to account for architec-

tural differences between ARM and RISC-V. First, because

RISC-V has three-level paging (unlike ARM, which has two

levels), we add a new InitL3PTable call for allocating a 3rd-

level page table. Second, we change the page mapping calls,

12



Scaling symbolic evaluation for automated verification of systems code with Serval SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

MapSecure and MapInsecure, to take the physical page num-

ber of a 3rd-level page table and a page-table entry index,

instead of a virtual address as in Komodo. This change avoids

increasing the complexity of page walks in the monitor due

to three-level paging, and is similar to seL4 [49], Hyperker-

nel [65], and other page-table management calls in Komodo.

For implementation, Komodo
s
combines PMP, paging,

and TVM to achieve memory isolation, as follows. First, it

configures the PMP unit to prevent the OS from accessing

secure pages. Second, the interface of Komodo
s
controls

the construction of enclaves’ page tables, similarly to that

of Komodo; this prevents an enclave from accessing other

enclaves’ secure pages or its own page-table pages. Third,

Komodo
s
executes enclaves in S-mode; it uses TVM to pre-

vent enclaves from modifying the page-table root (§6.1).

Komodo
s
reuses Komodo’s architecture-independent code

and data structures. We additionally modify Komodo
s
by

replacing pointers with indices in struct fields. This is not

necessary for verification, but simplifies the task of spec-

ifying representation invariants for refinement (§3.3). For

instance, it uses a page index rather than a pointer to the

page; this avoids specifying that the pointer is page-aligned.

Verifying the functional correctness of Komodo
s
is similar

to verifying that of CertiKOS
s
. For noninterference, we can-

not express Komodo’s specification in Serval due to the use of

big-step actions. Since Komodo does not provide properties

using small-step actions as in CertiKOS, we prove Nickel’s

specification instead [75]. However, it is difficult to directly

compare the two noninterference specifications, especially

when they are written in different logics and tools. We con-

struct litmus tests to informally understand their guarantees.

For example, both specifications preclude the OS from learn-

ing anything about the contents of memory belonging to a

finalized enclave. However, the noninterference specification

of Komodo permits, for instance, the specification of a moni-

tor call that overwrites enclave memory with zeros, while

that of Komodo
s
precludes it. Note that such bugs are pre-

vented in Komodo’s functional specification. There may also

exist bugs precluded by the noninterference specification of

Komodo but not by that of Komodo
s
.

6.4 Results
Figure 11 summarizes the sizes of CertiKOS

s
and Komodo

s
,

including both the implementations (in C and assembly) and

the specifications (in Rosette); and verification times using

the RISC-V verifier on an Intel Core i7-7700K CPU at 4.5 GHz,

broken down by theorem and gcc’s optimization level for

compiling the implementations.

Porting and verifying the two systems using Serval took

roughly four person-weeks each. The time is reduced by the

fact that we benefit from being able to reuse the original

systems’ designs, implementations, and specifications. With

automated verification, we focused our efforts on developing

specifications and symbolic optimizations, as follows.

CertiKOS
s

Komodo
s

lines of code:
implementation 1,988 2,310

abs. function + rep. invariant 438 439

functional specification 124 445

safety properties 297 578

verification time (in seconds):
refinement proof (-O0) 92 275

refinement proof (-O1) 138 309

refinement proof (-O2) 133 289

safety proof 33 477

Figure 11. Sizes and verification times of the monitors.

It is difficult to write a specification for an entire system

at once. We therefore take an incremental approach, using

LLVM as an intermediate step. First, we compile the core

subset of a monitor (trap handlers written in C) to LLVM,

ignoring assembly and boot code. We write a specification

for this subset and prove refinement using the LLVM verifier;

this is similar to prior push-button verification [65, 75]. Next,

we reuse and augment the specification from the previous

step, and prove refinement for the binary image produced

by gcc and binutils, using the RISC-V verifier. This covers

all the instructions, including assembly and boot code, and

does not depend on the LLVM verifier. Last, we write and

prove safety properties over the (augmented) specification.

In our experience, the use of LLVM adds little verification

cost and makes the specification task more manageable; it is

also easier to debug using the LLVM representation, which

is more structured than RISC-V instructions.

An SMT solver generates a counterexample when veri-

fication fails, which is helpful for debugging specifications

and implementations. But the solver can be overwhelmed,

especially when a specification uses quantifiers. To speed up

counterexample generation, we adopt the practice from Hy-

perkernel of temporarily decreasing system parameters (e.g.,

the maximum number of pages) for debugging [65: §6.2].

Symbolic optimizations are essential for the verification

of the two systems. Disabling symbolic optimizations in the

RISC-V verifier causes the refinement proof to time out (after

two hours) for either system under any optimization level,

as symbolic evaluation fails to terminate. The verification

time of the safety proofs is not affected, as the proofs are

over the specifications and do not use the RISC-V verifier.

We first developed all the symbolic optimizations in the

RISC-V verifier during the verification of CertiKOS
s
, using

symbolic profiling as described in §3.2; these symbolic opti-

mizations were sufficient to verify Komodo
s
. However, veri-

fying a Komodo
s
binary compiled with -O1 or -O2 took five

times as much time compared to verifying one compiled

with -O0; it is known that compiler optimizations can in-

crease the verification time on binaries [72]. To improve

13



SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Luke Nelson et al.

this, we continued to develop symbolic optimizations for

Komodo
s
. Specifically, one new optimization sufficed to re-

duce the verification time of Komodo
s
for -O1 or -O2 to be

close to that for -O0 (it did not impact the verification time

of other systems). Finding the root cause of the bottleneck

and developing the symbolic optimization took one author

less than one day. This shows that symbolic optimizations

can generalize to a class of systems, and that they can make

automated verification less sensitive to gcc’s optimizations.

As mentioned in §3.5, while developing Serval, we wrote

new interpreter tests and reused existing ones, such as the

riscv-tests for RISC-V processors. We applied these tests to

verification tools, and found two bugs in the QEMU emulator,

and one bug in the RISC-V specification developed by the Sail

project [4], all confirmed and fixed by developers. We also

found two (confirmed) bugs in the U54 core: the PMP check-

ing was too strict, improperly composing with superpages;

and performance-counter control was ignored, allowing any

privilege level to read performance counters, which creates

covert channels. To work around these bugs, we modified

the implementation to not use superpages, and to save and

restore all performance counters during context switching.

6.5 Discussion
Specification and verification. As detailed in this section,

CertiKOS uses Coq and Komodo uses Dafny. Both theorem

provers provide richer logics than Serval and can express

properties that Serval cannot, as well as reason about code

with unbounded loops. This expressiveness comes at a cost:

Coq proofs impose a high manual burden (e.g., CertiKOS

studied in this paper consists of roughly 200,000 lines of spec-

ification and proof), and Dafny proofs involve verification

performance problems that can be difficult to debug [36: §9]

and repair (e.g., requiring use of triggers [42: §6]). Building

on Rosette, Serval chooses to limit system specifications to a

decidable fragment of first-order logic (§3.1) and implemen-

tations to bounded code. This enables a high degree of proof

automation and a systematic approach to diagnosing verifi-

cation performance issues through symbolic profiling [13].

Regardless of methodology, central to verifying systems

software is choosing a specification with desired properties.

Our case studies involve three noninterference specifications.

What kinds of bugs can each specification prevent? While

we give a few examples in §6.2 and §6.3, we have no simple

answer. We would like to explore further on how to contrast

such specifications and which to choose for future projects.

Implementation. CertiKOS requires developers to decom-

pose a system implementation, written in a mixture of C and

assembly, into multiple layers for verification. For instance,

instead of using a single struct proc to represent the process

state, it splits the state into various fine-grained structures,

each with a small number of fields. Designing such layers re-

quires expertise. Komodo requires developers to implement

a system in structured assembly using Vale, which restricts

the type of assembly that can be used (e.g., no support for

unstructured control flow or function calls). This also means

that it is difficult to write an implementation in C and reuse

the assembly code produced by gcc. Serval separates the

process of implementing a system from that of verification,

making it easier to develop and maintain the implementation.

Developers write an implementation in standard languages

such as C and assembly. But to be verifiable with Serval, the

implementation must be free of unbounded loops.

Both CertiKOS and Komodo require the use of verification-

specific toolchains for development. For instance, CertiKOS

depends on the CompCert C compiler, and Komodo uses Vale

to produce the final assembly. Serval’s verifiers can work

on binary images, which allows developers to use standard

toolchains such as gcc and binutils.

7 Finding bugs via verification
Besides proving refinement and noninterference properties,

we also apply Serval to write and prove partial specifica-
tions [44] for systems. These specifications do not capture

full functional correctness, but provide effective means for

rapidly exploring potential interface designs and exposing

subtle bugs in complex implementations.

Keystone. We applied Serval to analyze the interface de-

sign of Keystone [55], an open-source security monitor that

implements software enclaves on RISC-V. Keystone uses a

dedicated PMP region for each enclave to provide memory

protection, rather than using paging as in Komodo (§6.3).

Since Keystone was in active development and did not have

a formal specification, we wrote a functional specification

based on our understanding of its design. As a sanity check,

we wrote and proved safety properties over the specification.

We manually compared our specification with Keystone’s

implementation, and found the following two differences.

First, Keystone allowed an enclave to create more enclaves

within itself, whereas our specification precludes this behav-

ior. Allowing an enclave to create enclaves violates the safety

property that an enclave’s state should not be influenced by

other enclaves, which we proved over our specification using

Serval. Second, Keystone required the OS to create a page

table for each enclave and performed checks that the page

table was well-formed; our specification does not have this

check, as PMP alone is sufficient to guarantee isolation for

enclaves. Based on the analysis, we made two suggestions to

Keystone’s developers: disallowing the creation of enclaves

inside enclaves and removing the check on page tables from

the monitor; both have been incorporated into Keystone.

We also ran the Serval LLVM verifier on the Keystone

implementation and found two undefined-behavior bugs,

oversized shifting and buffer overflow, both on the paths

of three monitor calls. We reported these bugs, which have

been fixed by Keystone’s developers since.

14



Scaling symbolic evaluation for automated verification of systems code with Serval SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

BPF. The Linux kernel allows user space to extend the ker-

nel’s functionality by downloading a program into the kernel,

using the extended BPF, or BPF for short [37]. To improve

performance, the kernel provides JIT compilers to translate

a BPF program to machine instructions for native execution.

For simplicity, a JIT compiler translates one BPF instruction

at a time. Any bugs in BPF JIT compilers can compromise

the security of the entire system [83].

Using Serval, we wrote a checker for BPF JIT compilers,

by combining the RISC-V, x86-32, and BPF verifiers. The

checker verifies a simple property: starting from a BPF state

and an equivalent machine state (e.g., RISC-V), the result of

executing a single BPF instruction on the BPF state should

be equivalent to the machine state resulting from execut-

ing the machine instructions produced by the JIT for that

BPF instruction. The checker takes a JIT compiler written in

Rosette, invokes the BPF verifier and a verifier for a target

instruction set (e.g., RISC-V) to verify this property, and re-

ports violations as bugs. As the JIT compilers in the Linux

kernel are written in C, we manually translated them into

Rosette. Currently, the translation covers the code for com-

piling BPF arithmetic and logic instructions; this process is

syntactic and we expect to automate it in the future.

Using the checker, we found a total of 15 bugs in the

Linux JIT implementations: 9 for RISC-V and 6 for x86-32.

These bugs are caused by emitting incorrect instructions

for handling zero extensions or bit shifts. The Linux kernel

has accumulated an extensive BPF test suite over the years,

but it failed to catch the corner cases found by Serval; this

shows the effectiveness of verification for finding bugs. We

submitted patches that fix the bugs and include additional

tests to cover the corresponding corner cases, based on coun-

terexamples produced by verification. These patches have

been accepted into the Linux kernel.

8 Reflections
The motivation for developing Serval stems from an earlier

attempt to extend push-button verifiers to security monitors.

After spending one year experimenting with this approach,

we decided to switch to using Rosette, for the following rea-

sons. First, the prior verifiers support LLVM only and cannot

verify assembly code (e.g., register save/restore and context

switch), which is critical to the correctness of security moni-

tors. Extending verification to support machine instructions

is thus necessary to reason about such low-level systems. In

addition, the verifiers encode the LLVM semantics by directly

generating SMT constraints rather than lifting an easy-to-

understand interpreter to a verifier via symbolic evaluation;

the former approach makes it difficult to reuse, optimize,

and add support for new instruction sets. On the other hand,

Rosette provides Serval with symbolic evaluation, partial

evaluation, the ability to lift interpreters, and a symbolic

profiler. Rosette’s symbolic reflection mechanism, originally

designed for lifting Racket libraries [81: §2.3], is a goodmatch

for implementing symbolic optimizations.

Our experience with using Serval provides opportunities

for improving verification tools. While effective at identi-

fying performance bottlenecks during symbolic evaluation,

symbolic profiling requires manual efforts to analyze profiler

output and develop symbolic optimizations (§6.4), and does

not profile the SMT solver; automating these steps would

reduce the verification burden for system developers. An-

other promising direction is to explore how to combine the

strengths of different tools to verify a broader range of prop-

erties and systems [26, 68, 86].

9 Conclusion
Serval is a framework that enables scalable verification for

systems code via symbolic evaluation. It accomplishes this

by lifting interpreters written by developers into automated

verifiers, and by introducing a systematic approach to iden-

tify and overcome bottlenecks through symbolic profiling

and optimizations. We demonstrate the effectiveness of this

approach by retrofitting previous verified systems to use

Serval for automated verification, and by using Serval to

find previously unknown bugs in unverified systems. We

compare and discuss the trade-offs of various methodologies

for verifying systems software, and hope that these discus-

sions will be helpful for others making decisions on verifying

their systems. All of Serval’s source is publicly available at:

https://unsat.cs.washington.edu/projects/serval/.

Acknowledgments
We thank Jon Howell, Frans Kaashoek, the anonymous re-

viewers, and our shepherd, Emmett Witchel, for their feed-

back. We also thank Andrew Waterman for answering our

questions about RISC-V, David Kohlbrenner, Dayeol Lee, and

Shweta Shinde for discussions on Keystone, and Daniel Bork-

mann, Palmer Dabbelt, Song Liu, Alexei Starovoitov, Björn

Töpel, and Jiong Wang for reviewing our patches to the

Linux kernel. This work was supported by NSF awards CCF-

1651225, CCF-1836724, and CNS-1844807, and by VMware.

References
[1] Eyad Alkassar, Wolfgang J. Paul, Artem Starostin, and Alexandra Tsy-

ban. 2010. Pervasive Verification of an OS Microkernel: Inline As-

sembly, Memory Consumption, Concurrent Devices. In Proceedings of
the 3rd Working Conference on Verified Software: Theories, Tools, and
Experiments (VSTTE). Edinburgh, United Kingdom, 71–85.

[2] Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter

Chubb, Liam O’Connor, Joel Beeren, Yutaka Nagashima, Japheth Lim,

Thomas Sewell, Joseph Tuong, Gabriele Keller, Toby Murray, Gerwin

Klein, and Gernot Heiser. 2016. Cogent: Verifying High-Assurance

File System Implementations. In Proceedings of the 21st International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). Atlanta, GA, 175–188.

[3] Nadav Amit, Dan Tsafrir, Assaf Schuster, Ahmad Ayoub, and Eran

Shlomo. 2015. Virtual CPU Validation. In Proceedings of the 25th ACM
15

https://unsat.cs.washington.edu/projects/serval/


SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Luke Nelson et al.

Symposium on Operating Systems Principles (SOSP). Monterey, CA,

311–327.

[4] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,

Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Was-

sell, Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Kr-

ishnaswami, and Peter Sewell. 2019. ISA Semantics for ARMv8-A,

RISC-V, and CHERI-MIPS. In Proceedings of the 46th ACM Symposium
on Principles of Programming Languages (POPL). Cascais, Portugal,
Article 71, 31 pages.

[5] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Deme-

trescu, and Irene Finocchi. 2018. A Survey of Symbolic Execution

Techniques. ACM Computing Survey 51, 3, Article 50 (July 2018),

39 pages.

[6] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and

K. Rustan M. Leino. 2005. Boogie: A Modular Reusable Verifier for

Object-Oriented Programs. In Proceedings of the 4th International Sym-
posium on Formal Methods for Components and Objects. Amsterdam,

The Netherlands, 364–387.

[7] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Maz-

ières, and Christos Kozyrakis. 2012. Dune: Safe User-level Access to

Privileged CPU Features. In Proceedings of the 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI). Hollywood,
CA, 335–348.

[8] William R. Bevier. 1989. Kit: A Study in Operating System Verification.

IEEE Transactions on Software Engineering 15, 11 (Nov. 1989), 1382–

1396.

[9] Sven Beyer, Christian Jacobi, Daniel Kröning, Dirk Leinenbach, and

Wolfgang J. Paul. 2006. Putting it all together – Formal verification

of the VAMP. International Journal on Software Tools for Technology
Transfer 8, 4–5 (Aug. 2006), 411–430.

[10] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan

Zhu. 1999. Symbolic Model Checking without BDDs. In Proceed-
ings of the 5th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS). Amsterdam, The

Netherlands, 193–207.

[11] Sandrine Blazy and Xavier Leroy. 2009. Mechanized semantics for the

Clight subset of the C language. Journal of Automated Reasoning 43, 3

(Oct. 2009), 263–288.

[12] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino,

Jacob R. Lorch, Bryan Parno, Ashay Rane, Srinath Setty, and Laure

Thompson. 2017. Vale: Verifying High-Performance Cryptographic

Assembly Code. In Proceedings of the 26th USENIX Security Symposium.

Vancouver, Canada, 917–934.

[13] James Bornholt and Emina Torlak. 2018. Finding Code That Explodes

Under Symbolic Evaluation. In Proceedings of the 2018 Annual ACM
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA). Boston, MA, Article 149, 26 pages.

[14] Robert S. Boyer, Matt Kaufmann, and J Strother Moore. 1995. The

Boyer-Moore Theorem Prover and Its Interactive Enhancement. Com-
puters and Mathematics with Applications 29, 2 (Jan. 1995), 27–62.

[15] Jo Van Bulck,MarinaMinkin, OfirWeisse, Daniel Genkin, Baris Kasikci,

Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom,

and Raoul Strackx. 2018. Foreshadow: Extracting the Keys to the Intel

SGX Kingdom with Transient Out-of-Order Execution. In Proceedings
of the 27th USENIX Security Symposium. Baltimore, MD, 991–1008.

[16] Cristian Cadar. 2015. Targeted Program Transformations for Symbolic

Execution. In Proceedings of the 10th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE). Bergamo, Italy,

906–909.

[17] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unas-

sisted and Automatic Generation of High-Coverage Tests for Complex

Systems Programs. In Proceedings of the 8th USENIX Symposium on
Operating Systems Design and Implementation (OSDI). San Diego, CA,

209–224.

[18] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and

Dawson R. Engler. 2006. EXE: Automatically Generating Inputs of

Death. In Proceedings of the 13th ACM Conference on Computer and
Communications Security (CCS). Alexandria, VA, 322–335.

[19] Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Soft-

ware Testing: Three Decades Later. Commun. ACM 56, 2 (Feb. 2013),

82–90.

[20] Quentin Carbonneaux, Jan Hoffmann, Tahina Ramananandro, and

Zhong Shao. 2014. End-to-End Verification of Stack-Space Bounds for

C Programs. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). Edinburgh,
United Kingdom, 270–281.

[21] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay

İleri, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich. 2017.

Verifying a high-performance crash-safe file system using a tree spec-

ification. In Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP). Shanghai, China, 270–286.

[22] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans

Kaashoek, and Nickolai Zeldovich. 2015. Using Crash Hoare Logic

for Certifying the FSCQ File System. In Proceedings of the 25th ACM
Symposium on Operating Systems Principles (SOSP). Monterey, CA,

18–37.

[23] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011.

S2E: A Platform for In-vivo Multi-path Analysis of Software Systems.

In Proceedings of the 16th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).
Newport Beach, CA, 265–278.

[24] Adam Chlipala. 2015. From Network Interface to Multithreaded Web

Applications: A Case Study in Modular Program Verification. In Pro-
ceedings of the 42nd ACM Symposium on Principles of Programming
Languages (POPL). Mumbai, India, 609–622.

[25] Maria Christakis and Patrice Godefroid. 2015. Proving Memory Safety

of the ANI Windows Image Parser using Compositional Exhaustive

Testing. In Proceedings of the 16th International Conference on Verifica-
tion, Model Checking, and Abstract Interpretation (VMCAI). Mumbai,

India, 373–392.

[26] Andrey Chudnov, Nathan Collins, Byron Cook, Joey Dodds, Brian

Huffman, Colm MacCárthaigh, Stephen Magill, Eric Mertens, Eric

Mullen, Serdar Tasiran, Aaron Tomb, and Eddy Westbrook. 2018. Con-

tinuous formal verification of Amazon s2n. In Proceedings of the 30th
International Conference on Computer Aided Verification (CAV). Oxford,
United Kingdom, 430–446.

[27] Lori A. Clarke. 1976. A System to Generate Test Data and Symbolically

Execute Programs. TSE 2, 3 (5 1976), 215–222.

[28] Jonathan Corbet. 2015. Post-init read-only memory. https://lwn.net/
Articles/666550/.

[29] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Min-

imal Hardware Extensions for Strong Software Isolation. In Proceedings
of the 25th USENIX Security Symposium. Austin, TX, 857–874.

[30] David Costanzo, Zhong Shao, and Ronghui Gu. 2016. End-to-End Ver-

ification of Information-Flow Security for C and Assembly Programs.

In Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). Santa Barbara, CA, 648–
664.

[31] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT

Solver. In Proceedings of the 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS).
Budapest, Hungary, 337–340.

[32] Leonardo de Moura and Nikolaj Bjørner. 2010. Bugs, Moles and Skele-

tons: Symbolic Reasoning for Software Development. In Proceedings
of the 5th International Joint Conference on Automated Reasoning. Edin-
burgh, United Kingdom, 400–411.

16

https://lwn.net/Articles/666550/
https://lwn.net/Articles/666550/


Scaling symbolic evaluation for automated verification of systems code with Serval SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

[33] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe.

1998. Extended Static Checking. Research Report SRC-RR-159. Compaq

Systems Research Center.

[34] Mihai Dobrescu and Katerina Argyraki. 2014. Software Dataplane Ver-

ification. In Proceedings of the 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI). Seattle, WA, 101–114.

[35] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Kr-

ishnamurthi, Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt.

2018. A Programmable Programming Language. Commun. ACM 61, 3

(March 2018), 62–71.

[36] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan

Parno. 2017. Komodo: Using verification to disentangle secure-enclave

hardware from software. In Proceedings of the 26th ACM Symposium
on Operating Systems Principles (SOSP). Shanghai, China, 287–305.

[37] Matt Fleming. 2017. A thorough introduction to eBPF. https://lwn.
net/Articles/740157/.

[38] Patrice Godefroid, Michael Y. Levin, and David Molnar. 2012. SAGE:

Whitebox Fuzzing for Security Testing. Commun. ACM 55, 3 (March

2012), 40–44.

[39] J. A. Goguen and J. Meseguer. 1982. Security Policies and Security

Models. In Proceedings of the 3rd IEEE Symposium on Security and
Privacy. Oakland, CA, 11–20.

[40] Ronghui Gu, Jeremie Koenig, Tahina Ramananandro, Zhong Shao,

Xiongnan Wu, Shu-Chun Weng, Haozhong Zhang, and Yu Guo. 2015.

Deep Specifications and Certified Abstraction Layers. In Proceed-
ings of the 42nd ACM Symposium on Principles of Programming Lan-
guages (POPL). Mumbai, India, 595–608.

[41] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jie-

ung Kim, Vilhelm Sjöberg, and David Costanzo. 2016. CertiKOS: An

Extensible Architecture for Building Certified Concurrent OS Kernels.

In Proceedings of the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI). Savannah, GA, 653–669.

[42] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan

Parno, Michael L. Roberts, Srinath Setty, and Brian Zill. 2015. Iron-

Fleet: Proving Practical Distributed Systems Correct. In Proceedings
of the 25th ACM Symposium on Operating Systems Principles (SOSP).
Monterey, CA, 1–17.

[43] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan

Parno, Danfeng Zhang, and Brian Zill. 2014. Ironclad Apps: End-to-

End Security via Automated Full-System Verification. In Proceedings
of the 11th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI). Broomfield, CO, 165–181.

[44] Daniel Jackson and Jeannette Wing. 1996. Lightweight Formal Meth-

ods. IEEE Computer 29, 4 (April 1996), 20–22.
[45] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial Eval-

uation and Automatic Program Generation. Prentice Hall International.
[46] Dejan Jovanović and Leonardo de Moura. 2012. Solving Non-linear

Arithmetic. In Proceedings of the 6th International Joint Conference on
Automated Reasoning. Manchester, United Kingdom, 339–354.

[47] James C. King. 1976. Symbolic Execution and Program Testing. Com-
mun. ACM 19, 7 (July 1976), 385–394.

[48] Gerwin Klein. 2009. Operating system verification—An overview.

Sādhanā 34, 1 (Feb. 2009), 27–69.
[49] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray,

Thomas Sewell, Rafal Kolanski, and Gernot Heiser. 2014. Compre-

hensive formal verification of an OS microkernel. ACM Transactions
on Computer Systems 32, 1 (Feb. 2014), 2:1–70.

[50] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,

David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,

Michael Norrish, Rafal Kolanski, Thomas Sewell, Harvey Tuch, and

Simon Winwood. 2009. seL4: Formal Verification of an OS Kernel. In

Proceedings of the 22nd ACM Symposium on Operating Systems Princi-
ples (SOSP). Big Sky, MT, 207–220.

[51] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,

Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas

Prescher, Michael Schwarz, and Yuval Yarom. 2019. Spectre Attacks:

Exploiting Speculative Execution. In Proceedings of the 40th IEEE Sym-
posium on Security and Privacy. San Francisco, CA, 19–37.

[52] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George

Candea. 2012. Efficient State Merging in Symbolic Execution. In Pro-
ceedings of the 33rd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI). Beijing, China, 193–204.

[53] Leslie Lamport. 2008. Computation and State Machines.

[54] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-

work for Lifelong Program Analysis & Transformation. In Proceedings
of the 2004 International Symposium on Code Generation and Optimiza-
tion (CGO). Palo Alto, CA, 75–86.

[55] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Dawn Song, and Krste

Asanović. 2019. Keystone: A Framework for Architecting TEEs. https:
//arxiv.org/abs/1907.10119.

[56] K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier

for Functional Correctness. In Proceedings of the 16th International
Conference on Logic for Programming, Artificial Intelligence and Rea-
soning (LPAR). Dakar, Senegal, 348–370.

[57] K. Rustan M. Leino and Michał Moskal. 2010. Usable Auto-Active

Verification. In Workshop on Usable Verification. Redmond, WA, 4.

[58] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun.
ACM 52, 7 (July 2009), 107–115.

[59] Xavier Leroy, Andrew Appel, Sandrine Blazy, and Gordon Stewart.

2012. The CompCert Memory Model, Version 2. Research Report RR-

7987. INRIA.

[60] Peng Li and Steve Zdancewic. 2005. Downgrading Policies and Relaxed

Noninterference. In Proceedings of the 32nd ACM Symposium on Prin-
ciples of Programming Languages (POPL). Long Beach, CA, 158–170.

[61] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner

Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel

Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown: Reading

Kernel Memory from User Space. In Proceedings of the 27th USENIX
Security Symposium. Baltimore, MD, 973–990.

[62] Haohui Mai, Edgar Pek, Hui Xue, Samuel T. King, and P. Madhusudan.

2013. Verifying Security Invariants in ExpressOS. In Proceedings of the
18th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). Houston, TX, 293–304.

[63] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon

Johnson, Rebekah Leslie-Hurd, and Carlos Rozas. 2016. Intel Soft-

ware Guard Extensions (Intel SGX) Support for Dynamic Memory

Management Inside an Enclave. In Proceedings of the 5th Workshop
on Hardware and Architectural Support for Security and Privacy. Seoul,
South Korea, 9.

[64] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Tim-

othy Bourke, Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein.

2013. seL4: from General Purpose to a Proof of Information Flow

Enforcement. In Proceedings of the 34th IEEE Symposium on Security
and Privacy. San Francisco, CA, 415–429.

[65] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson,

James Bornholt, Emina Torlak, and Xi Wang. 2017. Hyperkernel: Push-

Button Verification of an OS Kernel. In Proceedings of the 26th ACM
Symposium on Operating Systems Principles (SOSP). Shanghai, China,
252–269.

[66] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2016. Is-
abelle/HOL: A Proof Assistant for Higher-Order Logic. Springer-Verlag.

[67] Liam O’Connor, Zilin Chen, Christine Rizkallah, Sidney Amani,

Japheth Lim, Toby Murray, Yutaka Nagashima, Thomas Sewell, and

Gerwin Klein. 2016. Refinement Through Restraint: Bringing Down

the Cost of Verification. In Proceedings of the 21st ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP). Nara, Japan,
89–102.

17

https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://arxiv.org/abs/1907.10119
https://arxiv.org/abs/1907.10119


SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Luke Nelson et al.

[68] Stuart Pernsteiner, Calvin Loncaric, Emina Torlak, Zachary Tatlock,

Xi Wang, Michael D. Ernst, and Jonathan Jacky. 2016. Investigating

Safety of a Radiotherapy Machine Using System Models with Plug-

gable Checkers. In Proceedings of the 28th International Conference on
Computer Aided Verification (CAV). Toronto, Canada, 23–41.

[69] Alastair Reid. 2017. Who Guards the Guards? Formal Validation of

the ARM v8-M Architecture Specification. In Proceedings of the 2017
Annual ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). Vancouver, Canada, Article 88,
24 pages.

[70] John Rushby. 1992. Noninterference, Transitivity, and Channel-Control
Security Policies. Technical Report CSL-92-02. SRI International.

[71] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. 2007. SecVi-

sor: A Tiny Hypervisor to Provide Lifetime Kernel Code Integrity

for Commodity OSes. In Proceedings of the 21st ACM Symposium on
Operating Systems Principles (SOSP). Stevenson, WA, 335–350.

[72] Thomas Sewell, Magnus Myreen, and Gerwin Klein. 2013. Translation

Validation for a Verified OS Kernel. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI). Seattle, WA, 471–482.

[73] SiFive. 2019. SiFive U54 Core Complex Manual, v19.05. SiFive, Inc.

https://www.sifive.com/cores/u54
[74] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang.

2016. Push-Button Verification of File Systems via Crash Refinement.

In Proceedings of the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI). Savannah, GA, 1–16.

[75] Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-Karney, James Born-

holt, Emina Torlak, and Xi Wang. 2018. Nickel: A Framework for

Design and Verification of Information Flow Control Systems. In Pro-
ceedings of the 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI). Carlsbad, CA, 287–306.

[76] Venkatesh Srinivasan and Thomas Reps. 2015. Partial Evaluation of

Machine Code. In Proceedings of the 2015 Annual ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA). Pittsburgh, PA, 860–879.

[77] Tachio Terauchi and Alex Aiken. 2005. Secure Information Flow As a

Safety Problem. In Proceedings of the 12th International Static Analysis
Symposium (SAS). London, United Kingdom, 352–367.

[78] The Clang Team. 2019. UndefinedBehaviorSanitizer. https://clang.
llvm.org/docs/UndefinedBehaviorSanitizer.html

[79] The Coq Development Team. 2019. The Coq Proof Assistant, version
8.9.0. https://doi.org/10.5281/zenodo.2554024

[80] Emina Torlak and Rastislav Bodik. 2013. Growing Solver-Aided Lan-

guages with Rosette. In Onward! Boston, MA, 135–152.

[81] Emina Torlak and Rastislav Bodik. 2014. A Lightweight Symbolic

Virtual Machine for Solver-Aided Host Languages. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). Edinburgh, United Kingdom, 530–541.

[82] Jonas Wagner, Volodymyr Kuznetsov, and George Candea. 2013.

-Overify: Optimizing Programs for Fast Verification. In Proceedings of
the 14th Workshop on Hot Topics in Operating Systems (HotOS). Santa
Ana Pueblo, NM, 6.

[83] XiWang, David Lazar, Nickolai Zeldovich, AdamChlipala, and Zachary

Tatlock. 2014. Jitk: A Trustworthy In-Kernel Interpreter Infrastructure.

In Proceedings of the 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI). Broomfield, CO, 33–47.

[84] Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-

Lezama. 2013. Towards Optimization-Safe Systems: Analyzing the

Impact of Undefined Behavior. In Proceedings of the 24th ACM Sympo-
sium on Operating Systems Principles (SOSP). Farmington, PA, 260–275.

[85] AndrewWaterman and Krste Asanović (Eds.). 2019. The RISC-V Instruc-
tion Set Manual, Volume II: Privileged Architecture. RISC-V Foundation.

[86] Konstantin Weitz, Steven Lyubomirsky, Stefan Heule, Emina Torlak,

Michael D. Ernst, and Zachary Tatlock. 2017. SpaceSearch: A Library

for Building and Verifying Solver-Aided Tools. In Proceedings of the
22nd ACM SIGPLAN International Conference on Functional Program-
ming (ICFP). Oxford, United Kingdom, Article 25, 28 pages.

[87] Jean Yang and Chris Hawblitzel. 2010. Safe to the Last Instruction:

Automated Verification of a Type-Safe Operating System. In Proceed-
ings of the 31st ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). Toronto, Canada, 99–110.

[88] Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu Zang. 2011. CloudVi-

sor: Retrofitting Protection of Virtual Machines in Multi-tenant Cloud

with Nested Virtualization. In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles (SOSP). Cascais, Portugal, 203–216.

18

https://www.sifive.com/cores/u54
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://doi.org/10.5281/zenodo.2554024

	Abstract
	1 Introduction
	2 Related work
	3 The Serval methodology
	3.1 Overview
	3.2 Growing an automated verifier
	3.3 Verifying properties
	3.4 Verifying systems code
	3.5 Assumptions and limitations

	4 Scaling automated verifiers
	5 Implementation
	6 Retrofitting for automated verification
	6.1 Protection mechanisms on RISC-V
	6.2 CertiKOS
	6.3 Komodo
	6.4 Results
	6.5 Discussion

	7 Finding bugs via verification
	8 Reflections
	9 Conclusion
	References

