
Using Lightweight Formal Methods to
Validate a Key-Value Storage Node in
Amazon S3

James Bornholt
AWS & UT Austin

Bernhard Kragl
AWS

Grant Slatton
AWS

Rajeev Joshi
AWS

Vytautas Astrauskas
ETH Zurich

Brendan Cully
AWS

Seth Markle
AWS

Serdar Tasiran
AWS

Kyle Sauri
AWS

Jacob Van Geffen
University of Washington

Drew Schleit
AWS

Andrew Warfield
AWS

S3’s new ShardStore storage node
• Amazon S3 is an object storage service

(PUT, GET) holding over 100 trillion objects

• We replicate object data on storage nodes

• Currently deploying ShardStore, a new storage node
written in Rust

PUT

Amazon S3

Storage Nodes

Formal methods for ShardStore
• Production storage systems are complex and

frequently changing

• Crash consistency, concurrency, IO, etc.

• Over 40,000 lines of Rust, deployed weekly

• Formal methods can help increase confidence, but challenging to
incorporate in a rapid development process

Lightweight formal methods
1. Executable reference models as specifications

2. Automated tools to check implementations
against models

3. Coverage tools to track effectiveness over time

In return for being lightweight and automated, we accept weaker
correctness guarantees than full formal verification

Writing reference model specs
• Small, executable specifications, written in

Rust, alongside the code

L1

L2

L3

L0

LSM tree

{
 k1=v1,
 k2=v2,
 …
}

Hash map

Same interface

Correctness properties
• Decompose correctness into three parts and

check each separately:

• Sequential correctness: refinement of the
reference model

• Crashes: refinement against a weaker reference model

• Concurrency: linearizability against the reference model

Property-based testing for refinement

Put(a, 5) GC Delete(a)Random sequence:

Property-based testing for refinement

{}Reference model:

Implementation:

Put(a, 5) GC Delete(a)Random sequence:

Property-based testing for refinement

{} {a=5}Reference model:

Implementation:

Put(a, 5) GC Delete(a)Random sequence:

Property-based testing for refinement

{} {a=5}Reference model:

Implementation:

Put(a, 5) GC Delete(a)Random sequence:

Check for same
key-value
mapping

Property-based testing for refinement

{} {a=5} {a=5} {}Reference model:

Implementation:

Put(a, 5) GC Delete(a)Random sequence:

Check for same
key-value
mapping

Property-based testing for refinement

{} {a=5} {a=5} {}Reference model:

Implementation:

Put(a, 5) GC Delete(a)Random sequence:

Check for same
key-value
mapping

“Pay-as-you-go”: test
small scale locally, larger
scale before deployment

Experience with FM in production
• Automated lightweight tools prevent issues

from even reaching code review

• Maintainable: 20% of model code by non-FM experts; 1/3rd of
engineers have written their own new models/checks

• “Pay-as-you-go” and continuous validation makes FM viable in a
rapid production engineering process

Using Lightweight Formal Methods to
Validate a Key-Value Storage Node in
Amazon S3

Thank you!

We’re hiring (full-time and interns)!
s3-arg-jobs@amazon.com or bornholt@amazon.com

