Uncertain<T>

A First-Order Type for Uncertain Data

James Bornholt

Supervisor: Steve Blackburn

Microsoft Todd Mytkowicz

Resea rCh Kathryn S. McKinley

Uncertain<T>: A First-Order Type for Uncertain Data

James Bornholt Todd Mytkowicz Kathryn S. McKinley
Australian National University Microsoft Research Microsoft Research
u4842199@anu.edu.au toddm@microsoft.com mckinley@microsoft.com

U Oremogram 135

A
<o
5
W
=

Big data

Sensors

hidden units

Machine learning

Ing

.

te comput

IMma

.

Approx

uncertain data

struct Geocoordinate {
double Latitude;
double Longitude;

¥

Geocoordinate Loc = GetGPSLocation();

discrete type

uncertain data
+ discrete type

= 777

uncertain data
+ discrete type

= who cares?

uncertain data
+ discrete type

= uncertainty bug

uncertain data
discrete type

uncertainty bug

errors that occur when applications
pretend that uncertain data is certain

treating estimates as facts

W
<
>
<
=
()
%5}

struct Geocoordinate {
double Latitude;
double Longitude;

double HorizontalAccuracy;

¥

95% of apps ignore accuracy!

computation compounds error

computation compounds error

Usain Bolt

computation compounds error

100

(0}
(@)

()
o

Usain Bolt

Walking speed (km/h)

N
o (@)

Time

false positives in questions

if (Speed > 60)

IssueSpeedingTicket();

60 km/h

Speed

:s==75|«ﬂ/h
I

0 30 60
Speed (km/h)

90 120

uncertainty bugs

Treating estimates as facts
Computation compounds error

False positives in questions

Caused by poor programming language abstractions

Uncertainty should not be abstracted away

related work

Flexible «¢ p Simple

Developer computations

Uncertain data
Sensors, measurements, probabilistic models

related work

Flexible «¢ p Simple

Developer computations

No Current
abstraction abstractions

Uncertain data
Sensors, measurements, probabilistic models

related work

Flexible «¢ p Simple

Developer computations

No Probabilistic Current
abstraction programming abstractions

Uncertain data
Sensors, measurements, probabilistic models

probabilistic programming

Reasoning about probabilistic models

earthquake = Bernoull1(0.0001)
burglary = Bernoulli1(0.001)
alarm = earthquake or burglary

if (earthquake)
phonelWorking

else
phonelWorking

Bernoull1(0.7)

Bernoull1(0.99)

inference

earthquake = Bernoull1(0.0001)
burglary = Bernoulli(0.001)
alarm = earthquake or burglary
if (earthquake)

phoneWorking = Bernoulli1(0.7)
else

phonelWorking = Bernoulli(©.99)

observe(alarm=true)
query(phoneWorking)

What is Prf[phoneWorking=v | alarm=True], for each
possible value of v (i.e. True and False)?

inference is expensive

Some paths of execution are very unlikely

150 =

Prlearthquake]

—0— 0.01
—A— 0.0001

—_—

o

S
I

Time to query (sec)
3
|

100 200 300 400 500
Number of samples

related work

Flexible «¢ p Simple

Developer computations

No Probabilistic Current
abstraction programming abstractions

| | |
Probabilistic data

Sensors, measurements, probabilistic models

related work

Flexible «¢ p Simple

Developer computations

No Probabilistic . Current
. . Uncertain<T>)
abstraction programming abstractions

| | | |
Probabilistic data

Sensors, measurements, probabilistic models

Uncertain<T> is an
uncertain type abstraction.

Encapsulates distributions, like prior work.
But focuses on an accessible interface.

For everyday programmers, Uncertain<T> enables
programs that are more concise, expressive, and
correct.

using Uncertain<T>

|dentity the distribution
Compute with the distribution
Ask questions using conditionals

Improve the quality of estimates

identify compute question Improve

identifying the distribution

Many library programmers already know the
distribution they need to return!

question Improve

identify compute

identifying the distribution

Many library programmers already know the

distribution they need to return!
“Get the estimated accuracy of
this location, in meters. We

define accuracy as the radius of

68% confidence.[...]In
statistical terms, it is assumed

that location errors are random
with a normal distribution.”
—Android

50th Aye NE

NE 3611 4

identify compute question Improve

representing distributions

identify compute question Improve

representing distributions

Store probability density functions?

Norm(z; u, 0) = ! exp {_ (z — u)2}

2T o 2072

Two problems:

1. Even simple operations are complex:

fx+v (2 / fy(z — o) fx(z)d

2. Many interesting distributions don’t have PDFs

identify compute question Improve

representing distributions

Store probability density functions?

Norm(z; u, 0) = ! exp {_ (z — u)2}

2T o 2072

Two problems:

1. Even simple operations are complex:

fx+v (2 / fy(z — o) fx(z)d

2. Many interesting distributions don’t have PDFs

identify compute question

representing distributions

Random sampling: two birds with one stone
Simple operations are simple (e.g., +)
More distributions can be represented

Later: how to implement random sampling

Improve

identify compute question improve

computing with distributions

Propagating uncertainty through calculations
automatically with operator overloading

A key advantage of random sampling: computation is
simply™* lifting of the original operators

identify compute question Improve

computing with distributions

Propagating uncertainty through calculations
automatically with operator overloading

A key advantage of random sampling: computation is
simply™* lifting of the original operators

X

It x asample of X
A+Y and y asampleofY

—_—
‘ then x+y asample of X+Y

identify compute question improve

computing with distributions

*The caveat is that this only works if the operands are

independent

If not, we need to know something about how the

variables are related

This is an issue for all probabilistic programming

identify compute question Improve

induced dependencies

X +Y (XYindependent)
A+ X

o

identify compute question improve

induced dependencies

We can distinguish inherent dependencies from
programmer-induced dependencies
A=X+Y (XYindependent)
B=A4+X
When evaluating B, both operands depend on X, so
they are not independent

Lazy evaluation to the rescue!

identify compute question improve

induced dependencies

We can distinguish inherent dependencies from
programmer-induced dependencies
A=X+Y (XYindependent)
B=A4+X
When evaluating B, both operands depend on X, so
they are not independent

Lazy evaluation to the rescue!

identify compute question

asking questions

if (Speed > 60)
IssueSpeedingTicket();

60 km/h w75

Speed

0 30 60 90 120
Speed (km/h)

Improve

identify compute

question

comparing means

if (Speed.E() > 60)
IssueSpeedingTicket();

E[Speed] :

60 km/h

60

90

Speed (km/h)

120

Improve

identify compute question improve

comparing evidence

if ((Speed > 60).E() > 0.95)
IssueSpeedingTicket();

60 km/h Pr[Speed > 60]

0 30 60 90 120
Speed (km/h)

identify compute question improve

comparing evidence

> is a Iifteij operator

if ((Speed > 60).E() > 0.95)
IssueSpeedingTicket();

60 km/h Pr[Speed > 60]

0 30 60 90 120
Speed (km/h)

identify compute question improve

comparing evidence

type Uncer;tain<boo|>

if ((Speed > 60).E() > 0.95)
IssueSpeedingTicket();

60 km/h Pr[Speed > 60]

0 30 60 90 120
Speed (km/h)

identify compute question improve

comparing evidence

mean of Uncsrtain<boo|>

if ((Speed > 60).E() > 0.95)
IssueSpeedingTicket();

60 km/h Pr[Speed > 60]

0 30 60 90 120
Speed (km/h)

identify compute

question

comparing evidence

= numberin [0,1]
X

if ((Speed > 60).E() > 0.95)
IssueSpeedingTicket();

60 km/h

Pr[Speed > 60]

0 30 60
Speed (km/h)

90 120

Improve

identify compute question improve

comparing evidence

% of Tru eAinstances

if ((Speed > 60).E() > 0.95)
IssueSpeedingTicket();

60 km/h Pr[Speed > 60]

0 30 60 90 120
Speed (km/h)

identify compute question improve

comparing evidence

is there a >95% c:harlce that Speed > 607

if ((Speed > 60).E() > 0.95)
IssueSpeedingTicket();

60 km/h Pr[Speed > 60]

0 30 60 90 120
Speed (km/h)

identify compute question improve

comparing evidence

if ((Speed > 60).E() > 0.95)
IssueSpeedingTicket();

The threshold allows the programmer to balance
false positives and false negatives

Higher thresholds give fewer false positives, but
more false negatives

identify compute question improve

iImproving estimates

Uncertain<T> is Bayesian: error distributions track
degrees of belief about the value of a variable

Pr|E|H| Pr|H]
Pr|E]

Pr[H|E] =

Bayes' theorem: use prior knowledge to improve

estimates

identify compute question Improve

improving estimates

Pr|E|H| Pr|H]|

Pr|H|E] = Pr(E]

identify compute question Improve

improving estimates

likelihood

Pfr[E\H] Pr|H]

Pr|E]

Pr[H|E] =

0.25 I E[Location]
——— Likelihood

identify compute question Improve

Improving estimates

likelihood prior

v “—
Pr|E|H|Pr|H]

Pr|E]

Pr[H|E] =

> 0.
e
®
C
[0
O o0.10

0.05

|

identify compute question Improve

Improving estimates
likelihood prior

posterior v —
S Pr|F|H] Pr|H]|
Pr(H|E] = ——
0.25 E[Location] —— Prior

identify compute question Improve

Improving estimates
likelihood prior

posterior J —
S Pr[E|H) Pr[H]
Pr[H|E] = Bl
0.25 :(— : E[Location] — P'rliolr'h)
0:00 ///‘FX\

implementing Uncertain<T>

Two key insights in the design inform an efficient
implementation

1. Distributions are random samples
Suggests lazy evaluation

2. All evaluations end up in expected values
Suggests hypothesis tests

lazy evaluation

Uncertain<T> uses random sampling, but how?

Option 1: store a vector of N samples

A 56 | 28 | 64 | 49 | 49 | 51 | 43 | 50 .. | 4.6

lazy evaluation

Uncertain<T> uses random sampling, but how?

Option 1: store a vector of N samples

A
+
B

5.6

2.8

6.4

4.9

4.9

5.1

4.3

5.0

4.6

4.0

3.2

1.1

3.5

3.9

3.4

4.7

3.8

2.2

lazy evaluation

Uncertain<T> uses random sampling, but how?

Option 1: store a vector of N samples

5.6

2.8

6.4

4.9

4.9

5.1

4.3

5.0

4.6

4.0

3.2

1.1

3.5

3.9

3.4

4.7

3.8

2.2

o €— W + >

lazy evaluation

Uncertain<T> uses random sampling, but how?

Option 1: store a vector of N samples

o €— W + >

5.6

2.8

6.4

4.9

4.9

5.1

4.3

5.0

4.6

+

+

+

+

+

+

+

+

4.0

3.2

1.1

3.5

3.9

3.4

4.7

3.8

2.2

|

lazy evaluation

Uncertain<T> uses random sampling, but how?

Option 1: store a vector of N samples

o €— W + >

5.6

2.8

6.4

4.9

4.9

5.1

4.3

5.0

4.6

+

+

+

+

+

+

+

+

4.0

3.2

1.1

3.5

3.9

3.4

4.7

3.8

2.2

|

lazy evaluation

Uncertain<T> uses random sampling, but how?

Option 1: store a vector of N samples

o €— W + >

56 | 28 | 64 | 49 | 49 | 51 | 43 | 5.0 4.6
+ + + + + + + + +
40 | 3.2 | 11| 35| 3.9 | 34 | 47 | 3.8 2.2
9.6

lazy evaluation

Uncertain<T> uses random sampling, but how?

Option 1: store a vector of N samples

o €— W + >

56 | 28 | 64 | 49 | 49 | 51 | 43 | 5.0 4.6
+ + + + + + + + +
40 | 32 | 11| 35| 39| 34 | 47 | 3.8 2.2
9.6

lazy evaluation

Uncertain<T> uses random sampling, but how?

Option 1: store a vector of N samples

o €— W + >

56 | 28 | 64 | 49 | 49 | 51 | 43 | 5.0 4.6
+ + + + + + + + +
40 | 32 | 11| 35| 39| 34 | 47 | 3.8 2.2
9.6 | 6.0

lazy evaluation

Uncertain<T> uses random sampling, but how?

Option 1: store a vector of N samples

o €— W + >

56 | 28 | 64 | 49 | 49 | 51 | 43 | 5.0 4.6
+ + + + + + + + +
40 | 32 | 11| 35| 39| 34 | 47 | 3.8 2.2
96 | 60 | 75 | 84 | 88 | 85| 9.0 | 8.8 6.8

lazy evaluation

Suppose an oracle tells us the “right” sample size for
a particular operation (we'll invent this oracle shortly!)
How do we satisfy this sample size?

Uncertain<T> represents distributions with sampling
functions, returning a new sample on each invocation

Operators combining distributions are lazy,
constructing a symbolic expression tree

evaluating expression trees

@

evaluating expression trees
var A = GetReading()
var B = GetReading()

var Sum = A + B

if ((Sum > 10).E() > 75%):
Alert()

evaluating expression trees

var A

GetReading()
var B = GetReading() S
var Sum = A + B dum

if ((Sum > 10).E() > 75%):
Alert()

evaluating expression trees

var A = GetReading()

var B = GetReading()

var Sum = A + B

if ((Sum > 10).E() > 75%):
Alert()

Sum > 10

hypothesis tests

How do we decide the “right” sample size for a
particular operation?

Distributions only evaluated at conditionals, so use
hypothesis tests to address sampling error

hypothesis tests

if (Speed.E() > 60)
IssueSpeedingTicket();

This code implicitly performs a hypothesis test
Start with a base sample size

Continue increasing the sample size until either
1. The null hypothesis is rejected; or
2. A maximum sample size limit is reached (to

ensure termination)

smartphone GPS sensors

Many smartphone apps use GPS to calculate
distances and speeds

How can Uncertain<T> improve these apps?

int dt = 1;

Geocoordinate LastLocation =
GPSLib.GetGPSLocation();
while (true) {
Sleep(dt); // wait for dt seconds

Geocoordinate Location =
GPSLib.GetGPSLocation();

double Speed =
GPSLib.Distance(Location, LastlLocation) / dt;

Display(Speed);
if (Speed > 5)
GoodJobMessage();

LastLocation = Location;

int dt = 1;

% Geocoordinate LastlLocation =
GPSLib.GetGPSLocation();
while (true) {
Sleep(dt); // wait for dt seconds

% Geocoordinate Location =
GPSLib.GetGPSLocation();

% double Speed =
GPSLib.Distance(Location, LastlLocation) / dt;

Display(Speed);
if (Speed > 5)
GoodJobMessage();

LastLocation = Location;

int dt = 1;

% Uncertain<Geocoordinate> LastlLocation =
GPSLib.GetGPSLocation();
while (true) {
Sleep(dt); // wait for dt seconds

% Uncertain<Geocoordinate> Location
GPSLib.GetGPSLocation();

% Uncertain<double> Speed =
GPSLib.Distance(Location, LastlLocation) / dt;

Display(Speed);
if (Speed > 5)
GoodJobMessage();

LastLocation = Location;

int dt = 1;

Uncertain<Geocoordinate> LastLocation =
GPSLib.GetGPSLocation();
while (true) {
Sleep(dt); // wait for dt seconds

Uncertain<Geocoordinate> Location
GPSLib.GetGPSLocation();

Uncertain<double> Speed =
GPSLib.Distance(Location, LastlLocation) / dt;

% Display(Speed);
if (Speed > 5)
GoodJobMessage();

LastLocation = Location;

int dt = 1;

Uncertain<Geocoordinate> LastLocation =
GPSLib.GetGPSLocation();
while (true) {
Sleep(dt); // wait for dt seconds

Uncertain<Geocoordinate> Location
GPSLib.GetGPSLocation();

Uncertain<double> Speed =
GPSLib.Distance(Location, LastlLocation) / dt;

* Display(Speed.E().Project());
if (Speed > 5)
GoodJobMessage();

LastLocation = Location;

int dt = 1;

Uncertain<Geocoordinate> LastLocation =
GPSLib.GetGPSLocation();
while (true) {
Sleep(dt); // wait for dt seconds

Uncertain<Geocoordinate> Location
GPSLib.GetGPSLocation();

Uncertain<double> Speed =
GPSLib.Distance(Location, LastlLocation) / dt;

Display(Speed.E().Project());
*if (Speed > 5)
GoodJobMessage();

LastLocation = Location;

int dt = 1;

Uncertain<Geocoordinate> LastLocation =
GPSLib.GetGPSLocation();
while (true) {
Sleep(dt); // wait for dt seconds

Uncertain<Geocoordinate> Location
GPSLib.GetGPSLocation();

Uncertain<double> Speed =
GPSLib.Distance(Location, LastlLocation) / dt;

Display(Speed.E().Project());
*if ((Speed > 5).E() > 0.75)
GoodJobMessage();

LastLocation = Location;

walking speeds

100
75

50

Speed (km/h)

25

improved walking speeds

100
—— Without prior
—— With prior
75
=
~
S
=
- 50
(O]
(]
o
9p)]
25

h “ J(i }W ‘) " A 4 J A ‘v v‘) ‘ WA

Time

approximate computing

Recent work uses neural networks to approximate
functions, trade accuracy for performance

How to reason about the error this induces?

Neural networks: posterior predictive distribution

evaluation

Approximate the Sobel operator s(p), calculating
gradient of image intensity at a pixel

Evaluate the conditional s(p) > 0.1, with and without
Uncertain<T>

evaluation

Conditional
;\3 40 = —0-— Mean
0
c
O
0
8 30
5
)
(@)
(0]
| -
-
(@)
(@)
£ 20 -

50 60 70 80 90 100
Confidence level (%)

future work

Sensor applications
Less accurate sensors to save power

A programming model for uncertainty
Machine learning for non-experts

Optimisation

Lazy evaluation a promising target

Uncertainty is a growing problem for non-expert
programmers. Existing abstractions are inadequate.

Other solutions are either inefficient or inaccessible.

Uncertain<T> focuses on accessibility to non-experts,
while still being expressive and efficient.

Programmers can make principled decisions under
uncertainty.

With Uncertain<T>, non-expert programmers can
build programs that are more concise, expressive,
and correct.

