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ABSTRACT
UrbanSim is a modeling system for simulating the devel-
opment of urban regions over periods of 20-30 years. Its
purpose is to help evaluate alternative proposed policies
and transportation infrastructure projects by simulating the
long-term impacts of the different alternatives. In the pro-
cess of adapting and calibrating the system for use in a
new region, planners and modelers must prepare input data,
specify and estimate a set of component models, and as-
sess the results before giving them to policy makers. All
of these activities involve considerable investigation and ex-
perimentation using different model variables that describe
attributes of actors, processes, and geographies of the sim-
ulated environment. In many cases, the original variables
must be transformed or combined to create new variables
that are more suitable for analysis; and in other cases, cre-
ating new variables on the fly may facilitate exploration of
the results. In this paper we describe the design and imple-
mentation of domain-specific language for specifying these
variables, with a syntax and semantics tailored to the do-
main. As a result of using this language, the code size for
specifying variables is reduced by an order of magnitude,
and user productivity is greatly increased.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Specialized Applica-
tion Languages; J.4 [Computer Applications]: Social and
Behavioral Sciences; I.6.2 [Simulation and Modeling]:
Simulation Languages

General Terms
Design, Languages

Keywords
Modeling, urban simulation, domain-specific languages,
Opus, UrbanSim

1. INTRODUCTION
In many regions throughout the United States and world-
wide, there is great concern about such issues as traffic con-
gestion, resource consumption, lack of sustainability, and
sprawl. Elected officials, planners, and citizens grapple
with these difficult issues as they develop and evaluate al-
ternatives for major land use and transportation decisions,
such as building a new rail line or freeway, establishing an

urban growth boundary, or changing incentives or taxes.
UrbanSim [2, 14, 15] is a simulation system for project-
ing the impacts of alternative policies and transportation
infrastructure projects over periods of 20-30 years, with the
purpose of better informing public decision-making about
issues such as these. To date, it has been applied opera-
tionally in Houston, Texas, and is being transitioned into
operational use in the Puget Sound region in Washington
State (Seattle and surrounding cities), and in Salt Lake City,
Utah [18]. The UrbanSim group has also worked with other
agencies in applying UrbanSim in the urban areas around
Detroit, Eugene, Honolulu, and San Francisco. There have
also been research and pilot applications in such diverse re-
gions as Amsterdam, Burlington, Durham, El Paso, Mel-
bourne, Paris, Phoenix, Tel Aviv, and Zurich; and there
is an active user community, including a mailing list and
two UrbanSim Users Group meetings, with a third meeting
planned for March 2008.

UrbanSim is implemented as a set of interacting component
models that simulate different actors or processes within the
urban environment. For example, the Household Location
Choice Model simulates the actions of households seeking a
place to live. It is a discrete choice model [6], which com-
putes the probability of a household moving into an available
vacant apartment or house. These probabilities depend on
characteristics both of the household (e.g., income, number
of children), and of the available location (e.g., cost, distance
to major employment centers). Other component models in-
clude Employment Location Choice, Land Price (simulating
the real estate market for land), Real Estate Development,
and an interface to an external travel model.

The current version (UrbanSim 4) is implemented using a
new framework called Opus (Open Platform for Urban Sim-
ulation) [17]. Both Opus and UrbanSim are open source,
and freely available for download from the project website
at http://www.urbansim.org. (In the remainder of this pa-
per, we will generally refer to UrbanSim rather than Opus,
although in some cases the capabilities are more general ones
that are available for other packages developed using Opus
as well as UrbanSim.) Opus and UrbanSim are in turn im-
plemented in Python, and make heavy use of a set of Python
libraries, notably NumPy (http://numpy.scipy.org), a
highly efficient array and matrix manipulation library, as
well as other libraries for interfacing with databases, pro-
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ducing graphs, charts, and maps, and so on.

2. ITERATIVE DEVELOPMENT OF DATA
AND MODELS IN URBANSIM

There are numerous stakeholders in an application of
UrbanSim to an urban region, including citizens, elected of-
ficials, urban planners, and many others. In this paper, we
focus on better supporting one particular group of stakehold-
ers: namely, the technical planners and modelers who adapt
and calibrate the system for use in a given region. We use as
a case study the UrbanSim model system developed for the
Puget Sound Regional Council (PSRC), the Metropolitan
Planning Organization for the region in Washington State
that includes the cities of Seattle, Bellevue, Tacoma, and
others, as well as adjacent suburban and rural areas [16].

The PSRC model system uses 12 component models:

• Real Estate Price Model

• Expected Sale Price Model

• Development Proposal Choice Model

• Building Construction Model

• Household Transition Model

• Employment Transition Model

• Household Relocation Model

• Household Location Choice Model

• Employment Relocation Model

• Employment Location Choice Model for
home-based jobs

• Employment Location Choice Model for
non-home-based jobs

• Employment Location Choice Model for
governmental jobs

Four of these must be estimated using observed data (i.e.,
the coefficients for variables in the different choice and re-
gression expressions must be fitted to this data). The com-
ponent models requiring this estimation are the Real Es-
tate Price Model, the Household Location Choice Model,
the home-based Employment Location Choice Model, and
the non-home-based Employment Location Choice Model.
Further, two of these models are split into sub-models: the
Real Estate Price Model contains 18 sub-models, one for
each land use type; and the non-home-based Employment
Location Choice Model contains 15 sub-models, one for each
employment sector. For these models with sub-models, the
same code runs on different partitions of the data. Thus,
each sub-model must be estimated separately.

In total, prior to running the PSRC UrbanSim application,
the user must estimate 18 regression models and 17 discrete
choice models. The estimation process is usually preceded
by data analysis and preparing data for estimation and simu-
lation. This includes detecting outliers, dealing with missing
values, and preparing a set of possible predictor variables for
each model.

The term “model variable” (or just “variable”) is used here
to indicate an attribute of actors or geographies involved
in the particular model. Transformations are often used to
create new variables that are more suitable for analysis than
the ‘raw’ attributes. For example, if the underlying statis-
tical model assumes a normal distribution of the variables
being analyzed, often a transformation is necessary to better
approximate normality, such as the log transformation. An-
other case of requiring the creation of a new variable is when
we want to use a predictor of a certain entity but have col-
lected data on different entity. For example, for predicting
the price of each geographic cell, we want to use popula-
tion density on that cell as a predictor variable, but initially
the population data is organized by household (location and
number of persons for each household). To achieve this goal,
we can create a new variable from the household data that
provides the number of persons for each geographic cell. For
discrete choice models we want to use interaction variables
that characterize an interaction between agents and choices.
For example, in the Household Location Choice Model, a
strong candidate for a predictor variable is an interaction
between household’s income and the cost of a location. Such
interactions can be also represented by creating a new vari-
able. Finally, transformations can be also used to deal with
missing data and outliers, by defining a new variable that
filters out outliers or fills in missing data from the original.

As an aside, note that the term “model variable” (or “vari-
able”) does not have the same meaning as “variable” as used
in programming languages, although they are related. (This
fact can be a trap for the unwary in understanding the se-
mantics of variables.)

The process of developing a model involves configuring the
arguments used in constructing the model, and then select-
ing the variables to use in the specification of the discrete
choice or regression equation used in the model. The spec-
ification of the model is a list of independent variables to
be used as predictor variables. The process of developing
a specification involves a combination of theory regarding
the domain being modeled, and analysis of the statistical
results from estimating the model parameters. A common
process is to run the estimation with an initial specification
that contains key variables motivated by theory and knowl-
edge of the domain, then to examine the significance level of
each variable, and from this decide which variables to keep
and which to eliminate. This process usually takes several
iterations of including and excluding variables, sometimes
including creating new and more suitable ones. For some
models, such as regression models, the number of iterations
can be reduced by using methods for variable selection, such
as Bayesian Model Averaging [10]. Nevertheless, creating a
comprehensive list of good predictors is often a challenging
task, requiring considerable experimenting with the model
and the data.

Data analysis is typically performed again at the end of a
simulation process on the model results. Before giving the
results to the policy makers, modelers will often want to
check that they are reasonable, that the model has not pro-
duced invalid results as a consequence of problems in the
data or a bug in the code. The process is similar to the one
used when preparing data, and involves investigating sim-
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ulated characteristics and their transformations of the dif-
ferent actors and geographies, often by computing variables
that help in diagnosing the reasonableness of results.

3. DATASETS IN URBANSIM
Within a simulation, data is held in instances of the class
Dataset (or a specialized subclass of it). A dataset is much
like a table in a relational database: it can be thought
of as a n × m table, where n is the number of entries,
and m is the number of primary attributes associated with
each entry. For example, households are represented us-
ing such attributes as income, number_of_persons, num-

ber_of_children, number_of_workers, age_of_head, and
building_id, as well as a unique ID. (A primary attribute
is a variable that comes from some external observation,
rather than being generated by the running simulation.)
As a second example, parcels of land in the simulated re-
gion are represented using such attributes as parcel_sqft,
used_land_area, land_value, and improvement_value. A
dataset will have a small number of attributes, but can have
a very large number of entries. For example, in the PSRC
application of UrbanSim, there are 1, 282, 940 households,
each with 8 attributes; 1, 177, 140 parcels with 26 attributes;
1, 849, 447 jobs with 8 attributes; and 1, 008, 869 buildings
with 13 attributes. The number of entries can change during
a simulation (and usually increases, for example as simulated
population increases).

Efficiency — both for storage space and also execution speed
— is critical. For a given dataset, UrbanSim’s component
models typically access only a small subset of the attributes,
but for all entries (for example, just the land_value at-
tribute of every parcel). To match this usage pattern, each
dataset attribute is stored as a NumPy array, allowing com-
pact storage and fast access. Further, the model computa-
tions all work from NumPy arrays, so that the attributes are
already in the desired format. Attributes are loaded only on
demand (i.e., lazily), and can be flushed to disk if needed to
free up main memory.1

4. REPRESENTATION OF OPUS VARI-
ABLES

As noted above, a dataset has a set of primary attributes,
such as income or number of children, that comes from some
external observations. In addition, we often require addi-
tional attributes that are computed using some transfor-
mation of existing attributes. These are derived attributes.
Within the class Dataset, they are simply handled as addi-
tional columns of the dataset to which they belong.

A variable that represents a derived attribute is implemented
as a class in a single Python file of the same name. For
example, the zone.average_income variable shown in Fig-
ure 1 computes the average income per household within a
zone. The compute method returns an array of numbers,

1At this point the reader may wonder why we don’t simply
represent datasets as a table in a real database. The rea-
son is simply efficiency — for external storage we do often
store datasets in a relational database, but using database
accesses for all computations during the running simulation
proved much too slow. There are in fact convenience rou-
tines to convert between datasets and database tables in an
external database (typically either MySQL or PostgreSQL).

one per zone, representing the mean of the incomes of all
households placed in the corresponding zone. The underly-
ing computations — on the 1,282,940 households and 938
zones in the PSRC application — are handled efficiently us-
ing NumPy functions and operators. The variable has three
other variables on which it depends (defined in the method
dependencies):

• household.income

• zone.zone_id

• urbansim_parcel.household.zone_id

The first two variables are primary attributes (of
the household and zone datasets respectively), while
urbansim_parcel.household.zone_id is derived. (A house-
hold is placed in a building, the building is placed on a par-
cel, and the parcel is located in a zone.)2

Variables representing derived attributes use lazy evalua-
tion: the compute method is only invoked if either the vari-
able has not been computed before, or if the values of one
or more of the variables on which it depends have been up-
dated. The system maintains a version number for each
variable to keep track of the bookkeeping for this. Thus, if
the value of a variable (or a particular version of a variable)
is never requested, it won’t be computed.

Figure 2 shows a more complex variable, which computes the
square feet per residential unit for each parcel. The variables
on which it depends are parcel.parcel_sqft, a primary at-
tribute of parcels, and parcel.residential_units, which
is computed for the parcels dataset as the sum of residen-
tial units of buildings located on that parcel. The compute

method returns a ratio of parcel sqft and residential units,
with zeros for entries in which parcel.residential_units

is equal to zero. As before, this is an array-based computa-
tion, and we return an array of ratios, one per parcel.

This software architecture — including datasets and Opus
variables — has proven to be efficient. By being integrated
with our own estimation routines, it has provided a huge
boost in the ability of modelers to experiment with alterna-
tive configurations and to better fit the model to the envi-
ronment being simulated relative to standard work practice,
which involves using an external econometric package.

However, in the course of estimating models and analyzing
data, as described in Section 2, for every new transforma-
tion of the data, even one as simple taking a log or square
root, the user must to define a new Python class that repre-
sents the new variable, including defining the computation
itself and the dependencies. For even the simplest of new
variables, this would be 8–10 lines of code, much quite sim-
ilar to that in existing variables. For software engineering
reasons, we also want to include a unit test (including test
data), and often a post-check, bringing the total lines of
code to 50 or more. (The unit test is invariably much longer

2Note that in Opus the full name of a variable
refers to the location where the variable is imple-
mented. Thus, the zone_id variable is defined in
urbansim_parcel/household/zone_id.py.
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from opus_core.variables.variable import Variable

class average_income(Variable):

def dependencies(self):

return ["household.income", "zone.zone_id",

"urbansim_parcel.household.zone_id"]

def compute(self, dataset_pool):

households = dataset_pool.get_dataset("household")

return self.get_dataset().aggregate_dataset_over_ids(households, "mean", "income")

% *** code for unit tests omitted ***

Figure 1: Definition of the zone.average_income variable as a Python class

from numpy import ma, float32

from opus_core.variables.variable import Variable

class parcel_sqft_per_unit(Variable):

def dependencies(self):

return [parcel.parcel_sqft, urbansim.parcel.residential_units]

def compute(self, *args):

parcels = self.get_dataset()

res_units = parcels.get_attribute("residential_units")

return ma.filled(parcels.get_attribute("parcel_sqft") /

ma.masked_where(res_units==0,res_units.astype(float32)), 0.0)

% *** code for unit tests omitted ***

Figure 2: Definition of the parcel.parcel_sqft_per_unit variable as a Python class

average_income = zone.aggregate(household.income, function=mean)

parcel_sqft_per_unit = numpy.ma.filled(parcel.parcel_sqft /

numpy.ma.masked_where(urbansim.parcel.residential_units == 0,

urbansim.parcel.residential_units.astype(float32)), 0)

is_pre_1940 = parcel.aggregate(building.year_built *

numpy.ma.masked_where(urbansim_parcel.building.has_valid_year_built == 0, 1), function=mean) < 1940

Figure 3: Example expressions. The first expression defines a variable for the zone dataset, and the other
two define variables for parcel.
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than the variable definition itself, but not testing the defini-
tion is not recommended!) Users can of course copy existing
definitions and modify them, but even this is tedious.

We initially provided some simple ways of producing new
variables without writing new Python classes, by using a
limited vocabulary of expressions and substitutions. This
was implemented by textual substitutions and expansions of
the strings that defined the variables. However, this proved
limited, fragile, and difficult to extend. So we moved to a
much improved solution: namely, defining a domain-specific
language for defining Opus variables.

5. A DOMAIN-SPECIFIC LANGUAGE
FOR DEFINING OPUS VARIABLES

There is a long tradition in the programming language com-
munity of domain-specific languages: languages tailored to a
particular application domain. These are also referred to as
little languages (particularly within the Unix community),
application languages, or problem-oriented languages. Refer-
ence [7] is a comprehensive survey paper, while [1] is a classic
discussion of little languages. Also see [13] for an annotated
bibliography of (pre-2000) papers on domain-specific lan-
guages.

Such languages can offer significant gains in ease of use and
expressiveness for certain kinds of problems. For this prob-
lem, two characteristics that strongly point toward using
a domain-specific language are: first, the natural recursive
structure of Opus expressions, in which an expression can
be composed using operators and functions from other ex-
pressions; and second, the difficulty of succinctly specifying
Opus variables in Python itself.

Three basic choices in the design of a domain-specific lan-
guage are its syntax, its semantics, and the implementation
strategy. These are discussed in Sections 5.2, 5.3, and 5.4
respectively. A common tradeoff in the design of domain-
specific languages regards the range of programming activ-
ities the language should support. Generally, supporting a
larger set of activities means more complexity of the lan-
guage and its implementation. Here, our task is much sim-
plified because we embed the Opus variable language within
Python, allowing us to concentrate simply on the task of
defining new Opus variables. Further, we decided to retain
the old Opus variable mechanism as well, so that a variable
could still be defined using a Python class for more complex
cases. Thus, we prefer a language that supports 90% of the
cases, and is relatively clean and simple, over a more com-
plex one that supports some additional, infrequent cases.

5.1 Examples
Figure 3 gives several examples of expressions, all from
actual use in UrbanSim models. The zone.average_income

variable shown in Figure 1 can be replaced by the first
expression — in the process becoming more succinct
and also more readable. Here, average_income is an
alias for the expression. We are aggregating the income

attribute of households up to the zone level by taking
the mean over all incomes in each zone. The next ex-
pression is the equivalent of the parcel_sqft_per_unit

variable from Figure 2. Here, the dependent vari-

able urbansim.parcel.residential_units can be im-
plemented as (or directly replaced in the expression
by) parcel.aggregate(building.residential_units,

function=sum). The last expression, for is_pre_1940,
returns an array of booleans: each parcel for which the
average building age is older than 1940 gets a True, and
others get False. We find the average age of the buildings
in each parcel using the aggregate method, masking out
buildings for which the year_built field is invalid. Then
we compare these ages with 1940, returning the desired
array of booleans, one per parcel.

The availability of the expression syntax makes it possible
for modelers to much more readily experiment with model
specifications when developing new models or modifying
their specification, by making it easy to add new expres-
sions to the model specification and assigning short aliases
for them. The problems associated with diagnosing simu-
lation results are also reduced, since the expression syntax
provides a much easier to use capability for modelers to gen-
erate new expressions that help diagnose specific problems
they observe in the results.

5.2 Syntax
For the syntax of the language for defining Opus variables,
we selected a subset of Python itself, rather than design-
ing a new, custom syntax. This section gives an informal
description of the language; a more complete specification
is given in the Opus/UrbanSim Users Guide and Reference
Manual [3].

An expression consists of the name of a variable, or a func-
tion or operation applied to other expressions. This defi-
nition is recursive, so that a unary function or binary op-
erator can be applied to expressions composed from other
expressions. The variable name is the name of some existing
variable (including its associated dataset name), for exam-
ple building.year_built, or parcel.residential_units.
Variable names can also include the package in which they
are defined, to allow selecting a specific definition (e.g.
urbansim.parcel.residential_units). The unary func-
tions are any of the functions available in NumPy, such as
exp and sqrt. Similarly, all of the NumPy operators can
be used in Opus expressions, including + - * / ** < > ==.
Note the NumPy semantics for these. For example, * does
elementwise multiplication of two NumPy arrays, or with
a scalar argument, scales all the elements in an array, e.g.
1.2*household.income. Similarly, the comparison opera-
tors perform an elementwise equality comparison on two ar-
rays, returning an array of booleans (as in the is_pre_1940

expression). The expression can also include a cast to a dif-
ferent NumPy type (for example, to coerce a float64 to a
float32 to conserve memory).

Expressions can be used directly in model specifications.
They can also be collected into an aliases.py file placed
in the package for that dataset specification; then in a spec-
ification, the user can refer to the variable simply by its alias.
This supports reuse of definitions, and has worked out much
better in practice.

An important class of methods that provide special oper-
ators beyond those in NymPy are used to aggregate and
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disaggregate variable values over two or more datasets.
The aggregate method associates information from one
dataset to another for a many-to-one relationship, while the
disaggregate method does the same for a one-to-many re-
lationship. The expression for zone.average_income in Fig-
ure 3 shows one example of aggregation, done by taking the
mean. Other functions for aggregation include taking the
sum, the min, or the max of the values being aggregated.
Analogously, the disaggregate method takes information
from a coarse set of entities and allocates it to a finer set of
entities with a one-to-many relationship. Aggregation and
disaggregation can be done over multiple levels of geography
in a single expression, for example aggregating the number
of jobs from buildings, up to parcels, then up to zones, then
to cities.

Finally, in order to work with variables that describe the
interaction between two datasets, Opus includes a subclass
of Dataset called InteractionDataset. Attributes of this
class are stored as two-dimensional arrays. For example,
in the Household Location Choice Model, we are interested
in the interaction between household income and cost per
residential unit. (We would certainly expect that the com-
bination of these two would have a strong effect on choice of
residence.) A full range of operators and functions are avail-
able for these 2-d interaction arrays as well. For example,
the expression

ln(household.income) * zone.average_housing_cost

returns an n×m array, where n is the number of households
and m is the number of zones. Each element in the array is
the log of that household’s income times the average housing
cost for that zone.

To support this, for expressions evaluated within the context
of an n×m interaction set, the 1-d arrays resulting from eval-
uating an attribute of the first component of the interaction
set are cast into 2-d arrays, with each row having m copies
of the attribute; for attributes of the second component, the
1-d arrays are cast into 2-d arrays with each column having
n copies of the attribute. (This makes it easy to produce
readable and succinct expressions.)

To illustrate, consider the example of household income in-
teracted with cost per residential unit. Suppose for simplic-
ity that we have 3 households (rather than 1,282,940), with
incomes of $45,000, $100,000, and $60,000. In presenting
the array results we’ll express these in thousands of dollars.
Then evaluating household.income within the context of
the interaction set returns a 2-d array

[ [ 45, 45],

[100, 100],

[ 60, 60] ]

If there are two zones, with average housing costs of $400,000
and $300,000, then evaluating zone.average_housing_cost

within this context returns (again in thousands of dollars)

[ [400, 300],

[400, 300],

[400, 300] ]

Then the expression ln(household.income) *

zone.average_housing_cost can be evaluated using
standard NumPy operations, yielding the result

[ [1522.66, 1142.00],

[1842.07, 1381.55],

[1637.74, 1228.30] ]

5.3 Semantics
In this section we present an informal discussion of two as-
pects of its semantics that seem of particular interest.

In using an expression, there are two stages of evaluation (as
with macros, and in contrast to the usual programming lan-
guage semantics). First, an expression is evaluated to yield
an Opus variable. This Opus variable is then evaluated a
second time (using its compute method) to produce the final
value, which will be a one or two dimensional array of at-
tribute values. The first stage of evaluation is independent
of any particular dataset — evaluating a given expression
would always return the same variable definition. (Because
of this fact, the implementation only needs evaluate an ex-
pression once; after that it uses the cached variable defini-
tion for that expression.) The second stage of evaluation is
done in an environment in which the value of the variable
is computed relative to a particular dataset. A local en-
vironment (the dataset pool) binds other dataset names to
datasets, which is used if the definition involves references to
variables of other datasets, for example for a variable being
aggregated.

Another interesting aspect of the semantics is the use of
lazy evaluation for all expressions. In the programming
languages world, lazy evaluation for all expressions in the
language is typically available only for certain functional
programming languages, e.g., Haskell [9] and Miranda [12].
Otherwise it is only provided by specific programmer action
(for example wrapping the expression to be evaluated lazily
in a method) — the idea of providing lazy evaluation in
an imperative language would be generally viewed as hope-
lessly inefficient. In our domain, however, in which the data
dimensions are typically very large — perhaps a million-
element array — and a single operation is performed on the
entire array rather than element-by-element, lazy evalua-
tion becomes not only reasonable, but more efficient than
the alternative of eager evaluation. The bookkeeping over-
head required is dwarfed by the computation times for the
expressions.

5.4 Implementation
The implementation can be described succinctly, although
the actual code is somewhat complex. The goal is to
take an expression (represented as a Python string), and
from it automatically compile a new, anonymous class
that represents the Opus variable to which the expres-
sion evaluates. The primary workhorse for this is a
class AutogenVariableFactory. For example, given the
expression for zone.average_income given in Figure 3,
AutogenVariableFactory parses the expression, analyzes
the parse tree to find the dependencies, and writes a new
class with a dependencies and a compute method. This new
class is functionally equivalent to the one shown in Figure 1
(and has the same performance).
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The aggregation/disaggregation methods present a few com-
plications. For the second stage of evaluation (from a
variable to a NumPy array), most functions and opera-
tors expect arrays for the operands. The aggregate and
disaggregate methods, however, expect the first argument
(the variable to be aggregated or disaggregated) unevalu-
ated, as an Opus variable. A further complication thus arises
when the first argument to aggregate or disaggregate

is an expression rather than a variable. To handle this,
AutogenVariableFactory recursively calls itself, to gener-
ate a second Opus variable that represents the expression
being aggregated or disaggregated. For example, consider
the expression

zone.aggregate(ln(parcel.land_value),function=mean)

Here, the system will generate two different anonymous vari-
ables, one for ln(parcel.land_value) and another for the
expression as a whole. The is_pre_1940 variable (Figure 3)
is another example of this.

For the implementation, since we use Python syntax (al-
though not semantics), we are able to use the built-in Python
parser module to parse expressions into a parse tree. To an-
alyze the result, the Python parse tree format was reverse-
engineered, and parse tree patterns produced for the differ-
ent cases we needed to recognize (e.g., a variable reference,
an aggregation method call, and so forth). The Python parse
tree format changed between Python 2.4 and 2.5 (with the
addition of if expressions to the language), and so the sys-
tem can produce two different versions of the parse tree pat-
terns, with the appropriate version produced depending on
which version of Python is being run. The system maintains
a dictionary of expressions for which an Opus variable class
has already been generated. When an expression is first
encountered, the system looks it up in that dictionary; if
found, it returns the existing class, and otherwise generates
a new one.

In implementing the language, we used an agile program-
ming methodology [4], including in particular test-first pro-
gramming methodology, and extensive use of unit tests [5, 8]
for the different kinds of expressions (a total of 116 unit tests
for the domain-specific language in the current implemen-
tation). For example, one representative unit test verifies
the compilation of code involving the aggregate method,
by evaluating an expression that uses aggregate, evaluat-
ing the resulting variable on a small set of test data, and
comparing the actual result with the expected result (which
was computed by hand). Our automated build system
(CruiseControl, http://cruisecontrol.sourceforge.net)
runs all of these unit tests — for the domain-specific lan-
guage, variable definitions, and all others — whenever new
code is checked into our source code repository. A traf-
fic light mounted in the hall of our lab displays the re-
sults: green if all tests have passed, red if there is a fail-
ure, and yellow if a build is underway. The reader can
check on the current state of the traffic light by browsing to
http://www.urbansim.org/status/. Also, the reader who
is interested in browsing the implementation and unit tests
can do so using our source code repository and trac system
linked from http://www.urbansim.org, or can download the
code via the same URL and run the tests.

6. EVALUATION
We first provide some quantitative results for reduction in
code size. As a representative sample, the estimation for the
Real Estate Price Model in the PSRC application uses 53
different variables, each defined using a one-line expression.
Setting the unit tests aside for the moment, the equivalent
code using variables defined in Python would require 53 dif-
ferent classes, with an average code size of 10+ lines per
class. This is an order of magnitude reduction in code size.
The system includes no special support for unit tests for ex-
pressions yet, so the number of lines of code for unit tests is
unchanged. However, for the simplest expressions (involving
say just taking the log of a variable), a unit test seems un-
necessary at this level — the functionality of compiling the
Opus variable classes for expressions involving log and other
functions is extensively tested by the unit tests accompany-
ing AutogenVariableFactory (Section 5.4). In this case it is
more appropriate to test the component model in which the
variable is used. For more complex expressions (e.g., the
one for is_pre_1940), a unit test is warranted (although
we haven’t yet convinced our users to write them in most
cases). We have, however, made a start at writing such tests
for more complex expressions, which we place in a separate
place — this keeps the file with the expression definitions
themselves much cleaner and easily understood.

For a more comprehensive evaluation of code size reduc-
tion, we compared two different model systems: the grid-
cell version of UrbanSim (which uses a 150×150 meter grid-
cell as the basic geographic unit), and the parcel version of
UrbanSim (which uses individual land parcels). The gridcell
version is older, and was written before the introduction of
expressions; the parcel version was written after their intro-
duction. These provide roughly comparable functionality.
The total number of non-blank lines of code for defining vari-
ables in the gridcell version is 26330; the total for variables
and expressions in the parcel version is 3643 — a reduction
of number of lines of code of more than a factor of 7.

However, reduction in code size is not the ultimate goal.
Rather, we want to improve the productivity of users of
UrbanSim, reduce the number of errors that they make, and
make the system accessible to a wider range of users. Our
estimate is that the domain-specific language for Opus vari-
ables has boosted the productivity of our modelers by at
least an order of magnitude on tasks involving creating new
variables and experimenting with them. This may actually
understate the effect, since many modelers would not have
been comfortable creating new variables at all if they re-
quire coding as separate classes, given the complexity of the
coding. Further, the language has made a qualitative differ-
ence in the kinds of data exploration that users are able to
undertake, by interactively writing and trying expressions
to investigate data on the fly — formerly these tasks would
have been too cumbersome and most modelers would have
used some other way to explore the data, or potentially of
greater concern, might not undertake as thorough a diagno-
sis due to the level of effort involved in coding variables.

This estimate of the boost in productivity is definitely that:
just an estimate (although one based on a significant amount
of real-world experience working with the language within
our research group). To provide a more rigorous evalua-
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tion of productivity increase, we could do a controlled ex-
periment, in which a set of modelers were given the task
of coding a model using the old-style variables, and using
expressions. This would be counterbalanced, so that one
group would code first using old-style variables and then
expressions, and the other using expressions first and then
variables. However, we haven’t done this, for two reasons.
First, the productivity gains are so large that such an ex-
periment wouldn’t provide that much useful additional in-
formation (it is already clear that expressions are strongly
preferred). Second, there aren’t that many people in the
UrbanSim user community who can code additional vari-
ables in the old way — it’s just too complicated. So finding
a subject pool to get statistically valid results would be hard.
Instead of undertaking such an experiment at this point in
the work, we prefer to defer a user study, and carry it out
for a comprehensive graphical interface to UrbanSim that
integrates expressions with support for the full life cycle of
applying UrbanSim (Section 7).

A significant aspect of the usability of the language is the
syntax itself. Is it appropriate to use Python syntax for the
Opus variable language, since this language is decidedly not
Python? A language design principle (due to Alan Kay) is
that two constructs in a programming language should be
either the same, or quite different — having them be only
slightly different is a recipe for confusion. Applying this
principle, we would want either a strict subset of Python
syntax, or else something quite different (e.g. Scheme syn-
tax). So far the choice of Python syntax has proven to be
the right one: users of the system have found the syntax
quite intuitive, and don’t need to learn a new one. Further,
there has not been an issue of confusing Opus variable ex-
pressions with ordinary Python, since the variables are writ-
ten in quite specific and well-marked contexts in the system.
Writing expressions using the GUI will make this distinction
even clearer.

7. CONCLUSIONS AND FUTURE WORK
Mernik, Heering, and Sloane [7] observe that

DSL development is hard, requiring both domain
and language development expertise. Few people
have both.

This particular domain-specific language is small relative to
many others; further, we were able to build on Python’s
syntax and parser module, thus simplifying the task. Nev-
ertheless, the basic point made by Mernik et. al holds.

Two further observations. First, the language semantics in-
volving two stages of evaluation is obvious in retrospect, but
was quite difficult for us to come to. One basic problem is
the use of the same term (“variable”) in two different ways by
programming language researchers and urban modelers. But
just saying that “there are two different uses of the word —
they don’t mean the same thing” was not enough. Instead,
we needed to understand how the concepts from program-
ming languages and urban modeling interact, and to bring in
a programming language design sensibility to move forward.
(More generally, one might suggest that in doing interdis-
ciplinary research, it is essential to be aware of the pitfalls

that come from differences in vocabulary; but beyond that,
to look for ways that understanding these differences can
inform the resulting design.) Second, conventional wisdom
about what functionality is reasonable and efficient to pro-
vide in a language (e.g., lazy evaluation) should be examined
critically in light of the domain.

The Opus variable language has been quite successful as
far as it goes. There are several areas in which we want
to extend it, in particular to provide parametrized variables
(which currently are still handled by the older Python-based
implementation). We also need better handling of user er-
rors in writing expressions, so that more meaningful feed-
back can be given.

Another area for research is the language semantics. This is
improved over what it was formerly, but there is still some
additional work to be done. As noted in Section 5.3, the two
stages of evaluation used for expressions are analogous to
those for programming language macros. In general, macro
facilities in programming languages have a reputation as be-
ing useful but very messy. However, the Scheme language
[11] has a relatively clean macro system and semantics. So
one direction for this part of the work will be studying macro
systems, in particular the one in Scheme, to better inform
the design and semantics of the Opus variable language.

The most important area for future research, however, will
be integrating the language with a graphical interface to
support the full life cycle of applying UrbanSim, includ-
ing estimation, specification, and other activities. Currently
the configuration for an estimation is written in Python,
with lists of strings giving the expressions that define the
variables. To experiment with these, modelers comment
and uncomment strings, add new ones, and so forth. We
are currently developing an integrated graphical interface
to support these activities, which will have tree-structured
displays of the variables used in an estimation or specifica-
tion, and that will let the user conveniently add, enable, and
disable variables, and re-estimate on demand. Some of the
co-authors of this paper even have hopes that by providing
good support for writing unit tests in the GUI, users will
include them for more complex variable definitions.
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