
Developing a Formal Semantics for Babelsberg:

A Step-by-Step Approach

Tim Felgentreff, Todd Millstein, and Alan Borning

VPRI Technical Report TR-2014-002
September 2014

1 Introduction

Babelsberg [4] is a family of object constraint languages, with current instances being Babelsberg/R (a
Ruby extension), Babelsberg/JS [5] (a Javascript extension), and Babelsberg/S (a Squeak extension). The
Babelsberg design has evolved alongside its implementations, driven in part by practical considerations
about the expectations of programmers familiar with the underlying host language. This fact, along with
the complexities of integrating objects, state, and constraints, have led to a number of the semantic choices
being muddled with implementation specifics. There have also been a number of long-standing, confusing
issues with respect to constraints and object identity, how to represent assignment, and the appropriate
restrictions on expressions that define constraints. In an effort to understand these better and to provide a
complete design that instances of Babelsberg can implement, we give here a formal operational semantics
for Babelsberg.

We’ve found it helpful to approach the problem incrementally, first devising a formal semantics for a very
simple constraint imperative language, and then building up to a full object constraint language. In this
memo we present the semantics in that fashion as well. The languages are as follows:

• Babelsberg/PrimitiveTypes (the only datatypes are booleans plus a set of primitive types, such as
integers, reals, and strings). The concrete variant we use in informal examples is Babelsberg/Reals.

• Babelsberg/Records (Babelsberg with immutable records, along with primitive types).

• Babelsberg/UID (Babelsberg with mutable records that live on the heap and so have an identity, can
be aliased, etc., as well as primitive types).

• Babelsberg/Objects (Babelsberg with mutable objects, classes, methods, messages, inheritance, and
object-oriented constraint definitions).

In each case, we first provide an informal discussion and examples, and then the formal semantics. The
primary audience for this admittedly long tech report is first ourselves — we have clarified many aspects of
the language as a result of working out the formalism — and second, other researchers who are interested in
the details. Subsequently we plan to write a standard-length paper for a programming language conference
that should be of more general interest, based on this material. (This subsequent paper will focus just
on Babelsberg/Objects, perhaps with a brief introductory example using Babelsberg/Reals, and will also
include proofs of some of the interesting properties of the language.)

1

2 Motivation

Our formal semantics is intended to provide a complete semantics of Babelsberg that can be used to inform
practical implementations of the language. It is meant to as simple as possible, while still encompassing the
major design decisions needed to guide language implementers. Because Babelsberg is a design to provide
object-constraint programming in an object-oriented host language, the semantics omits some constructs such
as exception handling for constraint solver failures and syntactic sugar that are intended to be inherited from
the host language. The semantics instead focuses on the expression of standard object-oriented constructs
that need to be modified to support the Babelsberg design.

An overarching design goal is that in the absence of constraints, Babelsberg should be a standard object-
oriented language. We have thus resisted the temptation to add other interesting features; instead we aim
to make the smallest possible changes while still accommodating constraints in a clean and powerful way.

We require that our design support a useful and expressive language for constraints, integrated with the host
object oriented language in a clean way. Beyond this, however, a heuristic for the design is that when there
is a choice, we favor simplicity over power (at least power to do interesting operations in the language that
have nonetheless not yet proven themselves useful in practice, in particular with respect to object identity
and type). The constraint imperative language Kaleidoscope [6, 7, 8, 9], particularly the early versions, was
arguably too complex in part because it was too powerful in interesting ways of just this kind, making it
difficult to understand what the result of a program might be and also difficult to implement efficiently.
Trying to follow this heuristic also makes the design more independent of the particular host language and
solvers used in implementing it, because only a small set of basic operations have to be adapted.

Some significant clarifications and simplifications of Babelsberg that have come out of this work on formal-
izing the language are:

• A clearer understanding of the interactions among constraints on identity, types, and values.

• The addition of structural compatibility checks to tame the power of the solver with respect to changing
object structure and type to satisfy constraints.

• The addition of value classes. (Instances of value classes are immutable objects for which object identity
is not significant.) Value classes play a key role in giving a clear specification of the requirements
for expressions that define constraints (in particular that they must be side effect free), while still
supporting useful programming idioms.

• A set of restrictions on identity constraints that make it easier to reason about object identity and
type. In particular, any change to the identity of the object referred to by a variable flows clearly from
a single assignment statement, and is deterministic — there are never multiple correct solutions to the
identity constraints. This also implies that any change to the type of a variable must similarly flow
from a single assignment statement and be deterministic.

3 Constraints

The semantics for each of these languages includes a step in which we assert that some set of values for
variables is a correct solution to a collection of hard and soft constraints. There is a constraint solver that is
a black box as far as the rest of the formal semantics is concerned, and that handles all the issues regarding
finding a solution, dealing with conflicting soft constraints, and so forth. The solver should be sound but may
be incomplete (i.e., it should never return an incorrect answer, but might respond that the set of constraints
is too difficult for it to determine whether or not there is a solution).

2

We use the semantics for hard and soft constraints presented in [3]. An earlier paper on Babelsberg [4] has a
description of the relevant theory as well. The knowledge about how to handle hard and soft constraints is
left entirely up to the solver and doesn’t enter into the formal semantics, so the discussion in the rest of this
section is intended to help the reader understand the informal examples — it isn’t relevant to the formal
semantics.

The solver should find a single best solution — if there are multiple solutions, the solver is free to pick
any one of them. (Providing answers rather than solutions, i.e., results such as 10 ≤ x ≤ 20 rather than
a single value for x, and backtracking among multiple answers, as available in for example constraint logic
programming [11], is left for future work — see Appendix A.6.)

The way we trade off conflicting soft constraints is defined by a comparator. The solver encodes the compara-
tor being used, making it irrelevant to the formal semantics — however, in presenting the informal program
examples we’ll sometimes need to specify which is used, and for this reason we include a brief discussion of
comparators.

The two most relevant comparators are locally-predicate-better (LPB) and weighted-sum-better (WSB).
Locally-predicate-better only cares whether a constraint is satisfied or not, not how far off the value is from
the desired one. Any Pareto-optimal solution is acceptable. For example, a solution that satisfies one weak
constraint A and violates three weak constraints B, C, and D is OK, as long as there isn’t a solution that
satisfies both A and some additional constraint, even if there is another solution that satisfies B, C, and
D but not A. The DeltaBlue solver [10] finds LPB solutions. Weighted-sum-better considers the weighted
sum of the errors of constraints with a given soft priority, and picks a solution that minimizes the sum. If
there is more than one solution and there are additional lower priority constraints, we then consider the
lower-priority ones to winnow down the possible solutions, priority by priority. For this comparator we need
an error in satisfying a constraint, which should be 0 iff the constraint is satisfied. Cassowary [2] finds WSB
solutions.

Here are two examples. (These are described from the point of view of the declarative theory of hard and
soft constraints, not with respect to how an actual solver can find that solution.)

required x+ y = 10
strong x = 8

weak y = 0

The required constraint has an infinite number of solutions. When we winnow these down to solutions that
satisfy the strong constraint, there is only one left: x = 8, y = 2. This is both a LPB and a WSB solution.
The weak constraint has no impact on the solution in this case.

Now consider:

required x+ y = 10
strong x ≥ 5

weak y = 20

We’ll only consider the WSB comparator this time, since it is more suitable for use with inequalities.
(DeltaBlue does not handle inequalities.) Again, the required constraint has an infinite number of solutions.
We winnow these down with the strong constraint to all x ∈ [5,∞), y such that x + y = 10. The weak
constraint is unsatisfiable, so we minimize its error, resulting in the solution x = 5, y = 5.

Strict inequality constraints with metric comparators can be problematic in the presence of soft constraints,
since they can lead to no solutions. Consider:

required x > 10
weak x = 5

3

This set of constraints has no solution — for any potential solution that satisfies x > 10, we can find another
that better satisfies x = 5. For this reason, our examples usually use non-strict inequalities.

The “required” priority is special, in that those constraints must be satisfied in any solution. Both the
semantics of hard and soft constraints, and the Cassowary and DeltaBlue solvers, can handle arbitrary
numbers of soft priorities. However, for simplicity in the remainder of this note, we only use three, namely
“strong,” “medium,” and “weak”.

We can also annotate variables used in constraints as read-only. Intuitively, when choosing the best solutions
to a set of constraints with priorities, constraints should not be allowed to affect the choice of values for their
read-only variables, i.e., information can flow out of the read-only variables, but not into them. Read-only
annotations provide an important tool in a practical language for guiding the behavior of the constraint
solver. However, they don’t present any particular issues for the formal semantics — we would just pass
them on to the constraint solver to handle. Therefore, for simplicity we’ve dropped the extra rules to handle
them (since they were just copies of the rules for variables without the read-only annotation).

3.1 Conjunctions and Disjunctions of Constraints

In general, a constraint might consist of conjunctions, disjunctions, and negations of atomic constraints. For
a conjunction or disjunction, if there is a priority, it applies to the entire constraint, not to components.
Thus this is legal:

strong (x = 3 ∨ x = 4)

but this is not allowed:

(strong x = 3) ∨ (weak x = 4)

Only some solvers, such as Z3, can accommodate disjunctions and explicit conjunctions of constraints. For
DeltaBlue and Cassowary, conjunctions of constraints are implicitly specified by feeding multiple constraints
to the solver, while disjunctions aren’t allowed. However, as noted above, the solver is a black box as far as
the rest of the formal semantics is concerned.

3.2 Taming Identity Constraints

We introduce object identity in the Babelsberg/UID language, and continue to use it in our final language
Babelsberg/Objects. A central issue in the design of a constraint object language is the interaction between
constraints and object identity. Our earlier experience with Kaleidoscope suggests that it is all too easy to
make constraints on object identity and types be too powerful, so that they lead to non-obvious consequences.
This makes programs more difficult for the programmer to understand. To tame the power of constraints on
object identity and type, we set the following goals for this aspect of our design:

1. In those languages that include object identity, we want to support explicit but straightforward identity
constraints of the form x==y (i.e., that variables x and y refer to the same object).

2. The solution to the constraints should be deterministic as far as object identity and type are concerned
— there should never be multiple correct solutions in which a given variable refers to objects with
different identities in the different solutions.

3. Any change to the identities of the objects referred to by variables should flow from an assignment
statement — the constraint solver should not otherwise alter object identities.

4

4. To make Babelsberg programs more understandable for the programmer, we want to be able to reason
about the constraints so that we can first solve all the identity constraints (with a deterministic solution,
in keeping with Goal 3), and then the value constraints. A design that meets this goal of course benefits
the language implementer as well.

In our intermediate language Babelsberg/Records, in which we introduce structured data in the form of
immutable records but not yet object identity, we want analogous properties to hold: the solution to the
constraints should be deterministic as far as object structure is concerned, and any changes to object structure
should flow from an assignment statement.

4 Babelsberg/Reals and Babelsberg/PrimitiveTypes

We start with a very basic language, Babelsberg/Reals, that has only primitive values. In Babelsberg,
constraints are expressions that return a boolean – the constraint solver’s task is to find values for the
variables in the constraint’s expression such that it evaluates to true. So Boolean is a required datatype for
all Babelsberg languages. In addition, we add reals as a second primitive type.

The evaluation model for Babelsberg/Reals is mostly standard for ordinary expressions and statements. In
contrast, a statement that adds a constraint starts with a duration, namely always or once. The expression
following the duration is taken unevaluated and added to the constraint store. For always, the constraint
remains for the duration of the program’s execution; for once, it is removed after the solver finds a solution
to the current set of constraints. The only wrinkle in the evaluation model for ordinary statements is that
for an assignment statement, we evaluate the expression on the right hand side of the assignment, constrain
the variable on the left hand side of the assignment to be equal to the result using a once constraint, and
then turn all the constraints over to the solver. Doing this ensures that assignment interacts correctly with
other constraints.

Here are some examples.

x := 3;

x := 4;

always x>=10

After evaluating the first statement we hand the following once constraint to the solver to find a value for x:

required x = 3

The solver finds a value for x, which is then used to update the environment to be x 7→ 3.

Note that programs, as well as the variable names and values in the environment, are written in fixed pitch
font. For contrast, we write the constraints that are handed to the solver in math font.

Continuing with the example, after the second statement we hand the following constraints to the solver:

weak x = 3
required x = 4

The weak x = 3 constraint is the stay constraint that x retain its previous value, while the required x = 4
constraint comes from the second assignment. This has the solution x = 4, resulting in a new environment
x 7→ 4.

The third statement adds the always constraint to the constraint store. So after that statement we have
the following constraints:

5

weak x = 4
required x ≥ 10

If we use a metric comparator such as weighted-sum-better or least-squares-better, we get the solution
x = 10, since this minimizes the error for the weak constraint. If we use locally-predicate-better, then every
x ∈ [10,∞) is a solution, and the system is free to select any of them. (However, as noted in Section 3,
typically we wouldn’t use LPB if we have inequalities.)

The following example illustrates using the same variable on the left and right hand sides of an assignment
statement, as well as the interaction of assignments with always constraints.

x := 3;

y := 0;

always y = x+100;

x := x+2

After evaluating the first two statements and solving the resulting constraints, the environment has the
binding x 7→ 3, y 7→ 0. The third statement causes the constraint always y = x+100 to be added to the
constraint store. We then hand the following constraints to the solver to find values for x and y:

weak x = 3
weak y = 0

required y = x+ 100

This has multiple possible solutions, and the solver can select any one of them. Suppose it picks x 7→ 3,
y 7→ 103.

After evaluating the next statement, we have the following constraints:

weak x = 3
weak y = 103

required y = x+ 100
required x = 5

The first two constraints are the weak stays on x and y, the third comes from the always constraint in
the constraint store, and the fourth comes from the assignment x:=x+2 (where we evaluated x+2 in the old
environment to get 5). After solving these constraints, we have x 7→ 5, y 7→ 105.

New variables must be created with an assignment statement. Thus the following program is illegal — we
would need to create x first with an assignment statement before adding the always constraint.

always x=10;

Requiring that variables be created before equating them with something can be annoying for the program-
mer. We decided that indeed the above program is illegal in the formal semantics. However, in practical
implementations, we can have a shortcut to allow it. It only works for = constraints where one side is a new
variable and all variables on the other side already exist. The behavior is that the system creates the new
variable, evaluates the other side of the equality, assigns it to the new variable, and then adds the equality
constraint as an always constraint.

An interesting aspect of this semantics, both as presented informally above and in the formalism that follows,
is that we no longer model assignment as a constraint on variables at different times, as was done in for
example the first Babelsberg paper [4]. See Appendix A.2 for a discussion of these alternatives. (This is

6

relegated to the appendix since, while interesting, it is largely orthogonal to the task at hand of providing a
formal semantics for Babelsberg).

The program might also introduce simultaneous equations and inequalities. For example:

x := 0;

y := 0;

z := 0;

always x+y+2*z = 10;

always 2*x+y+z = 20;

x := 100

Assuming the solver can solve simultaneous linear equations, after the final assignment we will have x 7→ 100,
y 7→ -270, z 7→ 90.

As an example of unsatisfiable constraints, consider:

x := 5;

always x<=10;

x := x+15

After evaluating the first statement the environment includes the binding x 7→ 5. After evaluating the
statement that generates the always constraint, we solve the constraints

weak x = 5
required x ≤ 10

This has the solution x = 5. Then we evaluate the last assignment, resulting the constraints

weak x = 5
required x ≤ 10
required x = 20

Note that the required x ≤ 10 constraint has persisted into this new set of constraints. These constraints
are unsatisfiable.

4.1 Requirements for Constraint Expressions

The expressions that define constraints have a number of restrictions. These will apply to all of the Babelsberg
languages.

1. Evaluating the expression that defines the constraint should return a boolean. (This is checked dy-
namically.)

2. The constraint expression should be free of side effects.1

3. The result of evaluating the block should be deterministic. For example, an expression whose value
depended on which of two processes happened to complete first wouldn’t qualify. (This does not arise
in the toy languages here, although we do need this restriction for a practical one.)

1In a practical implementation, the programmer might be able to make cautious use of benign side effects in a constraint
expression, for example, for caching or constructing temporary objects that are garbage collected before they are visible outside
the constraint. In the formal semantics, however, we simply disallow side effects in constraint expressions.

7

4.2 Control Structures

Babelsberg/Reals includes if and while control structures. These work in the usual way, and allow (for
example) a variable to be incremented only if a test is satisfied, or an always constraint to be conditionally
asserted. The test for an if statement is evaluated, and one or the other branch is taken — there is no
notion of backtracking to try the other branch. (Adding Prolog-style backtracking is left for future work —
see Appendix A.6.) Similarly, a while statement executes the body a fixed number of times — there is no
possibility of backtracking to execute it a different number of times.

The test in an if or while statement can use short-circuit evaluation when evaluating an expression involving
and and or. For example, this program results in x 7→ 100 (and doesn’t get a divide-by-zero error):

x := 4;

if x=4 or x/0=10

then x := 100

else x := 200

For simplicity, our formal rules don’t include short-circuit evaluation — adding it would be straightforward
but would require additional, not-very-interesting rules.

Constraints with conjunctions or disjunctions are just turned over to the solver, rather than being evaluated
using short-circuit evaluation. We could also add if expressions to the language (distinct from if state-
ments). However, since there is a simple translation from if expressions to conjunctions and disjunctions,
we don’t include them. (If we did have them, they would also need to simply be turned over to the solver.)
For example, the following two constraints are equivalent, and have the solution x 7→ 10:

always if x=4 then x=5 else x=10

always (x=4 and x=5) or (x!=4 and x=10)

In either case, we would turn the entire constraint over to the solver to find a solution for x.

Here is an example of an unsatisfiable constraint of this sort:

always if x=4 then x=5 else x=4

which is equivalent to:

always (x=4 and x=5) or (x!=4 and x=4)

4.3 Adding Other Primitive Types

It is straightforward to extend Babelsberg/Reals with other primitive types, such as integers and strings.
When we need to refer to this language rather than just Babelsberg/Reals we will call it Babels-
berg/PrimitiveTypes. Note that all the types in Babelsberg/PrimitiveTypes are atomic — we don’t have
recursive types or types that define values that hold other values (such as records, arrays, or sets).

Since we are modeling a dynamically typed language, we need to consider the case of changing the type of
a variable. Here’s a simple example program that illustrates this.

8

x := 5;

x := "Hello";

After the second statement we solve the following constraints:

weak x = 5
required x = "Hello"

The final result is x 7→ "Hello".

The changed type might propagate through an always constraint:

x := 5;

y := 10;

always y = x;

x := "Hello";

The final result is that both x and y are strings.

There is also a potential interaction with overloaded operators. Suppose that for strings + denotes string
concatenation:

x := 5;

y := 10;

always y = x+x;

x := "Hello";

After the always statement we have x 7→ 5, y 7→ 10. Then after the final statement, we have the constraints

weak x = 5
weak y = 10

required y = x+ x
required x = "Hello"

This has the solution x 7→ "Hello", y 7→ "HelloHello".

Non-determinism can arise for primitive types as well as values:

x := 3;

always weak x=5;

always weak x="hello";

Here the solver is free to choose either an integer or a string for x. This is strange, and also not really
in keeping with the spirit of the goals for our languages with respect to constraints and object identity
(Section 3.2). However, it is just an artifact of the semantic rules we are using for Babelsberg/PrimitiveTypes
— for simplicity, in these rules we don’t distinguish among primitive types, with the consequence that the
above program is legal. When we get to our final goal (the Babelsberg/Objects language) the corresponding
program will be disallowed due to the automatic boxing and unboxing of primitive types in the formal
semantic rules.

4.4 Formalism

We present the formal semantics of Babelsberg/PrimitiveTypes.

9

4.4.1 Syntax

Statement s ::= skip | x := e | always C | once C | s;s
| if e then s else s | while e do s

Constraint C ::= ρ e | C ∧ C

Expression e ::= c | x | e ⊕ e | e < e | e > e

Constant c ::= true | false | base type constants
Variable x ::= variable names

Value v ::= c

The language includes a set of boolean and base type constants (e.g., reals), ranged over by metavariable c.
A finite set of operators on expressions is ranged over by ⊕. For booleans this set includes no operations,
but it does include operations on the reals such as + and *. The symbol < ranges over a set of predicate
operators (= and 6= for booleans, ≤, <, =, and so on for reals.) These test properties of base types in the
language. The symbol > ranges over a set of logical operators for combining boolean expressions (e.g., ∧,
∨). The predicate operators are assumed to include at least an equality operator = for each primitive type
in the language, and the logical operators are assumed to include at least conjunction ∧. The syntax of this
language does have some limitations as compared with that of a practical language — for example, there
are only binary operators (not unary or ternary), and the result must have the same type as the arguments.
We make these simplifications since the purpose of Babelsberg/PrimitiveTypes is to elucidate the semantics
of such languages as a step toward Babelsberg/Objects, rather than to specify a real language.

For constraints, the symbol ρ ranges over a finite and totally ordered set of constraint priorities and is
assumed to include a bottom element weak and a top element required. While syntax requires the priority
to be explicit, for simplicity we sometimes omit it in this semantics. A constraint with no explicit priority
implicitly has the priority required. Finally, for simplicity we do not model read-only annotations in the
formal semantics.

The syntax is thus that of a simple, standard imperative language except for the always and once statements,
which declare constraints. An always constraint must hold for the rest of the programs execution, whereas a
once constraint is satisfied by the solver and then retracted. Note that for simplicity this semantics implicitly
gets stuck whenever the solver cannot satisfy a constraint, either due to an unsatisfiable constraint or due
to the solver being unable to determine whether the constraint is satisfiable. In a practical implementation,
we would likely want to differentiate between these cases, since it’s useful if we can inform the programmer
that the constraints are truly not satisfiable. We could also add standard exception handling to remove the
unsatisfiable or unknown constraint and continue, but omit this here for simplicity.

4.4.2 Semantics

The semantics is defined by several judgments, defined below. These judgments depend on the notion of an
environment, which is a partial function from program variables to program values. Metavariable E ranges
over environments. When convenient we also view an environment as a set of (program variable, program
value) pairs. For each operator o in the language we assume the existence of a corresponding semantic
function denoted JoK.

E ` e ⇓ v

“Expression e evaluates to value v in the context of environment E.”

E ` c ⇓ c (E-Const)

10

E(x) = v

E ` x ⇓ v
(E-Var)

E ` e1 ⇓ v1 E ` e2 ⇓ v2 v1 J⊕K v2 = v

E ` e1 ⊕ e2 ⇓ v
(E-Op)

E ` e1 ⇓ v1 E ` e2 ⇓ v2 v1 J<K v2 = v

E ` e1 < e2 ⇓ v
(E-Compare)

E ` e1 ⇓ v1 E ` e2 ⇓ v2 v1 J>K v2 = v

E ` e1 > e2 ⇓ v
(E-Combine)

E |= C

This judgment represents a call to the constraint solver, which we treat as a black box. The proposition
E |= C denotes that environment E is a solution to the constraint C (and further one that is optimal according
to the solver’s semantics, as discussed earlier).

stay(E) = C

This judgment defines how to translate an environment into a source-level “stay” constraint.

stay(∅) = true (StayEmpty)

E(x) = v E0 = E \ {(x, v)} stay(E0) = C0 C = C0 ∧ weak x=v

stay(E) = C
(StayOne)

<E|C|s> −→ <E′|C′>

“Execution starting from configuration <E|C|s> ends in state <E′|C′>.”

A “configuration” defining the state of an execution includes a concrete context, represented by the environ-
ment, a symbolic context, represented by the constraint, and a statement to be executed. The environment
and statement are standard, while the constraint is not part of the state of a computation in most languages.
Intuitively, the environment comes from constraint solving during the evaluation of the immediately pre-
ceding statement, and the constraint records the always constraints that have been declared so far during
execution. Note that our execution implicitly gets stuck if the solver cannot produce a model.

E ` e ⇓ v stay(E) = Cs E′ |= (C ∧ Cs ∧ x = v)

<E|C|x := e> −→ <E′|C>
(S-Asgn)

stay(E) = Cs E′ |= (C ∧ Cs ∧ C0)

<E|C|once C0> −→ <E′|C>
(S-Once)

<E|C|once C0> −→ <E′|C> C′ = C ∧ C0

<E|C|always C0> −→ <E′|C′>
(S-Always)

11

<E|C|skip> −→ <E|C> (S-Skip)

<E|C|s1> −→ <E′|C′> <E′|C′|s2> −→ <E′′|C′′>

<E|C|s1;s2> −→ <E′′|C′′>
(S-Seq)

E ` e ⇓ true <E|C|s1> −→ <E′|C′>

<E|C|if e then s1 else s2> −→ <E′|C′>
(S-IfThen)

E ` e ⇓ false <E|C|s2> −→ <E′|C′>

<E|C|if e then s1 else s2> −→ <E′|C′>
(S-IfElse)

E ` e ⇓ true <E|C|s> −→ <E′|C′> <E′|C′|while e do s> −→ <E′′|C′′>

<E|C|while e do s> −→ <E′′|C′′>
(S-WhileDo)

E ` e ⇓ false

<E|C|while e do s> −→ <E|C>
(S-WhileSkip)

5 Babelsberg/Records

For this next language, we augment Babelsberg/PrimitiveTypes with immutable records. This language is
interesting on its own as an expository language and as a step toward Babelsberg/Objects; but we will also
continue to use these immutable records in the formal semantics for Babelsberg/Objects to represent value
classes (see Section 7).

Records are written as lists of name/value pairs in curly braces:

{x:5, y:10}

There is no notion of object identity for Babelsberg/Records — we can test whether two records are equal,
but whether or not they are identical would be an implementation issue and not part of the semantics.

The syntax is extended to include record constructors and field access. Here are examples of expressions,
assignment statements, and constraints involving records:

p := {x:2, y:5}; /* assign a record to p */

a := p.x; /* access a field of a record and assign it to a variable */

q := p; /* q is now a copy of p (or maybe it’s shared; we can’t tell

the difference) */

always p.x = 100; /* a constraint on a record field */

always q = p; /* an equality constraint between two records */

always q.y = 20;

Note the difference between the assignment q:=p and the constraint always q=p. After the always p.x=100

constraint, we have p 7→ {x:100, y:5} but q 7→ {x:2, y:5}— at this point p and q are unrelated, so adding
the constraint on p.x had no effect on q. However, after the final constraint, we have p 7→ {x:100, y:20}
and q 7→ {x:100, y:20}, since p and q are now constrained to be equal.

The solver must now also handle records. To tame the power of the solver so that it does not (for exam-
ple) invent new fields for records, we add structural compatibility checks on constraints. These structural

12

compatibility checks are assertions that are checked dynamically before sending the constraints involving
records to the solver, for example, checking whether a variable is bound to a record, and whether the record
has the necessary fields. While these assertions are checked, unlike constraints the system will never change
anything to enforce them — if one is violated it’s just an error. Instead, the programmer must ensure that a
record with the expected fields is first assigned to a variable used in record constraints, just as a programmer
would need to ensure that a record with the expected fields was assigned to a record-valued variable in a
standard language.

Here are a few examples of structural compatibility checks.

p := {x:2, y:5};

always p.x = 100;

The structural compatibility check is that p is a record that has an x field, which succeeds.

The following program is OK — just as in Babelsberg/PrimitiveTypes, we can change the type of a variable
using an assignment.

a := {x:1};

a := {y:10};

However, in contrast to Babelsberg/PrimitiveTypes, the following program fails the structural compatibility
check — only an assignment can change the type of a variable.

a := {x:1};

once a = {y:10};

This program fails as well:

a := {x:1};

b := {x:1};

always a=b;

a := {x:1, y:10};

Here, assigning a record with a different structure to a is OK on its own, but the always constraint would
also require b to change. It’s a bit weird that this behavior is different from the behavior with primitive
types (in which a similar program was OK). However, once we introduce object identity, we will be able to
have changes to the types of variables ripple through the system via identity constraints (but it will need to
be via identity constraints and not value constraints).

A few more examples:

These two programs fail, because as in Babelsberg/PrimitiveTypes only assignment can initialize variables.

once a = {y:10};

a := {y:10};

always b=a;

13

The following program also fails the structural compatibility check, since the always constraint expects p to
have a y field but it doesn’t:

p := {x:2};

always p.y = 100;

This program fails as well, since constraining a record to be equal to a number fails the compatibility check:

p := {x:2};

always p = 5;

The following program passes the structural compatibility checks, but fails with an unsatisfiable constraint
error, since we are requiring that p.x be both 100 and 2:

p := {x:0, y:0};

always p.x = 100;

p := {x:2, y:5};

However, the following program is OK:

p := {x:0};

always medium p = {x:3};

always medium p = {x:4}

The solution will be that p is a record with a single field x bound to a number, with the exact value
depending on the solver (3, 4, or 3.5 being the most reasonable possibilities). Note that the solver may
need to adjudicate among solutions that have different primitive types in a given field, but the structural
compatibility checks ensure that it doesn’t need to decide between two records with e.g. different numbers
of fields.

Here’s another example that fails a structural compatibility check:

a := {x:0};

b := {y:5};

always a=b

This is the case even though there actually are records that would satisfy the required a=b constraint — the
issue is that the assignment to a leaves it with a record type that has a single x field, the assignment to b

leaves it with a record type that has a single y field, and the structural compatibility check prevents the solver
from changing either of these types. This illustrates one aspect of using the structural compatibility checks
to tame the solver — one could otherwise imagine the solver coming up with the solution a 7→ {x:0, y:5}
and b 7→ {x:0, y:5}, or even a 7→ {x:0, y:5, z:10} and b 7→ {x:0, y:5, z:10}. See Appendix A.4 for
more about this issue.

5.1 Formalism

5.1.1 Syntax

The syntax from Section 4 is augmented now to support records and the ability to access fields of a record:

14

Expression e ::= · · · | {l1:e1,. . .,ln:en} | e.l
Label l ::= record label names

Value v ::= c | {l1:v1,. . .,ln:vn}

We now assume the solver “understands” records and record operations directly. We assume the equality
operator = can be used to compare two records for logical equality, but no other operators apply to record
values.

5.1.2 Semantics

E ` e ⇓ v

Expression evaluation is updated to support records.

E ` e1 ⇓ v1 · · · E ` en ⇓ vn

E ` {l1:e1,. . .,ln:en} ⇓ {l1:v1,. . .,ln:vn}
(E-Rec)

E ` e ⇓ {l1:v1,. . .,ln:vn} 1 ≤ i ≤ n

E ` e.li ⇓ vi
(E-Field)

E ` e : T

E ` C

“Expression e has type T in the context of environment E.”

“Constraint C is well formed in the context of environment E.”

We use a notion of typechecking to prevent undesirable non-determinism in constraints. Specifically, we
want constraint solving to preserve the structure of the values of variables, changing only the underlying
primitive data as part of a solution, in support of the goals listed in Section 3.2. We formalize our notion of
structure through a simple syntax of types:

Type T ::= PrimitiveType | {l1:T1,. . .,ln:Tn}

The typechecking rules are mostly standard. However, we check expressions dynamically just before con-
straint solving, so we typecheck in the context of a runtime environment, which is somewhat unusual.

E ` c : PrimitiveType (T-Constant)

E ` x ⇓ v E ` v : T

E ` x : T
(T-Variable)

E ` e1 : PrimitiveType E ` e2 : PrimitiveType

E ` e1 ⊕ e2 : PrimitiveType
(T-Op)

E ` e1 : T E ` e2 : T

E ` e1 < e2 : PrimitiveType
(T-Compare)

15

The above rule ensures that two records can only be compared for equality when they have the same structure.
This is necessary to ensure that the solver will never have to invent record fields in order to satisfy a record
equality constraint.

E ` e1 : PrimitiveType E ` e2 : PrimitiveType

E ` e1 > e2 : PrimitiveType
(T-Combine)

E ` e1 : T1 · · · E ` en : Tn

E ` {l1:e1,. . .,ln:en} : {l1:T1,. . .,ln:Tn}
(T-Rec)

E ` e : {l1:T1,. . .,ln:Tn} 1 ≤ i ≤ n
E ` e.li : Ti

(T-Field)

The above rule ensures that a field of a record can only be referenced when it already exists in the record.
This is necessary to ensure that the solver will never have to invent record fields in order to satisfy a constraint
containing field accesses.

The following two rules simply ensure that a constraint is well typed.

E ` e : T

E ` ρ e
(T-Priority)

E ` C1 E ` C2

E ` C1 ∧ C2
(T-Conjunction)

<E|C|s> −→ <E′|C′>

The semantics for executing statements is essentially identical to what we had before, except that now we
typecheck constraints before we solve them. Implicitly we get “stuck” if such a check fails. In a practical
language, this could be extended to generate an exception instead. We only show the modified rules below.

E ` e ⇓ v E[x 7→ v] ` C stay(E) = Cs E′ |= (C ∧ Cs ∧ x = v)

<E|C|x := e> −→ <E′|C>
(S-Asgn)

The second premise above is necessary so that we don’t pass the solver an ill-typed set of constraints.
Specifically, since the assignment can change the type of x, we have to make sure that the global constraints
in scope, C, are well typed with respect to this new type. Note that the stay constraint for x within Cs may
not be well typed with respect to the new type of x, but that’s OK since the required constraint x = v will
take precedence. The syntax E[x 7→ v] denotes the environment identical to E but with x mapped to the
value v.

E ` C0 stay(E) = Cs E′ |= (C ∧ Cs ∧ C0)

<E|C|once C0> −→ <E′|C>
(S-Once)

<E|C|once C0> −→ <E′|C> C′ = C ∧ C0

<E|C|always C0> −→ <E′|C′>
(S-Always)

16

5.2 Adding Mutable Records

It would be easy to extend Babelsberg/Records to allow mutable records. Syntactically, we would simply
allow field accesses as l-values, e.g.,

p := {x:0, y:0};

p.x := 100;

After the second assignment, we would have p 7→ {x:100, y:0}. This doesn’t add any particular complica-
tions to the semantics.

However, the only additional feature provided by such an extension would be the syntax allowing field
accesses as l-values — we can always convert such a program into one that only has immutable records. For
example, the above program is equivalent to the following program in Babelsberg/Records:

p := {x:0, y:0};

once p.x = 100;

In any case there still would be no notion of object identity. Consider:

p := {x:0, y:0};

q := p;

p.x := 100;

After executing the three statements p 7→ {x:100, y:0}, but q 7→ {x:0, y:0}.

Mutable records would thus simply provide a syntactic convenience, rather than some new capability. We
would still want immutable records as well (which we will use to model instances of value classes in the
formal semantics for Babelsberg/Objects), so this would also add clutter to the languages. We therefore
don’t include Babelsberg with mutable records as a separate language.

6 Babelsberg/UID

Babelsberg/UID adds a number of features to the language. As another step toward representing objects,
we augment Babelsberg/PrimitiveTypes with records that live on the heap, and that are mutable, have an
identity, and can be aliased. As with Babelsberg/Records these are represented as lists of name/value pairs
in curly braces:

{x:5, y:10}

However, to emphasize that we now allocate records with object identity on the heap, we use the keyword
new when creating one. The syntax includes field accesses as both r-values and l-values.

In all the examples in this section, we will only use records with object identity. However, later, when
we are formalizing Babelsberg/Objects, we will use both kinds of records: records with object identity to
model objects that have identity, and immutable records (as in Babelsberg/Records) to model instances of
value classes (which are immutable objects for which object identity is not significant). It should be clear
from context when we use the word “record” what kind we mean; but when it’s necessary to distinguish

17

them, we’ll use the terms “i-record” and “uid-record” for immutable records and records with object identity
respectively.

Only uid-records live on the heap — primitive values and i-records do not. (It would be possible to store all
data on the heap, but we elected not to, since having everything on the heap makes the descriptions more
complex — there would always be a level of indirection to get to data. If one wants the effect of storing an
integer or boolean or i-record on the heap, it is easy to simulate this by constructing a uid-record that has
a single field that holds the integer or boolean or i-record.)

A field of a uid-record holds either a primitive type, a i-record, or a reference to another uid-record. There is
no syntax for creating a nested uid-record directly — nested records have to be constructed with references, so
each record must have a variable that refers to it, even if it is only used in a nested structure. This simplifies
the semantics. (Nested uid-records could be supported directly with just a source code transformation. In
any case, when we get to Babelsberg/Objects, we will remove this restriction and allow expressions that do
involve creating new objects.)

Since object identity is now significant, we add identity constraints to the language (following Smalltalk
syntax, written ==, in contrast to = for equality constraints). For records p and q, if p and q are identical,
they must also be equal, but the converse is not necessarily true — if p and q are equal, they might or might
not be identical.

Unlike Babelsberg/PrimitiveTypes and Babelsberg/Records, the weak stays on variables are identity con-
straints rather than equality constraints. For uid-records, such a variable continues to refer to the same
object unless reassigned. This is a direct consequence of the weak stays referring to the references the vari-
ables hold, not the records on the heap. In addition, there are also weak stay constraints on the values in
the record fields.

For simplicity, we also allow identity tests and constraints on primitive types and i-records. (Otherwise we
would need two different translations for assignment.) Again for simplicity, two instances of a primitive type
or i-record are identical iff they are equal. (Allowing them to be equal but not identical would seem to imply
storing them on the heap, which would complicate the semantics.)

Here are some examples involving uid-record fields and constraints:

p := new {x:2, y:5}; /* create a record on the heap and save the reference in p */

a := p.x; /* read a field of a record and assign it to a variable */

p.x := 6; /* assign 6 to the field p.x */

always p.x = 100;

As with Babelsberg/Records, there is no static type checking — checking is all done dynamically. As before,
our model includes structural compatibility checks on constraints, which tames the solver so that it doesn’t
do such things as inventing new records or adding fields to a record. (The only way to create a new record
is with an explicit new expression in the program, and this also defines all of the fields that it has and will
ever have.)

After executing the right hand side of the first statement, the heap is updated with a new object and a
reference r to point to it. The assignment and stay constraints then desugar into:

required p = r
required H(r) = {x : xr, y : yr}

weak xr = 2
weak yr = 5

The reference r is a constant. We assume the solver understands uninterpreted function symbols. The
uninterpreted function symbol H in the second constraint above is used to represent the heap’s mapping

18

from references to their contents; the constraint forces the solver to keep the reference r pointing to a record
that has only x and y fields. We introduce variables for the values of these fields and add weak stays so
these keep the values with which they were created – these can always be satisfied, because the variables are
fresh.

After the second statement we have the stay constraints on p and its fields, and the required constraint
resulting from the assignment:

weak p = r
required H(r) = {x : xr, y : yr}

weak xr = 2
weak yr = 5

required a = 5

After the third statement:

weak p = r
required H(r) = {x : xr, y : yr}

weak xr = 2
weak yr = 5
weak a = 5

required p.x = 6

And finally:

weak p = r
required H(r) = {x : xr, y : yr}

weak xr = 6
weak yr = 5
weak a = 5

required p.x = 100

After solving the final set of constraints we have the environment p 7→ r ∧ a 7→ 5, as well as the heap
r 7→ {x:100, y:5}.

Here is an example that fails the structural compatibility checks.

p := new {x:2, y:5};

always p.z = 5;

As before, the system is not allowed to add fields to records, so p would be required to have a z field already.

The following example demonstrates one form of aliasing:

p := new {x:2, y:5};

q := p;

p.x := 100;

q := new {z:10};

p.x := 200;

After the assignment q:=p, q holds the same reference as p, so the subsequent assignment to p.x changes
both. But then we break the alias with another assignment to q, so the second assignment to p.x doesn’t
affect q (which by that point no longer has an x field).

There can also be explicit identity constraints:

19

p := new {x:2, y:5};

q := p;

always q==p;

q := new {z:10};

After the last statement both p and q point to the same {z:10} record. Note that we don’t have structural
compatibility checks for re-satisfying identity constraints, so that the assignment to q that changes its
structure ripples through the identity constraint to change p as well. However, if the always constraint had
been a record equality constraint rather than an identity constraint, the last assignment to q would have
failed the structural compatibility check, which would have expected it to be a record with x and y fields.

In Section 3.2 we listed a number of goals for our design to attempt to tame the power of identity constraints
and the solver. In support of this, we require that variables be created in an assignment statement — the
above program would have been illegal if we didn’t have the q:=p statement but just tried to create q with
the always constraint. We also require that a new identity constraint be satisfied at the time it is created
— otherwise it’s an error (modeled in the formal semantics by the rules getting stuck). This restriction was
obeyed in the above program. Here is an example that violates it, and is hence not legal:

p := new {x:2};

q := new {y:5}

always q==p;

Without the restriction, after the last statement p and q would definitely point to the same record, but
it might be either {x:2} or {y:5}. (In any case, p and q would still one of the records that was already
created by the new expressions — the solver wouldn’t invent a new one — but we want to tame the language
further.)

With the restriction, any changes to the types of variables must flow from an explicit assignment statement
— the effects can still ripple outwards via identity constraints — but they are deterministic. For the same
reason, we disallow disjunctions of identity constraints (since otherwise there could be programs with multiple
correct solutions to the identity constraints). It is only updates to values that can be non-deterministic as
the result of constraints. One item for future work will be to formalize and prove this statement, which
seems like a useful property for the language.

As another aspect of taming identity constraints, explicit priorities on identity constraints are not allowed
— there are only the implicit weak identity stay constraints on all variables. (We haven’t found any com-
pelling use cases for programmer-specified soft identity constraints, and omitting them simplifies reasoning
about identity constraints for the programmer.) Similarly, we disallow disjunctions of identity constraints,
which would also introduce nondeterminism; and for simplicity, there are no explicit conjunctions of identity
constraints, only the implicit conjunction resulting from writing several of them.

This program is thus illegal:

p := new {x:0};

q := new {x:5};

always medium p.x = 0;

always medium.x = 5;

always weak p==q

Without the restriction, the programmer would need to interleave determining values and identities in
reasoning about the program’s behavior. For example, for the above program, to decide that we should leave

20

the weak identity constraint unsatisfied, we’d need to first solve the value constraints and then decide that
we can’t satisfy the weak identity constraint.

The solver can’t spontaneously create new uid-records if they are needed — new uid-records can only be
created with an explicit assignment with a new on the right hand side. Consider:

a := new {x:1};

b := a;

always a.x=1;

always b.x=2;

After b:=a, a and b refer to the same record, but after the second always constraint, the solver would need
to spontaneously create a new record and point b at it to satisfy the constraints. So this program fails.

It also can’t switch identities around to satisfy value constraints. Here is the same program, except that
there happens to be a record with the required value for its x field already lying around. But to no avail:
this program fails as well, rather than silently changing b to refer to the {x:2} record.

a := new {x:1};

b := a;

c := new {x:2};

always a.x=1;

always b.x=2;

6.1 Formalism

Since this version is significantly different than the prior formalisms, we present it in its entirety rather than
as a delta from those ones.

6.1.1 Syntax

The syntax is augmented to create records on the heap with the new keyword. We also add references as
values and an identity operation == to compare values by identity rather than by structure (for primitive
values, this is the same as =). The arguments to identity operations are not arbitrary expressions but rather
accessors, which are essentially access paths through a reference. This is no loss of expressiveness but is
useful for the translation to the constraint solver.

Statement s ::= skip | a := e | x := new o | always C | once C | s;s
| if e then s else s | while e do s

Constraint C ::= ρ e | C ∧ C

Expression e ::= c | r | a | e ⊕ e | e < e | e > e | I | D
Identity I ::= a == a

Accessor a ::= x | a.l
Record o ::= {l1:e1,. . .,ln:en}
Dereference D ::= H(r)

Reference r ::= references to heap records

Constant c ::= true | false | base type constants
Variable x ::= variable names

Value v ::= c | r

21

In the syntax, we treat H as a keyword. Source programs will not use expressions of the form H(r), but they
are introduced as part of constraints given to the solver, which we assume will treat H as an uninterpreted
function, as described earlier.

6.1.2 Semantics

In addition to an environment, the semantics now requires a heap, which is a partial function from mutable
references to record “objects” of the form {l1:v1,. . .,ln:vn}. Heaps are ranged over by metavariable H2.
Secondly, in addition to the normal active constraints, we also now have a number of required identity
constraints that are active. These are represented by I.

E;H ` e ⇓ v

“Expression e evaluates to value v in the context of environment E and heap H.”

Most of the updates to the expression rules just use the new judgment that includes the heap. We do not
include rules for evaluating expressions of the form H(r), since they are not intended to appear in source
programs.

E;H ` c ⇓ c (E-Const)

E(x) = v

E;H ` x ⇓ v
(E-Var)

E;H ` a ⇓ r H(r) = {l1:v1,. . .,ln:vn} 1 ≤ i ≤ n

E;H ` a.li ⇓ vi
(E-Field)

E;H ` r ⇓ r (E-Ref)

E;H ` e1 ⇓ v1 E;H ` e2 ⇓ v2 v1 J⊕K v2 = v

E;H ` e1 ⊕ e2 ⇓ v
(E-Op)

E;H ` e1 ⇓ v1 E;H ` e2 ⇓ v2 v1 J<K v2 = v

E;H ` e1 < e2 ⇓ v
(E-Compare)

E;H ` e1 ⇓ v1 E;H ` e2 ⇓ v2 v1 J>K v2 = v

E;H ` e1 > e2 ⇓ v
(E-Combine)

E;H ` a1 ⇓ v E;H ` a2 ⇓ v

E;H ` a1 == a2 ⇓ true
(E-IdentityTrue)

E;H ` a1 ⇓ v1 E;H ` a2 ⇓ v2 v1 6= v2

E;H ` a1 == a2 ⇓ false
(E-IdentityFalse)

E;H ` e : T

2Not to be confused with the keyword H in the syntax; it is always clear from context which is being used.

22

E;H ` C

The typing rules also are augmented with the heap. They are otherwise unchanged. The additional thing
to type are references. We do not add type rules for identities. This ensures that constraints involving them
do not typecheck, so identity checks cannot occur in ordinary constraints. As with the evaluation rules,
expressions of the form H(r) do not typecheck.

E;H ` c : PrimitiveType (T-Constant)

E;H ` o : {l1:T1,. . .,ln:Tn} H(r)=o

E;H ` r : {l1:T1,. . .,ln:Tn}
(T-Ref)

E ` x ⇓ v E;H ` v : T

E;H ` x : T
(T-Variable)

E;H ` a : {l1:T1,. . .,ln:Tn} 1 ≤ i ≤ n
E;H ` a.li : Ti

(T-Field)

E;H ` e1 : PrimitiveType E;H ` e2 : PrimitiveType

E;H ` e1 ⊕ e2 : PrimitiveType
(T-Op)

E;H ` e1 : T E;H ` e2 : T

E;H ` e1 < e2 : PrimitiveType
(T-Compare)

E;H ` e1 : PrimitiveType E;H ` e2 : PrimitiveType

E;H ` e1 > e2 : PrimitiveType
(T-Combine)

E;H ` e : T

E;H ` ρ e
(T-Priority)

E;H ` C1 E;H ` C2

E;H ` C1 ∧ C2
(T-Conjunction)

E;H |= C

This still represents the call to the solver. The solver now determines values on the heap and in the
environment.

stay(E) = C

stay(H) = C

These judgments define how to translate the environment and heap into a source-level “stay” constraint.
The rules are unchanged for primitive values that are stored in the environment, but are amended for the
heap. We assume the solver knows about maps to do lookup on the heap.

23

stay(∅) = true (StayEmpty)

E(x) = v E0 = E \ {(x, v)} stay(E0) = C0 C = C0 ∧ weak x=v

stay(E) = C
(StayOne)

o ={l0:v0,. . .,ln:vn} H(r) = o H0 = H \ {(r, o)} stay(H0) = C0

stay(H) = C0 ∧ H(r) = {l0:xr0,. . .,ln:xrn} ∧ weak xr0 = v0 ∧ . . . ∧ weak xrn = vn
(StayHeap)

Note that the constraints involving H(r) are required, which ensures that a reference reference keeps pointing
at the same object it originally pointed at.

<E|H|C|I|s> −→ <E′|H′|C′|I′>

The semantics for executing statements is extended from what we had before for Babelsberg/Records. When
updating a variable, we now solve first for the identity constraints and then for the value constraints. This
propagates any type changes through the identity constraints. We then type the value constraints against
the environment returned by solving for the identities.

E;H ` e ⇓ v

stay(E) = CEs
stay(H) = CHs

E′;H′ |= (I ∧ CEs
∧ CHs

∧ a=v)

stay(E′) = CE′
s

stay(H′) = CH′
s

E′;H′ ` C E′′;H′′ |= (C ∧ CE′
s
∧ CH′

s
)

<E|H|C|I|a := e> −→ <E′′|H′′|C|I>
(S-Asgn)

Implicitly this rule gets stuck if either a) the identity constraints cannot be solved, b) the value constraints do
not type if the identities are solved, or c) the value constraints cannot be solved. A practical implementation
would add explicit exceptions for these cases that the programmer could handle.

E;H ` e1 ⇓ vn · · · E;H ` en ⇓ vn
H(r)↑ H0 = H

⋃
{(r, {l1:v1,. . .,ln:vn})}

stay(E) = CEs stay(H0) = CHs E′;H′ |= (I ∧ CEs ∧ CHs ∧ x=r)

stay(E′) = CE′
s stay(H′) = CH′

s E′;H′ ` C E′′;H′′ |= (C ∧ CE′
s ∧ CH′

s
)

<E|H|C|I|x := new {l1:e1,. . .,ln:en}> −→ <E′′|H′′|C|I>
(S-AsgnNew)

The next rules are essentially unchanged from their previous versions and just augmented with the heap
references.

E;H ` C0 stay(E) = CEs
stay(H) = CHs

E′;H′ |= (C ∧ CEs
∧ CHs

∧ C0)

<E|H|C|I|once C0> −→ <E′|H′|C|I>
(S-Once)

<E|H|C|I|once C0> −→ <E′|H′|C|I> C′ = C ∧ C0

<E|H|C|I|always C0> −→ <E′|H′|C′|I>
(S-Always)

<E|H|C|I|skip> −→ <E|H|C|I> (S-Skip)

<E|H|C|I|s1> −→ <E′|H′|C′|I′> <E′|H′|C′|I′|s2> −→ <E′′|H′′|C′′|I′′>

<E|H|C|I|s1;s2> −→ <E′′|H′′|C′′|I′′>
(S-Seq)

24

E;H ` e ⇓ true <E|H|C|I|s1> −→ <E′|H′|C′|I′>

<E|H|C|I|if e then s1 else s2> −→ <E′|H′|C′|I′>
(S-IfThen)

E;H ` e ⇓ false <E|H|C|I|s2> −→ <E′|H′|C′|I′>

<E|H|C|I|if e then s1 else s2> −→ <E′|H′|C′|I′>
(S-IfElse)

E;H ` e ⇓ true <E|C|H|I|s> −→ <E′|H′|C′|I′> <E′|H′|C′|I′|while e do s> −→ <E′′|H′′|C′′|I′′>

<E|H|C|I|while e do s> −→ <E′′|H′′|C′′|I′′>

(S-WhileDo)

E;H ` e ⇓ false

<E|H|C|I|while e do s> −→ <E|H|C|I>
(S-WhileSkip)

The next rules are additions to create identity constraints. Note that the above rules for always and once
match only constraints that do not include identity comparisons, because those would not type. We require
that an identity constraint already be satisfied when it is asserted, as discussed earlier. So the following rules
simply need to check the constraint.

E;H ` a0 ⇓ v E;H ` a1 ⇓ v

<E|H|C|I|once a0 == a1> −→ <E|H|C|I>
(S-OnceIdentity)

<E|H|C|I|once a0 == a1> −→ <E|H|C|I> I′ = I ∧ (a0 == a1)

<E|H|C|I|always a0 == a1> −→ <E|H|C|I′>
(S-AlwaysIdentity)

7 Babelsberg/Objects

In this final language, we add support for mutable objects, classes, methods, messages, and inheritance, along
with object-oriented constraint definitions (i.e., constraint definitions that can include method calls). This
language thus includes all the essential features of actual object constraint languages such as Babelsberg/R,
Babelsberg/JS, and Babelsberg/Squeak.

We can thus now write constraints on the results of message sends, such as the following constraint on the
x coordinate of the center of a rectangle:

always r.center().x() = 100;

The constraint here is on the result of sending the message center to r, then sending the x message to that,
and finally sending the = message to the result. Depending on how the rectangle is stored, the rectangle’s
center may well be computed in the center method rather than simply being looked up; and even x might
be computed rather than being stored, for example if the point is stored in polar coordinates. Further,
expressions such as a+b are now treated in an object-oriented fashion, so that this means “send the message
+ with the argument b to the object a,” with the meaning of + in this expression (and in constraints such as
a+b=c) depending on the class of a.

In the earlier Babelsbergs presented in this memo, in the semantics we assume a solver language that is
essentially the same as the program language. Constraints that are sent to the constraint solvers could thus
be in the program language. This changes for objects. As before, the solver needs to know about uid-records
as well as primitive types and i-records; but it does not know about methods or inheritance. So we add a
translation in this semantics to inline method calls before passing constraints to the solver.

25

To accomplish this, we start with a standard model for an object-oriented language with instances, classes,
messages, methods, and inheritance, and add constraints on top of that. Some of the classes and methods in
the object-oriented language have corresponding primitive types and operations which we can pass directly to
the solver. For example, the classes Integer, Float, and Boolean in the source language might be mapped
to the primitive integers, floats, and booleans. The semantics includes an automatic boxing and unboxing
between instances of these classes and their primitive equivalents. (This boxing and unboxing is part of
the formal semantics, but would not necessarily be done in a practical implementation, where we would
want primitive types to be represented efficiently.) The + method on Integer would expand to use the +
operation on a primitive representation of itself, and similarly for the + method for Float, the or method for
Boolean, and so forth. However, in Babelsberg/Objects, in contrast to prior languages, we may no longer
mix strings and floats, for example. Previously these both typed as PrimitiveType, but now these are full
objects that can have different structure (e.g., a floatvalue field to store the primitive representation on a
Float object versus a stringvalue field on a String). While for these cases, the structural compatibility
checks could be made to work (e.g., by using a primvalue field for these classes), in general there will
be classes in the object-oriented language that don’t map to a primitive type; and even for a class that
does have a corresponding primitive type, that class can have additional methods that aren’t mapped to
primitive operations. For example, a factorial method for Integer has no primitive equivalent and has to
be translated for the solver.

As with the previous languages, in the semantics, after every statement execution the current set of con-
straints is solved and the environment is updated. The current set of constraints is determined as follows.
If the statement is an assignment, we evaluate the right hand side and then set up a constraint between the
resulting value and the left hand side. (As with Babelsberg/UID, and in contrast to the simpler languages,
this will be an identity constraint rather than an equality constraint.) Otherwise, it must be a method call,
which is evaluated by calling the method normally. In addition to any constraint resulting from an assign-
ment statement, each constraint in the constraint store is added to the set of constraints as well, and the
resulting set of constraints is given to the solver. If the solver finds a solution, the environment is updated;
but if the constraints have no solution, or if they are too hard for the solver, our execution implicitly gets
stuck.

7.1 Value Classes

In the formal semantics, we will use instances of value classes as well as instances of ordinary, full-featured,
classes. The restrictions on value classes will make it easier to use them with constraints. A number of existing
languages have proposals to support forms of value classes, such as Java3 and Scala4. In Babelsberg/Objects,
instances of value classes are immutable (that is, we need to provide values for all the fields at object creation
time, and after that the value class instance cannot be modified).5 Finally, object identity is not significant
for value class instances — we define the identity test method, but it performs a test for equality rather
than identity on its argument. However, value classes are more than simple record declarations, since they
support methods and inheritance.

In this section, we will use Point and Rectangle as our example value classes. To distinguish them from
ordinary classes, we will create instances just by supplying the arguments, e.g., Point(10,20), whereas
instances of ordinary classes will be created using the new message, e.g., Window.new(...).

In a practical implementation of Babelsberg, ideally the host language will itself support value classes, so
that we can use them directly. If not, we can use ordinary classes, with appropriate conventions about object

3http://openjdk.java.net/jeps/169
4http://docs.scala-lang.org/sips/completed/value-classes.html
5For use with e.g. distributed systems applications, we would also want to restrict instances of value classes to only hold

references to primitive types or to other value class, but this restriction isn’t needed for our purposes here.

26

http://openjdk.java.net/jeps/169
http://docs.scala-lang.org/sips/completed/value-classes.html

creation, modification, and not testing for object identity.

Finally, to foreshadow the formal semantics, for simplicity we omit details about object creation, method
lookup, and inheritance (which are completely standard), and represent ordinary instances as uid-records
and value class instances as i-records.

7.2 Control Structures and Methods

Babelsberg/Objects has the simple if and while control structures that were introduced for Babels-
berg/PrimitiveTypes. There are no particular complications in including these in Babelsberg/Objects.

In addition, however, Babelsberg/Objects includes methods. Following our overarching design goal of having
a standard object-oriented language in the absence of constraints, in imperative execution mode, methods
are standard. Suppose we are evaluating x.m(a,b). We first look in x’s class for a method with selector m,
then its superclass, and so on up the superclass chain. If no such method is found, it is an error.6 Otherwise
we evaluate the body of the method in a new environment, and return the result. Arguments are passed
by value (with pointer semantics), as in most standard object-oriented languages. For instances of primitive
types and value classes, the argument can also be copied (since we can’t tell the difference between sharing
and copying in this case).

Methods called in the ordinary way can create new constraints, which then persist after the method returns.
There is an example in the next section to illustrate this.

Methods can also be invoked by constraint expressions. There are a number of restrictions on methods to
allow them to be used in this way — briefly, they can’t have side effects, and if they consist of more than just
a single return statement they can only be used in the forward direction in constraints. Creating an instance
of an ordinary class is regarded as a side effect, so methods that can be invoked by constraint expressions
can only create instances of value classes. See Section 7.5 for details, including a discussion of the rationale
for this particular choice of restrictions.

If the method can be used in a constraint but only in the forward direction, then it can still be called in
the usual way, including passing any parameters by value with pointer semantics. For example, suppose we
have a constraint always c=x.m(a,b), and method m has multiple statements so that it can only be used in
the forward direction, i.e., we can find a value for c given values for x, a, and b but not any other direction.
In that case, m can be called in the usual way, passing a and b by value with pointer semantics. If the other
constraints are such that the correct solution involves finding a value for b given values for c, x, and a, a
practical system will halt with an error that the constraints are too hard for it to solve, due to a method
called from the constraint that can’t be inlined (or in the formal semantics, we get stuck). However, in
contrast to all the previous examples of constraints that were too hard, the fact that they are too hard is a
limitation of the transformations we use for methods called by constraints, rather than being a limitation of
the solver.

On the other hand, if method m can be used multi-directionally, so that for example we can find a value for
b given values for x, a, and c, then in the semantics the method is inlined so that the resulting constraints
can be turned over to the solver, and we can potentially solve for any of x, a, b, or c. This done by creating
an environment for method m and inlining the returned expression with respect to that environment. The
parameters in that environment are constrained to be equal to a and b, and self is constrained to be equal
to x.

6This is analogous to the structural compatibility checks from Babelsberg/Records, and just as in Babelsberg/Records we
don’t invent a new field for a record if needed to satisfy a constraint, in Babelsberg/Objects we don’t convert an object to an
instance of a different class, or synthesize a new method, to satisfy constraints — instead, if there is a missing method it’s just
an error. This lookup process isn’t represented in our formal semantics since it is standard and doesn’t introduce any issues for
our focus on constraints.

27

7.3 Examples

Here is a constraint on the center of a rectangle, where the center is a computed value rather than being
stored as an instance variable.

always r.center() = Point(10,20);

The center method for Rectangle is defined as follows:

def center

return (self.upper_left + self.lower_right) / 2;

end

Note that since Point is a value class, we can make an instance of it in the constraint expression itself
(“Point(10,20)”), and also in the center method, since we are doing point addition and division in that
method. (If it had been an ordinary class, creating such an instance would have been a side effect, disallowing
this constraint.)

The constraint is evaluated in the following way. The code for Rectangle’s center method
is found, and inlined to construct an equality constraint between the result of evaluating
(self.upper_left + self.lower_right) / 2 and a new point with x=10, y=20. Constructing the center
point from the first expression, as well as looking up and inlining the = method on it, explodes into a network
of simpler constraints that can then be handed to the solver in one conjunction:

// for the center method

self1 = r

self2 = self1.upper_left

arg1 = self1.lower_right

argP1_1 = self2.x + arg1.x

argP1_2 = self2.y + arg1.y

self3 = {x: argP1_1, y: argP2_2}

arg2 = 2

argP2_1 = self3.x / arg2

argP2_2 = self3.y / arg2

// for the static point

argP3_1 = 10

argP3_2 = 20

// for the point equality

self4 = {x: argP2_1, y: argP2_2}

arg3 = {x: argP3_1, y: argP3_2}

self4.x = arg3.x && self4.y = arg3.y

For each variable name in a scope a unique global variable name is created. The solver works only on the
global names. During evaluation, each local name maps to a global name, which in turn maps to a value.
Entering the center method creates a local environment in which self is bound to r. A global alias self1

is created and constrained to refer to the same reference (which is to a rectangle). Similarly, the global alias
self2 is a point, namely the upper left corner of the rectangle. This alias is then used when we explode the
+ message to that point. self3 is also a point, namely the new point that is returned by the point addition

28

method. Note that we are representing the instance of this value class in the above conjunction of exploded
constraints and in the formal semantics as an i-record. For methods that take arguments, global names for
the argument names are created and constrained similarly. For example, arg1 is the global name in this
exploded constraint for the argument to the + method for Point. Thus, the solver never has to deal with
different scopes or name clashes.

This example illustrates why we need to solve for object identity before values — if r had been an instance
of a class with a different implementation of the center method, it would have been exploded in a different
way.

Here is another example of using a method in a constraint. Suppose we add a double method to Float, and
then use it in a constraint:

def double()

return 2*self;

end;

x := 0;

y := 0;

always y=x.double();

y := 20;

After the program runs, y will be 20 and x will be 10.

For this program, the constraint y=x.double() explodes into the following network:

self1 = x

y = 2*self1

This conjunction of constraints works equally well for determining x or determining y, even though double

is actually a message to x.

As noted above, methods called in the ordinary way can create new constraints, which then persist after the
method returns. Here is a simple example. Suppose we have a BankAccount class that includes a balance

method. We can then define the following method:

def require_min_balance(acct,min)

always acct.balance >= min;

end;

Now suppose we call require_min_balance(a,10) on some account a. (This is just calling the method
from an ordinary statement, either at the top level or some other method, not from a constraint expression.)
Thereafter the balance in the account a must be at least 10 (a persistent constraint).

Note the consequences of call by value for such methods. Consider:

a := BankAccount.new;

m := 10;

def require_min_balance(a,m);

m := 100;

29

Even though we reassigned m, the minimum balance for the account stays at 10, since we passed m by value.

Of course, we are passing the account a by value as well.

a := BankAccount.new;

def require_min_balance(a,10);

a := BankAccount.new;

After the second assignment, a is bound to a new account — but the minimum balance constraint is on
the previous instance of BankAccount (which will presumably be garbage collected since there aren’t any
references to it).

If we do want a constraint that continues to be enforced even if the account or the minimum is rebound, we
can instead write a method that is a minimum balance test and use it in a constraint:

def has_min_balance(acct,min)

return acct.balance >= min;

end;

a := BankAccount.new;

m := 10

always has_min_balance(a,m);

m := 100;

Programmers will need to be aware of the different semantics for these two cases, and select the appropriate
variant when it makes a difference.

Implementing such methods requires that the semantics (and implementations) keep the local variables in
such a method invocation as long as the constraints it creates are active. Here is a somewhat artificial variant
of the original require_min_balance method to illustrate this:

def require_min_balance_with_locals(acct,min)

b := acct.balance;

always b = acct.balance;

always b >= min;

end;

We could also add a minimum balance constraint in the initialization method for BankAccount. This version
requires that the initial balance be provided, but has a default of 0 for the minimum balance in case it isn’t
provided.

def init(initial_balance,min=0)

self.balance := initial_balance;

always self.balance >= min;

end;

7.4 Arrays

While it is not strictly necessary to include arrays in Babelsberg/Objects, we have used arrays in some
examples that follow. We treat the length of an array is part of its structure, and use the same structural

30

compatibility checks for the existence of array elements that we do for the existence of fields in a record.
Thus, we would not, for example, grow an array to allow a constraint on its ith element to be satisfied if it
didn’t already have an ith element.

7.5 Additional Restrictions on Constraint Expressions

Methods can of course have side effects, but such methods can’t be used in the expressions that define
constraints. (This is one of the restrictions noted in Section 4.1 on requirements for constraint expressions.)
This subsection describes some consequences of this restriction when we have objects, methods, and object
identity. There are also some additional restrictions on methods called from constraints that are used in
other than the forward direction, discussed below.

Regarding side effects in methods, consider the pop method for a class Stack, which has a side effect as well
as returning the value popped from the stack. This program fragment is OK:

x := stack.pop;

This works, because the RHS of the assignment is evaluated first, and then we set up a once constraint
using the value popped from the stack. (Thus the RHS of an assignment can have side effects, in contrast
to always or once constraints.)

In contrast, these program fragments are not OK:

once x == stack.pop;

always x == stack.pop;

It’s easy to see why we don’t want to allow this: we should be able to evaluate the constraint expression as a
test, and if it evaluates to true the constraint is satisfied. This would just not work in these stack examples.

As noted previously, creating an instance of an ordinary class is regarded as a side effect, so methods that
can be invoked by constraint expressions can only create instances of value classes and not ordinary classes.7

Creating a constraint is a kind of side effect, at least potentially, so another consequence of the prohibition on
side effects in constraint expressions is that methods called from a constraint expression cannot themselves
create other constraints, or call further methods that do so. The following program is not allowed, and
illustrates side effects resulting from adding constraints in methods called from other constraints.

def test(i)

always medium i=5;

return i+1;

end;

x := 0;

y := 0;

always medium x=10;

always y=test(x);

7As also noted previously (Footnote 1), in a practical implementation the programmer might be able to make cautious use
of benign side effects in a constraint expression. Such benign side effects might include creating instances of ordinary classes,
for example, constructing a temporary instance of an ordinary class that is garbage collected before it is visible outside the
constraint. In the formal semantics, however, we simply disallow side effects in constraint expressions.

31

Suppose we are using a least-squares solver that supports soft constraints. Every time we evaluate the
expression y=test(x), we add another medium constraint that x=5. Since we are finding a least squares
solution, this nudges x more toward 5 each time, diminishing the influence of the x=10 constraint.8

Here are two other issues with constraints that call methods that add constraints, for the record in case we
do want to try to allow this in some restricted set of circumstances:

First, we would need to solve their constraints eagerly rather than just accumulating the constraints and
solving all at once. Here’s an example that demonstrates this.

def test(x)

always y=x;

if y>10 then return 1 else return 0;

end;

a := 5;

always b=test(a);

If we don’t solve eagerly, y doesn’t have a value when we evaluate the test in the if statement.

Also the method could add soft constraints, and itself be invoked by a soft constraint — for example,
suppose that in the above program we instead had always weak b=test(a). We would need an algebra for
combining priorities, for example, take the minimum of the priorities.

Methods called by constraints can assign to local variables, but not to instance variables or globals (which
would be side effects visible outside the method). If there are assignments to local variables, the method
can only be used in the forward direction in constraints that call it (i.e., to compute the result given the
inputs). The only way that statements in a method other than the final return aren’t dead code is if they
have side effects, so for practical purposes we can restate this restriction as follows: for a method to be
used in other than just the forward direction in constraints that call it, the method must consist of a single
return statement.

It would be possible to relax this restriction somewhat, so that other kinds of methods could be used in
reverse in constraints, but the resulting restrictions would be harder to express, and would have an ad hoc
feel, likely making it harder for the programmer to keep track of them. So in the design presented here we
use a simple, easily understood restriction that covers an important set of practical cases. See Appendix A.5
for a description of a backward compatibility mode for methods that accommodates some methods with
multiple statements, which is currently implemented in Babelsberg/Ruby.

Here are some examples.

Consider an iterative sum method for the class Array.

def sum

ans := 0;

i := 0;

while i<self.length

ans := ans + self[i];

i := i+1;

end;

return ans;

end

8This issue only arises with soft constraints and a global comparator. With constraints that are required, re-adding a
required constraint is idempotent. Or if we use a local comparator, re-adding the soft constraint will also not change the
resulting solution. But in any case, adding a constraint is conceptually different from testing whether it is satisfied.

32

This works as expected for normal imperative code, and can also be used in the forward direction in a
constraint, for example:

a := Array.new(2);

a[0] := 10;

a[1] := 20;

s := 30;

always s = a.sum;

a[0] := 100;

After the always constraint is executed, s is 30; then after the final assignment to a[0], s becomes 120.

However, the method doesn’t work backwards — for example, we can’t constrain the sum of the array and
expect the system to update one or more elements to satisfy the constraint. So the constraint in the last
line below will be too hard for the system to solve:

a := Array.new(2);

a[0] := 10;

a[1] := 20;

always 50 = a.sum;

We can provide something analogous to an array sum constraint that works both forward and backward by
writing an ordinary method that sets up the appropriate network of addition constraints. It is defined here
as the sum_equal method on Array, although it could be a standalone method instead.

def sum_equal(sum)

helper(0,sum);

end;

def helper(start,sum)

if start>=self.length then always sum=0;

else

partial := 0; /* create a local variable */

helper(start+1,partial);

always sum=self[start]+partial;

end if;

end;

Now our example works:

a := Array.new(2);

a[0] := 10;

a[1] := 20;

a.sum_equal(50);

If we subsequently set a[1] to 5, a[0] will become 45 to keep the constraints satisfied.

33

Note that in contrast to the earlier version, the constraints are not automatically re-applied if a is reassigned;
the programmer needs to call sum_equal again.9

It is tempting to write sum as a method that returns the sum and that still can be used multi-directionally,
perhaps:

def sum

return self.sum_from(0);

end;

def sum_from(start)

if start >= self.length

then return 0

else return self[start] + self.sum_from(start+1);

end;

end;

Unfortunately, this doesn’t meet the restriction that methods called from constraints consist only of a single
return statement. Worse, if we tried inlining it, the method would expand infinitely. So, at least for now,
sum_equal seems like it is as good as we can do.

A related example is a method for Array that tests whether the argument is one of the elements of that
array.

def contains(x)

i:=0;

while i<self.length && self[i]!=x

i:=i+1;

end;

return i<self.length;

end;

Since this includes more than one statement, it can only be used in a constraint in the forward direction:

a := Array.new(10);

a.fill(100);

c := false;

always c = a.contains(5);

a[3] := 5;

The analogous method to sum_equal, say must_contain, unfortunately would not be very useful: since we
don’t have Prolog-style backtracking, it would probably just be satisfied in the reverse direction by setting
the first element of the array.

9At the cost of complicating the language, we could address this issue by adding a construct that automatically invokes
some method whenever needed to re-establish the constraint network. To be used in this way, some method could only assert
constraints; it could have no other side effects. There’d also need to be machinery to retract the old constraints before re-running
some method, to avoid accumulating obsolete constraints.

34

7.6 Identity Constraint Examples

The following example illustrates how assignment for objects with object identity is handled. This uses
an example class MutablePoint, which is an ordinary class whose instances can be changed and that have
individual identities, in contrast to the value class Point used previously.

p1 := MutablePoint.new(10,10);

p2 := p1;

p1 := MutablePoint.new(50,50);

The result is just the same as in Ruby or some other object-oriented language without constraints. After the
first statement, we have the new point with x=10,y=10 in the heap, and solve a required identity constraint
that p1’s value equal the reference to this point. After the second statement, the identity constraints are a
weak identity stay on p1, and a required constraint that p2 reference the same value as p1. After the third
statement, there is another point with x=50,y=50 in the heap, a required constraint that p1’s value now
equal the reference to this new point, and weak identity constraints that p1 refer to what it used to (which
can’t be satisfied), and that p2 refer to what it used to (which can be satisfied.)

As with Babelsberg/UID, in the interests of predictability, the system will not create a new object to satisfy
constraints. Thus, this program halts with an error:

p := MutablePoint.new(0,0);

q := p;

always p.x=5;

always q.x=10;

After the third statement, both p and q refer to the same point, which has x=5,y=0. Trying to satisfy the
final constraint on q.x fails. We could satisfy the constraints by first cloning q from p and then changing its
x, but we forbid creating new objects to satisfy constraints. In the semantics, this results in getting stuck
due to an unsatisfiable required constraint.

While cloning a mutable point seems innocuous, consider a similar example with windows on the user’s
display, which again results in an error. (It seems dangerous to silently create a second window.)

w1 := Window.new(....);

w2 := w1;

always w1.width = 200;

always w2.width = 300;

However, this variant, in which we make the constraints on the window’s widths strong rather than required,
is OK. (We don’t create a new window to satisfy the strong constraints on the widths.)

w1 := Window.new(....);

w2 := w1;

always strong w1.width = 200;

always strong w2.width = 300;

As a point of comparison, this restriction on not creating new objects isn’t relevant for Babelsberg/Records
or when we use instances of value classes in Babelsberg/Objects. Here is one of the above examples using
value classes:

35

p := Point(10,20);

q := p;

always p.x=5;

always q.x=10;

This is fine, and at the end of the program, p and q will refer to two different value class instances.

There can be explicit identity constraints, as in Babelsberg/UID. Again as in Babelsberg/UID, identity
constraints must be satisfied when they are first created. For example:

x:= Window.new(....);

y := x;

always y==x;

x := Circle.new(....);

Here x and y are identical at the time the identity constraint always y==x is created. And given this
identity constraint, after the last assignment both x and y refer to the newly created circle. This example
also illustrates how type changes must originate with an assignment statement, but can ripple further via
explicit identity constraints.

7.7 Formalism

7.7.1 Syntax

The syntax is augmented to support method invocation as expressions. We introduce syntax for the method
body. Additionally, we allow creating new objects as expressions now. We also have a form of immutable
records and consider them as “value objects,” which can respond to methods. Finally, we introduce the nil

value. The entire syntax is given below.

Statement s ::= skip | L := e | always C | once C | s;s
| if e then s else s | while e do s

Constraint C ::= ρ e | C ∧ C

Expression e ::= v | L | e ⊕ e | e < e | e > e | I | e.l(e1,. . .,en) | o | new o | D
Identity I ::= e == e

Object Literal o ::= {l1:e1,. . .,ln:en}
L-Value L ::= x | e.l
Constant c ::= true | false | nil | base type constants
Variable x ::= variable names
Label l ::= record label names
Reference r ::= references to heap records
Dereference D ::= H(r)

Method Body b ::= s; return e | return e

Value v ::= c | r | {l1:v1,. . .,ln:vn}

We assume that the set of variable names ranged over by metavariable x includes the name self.

36

7.7.2 Semantics

Since we have methods with local scopes now, we introduce a global E that maps global variable names
to values. The rules for execution still work on a local environment, but a local environment is only a
mapping from local names to globally unique names now. Method lookup creates new local environments,
and constraints are translated to translate local variable names to global variable names for the solver.
The solver still returns a global environment, and does not know about the local environments and their
mapping into the global environment. In addition, the constraint stores I and C are replaced with I and
C, respectively. These now store constraints in pairs with the local environment they were created in. For
readability, we now write H instead of H, so all the global stores are written in the same font.

lookup(v,l) = (x1 · · · xn,b)

“Lookup of method l in the object or value v returns the formal parameter names x1 through xn and the
method body b”

This judgment is opaque: our semantics does not depend on how method lookup is performed.

enter(E,E,H,C,I,v,x1 · · · xn,e1 · · · en) = (E′,Em,H′,C′,I′)

“Invoking a method on v with argument names x1 through xn and arguments e1 through en constructs the
method scope Em and may update the heap and constraint stores.”

This is a helper judgment that simplifies the definition of evaluation for method calls (shown below).

<E|E|H|C|I|e1> ⇓ <E1|H1|C1|I1|v1>
· · ·

<En−1|E|Hn−1|Cn−1|In−1|en> ⇓ <En|Hn|Cn|In|vn>
Em = ∅ <En|Em|Hn|Cn|In|self := v> −→ <E0|E0|Hn|Cn|In>

<E0|E0|Hn|Cn|In|x1 := v1> −→ <En+1|E1|Hn|Cn|In>
· · ·

<E2n−1|En−1|Hn|Cn|In|xn := vn> −→ <E2n|En|Hn|Cn|In>
enter(E,E,H,C,I,v,x1 · · · xn,e1 · · · en) = (E2n,En,Hn,Cn,In)

(Enter)

<E|E|H|C|I|e> ⇓ <E′|H′|C′|I′|v>

“Evaluating expression e produces the value v, while possibly having side-effects on everything but the local
environment.”

<E|E|H|C|I|c> ⇓ <E|H|C|I|c> (E-Const)

E(x) = xg E(xg) = v

<E|E|H|C|I|x> ⇓ <E|H|C|I|v>
(E-Var)

<E|E|H|C|I|e> ⇓ <E′|H′|C′|I′|r> H′(r) = {l1:v1,. . .,ln:vn} 1 ≤ i ≤ n

<E|E|H|C|I|e.li> ⇓ <E′|H′|C′|I′|vi>
(E-Field)

<E|E|H|C|I|e> ⇓ <E′|H′|C′|I′|{l1:v1,. . .,ln:vn}> 1 ≤ i ≤ n

<E|E|H|C|I|e.li> ⇓ <E′|H′|C′|I′|vi>
(E-ValueField)

37

<E|E|H|C|I|r> ⇓ <E|H|C|I|r> (E-Ref)

<E|E|H|C|I|e1> ⇓ <E0|H0|C0|I0|v1> <E0|E|H0|C0|I0|e2> ⇓ <E′|H′|C′|I′|v2> v1 J⊕K v2 = v

<E|E|H|C|I|e1 ⊕ e2> ⇓ <E′|H′|C′|I′|v>
(E-Op)

<E|E|H|C|I|e1> ⇓ <E0|H0|C0|I0|v1> <E0|E|H0|C0|I0|e2> ⇓ <E′|H′|C′|I′|v2> v1 J<K v2 = v

<E|E|H|C|I|e1 < e2> ⇓ <E′|H′|C′|I′|v>
(E-Compare)

<E|E|H|C|I|e1> ⇓ <E0|H0|C0|I0|v1> <E0|E|H0|C0|I0|e2> ⇓ <E′|H′|C′|I′|v2> v1 J>K v2 = v

<E|E|H|C|I|e1 > e2> ⇓ <E′|H′|C′|I′|v>
(E-Combine)

<E|E|H|C|I|e1> ⇓ <E0|H0|C0|I0|v> <E|E|H0|C0|I0|e2> ⇓ <E′|H′|C′|I′|v>
<E|E|H|C|I|e1 == e2> ⇓ <E′|H′|C′|I′|true>

(E-IdentityTrue)

<E|E|H|C|I|e1> ⇓ <E0|H0|C0|I0|v1> <E|E|H0|C0|I0|e2> ⇓ <E′|H′|C′|I′|v2> v1 6= v2

<E|E|H|C|I|e1 == e2> ⇓ <E′|H′|C′|I′|false>
(E-IdentityFalse)

<E|E|H|C|I|e> ⇓ <E0|H0|C0|I0|v> lookup(v,l) = (x1 · · · xn,s; return e)
enter(E0,E,H0,C0,I0,v,x1 · · · xn,e1 · · · en) = (E1,Em,H1,C1,I1)

<E1|Em|H1|C1|I1|s> −→ <E′|E′|H′|C′|I′> <E′|E′|H′|C′|I′|e> ⇓ <E′′|H′′|C′′|I′′|vr>
<E|E|H|C|I|e.l(e1,. . .,en)> ⇓ <E′′|H′′|C′′|I′′|vr>

(E-Call)

<E|E|H|C|I|e> ⇓ <E0|H0|C0|I0|v> lookup(v,l) = (x1 · · · xn,return e)
enter(E0,E,H0,C0,I0,v,x1 · · · xn,e1 · · · en) = (E1,Em,H1,C1,I1)

<E1|Em|H1|C1|I1|e> ⇓ <E′|H′|C′|I′|vr>
<E|E|H|C|I|e.l(e1,. . .,en)> ⇓ <E′|H′|C′|I′|vr>

(E-CallSimple)

<E|E|H|C|I|e1> ⇓ <E1|H1|C1|I1|v1> · · · <En−1|E|Hn−1|Cn−1|In−1|en> ⇓ <En|Hn|Cn|In|vn>
Hn(r)↑ H′ = (Hn

⋃
{(r, {l1:v1,. . .,ln:vn})})

<E|E|H|C|I|new {l1:e1,. . .,ln:en}> ⇓ <En|H′|Cn|In|r>
(E-New)

<E|E|H|C|I|e1> ⇓ <E1|H1|C1|I1|v1> · · · <En−1|E|Hn−1|Cn−1|In−1|en> ⇓ <En|Hn|Cn|In|vn>
<E|E|H|C|I|{l1:e1,. . .,ln:en}> ⇓ <En|Hn|Cn|In|{l1:v1,. . .,ln:vn}>

(E-Value)

E;H ` e : T

E;H ` C

We typecheck with respect to the global environments E . Method calls do not typecheck: even though
we allow method calls in expressions and thus in constraints syntactically, our rules for creating constraints
given below inline method invocations. Identity constraints also do not typecheck: they are solved separately

38

and should not appear in ordinary constraints (see the rules for statement evaluation below). Finally, new
(non-value) object construction does not typecheck, since constraints must be side-effect-free.

Types distinguish between primitive values and objects, and for objects the type keeps track of their fields:

Type T ::= PrimitiveType | {l1:T1,. . .,ln:Tn}

E;H ` c : PrimitiveType (T-Constant)

E(x) = v E;H ` v : T

E;H ` x : T
(T-Variable)

We now transform all local variables to their global names using the inlining rules given below before passing
them to the solver. Thus, only global variable names type.

E;H ` e : {l1:T1,. . .,ln:Tn} 1 ≤ i ≤ n
E;H ` e.li : Ti

(T-Field)

H(r)=o E;H ` o : T

E;H ` r : T
(T-Ref)

E;H ` e1 : PrimitiveType E;H ` e2 : PrimitiveType

E;H ` e1 ⊕ e2 : PrimitiveType
(T-Op)

E;H ` e1 : PrimitiveType E;H ` e2 : PrimitiveType

E;H ` e1 < e2 : PrimitiveType
(T-Compare)

E;H ` e1 : PrimitiveType E;H ` e2 : PrimitiveType

E;H ` e1 > e2 : PrimitiveType
(T-Combine)

E;H ` e1 : T1 · · · E;H ` en : Tn

E;H ` {l1:e1,. . .,ln:en} : {l1:T1,. . .,ln:Tn}
(T-ValueObject)

E;H ` e : T

E;H ` ρ e
(T-Constraint)

E;H ` C1 : T E;H ` C2 : T

E;H ` C1 ∧ C2
(T-CompoundConstraint)

E;H |= C

As before we assume that the solver natively supports records and uninterpreted functions (which we use to
represent the heap). We do not assume, however, that the solver understands methods, which can now be
part of constraint expressions. This requires us to essentially inline methods before passing constraints to
the solver.

stay(E) = C

39

stay(H) = C

The rules for creating stay constraints are adapted to work with multiple environments.

stay(∅) = true (StayEmpty)

E(x) = v E0 =E\{(x, v)} stay(E0) = C0 C=C0 ∧ weak x=v

stay(E) = C
(StayOne)

H(r) = o H0 =H\{(r, o)} stay(H0) = C0 o ={l0:v0,. . .,ln:vn}
stay(H) = C0 ∧ H(r) = {l0:xr0,. . .,ln:xrn} ∧ weak xr0 = v0 ∧ . . . ∧ weak xrn = vn

(StayHeap)

<E,E,H,C,I,e> <E′,eC,e′>

“Inlining expression e from the local environment E turns into expression e′. To connect variables across
method calls, the constraint expression eC is returned.”

We use an inlining judgment to translate expressions into a representation suitable for the solver. In par-
ticular, we translate local variables into their names in the global environment and provide a semantics for
method calls inside constraints. Arguments to method calls are constrained to be equal to the expression
that generated them. Inlining does not allow updates to the heap, so no new heap is returned. We do
allow assignments to locals in inlined methods, however, so the global environment can change as a result of
inlining.

<E,E,H,C,I,c> <E,true,c> (I-Const)

E(x) = xg

<E,E,H,C,I,x> <E,true,xg>
(I-Var)

<E,E,H,C,I,e1> <E1,eC1
,e′1> · · · <E,E,Hn−1,C,I,en> <En,eCn

,e′n>

<E,E,H,C,I,{l1:e1,. . .,ln:en}> <En,eC1∧ · · · ∧eCn,{l1:e′1,. . .,ln:e′n}>
(I-Value)

<E,E,H,C,I,e> <E′,eC,e′> <E′|E|H|C|I|e> ⇓ <E′′|H|C|I|r>
<E,E,H,C,I,e.l> <E′,eC,H(e′).l>

(I-Field)

<E,E,H,C,I,e> <E′,eC,e′> <E′|E|H|C|I|e> ⇓ <E′′|H|C|I|{l1:v1,. . .,ln:vn}>
<E,E,H,C,I,e.l> <E′,eC,e′.l>

(I-ValueField)

<E,E,H,C,I,r> <E,true,r> (I-Ref)

<E,E,H,C,I,e1> <E′,eCa
,ea> <E′,E,H,C,I,e2> <E′′,eCb

,eb>

<E,E,H,C,I,e1 ⊕ e2> <E′′,eCa∧eCb
,ea ⊕ eb>

(I-Op)

<E,E,H,C,I,e1> <E′,eCa
,ea> <E′,E,H,C,I,e2> <E′′,eCb

,eb>

<E,E,H,C,I,e1 < e2> <E′′,eCa
∧eCb

,ea < eb>
(I-Compare)

40

<E,E,H,C,I,e1> <E′,eCa
,ea> <E′,E,H,C,I,e2> <E′′,eCb

,eb>

<E,E,H,C,I,e1 > e2> <E′′,eCa
∧eCb

,ea > eb>
(I-Combine)

<E,E,H,C,I,e1> <E′,eCa,ea> <E′,E,H,C,I,e2> <E′′,eCb
,eb>

<E,E,H,C,I,e1 == e2> <E′′,eCa
∧eCb

,ea == eb>
(I-Identity)

<E|E|H|C|I|e> ⇓ <E′|H|C|I|v> lookup(v,l) = (x1 · · · xn,s; return e)
enter(E′,E,H,C,I,v,x1 · · · xn,e1 · · · en) = (E′′,Em,H,C,I)

<E′′|Em|H|C|I|s> −→ <E′′′|E′|H|C|I> <E′′′|E′|H|C|I|e> ⇓ <E′′′′|H|C|I|vr>
<E,E,H,C,I,e.l(e1,. . .,en)> <E′′′′,true,vr>

(I-Call)

Methods that have any statements at all can only be used in a one-way manner. This is ensured by evaluating
the return expression and using only the value in the constraint. Because we are retranslating all constraints
on each semantic step, this return value will get updated when its dependencies change, it just won’t work
in the other direction.

When inlining a method with more than one statement, the statements are simply executed. In particular,
this means that we eagerly choose which branch of if-statements to inline and eagerly unroll loops. Further,
the I-Call rule above and the I-MultiWayCall rule below ensure that methods being used in constraints
have no side effects. This is accomplished by requiring the initial heap to remain unchanged.

Similarly, methods used in constraints cannot declare nested constraints; this is accomplished by requiring
the initial sets of ordinary and identity constraints to remain unchanged.

<E,E,H,C,I,e0> <E′,eC0
,e′0> <E′|E|H|C|I|e0> ⇓ <E′′|H|C|I|v>

lookup(v,l) = (x1 · · · xn,return e)
enter(E′′,E,H,C,I,v,x1 · · · xn,e1 · · · en) = (E′′′,Em,H,C,I)

<E′′′,E,H,C,I,e1> <E1,eC1
,e′1> · · · <En−1,E,H,C,I,en> <En,eCn

,e′n>

Em(self) = xgself Em(x1) = xg1 · · · Em(xn) = xgn
eC = (xgself=e

′
0 ∧ xg1=e

′
1 ∧ · · · ∧ xgn=e

′
n) <En,Em,H,C,I,e> <E′n,eCm

,e′>

<E,E,H,C,I,e0.l(e1,. . .,en)> <E′n,eC∧eCm∧eC0∧eC1∧ · · · ∧eCn,e
′>

(I-MultiWayCall)

For methods that only return an expression, we inline the expression and pass it to the solver. Note that we
execute the argument expressions and receiver for their value (potentially executing through other methods),
and also inline them, potentially executing the same methods twice (once through I-Call and once through
E-Call.) Although not ideal in terms of providing the cleanest possible semantics, in practical terms this
should not be a problem, because we prohibit side-effects in these methods.

<E,H,I,C> <E′,C>

<E,H,C,I> <E′,C>

“Re-inlining the constraint store C returns a constraint C”

“Re-inlining the constraint store I returns a constraint C”

<E,H,I,∅> <E,true> (I-ReinlineEmptyC)

41

<E,H,C,∅> <E,true> (I-ReinlineEmptyI)

C0 = C \ {(E, ρ e)} <E,H,I,C0> <E0,C0> <E0,E,H,C,I,e> <E′,eCe
,e′>

<E,H,I,C> <E′,C0 ∧ ρ (e′ ∧ eCe
)>

(I-ReinlineC)

I0 = I \ {(E, required e)} <E,H,C,I0> <E0,C0> <E0,E,H,C,I,e> <E′,eCe,e
′>

<E,H,C,I> <E′,C0 ∧ required (e′ ∧ eCe
)>

(I-ReinlineI)

<E|E|H|C|I|I|C> =⇒ <E′|H′>

This is a helper judgment for use in evaluating assignment statements and identity constraints. These
statements are the only ones that can cause the types of variables to change. We handle this in two phases:
in a first phase, we propagate the new equality constraint through all existing identity constraints in order to
update other variables and fields as needed. In the second phase we solve all of the non-identity constraints,
plus any constraints C created by inlining identity constraints.

stay(E) = CEs
stay(H) = CHs

<E,H,C,I> <Ei,Ci>

E′;H′ |= (Ci ∧ CEs
∧ CHs

∧ e1=e2)

stay(E′) = CE′
s

stay(H′) = CH′
s

<E′,H′,I,C> <Ec,C> E′;H′ ` C

E′′;H′′ |= (C ∧ C0 ∧ CE′
s ∧ CH′

s)

<E|E|H|C|I|e1 == e2|C0> =⇒ <E′′|H′′>
(TwoPhaseUpdate)

<E|E|H|C|I|s> −→ <E′|E′|H′|C′|I′>

The stepping rules are refactored to work with the local environments and the new constraint and identity-
constraint stores.

<E|E|H|C|I|skip> −→ <E|E|H|C|I> (S-Skip)

<E|E|H|C|I|s1> −→ <E′|E′|H′|C′|I′> <E′|E′|H′|C′|I′|s2> −→ <E′′|E′′|H′′|C′′|I′′>
<E|E|H|C|I|s1;s2> −→ <E′′|E′′|H′′|C′′|I′′>

(S-Seq)

<E|E|H|C|I|e> ⇓ <E′|H′|C′|I′|true> <E′|E|H′|C′|I′|s1> −→ <E′′|E′|H′′|C′′|I′′>
<E|E|H|C|I|if e then s1 else s2> −→ <E′′|E′|H′′|C′′|I′′>

(S-IfThen)

<E|E|H|C|I|e> ⇓ <E′|H′|C′|I′|false> <E′|E|H′|C′|I′|s2> −→ <E′′|E′|H′′|C′′|I′′>
<E|E|H|C|I|if e then s1 else s2> −→ <E′′|E′|H′′|C′′|I′′>

(S-IfElse)

<E|E|H|C|I|e> ⇓ <E′|H′|C′|I′|true> <E′|E|H′|C′|I′|s> −→ <E′′|E′|H′′|C′′|I′′>
<E′′|E′|H′′|C′′|I′′|while e do s> −→ <E′′′|E′′|H′′′|C′′′|I′′′>
<E|E|H|C|I|while e do s> −→ <E′′′|E′′|H′′′|C′′′|I′′′>

(S-WhileDo)

<E|E|H|C|I|e> ⇓ <E′|H′|C′|I′|false>
<E|E|H|C|I|while e do s> −→ <E′|E|H′|C′|I′>

(S-WhileSkip)

42

E(x)↑ E(xg)↑ E′ = E
⋃
{(x, xg)}

<E|E|H|C|I|e> ⇓ <E′|H′|C′|I′|v>
<E|E′|H|C|I|xg==v|true> =⇒ <E′|H′>

<E|E|H|C|I|x := e> −→ <E′|E′|H′|C|I>
(S-AsgnNewLocal)

E(x) = xg
<E|E|H|C|I|e> ⇓ <E′|H′|C′|I′|v>

<E|E′|H|C|I|xg==v|true> =⇒ <E′|H′>
<E|E|H|C|I|x := e> −→ <E′|E′|H′|C|I>

(S-AsgnLocal)

<E|E|H|C|I|e> ⇓ <E′|H′|C′|I′|v> <E′,E,H′,C,I,el.l> <E′′,true,e′>
<E|E|H|C|I|e′==v|true> =⇒ <E′|H′>

<E|E|H|C|I|el.l := e> −→ <E′|E|H′|C|I>
(S-AsgnLValue)

Note that the above rule can only be used in constraint-construction mode if H=H′. This effectively restricts
assignments in constraints to work on values. Note also, that assignments in constraints are just executed,
but do not set up a required equality constraint between the LHS and RHS. (The current Babelsberg/Ruby
includes a “backwards compatibility mode” which sets up required equality constraints when assignment
occurs, but it’s not clear whether we should retain support for that. See Appendix A.5.)

We also do not allow the use of the following rules for once and always in constraint-construction mode,
because the inlining rules disallow updating the constraint store and heap. As discussed previously (Sec-
tion 7.5), in a practical implementation we might want to support benign side effects in methods that are
invoked by constraint expressions, including methods that themselves create new constraints; but this is not
modeled by this semantics.

C0 = ρ e <E,E,H,C,I,e> <E′,eCe
,e′> C′0 = ρ (e′ ∧ eCe

) E′;H ` C′0
stay(E′) = CEs stay(H) = CHs <E′,H,I,C> <E′′,C> E′′′;H′ |= (C ∧ CEs ∧ CHs ∧ C′0)

<E|E|H|C|I|once C0> −→ <E′′′|E|H′|C|I>
(S-Once)

<E|E|H|C|I|once C0> −→ <E′|E|H′|C|I>
C′ = C

⋃
{(E, C0)}

<E|E|H|C|I|always C0> −→ <E′|E|H′|C′|I>
(S-Always)

<E|E|H|C|I|e0> ⇓ <E0|H|C|I|v> <E0|E|H|C|I|e1> ⇓ <E1|H|C|I|v>
<E1,E,H,C,I,e0> <E2,eC0

,e′0> <E2,E,H,C,I,e1> <E3,eC1
,e′1>

<E|E|H|C|I|once e0 == e1> −→ <E′|E|H′|C|I>
(S-OnceIdentity)

<E|E|H|C|I|once e0 == e1> −→ <E′|E|H′|C|I>
I′ = I

⋃
{(E, e0 == e1)}

<E|E|H|C|I|always e0 == e1> −→ <E′|E|H′|C|I′>
(S-AlwaysIdentity)

43

References

[1] Edward A. Ashcroft and William W. Wadge. Lucid, a nonprocedural language with iteration. Commu-
nications of the ACM, 20(7):519–526, July 1977.

[2] Greg J Badros, Alan Borning, and Peter J Stuckey. The Cassowary linear arithmetic constraint solving
algorithm. ACM Transactions on Computer-Human Interaction (TOCHI), 8(4):267–306, 2001.

[3] Alan Borning, Bjorn Freeman-Benson, and Molly Wilson. Constraint hierarchies. Lisp and Symbolic
Computation, 5(3):223–270, September 1992.

[4] Tim Felgentreff, Alan Borning, and Robert Hirschfeld. Babelsberg: Specifying and solving constraints
on object behavior. Technical Report 81, Hasso Plattner Institute, University of Potsdam, Potsdam,
Germany, May 2014. Also published as TR-2013-001, Viewpoints Research Institute, Los Angeles, CA.

[5] Tim Felgentreff, Alan Borning, Robert Hirschfeld, Jens Lincke, Yoshiki Ohshima, Bert Freudenberg,
and Robert Krahn. Babelsberg/JS: A browser-based implementation of an object constraint language.
In Proceedings of the 2014 European Conference on Object-Oriented Programming. Springer, July 2014.
In press.

[6] Bjorn Freeman-Benson. Kaleidoscope: Mixing objects, constraints, and imperative programming. In
Proceedings of the 1990 Conference on Object-Oriented Programming Systems, Languages, and Appli-
cations, and European Conference on Object-Oriented Programming, pages 77–88, Ottawa, Canada,
October 1990. ACM.

[7] Bjorn Freeman-Benson. Constraint Imperative Programming. PhD thesis, University of Washington,
Department of Computer Science and Engineering, July 1991. Published as Department of Computer
Science and Engineering Technical Report 91-07-02.

[8] Bjorn Freeman-Benson and Alan Borning. The design and implementation of Kaleidoscope’90, a con-
straint imperative programming language. In Proceedings of the IEEE Computer Society International
Conference on Computer Languages, pages 174–180, April 1992.

[9] Bjorn Freeman-Benson and Alan Borning. Integrating constraints with an object-oriented language. In
Proceedings of the 1992 European Conference on Object-Oriented Programming, pages 268–286, June
1992.

[10] Bjorn Freeman-Benson, John Maloney, and Alan Borning. An incremental constraint solver. Commu-
nications of the ACM, 33(1):54–63, January 1990.

[11] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In Proceedings of the Fourteenth
ACM Principles of Programming Languages Conference, Munich, January 1987.

[12] Gus Lopez, Bjorn Freeman-Benson, and Alan Borning. Constraints and object identity. In Proceedings
of the 1994 European Conference on Object-Oriented Programming, pages 260–279, July 1994.

[13] Michael J. Maher. Logic Semantics for a Class of Committed-choice Programs. In Proceedings of the
Fourth International Conference on Logic Programming, pages 858–876, Melbourne, May 1987.

44

A Appendix

This appendix contains some observations that are potentially of interest but that are mostly orthogonal to
the task at hand of providing a formal semantics for Babelsberg; and also descriptions of some alternatives
that were considered and later dropped, but that seem promising enough that we might come back to them
some day. (In other words, it’s a holding pen for material we probably should just have deleted but couldn’t
quite bear to.)

A.1 Warnings and Debugging

We don’t deal with warnings and debugging in the formal semantics for Babelsberg. In a practical, usable
implementation, however, including such support will be key.

First, all of the places where the formal semantics gets stuck to model an error state should have explicit,
understandable error messages in a real implementation. A few additional issues:

A non-required always constraint might undo the result of an assignment.

x := 0;

always strong x=10;

x := 5;

x starts out as 0, then is 10 to satisfy the always constraint, then gets set to 5, and then at the next time
step, the always constraint causes it to be set back to 10. We may want to issue a warning in this case in a
practical implementation. (This would be a simple case to check for.)

As described previously, in the interests of predictability, the system will not create a new (standard) object to
satisfy constraints. There should be an appropriate error message in such a case if the unsatisfied constraints
are required, and a warning if they are soft.

A.2 The Perturbation Model vs. the Refinement Model

A key issue in integrating constraints with imperative programming is how to represent variables that change
over time. Earlier versions of Kaleidoscope [7, 8, 9] used a refinement model, in which ordinary variables were
represented as a stream of “pellucid variables,” each holding a value at a different time. This was in turn
adapted from Lucid [1]. Later versions of Kaleidoscope [12] used a perturbation model, in which variables were
represented conventionally. Assignment perturbed the value of a variable, and then the constraints took over
and adjusted the values of other variables so that they were re-satisfied if necessary. The formal semantics
described here uses a variation of the perturbation model, which we believe is cleaner. (In particular, rather
than just perturbing the value of a variable by changing it, we model assignment as a once constraint between
the variable and the value of the expression on the right hand side of an assignment statement.)

The refinement model does provide additional capabilities — for example syntax for referring to both the
current and previous values of a variable — but at a cost, both conceptually for the programmer and also for
the language implementor. At least for the common cases, we believe the refinement model and our current
model provide the same answers.

The refinement model makes essential use of read-only annotations on variables to prevent the present from
affecting the past. So before launching into an example, we digress to discuss read-only annotations.

45

Intuitively, when choosing a best solution to a set of constraints, constraints should not be allowed to affect
the choice of values for their read-only variables, i.e., information can flow out of the read-only variables,
but not into them. There is a formal, declarative definition of read-only annotations in [3], which was in
turn adapted from that in the ALPS flat committed-choice logic language [13]. A one-way constraint can
be represented by annotating all but one of the constrained variables as read-only. One can also annotate
an expression as read-only — this is syntactic sugar for annotating each of its variables as read-only.

Here’s a simple example of the effect of a read-only annotation on a variable. First consider these constraints:

required x = y
strong x = 3

weak y = 4

This has the solution x 7→ 3, y 7→ 3, since the strong constraint trumps the weak one.

But suppose we add a read-only annotation:

required x = y?
strong x = 3

weak y = 4

Because y is read-only in the x = y? constraint, the solver can’t use that constraint in determining the value
of y, and so the solution this time is x 7→ 4, y 7→ 4.

Further, if we make the constraint x = 3 be required:

required x = y?
required x = 3

weak y = 4

the constraints now have no solution: on the one hand, any solution must satisfy the required x = 3
constraint, but on the other, we still can’t use x = y? in determining a value for y. (This is a so-called
“blocked” set of constraints [3].)

With those prelimaries out of the way, consider again the example in Section 4 of unsatisfiable constraints
arising from the following program:

x := 5;

always x<=10;

x := x+15

This behavior we modeled with the rules for Babelsberg/PrimitiveTypes is the same as that of the refinement
model, in which the program would be equivalent to these constraints:

required x0 = 5

∀t > 0 required xt ≤ 10

weak x1 = x0?

weak x2 = x1?

required x2 = x1? + 15

The read-only annotations in the refinement model serve the same role as do the evaluation rules in our
current model. In the example, in our current semantics we model the final assignment x:=x+15 by first

46

evaluating x+15 in the old environment, and then adding a required once constraint that x be equal to
that value. In the refinement model, we model the final assignment as x2 = x1? + 15, where the read-
only annotation on x1 accomplishes the same thing, by preventing the solver from changing x1 to satisfy
this constraint even though the other constraint that gives x1 the value of 5 is only weak. Similarly, stay
constraints in the current semantics are modeled as weak constraints equating the variable with its current
value; in the refinment model these are weak constraints relating the variables representing the current and
previous versions, with the previous version annotated as read-only.

A.3 Issues with Using Once Constraints in the Semantics for Assignments

In all of the Babelsbergs, in the semantics we model an assignment by evaluating the right-hand-side,
creating a new variable if needed for the left-hand-side, setting it to the new value, and then solving the set
of constraints that include a once constraint that the left-hand-side equal that value. This lets assignment
interact correctly with other constraints in the constraint store, if any. For example, as a consequence of
this semantics, the following program will fail (i.e., get stuck in the formal semantics; or raise an exception
in a practical implementation):

x := 0;

always x=10;

x := 5;

However, there are some subtle issues in connection with this representation.

The analogous program still fails, as one would want, in Babelsberg/Records or when using value classes,
since records and instances of value classes are immutable.

x := {a:0};

always x.a=10;

x := {a:5};

But once we get to Babelsberg/UID and Babelsberg/Objects with ordinary objects, the situation changes.
Consider the analogous program in Babelsberg/UID:

x := new {a:0};

always x.a=10;

x := new {a:5};

Here, the right-hand-side of the last assignment is evaluated, the reference to the new record is assigned to x,
and then the system immediately changes its a field to 10 — it is only the reference that is immutable, not
the record on the heap. This is arguably weird, and so one of the design alternatives we considered was to
make the right hand side be read-only (recursively). However, this might be computationally expensive, and
would also cause difficulties when creating circular structures (see below). So in the current design, we just
evaluate the right-hand-side to a value, but don’t do anything further about making it recursively read-only.

A.3.1 Circular Structures

There is an issue regarding creating circular structures if we convert assignment statements to once con-
straints, with the value on the right hand side recursively annotated as read only. (The same issue arose in

47

an earlier version of the semantics in which we simply turned an assignment into a once constraint with the
right hand side annotated as read only, instead of first evaluating the right hand side.) Consider:

c := Cons.new(10,nil);

c.cdr := c;

If the second assignment is converted to the constraint once c.cdr == c? this is unsatisfiable. However,
there is a simple workaround, namely to replace such an assignment with a once identity constraint without
the read-only annotation:

c := Cons.new(10,nil);

once c.cdr == c

This would be a bit strange. But this solution doesn’t require any changes to the formal semantics, and
addresses all the previous issues.

Selectively Eliding the Read-Only Annotation. A variant that provides a more standard syntax is
to make the entire object on the right-hand side of the assignment be read-only, except for a field that is
assigned to (if any). The constraints would be exactly the same for all the examples except for the circular
structures one:

c := Cons.new(10,nil);

c.cdr := c;

Here, c.car and the reference to c itself are read-only, but not c.cdr.

Distinguishing Ownership from Reference. Another alternative to making the entire object on the
right-hand side of the assignment read-only is to distinguish ownership of parts from references to other
objects. If an instance variable is for an “owned” part, then that instance variable is made read-only; but
otherwise not. For compatibility with the host language, the default would be that instance variables do
not refer to owned parts; rather, this must be declared explicitly. (It only needs to be declared if there are
constraints on the parts or subparts.)

A.4 Alternatives to Structural Compatibility Checks

Our model includes structural compatibility checks on constraints, which prevent the solver from potentially
generating new kinds of records and other odd behaviors. But since these ideas seem to keep resurfacing, we
outline some of our rejected alternatives in this subsection, in case they end up being useful later.

We first consider records in Babelsberg/Records (immutable records, no UIDs).

If the solver will need to compare two records with different fields, we need to extend the comparators to
handle them. For LPB, there are at least two possibilities:

1. An equality constraint between records is either satisfied or it’s not. For example consider a constraint
p=q when p={x:0, y:1} and q={x:0, y:2}, versus when q={a:1000}. In both cases the constraint is
unsatisfied, and there is no reason to prefer one of these solutions over the other.

2. An equality constraint between records is unfolded into multiple constraints on the fields, each of
which is satisfied or not. (Such a constraint might be unsatisfied either because the values in one or

48

more corresponding fields weren’t equal, or were of different types, or because the corresponding field
didn’t even exist.) In the above example, for the first case we have p.x=q.x (satisfied) and p.y=q.y

(unsatisfied). For the second case we have p.x=q.x (unsatisfied) and p.y=q.y (unsatisfied), and an
additional constraint p.a=q.a (unsatisfied). The first solution would be preferred over the second
under LPB.

We also considered WSB for records. The error for {x:5}={x:5} or {x:5}={x:6} is clear enough (0 and 1
respectively). But what is the error for {x:5}={x:5,y:6} or {x:5}={y:6} or {x:5}={x:"squid"}? We need
to determine an error for additional or missing fields, and for comparing different types and this error needs
to be such that it can be meaningfully compared with the error for values of fields that hold numeric types.
Is the error for {x:0}={x:1000000000} less than for {x:0}={y:0}? We could come up with a definition,
but it’s not clear it’s that useful.

Another problem with having the solver handle records without filtering out weird cases with structural
compatibility checks is that it may result in less predictability for programmers. Consider:

p := {x:0};

q := {y:1};

always p=q;

If this isn’t rejected by a structural compatibility check, there there are a number of plausible values that the
solver could find for p and q — namely {x:0}, {y:1}, and {x:0,y:1} — and unclear which is better. The
non-determinism affects the structure of the result rather than just its value, and would prevent achieving
Goal 3 in our list in Section 3.2.

Yet another complication is that we would want a minimality condition on records. Suppose we let an always

constraint create a new record if need be:

always p.x = 5;

We want the solution to be p={x:5}, but not e.g. p={x:5, y:1000}.

These issues, along the lack of clear use cases for having a solver untamed by structural compatibility checks,
led us to reject the alternative outlined in this subsection.

For Babelsberg/Objects, the analog of this behavior would be to allow the constraint solver generate new
classes on the fly. Particularly since there would be multiple possible classes, as before, this seems overly
complex and unpredictable.

A.5 Backwards Compatibility Mode for Methods

Methods called by constraints must be free of side effects. (In a practical language, benign side effects might
be allowed, but we don’t model this in the formal semantics.) This seems like a reasonable restriction that
we shouldn’t attempt to change, although we probably ought to make precise what constitutes a benign side
effect.

In addition, if a method consists of more than just a single return statement, it can only be used in the
forward direction in constraints. This provides a straightforward way for both the programmer and the
implementor to understand how this should be handled: if the method is used in the forward direction only,
it can be called in the ordinary way; if it is potentially used multi-directionally, it is exploded.

49

If we are trying to add constraints to an existing language with a substantial class library, this restriction
does imply that many methods, even though they are side-effect-free, can only be used in the forward
direction. The Babelsberg/Ruby implementation provides a “backwards compatibility mode” that relaxes
the restriction in an attempt to make more of these existing methods be usable multi-directionally. (It won’t
allow an arbitrary method to be successfully used in all modes in a constraint, but it increases the chances
that it will work.) However, this mode is incompatible with the new semantics for Babelsberg described in
this memo. We describe it here for completeness; updating it to be compatible with the new semantics (or
simply removing it) is left for future work.

The Babelsberg/Ruby implementation uses two interpreter modes: standard imperative execution mode and
constraint construction mode. When methods are evaluated in constraint construction mode, assignment
statements are converted to two-way equality constraints. However, we’ve now decided that methods called
from a constraint expression cannot themselves create other constraints, or call further methods that do so
(Section 7.5), which rules out this transformation in its current form.

For the record, though, if we relaxed this restriction, we might want to support this conversion. It still
doesn’t seem entirely clean, so we should probably still omit it from the formal semantics. Instead, a practical
implementation of Babelsberg might elect to include a backwards compatibility mode for methods that does
this transformation, as well as other transformations that increase the chances the method can be used in
multi-directional constraints. In addition to converting assignments to constraints, the transformation should
create fresh variables each time a variable is used on the left-hand-side of an assignment, and systematically
use that new variable thereafter (until another assignment). First, here is an example that just uses straight-
line code.

def add_and_double(x,y,z)

sum := 0;

sum := sum+x;

sum := sum+y;

sum := sum+z;

return 2*sum;

end;

In backward compatibility mode this is rewritten as:

def add_and_double(x,y,z)

sum_1 = 0;

sum_2 = sum_1+x;

sum_3 = sum_2+y;

sum_4 = sum_3+z;

return 2*sum_4;

end;

Notice that a fresh variable is introduced for each assignment, but not for the return statement. Now, if we
evaluate the constraint always 100 = add_and_double(10,15,n), the system should satisfy the constraint
by making n be 25.

Conditionals, in which a variable might or might not be assigned to, can be handled by using a required
equality constraint to pass through the old value for the other branch of the conditional. For example:

50

def maybe_double(x)

ans := x;

if x<10

then ans := 2*ans;

end;

return ans;

end;

This becomes:

def maybe_double(x)

ans_1 = x;

if x<10

then ans_2 = 2*ans_1;

else ans_2 = ans_1;

end;

return ans_2;

end;

Note though that the semantics of conditional statements are unchanged — we still eagerly evaluate the test
and select the appropriate branch (with no backtracking to the other branch).

If we also had a way to explode methods on demand to support recursion, we might also be able to auto-
matically convert methods with loops to recursions that could then be used multi-directionally. Here is a
version of sum that might be automatically generated in this fashion:

def sum

helper(0,i,0,ans);

return ans;

end;

def helper(old_i, new_i, old_ans, new_ans)

if old_i<self.length

then

temp_ans = old_ans + self[old_i];

temp_i = old_i + 1;

helper(temp_i,new_i,temp_ans,new_ans);

else

new_ans = old_ans;

new_i = old_i;

end;

end;

Here, helper is produced automatically from the while by parameterizing the helper method with the old
and new values of i and ans, and converting the while to an if with a recursive call. (Again, we still eagerly
evaluate the test in the conditional, i.e., we evaluate the original while statement a definite number of times
— this method won’t let us try different array lengths to satisfy the constraints.)

As we’ve been noting, these transformations won’t work in all cases. As an extreme example, if we have
an encrypt method that takes a plaintext message m and a public key k, we are unlikey to be able to run

51

the method backwards to find the original message given the cyphertext. Coming up with a good set of
transformations, a specification of when they will work, and whether the result covers a useful set of cases,
is an open problem. Certainly they work for methods consisting just of a sequence of assignment statements
and a final return statement, but this seems like not that useful a class of methods to run backwards.

For the record, here are some more straightforward examples of when the tranformation fails.

Consider an absolute value method for integers:

def abs()

if self>=0 then return self else return 0-self;

end;

Suppose we use it in this program:

x := 5;

y := 5;

always y=x.abs();

always x<0;

This works up until the final statement. However, when we try to satisfy x<0, because of the semantics
of the if statement (which eagerly evaluates the test, with no backtracking), we incorrectly conclude the
constraints are unsatisfiable.

Instead, the abs method as written should only be used in the forwards direction; if we want one that also
works backwards, we should write it as a disjunction that can be turned over to the solver (or add support
for Prolog-style backtracking — see the next section).

Another case that doesn’t work arises when the method has a conditional, and the two branches return
different types. Even if these are both value classes, this still doesn’t explode correctly using the current
rules. For example, suppose that in addition to standard points, we have a class ZeroPoint representing a
point with its x and y both 0 (which then avoids storing those fields). Also suppose that both kinds of points
implement an optimize method that returns a new object, which is the point represented in the optimal
way. For ordinary points, the method is:

def optimize()

if self.x=0 && self.y==0 then return ZeroPoint() else return self;

end;

For ZeroPoint, optimize just returns self.

Now consider this code that uses the optimize method:

p := Point(5,5);

q := Point(5,5);

always q = p.optimize();

If we implement this by exploding the optimize method, the existing transformations don’t work since
q might be either a Point or a ZeroPoint. We might be able to get it to work in this case, but the
transformations become more complex and probably more fragile, and it’s not clear that the complexity is
worth the price.

52

A.6 Adding New Solvers and Extending the Solver Language

In a practical Babelsberg implementation, it is useful to be able to add new solvers, if necessary extending
the solver language so that new kinds of constraints can be encoded and sent to the new solvers. This doesn’t
seem to create any issues for the formal semantics, so we note this only in this appendix.

One useful extension of this sort would be useful to include a solver for geometric constraints, either in 2 or
3 dimensions.

Some extensions that already exist in the practical languages are a solver (and constructs in the solver
language) for finite domain constraints, as in the clpfd library for SWI Prolog. Other additional solvers
are available for strings and local propagation constraints, as solved for example by DeltaBlue. Supporting
the latter required adding a construct for declaring local propagation constraints (including the propagation
methods) in the source language, and also adding local propagation constraints to the solver language.

In Babelsberg/JS, when a DeltaBlue constraint is constructed, and an equality constraint is encountered
with two variables of the same type on either side, when processing a constraint the interpreter doesn’t
descend further, but instead asserts the equality on those variables. So, for example, for two points the
constraint expression does not desugar into multiple constraints on the x and y variables. This works even
if the programmer does not specify a propagation function, because DeltaBlue has a default propagation
method for equality (and some other relations, such as scaling.)

Finally, we may be able to have a solver language and solver to encode Prolog-like goals, which would support
backtracking and Prolog-style programming within Babelsberg. A key observation here is that this would
be in a separate set of constraints — we wouldn’t try to change the basic Babelsberg semantics to allow
backtracking with Babelsberg if statements.

53

	Introduction
	Motivation
	Constraints
	Conjunctions and Disjunctions of Constraints
	Taming Identity Constraints

	Babelsberg/Reals and Babelsberg/PrimitiveTypes
	Requirements for Constraint Expressions
	Control Structures
	Adding Other Primitive Types
	Formalism
	Syntax
	Semantics

	Babelsberg/Records
	Formalism
	Syntax
	Semantics

	Adding Mutable Records

	Babelsberg/UID
	Formalism
	Syntax
	Semantics

	Babelsberg/Objects
	Value Classes
	Control Structures and Methods
	Examples
	Arrays
	Additional Restrictions on Constraint Expressions
	Identity Constraint Examples
	Formalism
	Syntax
	Semantics

	Appendix
	Warnings and Debugging
	The Perturbation Model vs. the Refinement Model
	Issues with Using Once Constraints in the Semantics for Assignments
	Circular Structures

	Alternatives to Structural Compatibility Checks
	Backwards Compatibility Mode for Methods
	Adding New Solvers and Extending the Solver Language

