
Automated Testing of Stochastic Systems:
A Statistically Grounded Approach

Hana Ševčı́ková
Department of Statistics
University of Washington
Seattle, WA 98195, USA

hana@stat.washington.edu

Alan Borning and David Socha
Dept. of Computer Science & Engr.

University of Washington
Seattle, WA 98195, USA

{borning,socha}@cs.washington.edu

Wolf-Gideon Bleek
Department of Informatics

University of Hamburg
22527 Hamburg, Germany

wbleek@acm.org

ABSTRACT
Automated tests can play a key role in ensuring system qual-
ity in software development. However, significant problems
arise in automating tests of stochastic algorithms. Normally,
developers write tests that simply check whether the ac-
tual result is equal to the expected result (perhaps within
some tolerance). But for stochastic algorithms, restricting
ourselves in this way severely limits the kinds of tests we
can write: either to trivial tests, or to fragile and hard-to-
understand tests that rely on a particular seed for a random
number generator. A richer and more powerful set of tests is
possible if we accommodate tests of statistical properties of
the results of running an algorithm many times. The work
described in this paper has been done in the context of a
real-world application, a large-scale simulation of urban de-
velopment designed to inform major decisions about land
use and transportation. We describe our earlier experience
with using automated testing for this system, in which we
took a conventional approach, and the resulting difficulties.
We then present a statistically based approach for testing
stochastic algorithms based on hypothesis testing. Three
different ways of constructing such tests are given, which
cover the most commonly used distributions. We evaluate
these tests in terms of frequency of failing when they should
and when they should not, and conclude with guidelines
and practical suggestions for implementing such unit tests
for other stochastic applications.

Categories and Subject Descriptors:
D.2.5 [Software Engineering]: Testing and Debugging –
Testing tools

General Terms: Algorithms, Verification

Keywords: Software testing, Unit tests, Stochastic algo-
rithms, Software engineering, Hypothesis testing

To appear in Proceedings of the ACM Inter-

national Symposium on Software Testing and

Analysis, July 2006, Portland, Maine.

1. PROJECT CONTEXT
In many urban regions, there is increasing concern about

pollution, traffic jams, resource consumption, loss of open
space, loss of coherent community, lack of sustainability,
and unchecked sprawl. Elected officials, planners, and cit-
izens in urban areas grapple with these difficult issues as
they develop and evaluate alternatives for such decisions as
building a new rail line or freeway, establishing an urban
growth boundary, or changing incentives or taxes. These
decisions interact in complex ways. There are both legal
and common sense reasons to try to understand the long-
term consequences of these interactions and decisions.

Unfortunately, the need for this understanding far out-
strips the capability of the analytic tools used in current
practice. In response to this need, we have been develop-
ing UrbanSim, a sophisticated, reusable simulation pack-
age for predicting patterns of urban development for peri-
ods of twenty years or more, under different possible sce-
narios, each a package of possible policies and investments
[21, 22]. Its primary purpose is to provide urban planners
and other stakeholders with tools to aid in more informed
decision-making. When provided with different scenarios,
UrbanSim models the resulting patterns of urban growth
and redevelopment, of transportation usage, and of resource
consumption and other environmental impacts. To date,
UrbanSim has been applied in the metropolitan regions in
the U.S. around Eugene, Honolulu, Houston, Phoenix, Salt
Lake City, and Seattle. Internationally, it has been applied
in Paris, Tel Aviv, and in the Netherlands.

Having reliable, credible software is essential, since the do-
main is politically charged, with many regions having sharp
and long-standing disagreements over such issues as the bal-
ance of automobile-oriented transportation facilities, public
transportation, and bicycles, regarding housing affordabil-
ity, environmental impacts, and others.

For UrbanSim, an important unit of credibility is to de-
termine whether each of the UrbanSim components works
correctly. UrbanSim is implemented as a set of interact-
ing component models that represent major actors and pro-
cesses in the urban system [16]. For example, the Residen-

tial Location Choice model simulates the choice process of a
household selecting a new place to live, while the Developer

model simulates the actions of a real estate developer decid-
ing whether to renovate existing buildings or construct new
houses, apartments, offices, or the like. UrbanSim takes a
highly disaggregated approach, modeling individual house-
holds, jobs, and real estate development and location choices
using grid cells of 150×150 meters in size. The model system

1

microsimulates the annual evolution in locations of individ-
ual households and jobs, and the evolution of the real estate
within each individual grid cell as the result of actions by real
estate developers. The Puget Sound application of Urban-
Sim, for instance, includes 1.3 million simulated households
— each making choices involving randomness, every year.
The question addressed in this paper is how to write robust
and useful unit tests of these models, given the stochastic
nature of the code.

The most recent version of the system, UrbanSim 4, is im-
plemented using Opus (the Open Platform for Urban Simu-
lation), a new object-oriented architecture and platform de-
veloped by our group and others [23]. Opus and UrbanSim 4
are implemented in Python, making heavy use of highly op-
timized array and matrix manipulation packages, written in
C++, to handle all of the inner loop computations. (Pre-
vious versions of UrbanSim were written in Java.) Opus
and UrbanSim are open source, under the GNU Public Li-
cense. For more information please see the project website
www.urbansim.org.

Simulation and modeling is used extensively in other
politically-charged, economically, socially, and environmen-
tally significant domains as well, and the testing methodol-
ogy described in this paper is applicable to stochastic models
of many sorts. In the remainder of this paper, we first pro-
vide a brief discussion of related work in software testing.
We then describe our earlier experience with using auto-
mated testing for UrbanSim, and our initial experience with
ad hoc nondeterministic tests. This experience motivates
the need for a more rigorous statistical analysis of proba-
bilistic tests for stochastic algorithms, which we present in
Section 4. In Section 5 we provide an evaluation of these
tests. Section 6 provides guidelines and practical sugges-
tions for implementing unit tests for stochastic algorithms
in other applications. We conclude with an assessment of the
current state of the work and directions for future research.

2. RELATED WORK
Testing software against various conditions during devel-

opment is a well established software engineering practice
to ensure quality and find errors early in the development
process [12, 19]. Not only is well-tested software essential to
guarantee its functionality, in the urban planning domain it
is also a way to enhance the project’s credibility and its ac-
ceptance in disputed decision-making processes. The easily
available source code (under an open source license), to-
gether with an accompanying set of tests, allows anybody
to cross check the system. Moreover, automated tests al-
low software developers to modify and evolve the system
with increased confidence and safety. This becomes crucial
when introducing external programmers to the team in a
distributed open source development process.

The UrbanSim software is being developed using an agile
development process [2], which relies on small, incremental
development steps. This is achieved in part by pursuing
a test-first development strategy using a modified eXtreme
Programming approach [3]. Agile development processes
(including ours) often rely on an automatic build system [7],
which not only compiles the program and makes sure that
static relations can be resolved, but also executes all tests
provided.

2.1 Unit Tests
To help ensure the code quality of UrbanSim, we use unit

tests [4, 9, 15] to automatically test Python classes (previ-
ously, Java classes) and their operations. The underlying
assumption of existing unit test frameworks is that the unit
under test has a deterministic behavior. Therefore, tests
can assume an initial state when creating an instance of
that particular class. Consequently, each operation modifies
the instance’s state in a deterministic way. Probing the in-
stance’s state will result in a repeatable constant value. By
applying classic unit tests, we implicitly deal with determin-
istic finite state machines.

The vast majority of the testing literature deals with such
deterministic finite state machines [11, 18, 24], in which test
cases are considered to be action sequences, and the tester
is assumed to be in full control of the state of the unit under
test.

2.2 Testing Nondeterministic Systems
Most simulation systems, including UrbanSim, rely on

random numbers to simulate nondeterministic real-world be-
haviors. It is possible to make the system deterministic by
fixing the seed for the random number generator, but we
found the resulting tests to be problematic (see Section 3).
If we view the simulation system instead as a nondetermin-
istic one, there is considerably less prior work on testing on
which to draw. In particular, by introducing a source of
randomness into a program, our deterministic unit changes
to nondeterministic behavior, breaking a key assumption for
unit tests. Now, if we implement tests in a straightforward
fashion, they can fail even though the implementation is
correct.

Nachmanson et al. address the problem of testing non-
deterministic systems by means of game theory [14]. They
model all states by a graph representing choice points and
transitions as edges. Their aim is to identify the fastest
strategies to cover the complete graph. This method is appli-
cable for finite state machines with small numbers of states
and transitions. However, in our case we are dealing with
huge sets of input data and a large number of choices (e.g.
relocating 10,000 households into potential residential loca-
tions on a grid of 1, 000 × 1, 000), making this approach
infeasible.

The problem of nondeterminism arises in many other ap-
plications in addition to simulation, for example, in message-
passing systems [10] and communication protocols in gen-
eral. Chen et al. state that in testing nondeterministic
systems it may not be sufficient to run a test once [6,
p. 217]. However, they do not provide a statistical anal-
ysis of the consequences of doing this. (For example, how
many times should the test be run before one decides that
it has failed? If the test succeeds, what confidence does
that provide that the system is correct? Perhaps the test
succeeded by chance.) They further argue that it would be
necessary to compute the transitive closure of references to
all entities of the unit under test. However, this would be
quite resource-consuming (time and/or memory), and so not
really appropriate for a unit test approach.

2

3. EXPERIENCE WITH URBANSIM UNIT
TESTS

Our prior implementation of UrbanSim was written in
Java, using agile development techniques, such as unit tests
(using JUnit, integrated with the Eclipse IDE), FIT tests
(using Ward Cunningham’s Framework for Integrated Test-
ing), small steps with frequent check-ins, test-first devel-
opment, nested planning iterations, regular refactoring, au-
tomated builds, and so forth. Central to this approach is
having good unit tests, and making it easy to know when
they fail. To facilitate this, in our lab we installed traf-
fic lights (real ones) that provide ambient indicators of the
most recent results of these tests [8].

We continue to use many aspects of this software devel-
opment methodology in our current work on UrbanSim 4,
including extensive testing (now using PyUnit, since we are
working in Python), and the traffic lights. One aspect that
did not work well, however, was our unit tests of the parts
of the system that exhibited stochastic behavior.

3.1 Problems Writing Unit Tests for
Stochastic Models

A good unit test typically runs the component with just
enough data to exercise the part of the algorithm and im-
plementation being tested, and is simple enough that the
expected output values can be computed by hand for check-
ing against the result from running the algorithm. We were
able to write such tests for components of the system in-
volving deterministic algorithms, and these tests were very
useful for detecting problems there.

However, neither the domain experts (the urban model-
ers) nor the developers were able to devise really satisfactory
tests for the stochastic models. So instead we generally re-
sorted to regression testing, checking whether the output
values from a new version of an algorithm were identical
to those from the previous version; or if the output val-
ues should have changed, convincing ourselves that the new
values were correct, and then installing them as the new
standard against which future runs would be checked.

In practice, however, it was difficult to decide whether
the new result was correct when there was a change. We
used both a realistic test data set (for Eugene, Oregon), as
well as a contrived one. But the results from the Eugene
set were too complex to feasibly do more than check for
identical results. On the other hand, the results from the
small, contrived set were unrealistic, and the modelers could
not reason about them.

Another problem was that for comparing exact results,
the test scenarios were fragile. The scenario required run-
ning the algorithm with a fixed seed for the random num-
ber generator, and tiny algorithmic changes (for example,
a change that caused the random number generator to be
called one more time), would give different output values.

As a result, over time we slowly reduced the power of the
tests as their fragility caused increasing pain for the develop-
ers. Eventually, many of the unit tests for models degraded
to simply testing that the number of rows of data produced
were as expected. (Not surprisingly, we subsequently dis-
covered that there were still bugs in the model algorithms
and implementation, which were not found by such tests.)
We did, however, continue to have extensive and reasonable
unit tests of the deterministic aspects of the system.

3.2 Toward Statistically-Based Unit Tests
In response to these problems, in UrbanSim 4 we set out

to design statistically-based tests that would be reliable, in-
tuitive to the modelers, and straightforward to write for the
software developers.

When running in production mode, UrbanSim (like many
other simulation systems) produces voluminous, multidi-
mensional outputs, for example, the number of households
in each grid cell. However, for small test cases, even though
different runs in general will produce different values, the
expected values can be readily found — in fact they often
can be computed by hand, as in the case of simple determin-
istic tests. But we have no, or very little, information about
the spread of the actual results around the expected ones.
We could test whether the actual results from a unit test are
within a certain tolerance of the expected results, but what
tolerance should be used to decide whether the test has suc-
ceeded? Furthermore, the spread can differ across different
outputs, for example it may increase with larger expected
values. Under such conditions, even a solution of running
the test several times, and letting it pass if it succeeds at
least once, is obviously ad hoc.

For our very real-world application, these are not purely
theoretical questions. When we first began to use such unit
tests, we used a tolerance to determine whether the test had
succeeded, but we kept needing to increase the tolerance, or
to increase the number of times the test was run, to get
some of our tests to pass consistently. The problem became
worse as we added more tests to the system, which caused
our traffic lights to go red more often. This was clearly
unsatisfying: did we still have good unit tests, or had we
relaxed them to the point where we were masking errors?
Such considerations motivated the development of a more
mathematically grounded approach.

4. A STATISTICAL FORMULATION FOR
AUTOMATED TESTS

To properly support our goal of automated testing, we
put the matter of testing our stochastic systems on a firm
theoretical basis by using statistical hypothesis testing (see
e.g. [13], Chapter 9). We define the null hypothesis H0 and
the alternative hypothesis H1 as follows:

H0: program behaves as expected
H1: program does not behave as expected

Using various properties of the results of running the test,
we can test whether there is strong evidence to reject H0.
In such a case, the unit test should fail.

There are many ways to construct the test statistics; the
best choice depends primarily on the properties of the distri-
bution of output values. The methodology is based on com-
paring the distribution of the output values to the expected
distribution. This requires multiple runs of the program.
Furthermore, one has to be able to model the expected out-
put properties by a probability distribution with known den-
sity function. Often, various transformation functions can
be applied to the data in order to obtain an approximation
of a known distribution (see e.g. [1], Chapter 4). As in the
case of deterministic unit test, the approach is applicable to
test cases for which one can calculate expected values, which
are then the parameters of the expected distribution.

3

In the following subsections, we present different ways
of constructing a test statistics for the above hypothesis,
namely for normally distributed and for Poisson distributed
data (Sections 4.1 and 4.2 respectively). These two com-
monly used distributions have proved sufficient for the cases
that arise in our application. We believe that further they
will cover the vast majority of cases that researchers and
practitioners must deal with. However, the methodology is
easily extensible, so that tests can be constructed for data
with other kinds of distributions.

4.1 Normally Distributed Data
The normal distribution is typically the most commonly

used distribution. (It is actually not so widespread in our
application — for UrbanSim, it arises for real-valued quan-
tities, especially averages, and the like.) For output val-
ues that are independent and normally distributed, we sug-
gest using the following test. The program is assumed to
be correct if the actual distribution of outputs for each di-
mension1 has the same mean as the expected distribution.
Thus, we will perform a test on means of normal distribu-
tions with unknown variance using a likelihood-ratio test
statistic (LRTS).

This test requires the variance to be constant over all di-
mensions, which is not necessarily the case. A simple solu-
tion is to find an appropriate transformation of the output
values prior to the statistical testing that will stabilize the
variance. Often a square root or log transformation is a good
candidate if the variance varies with the mean. Plotting the
variances against means (one point per dimension) before
and after the transformation can be helpful in finding the
right function (see for example [17], Figures 2 and 3).

More formally, we denote the number of replications by R
and the number of dimensions by K. ykr denotes the k-th
output from r-th replication. Note that all K × R outputs
are produced using the same inputs. The differences in y
along the r axis are due to the nondeterminism of the code.
xkr is either equal to ykr if no transformation is necessary, or
xkr = g(ykr) where g(·) denotes the transformation function.
Suppose that xkr is independent normally distributed

xkr ∼ N(µk, σ2) , k = 1, . . . , K, r = 1, . . . , R

where µk denotes the mean of the distribution for dimension
k and σ2 denotes the variance which is constant over all
dimensions.

We translate the above formulated hypothesis test into:

H0 : ∀k : µk = µ
(0)
k

H1 : ∃k : µk 6= µ
(0)
k

Here, µ
(0)
k denotes the known mean for the output dimension

k (i.e. the expected value for k-th output). Using the for-
mulas for normal distribution, we can define the likelihood
for each hypothesis as

LH0
=
Y

k,r

1
p

2πσ̂2
0

exp

"

−1/2(xkr − µ
(0)
k)2

σ̂2
0

#

1In this paper we use the term “dimension” to refer to the
number of outputs for one test. This is standard terminol-
ogy in statistics when used in joint probability distribution
formulas.

and

LH1
=
Y

k,r

1
p

2πσ̂2
1

exp

»

−1/2(xkr − µ̂k)2

σ̂2
1

–

where

µ̂k =
1

R

R
X

r=1

xkr .

σ̂2
0 and σ̂2

1 are estimates of the variance for the null and
alternative hypothesis, respectively. They are obtained by

σ̂2
0 =

1

KR

X

k,r

(xkr − µ
(0)
k)2

and

σ̂2
1 =

1

KR

X

k,r

(xkr − µ̂k)2 .

The likelihood-ratio test statistic

LRTSnormal = 2(log LH1
− log LH0

) = KR log

„

σ̂2
0

σ̂2
1

«

has a χ2 distribution with K degrees of freedom, asymptoti-
cally. If the corresponding p-value is smaller than a selected
level of significance α, the null hypothesis will be rejected.

4.2 Poisson Distributed Data
The Poisson distribution can be used if the outputs are in-

tegers, especially if they represent counts. (This is the more
common case in UrbanSim and other systems using discrete
choice models. Examples of such outputs in UrbanSim are
the number of households per grid cell, jobs in a particular
employment sector, and the like.) We assume that the data
xkr are independent Poisson distributed

xkr ∼ Poisson(λk), λk > 0, k = 1, . . . , K, r = 1, . . . , R

where λk denotes the mean and variance of the distribution
for dimension k.

Similarly to the case of normal distribution, we set the
hypothesis as

H0 : ∀k : λk = λ
(0)
k

H1 : ∃k : λk 6= λ
(0)
k

where λ
(0)
k denotes the known mean (and variance) for di-

mension k.
A likelihood-ratio test statistic is constructed as follows:

log LH0
= log

Y

k,r

(λ
(0)
k)xkr exp(−λ

(0)
k)

xkr!

=
X

k,r

(xkr log λ
(0)
k − λ

(0)
k) −

X

k,r

log(xkr!)

log LH1
= log

Y

k,r

λ̂xkr

k exp(−λ̂k)

xkr!

=
X

k,r

(xkr log λ̂k − λ̂k) −
X

k,r

log(xkr!)

where λ̂k is the maximum likelihood estimator of λk:

λ̂k =
1

R

R
X

r=1

xkr .

4

This gives the likelihood ratio test statistic

LRTSpoisson = 2(log LH1
− log LH0

)

= 2
X

k,r

"

xkr log

λ̂k

λ
(0)
k

!

− λ̂k + λ
(0)
k

#

which has a χ2 distribution with K degrees of freedom,
asymptotically.

A common alternative to this likelihood-ratio test statistic
for the Poisson distribution is the Pearson χ2 test:

Pearson χ2 =
X

k,r

(xkr − λ
(0)
k)2

λ
(0)
k

This test statistic is also χ2 distributed and has KR degrees
of freedom, asymptotically. In Section 5 we will provide a
comparison of those tests.

4.3 An Example
We apply the above methodology to a simple but real-

istic example, by writing a unit test for a model that is
based on multinomial logit theory [5, 20]. UrbanSim con-
tains several such models, including the Residential Loca-

tion Choice model, the Developer model, and others. For
example, the Residential Location Choice model simulates
the decision-making process of households deciding where
to live. For each household that is moving to a new house
or apartment, the probability of moving to each vacant unit
is computed, based on characteristics both of the household
(income, number of children, age of head, . . .), and of the
potential dwellings (cost, percent residential land use within
walking distance, . . .).

More generally, these models represent a situation in
which agents make a choice from a set of alternatives. The
choice process is based on probabilities for each of the al-
ternatives which are computed using the multinomial logit
formula. Thus, the deterministically computed probabilities

are the basis for determining the known means µ
(0)
k or λ

(0)
k

for k = 1, . . . , K, where K denotes the number of alterna-
tives.

Suppose we have a set of 100 agents, each of which chooses
one of 10 available locations. Of these locations, 5 cost $1000
each, while the other 5 locations are less costly, say $100
each. (In production use, these models employ many pa-
rameters in addition to cost, but for purposes of writing a
unit test, we use just the one parameter. This follows the
unit test philosophy of using a minimal set of data that nev-
ertheless exercises the code.)

We set the cost coefficient to β = −0.001 and denote the
cost variable for location i by ci. The multinomial logit
formula

Pk =
eβck

PK

i=1 eβci

yields probabilities that suggest that 5 · 14.2% = 71% of
the agents in total will choose the less expensive locations,
whereas 5·5.8% = 29% will choose the more expensive alter-
natives. Our quantity of interest is the number of agents in
each location. From the above computations we know that
the expected number of agents in an expensive location is
100 ·0.058 and in a less expensive location is 100 ·0.142. For
illustrative purposes, we will apply all three tests described
in Sections 4.1 and 4.2. As a transformation function in the

likelihood-ratio test for normal distribution we choose the
square root function.

Running our program 5 times gives the intermediate val-
ues shown in Table 1, which can be used to compute
LRTSnormal, LRTSpoisson and Pearson χ2. Note that in
the two Poisson tests xkr = ykr, whereas in the test for
normal distribution xkr =

√
ykr.

The three different test statistics are:

test statistic df p-value
LRTSnormal 8.5026 10 0.5799
LRTSpoisson 7.7336 10 0.6548
Pearson χ2 50.2234 50 0.4645

where df denotes degrees of freedom. All three p-values sug-
gest that there is no strong evidence to reject the null hy-
pothesis — employing the commonly used significance level
α = 0.05 we would accept the hypothesis that the program
behaves as expected (and so it would pass the unit test) in
all three cases.

To see what happens when there is an error in the model
code, we will use an example bug that our stochastic unit
test case recently exposed. Initially, the test only examined
the first half of the choice set, namely the less expensive loca-
tions, and succeeded. When we expanded it to examine the
whole choice set, it failed every time. Upon investigation, it
turned out that one of the locations was, by mistake, being
excluded from the set of alternatives, due to an indexing
error in the model code.

Repeating the above experiment for the model code with
this error gives the values shown in Table 2, which produces
these test statistics values:

test statistics df p-value
LRTSnormal 78.9807 10 0.0000
LRTSpoisson 68.4220 10 0.0000
Pearson χ2 75.1238 50 0.0123

In this case, the tests correctly detect that the means for
k = 10 departs from the expected value, leading to small
p-value. The unit test would fail in all three cases for level
of significance α = 0.05.

5. EVALUATION OF THE TESTS
In this section we examine the question of whether these

tests are powerful enough for our real-world usage. Do they
detect bugs when they should? Will these tests do bet-
ter than our problematic ad hoc tests that were failing fre-
quently even though the code was correct?

In statistical hypothesis testing, two types of errors can
arise. A type I error occurs if the null hypothesis is rejected
when it is true. A type II error occurs if the null hypothesis is
accepted when it is false. In our framework, the consequence
of a type I error is that the unit test fails even if the code
is correct. A type II error means that the unit test does not
fail even when the program contains errors.

In this section we investigate the behavior of the tests
described in Section 4 in terms of the two types of errors.
We consider two different tests, one suited for modeling by
the Poisson distribution and one with normal distributed
values. We assess the probability of type I and type II errors
by repeating the stochastic tests 1000 times.

The first test (denoted as T1) corresponds to the location
choice model described in Section 4.3, where we vary its

5

less expensive locations more expensive locations
r\k 1 2 3 4 5 6 7 8 9 10

1 19 15 18 9 9 7 11 5 3 4
2 17 16 10 16 10 5 5 6 11 4

ykr 3 11 22 12 19 14 4 5 5 6 2
4 13 9 21 12 13 6 7 3 7 9
5 14 17 17 7 15 5 6 3 7 9

µ
(0)
k 3.77 3.77 3.77 3.77 3.77 2.41 2.41 2.41 2.41 2.41

µ̂k 3.83 3.94 3.91 3.49 3.48 2.31 2.58 2.08 2.56 2.28

λ
(0)
k 14.2 14.2 14.2 14.2 14.2 5.8 5.8 5.8 5.8 5.8

λ̂k 14.8 15.8 15.6 12.6 12.2 5.4 6.8 4.4 6.8 5.6

σ̂2
0 = 0.2555, σ̂2

1 = 0.2155

Table 1: Results from running a correct location choice model

less expensive locations more expensive locations
r\k 1 2 3 4 5 6 7 8 9 10

1 19 16 19 7 14 12 6 3 4 0
2 19 15 14 16 9 6 5 12 4 0

ykr 3 14 20 18 15 15 5 4 6 3 0
4 13 13 18 13 16 6 5 7 9 0
5 14 18 17 9 17 6 3 5 11 0

µ
(0)
k 3.77 3.77 3.77 3.77 3.77 2.41 2.41 2.41 2.41 2.41

µ̂k 3.96 4.04 4.14 3.42 3.75 2.61 2.13 2.51 2.41 0.00

λ
(0)
k 14.2 14.2 14.2 14.2 14.2 5.8 5.8 5.8 5.8 5.8

λ̂k 15.8 16.4 17.2 12.0 14.2 7.0 4.6 6.6 6.2 0.0

σ̂2
0 = 0.7929, σ̂2

1 = 0.1634

Table 2: Results from running a location choice model with a bug

input parameters (number of agents, number of locations
K, number of repetitions R).

The second test (denoted as T2) runs our Household Tran-

sition model that removes a certain number of households
from the existing set of households (thus, simulating deaths
and emigration in a given region). The households to be re-
moved are selected randomly while preserving specific char-
acteristics of the total set. We consider four income cat-
egories, from each of which a given number of households
is removed. The test checks if after running the model the
average age of households for each income category remains
the same.

Figure 1 shows the frequency of type I error in T1 and
T2 as a function of R for two different significance levels
α. Note that since the outputs from T2 are continuous, the
Poisson tests are not applicable here. The ideal behavior
is when the frequency is equal to α (marked by a dashed
line). It can be seen that the likelihood-ratio test for nor-
mally distributed data for T1 is far from α, whereas the
both Poisson tests are close to the α level. These results
suggest that the outputs of our example T1 are better mod-
eled by Poisson distribution. Furthermore, it can be seen
from the figure that increasing the number of replicates R
does not considerably influences the frequency, if the data
of T1 are modeled by Poisson distribution. This means that
tests with a relatively small number of replicates, such as 10,
are sufficient for minimizing the occurrence of type I errors.

In this experiment, we used 1000 agents and number of lo-
cations K = 50 for T1. Also, a square root transformation
was applied to the outputs in order to obtain LRTSnormal

for this test. T2 was run with removing 2000 households
from existing 5000 households and no transformation was
performed.

In Figure 2, the same frequency for T1 and the two Pois-
son tests is shown as a function of K. It can be seen that
both tests are independent of the number of dimensions.
This implies that tests with a small number of dimensions
(for example up to 10), are sufficient for minimizing the oc-
currence of type I errors. Note that in this experiment, the
ratio of number of agents per location was kept constant,
namely 20.

The frequency of type II errors are usually expressed by
the power function. The power function is defined as the
probability that the null hypothesis is rejected when it is
false. Thus, the ideal power approaches 1. Figure 3 shows
the power function for T1 for α = 0.05 and α = 0.01. The
number of locations is K = 50 and number of agents is
1000. In each run of this experiment there was a few agents
added to one of the more expensive locations and thus, the
mean of the distribution of that location was increased which
made the null hypothesis false. The number of agents that
were added is plotted on the x axes of the figure. Note
that the expected value for that location is 5.8. Intuitively,
the larger the increment (and thus the larger the deviation

6

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

alpha=0.05

R

fr
eq

ue
nc

y
of

 ty
pe

 I
er

ro
r

T1: LRTS(normal)

T1: LRTS(poisson)

T1: Pearson(poisson)

T2: LRTS(normal)

5 10 15 20

0.
00

0.
10

0.
20

0.
30

alpha=0.01

R

fr
eq

ue
nc

y
of

 ty
pe

 I
er

ro
r

T1: LRTS(normal)

T1: LRTS(poisson)

T1: Pearson(poisson)

T2: LRTS(normal)

Figure 1: Frequency of a type I error for tests T1 and

T2 obtained with different test statistics. Two levels of

significance are used: α = 0.05 (left panel) and α = 0.01

(right panel).

5 10 20 50 100 200 500

0.
00

0.
05

0.
10

0.
15

0.
20

K

fr
eq

ue
nc

y
of

 ty
pe

 I
er

ro
r

T1: LRTS(poisson)
T1: Pearson(poisson)

Figure 2: Frequency of type I error for T1 as a function

of K (number of locations) on a log scale. The signifi-

cance level is set to α = 0.05 (dashed line) and the number

of replicates is R = 10.

from the expected value), the better the power. Also, the
larger the number of replicates R, the better the power. The
plots reveal that in terms of power, the Pearson test statistic
is vastly inferior to the LRTSpoisson when the number of
replicates is larger than 2, and thus we recommend using
LRTSpoisson when dealing with Poisson data.

Figure 4 shows power curves for the test T2 based on
LRTSnormal. In this case, we increased the average age of
one income category by increments (approximately of size
one variance) marked on the x axes. As in the case of T1, the
power increases with increasing deviation from the expected
value and with increasing number of replicates R. Note that
since we are dealing with only four dimensions (in contrast
to 50 in case of T1), it is easier to detect deviation, and
therefore the overall level of the power is higher than in
Figure 3. This means that tests with fewer dimensions are
preferable in order to detect errors in the code.

6. GUIDELINES
We turn now to some practical considerations for con-

structing and using stochastic unit tests, including sugges-

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

alpha=0.05

increment in #agents

po
w

er

LR (2)
LR (5)
LR (10)
LR (15)
LR (20)
Pe (2)
Pe (5)
Pe (10)
Pe (15)
Pe (20)

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

alpha=0.01

increment in #agents

po
w

er

LR (2)
LR (5)
LR (10)
LR (15)
LR (20)
Pe (2)
Pe (5)
Pe (10)
Pe (15)
Pe (20)

Figure 3: Power curves for α = 0.05 (left panel) and

α = 0.01 (right panel) for the test T1. Power based on

LRTSpoisson is marked by solid lines and labeled as LR(R)

where R is the number of replicates. Power based on

Pearson test statistics is marked by dashed lines and la-

beled as Pe(R). The x-axes show the number of agents

that were added in each iteration to the results in one

of the more expensive locations (the expected value of

that location is 5.8 agents). The number of dimensions

is K = 50.

tions for setting the various parameters. Note that these are
guidelines rather than an algorithm for constructing the test,
and some adaptation may be needed for other situations.

1. Separate the unit test code into two parts. Part
A prepares input to the stochastic algorithm, while
Part B includes the stochastic aspects of the algorithm.
Part B will be run repeatedly by the stochastic test sys-
tem, while part A only needs to be run once — assum-
ing that part B does not modify the values prepared
by part A. For instance, if a model moves households,
part B must include the initial setup of the households
so that every time part B is run it starts with the same
set of households in the same locations. Sometimes it
is pragmatically convenient to include in B some de-
terministic tests about quantities that should always
have the same value every time B is run. Implement
part B as a separate function or method that returns
K values.

2. Determine the desired dimensionality K of the
output data. In general, it is best to use small test
sets that are hand-crafted to test specific stochastic
aspects of the algorithm, and small enough so you
can compute the expected values by hand. Our ex-
periments suggest that the tests are independent of
the number of dimensions (see Figure 2), which is
the result we would expect from statistical theory.
Thus, keeping this number small for run-time efficiency
should not affect the results if the hypothesis test is
constructed properly. Recall that the tests assume in-
dependence, both for values within each dimension and
across all dimensions. If the dimensions are not inde-
pendent, increasing their number might help to ap-

7

0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

alpha=0.05

age increment

po
w

er

R=2
R=5
R=10
R=15
R=20

0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

alpha=0.01

age increment

po
w

er
R=2
R=5
R=10
R=15
R=20

Figure 4: Power curves for α = 0.05 (left panel) and

α = 0.01 (right panel) for the test T2 based on LRTS

for normal distribution. The x-axes show age added in

each iteration to the average age of agents of one income

category. The number of dimensions is K = 4.

proximate independence. (However, as shown by the
comparison between Figure 3 and Figure 4, using fewer
dimensions may increase the chance of detecting errors
in the code.)

3. Assess the type of distribution of each of the K
outputs that B will return when called repeatedly. For
example, the Poisson distribution is likely to be a good
choice when dealing with count data, while in other
cases the normal distribution may be preferable. Other
candidates to look at when dealing with practical ap-
plications are the binomial and gamma distributions.
It is also possible to apply a transformation function
of your choice to the output values in order to ob-
tain an approximate normal distribution (see e.g. [1],
Chapter 4).

4. Assess whether the variances are independent
of the means if your choice is the normal distribution.
This can be done, for example, by calling part B of the
test R times and storing all K×R output values. Then
create a scatter plot, with the means of the values for
each of the K rows computed over R columns on the
x axis, and the variances computed on the same data
on the y-axis. If the points lie approximately along a
horizontal line, no action needs to be taken. Otherwise
apply a transformation function on the output data
and repeat this experiment. Common transformations
are the square root, log, or the inverse function.

5. Choose a hypothesis test. In Section 4 we de-
scribed tests that can be used with normally and Pois-
son distributed data. If those tests are not appropri-
ate, a variety of methods for finding a hypothesis test
is available (see for example [13], Chapter IX). The
simplest way is to construct a likelihood ratio test by
plugging the particular density function into the for-
mula 2(log LH1

− log LH0
), as was done in the tech-

niques described in Sections 4.1 and 4.2.

6. Choose the number of replicates. Figure 1 sug-
gests that the frequency of a type I error is indepen-
dent of the number of replicates unless this number is
very small. On the other hand, the higher the num-
ber of replicates, the better the power of the test (see
Figures 3 and 4). We recommend between 10 and 20
replicates, based on the experience with our applica-
tion. (A different number of replicates may be neces-
sary for other applications with substantially different
characteristics, however.)

7. Choose a significance level. There is trade-off in
setting the significance level α. The higher the α value,
the higher the probability of type I error (compare
the left to the right panel of Figure 1). On the other
hand, the higher the α value, the higher the power and
thus the lower the probability of a type II error (com-
pare the left to the right panel of Figures 3 and 4). If
α = 0.05 we expect the test to fail falsely once out of
20 runs. If there were a 100 stochastic tests in the sys-
tem, our automated build would fail once every 5 runs,
on average. In our own development environment, this
would very likely lead to problems — either the model-
ers and developers would become increasingly annoyed
at the automated test system, or worse, start ignoring
red lights (which might result in real problems being
neglected).

Given this trade-off, it is difficult to proscribe a uni-
versally acceptable value for the significance level. In-
stead, it will be a pragmatic decision for different
projects. In our case, we use a smaller value of
α = 0.01 to minimize the number of false failures,
while still not reducing the power of the tests too
severely.

Our decision for α = 0.01 in our real-world application
is supported by the following experiment: We con-
structed a suite with 11 different LRTSpoisson tests
covering stochastic qualities of four different types of
models. We ran each of these 11 tests 100 times with
significance level of 0.01. In these 1100 test runs there
were only 3 type I errors, i.e. the probability of a type
I error occurrence is 0.003.

8. Invoke the test. Suppose the hypothesis test is im-
plemented in a unit test method, as is the case in Opus.
Such an implementation typically takes as arguments a
reference to the function B, the expected results, and a
significance level. It calls the function B R times, then
using the K×R outputs, it computes the test statistics
and the corresponding p-values, as described in Sec-
tion 4. There are statistical packages for various pro-
gramming languages that provide functions for obtain-
ing p-values. (For Python, we recommend the mod-
ule pstat.) The method fails if the p-value is smaller
than the given significance level. In our implementa-
tion, the StochasticTestCase in Opus extends PyUnit’s
TestCase class with a run stochastic test method that
performs this step.

9. Check the test behavior. Run the test multiple
times and count the number of failures. If the fre-
quency of failing is significantly higher then α, before
adjusting the test parameters, check whether there is
some other cause for the failures, such as:

8

• The hypothesis test itself is implemented incor-
rectly.

• There is a bug in the code.

• There is an error in the expected values.

• The data are not modeled properly (i.e. the as-
sumptions of the chosen hypothesis test are not
met, such as the underlying distribution of the
data or independence).

After eliminating these other possible causes, then, if
necessary, adjust the test parameters — the number
of replicates, the significance level, the number of out-
puts, or the test data — in order to produce a satis-
factory test.

In practice, we do not need to repeat each of these steps
for every new test. The results that are tested in different
unit tests often have similar characteristics, such as being
count data with a Poisson distribution, or continuous data
with a normal distribution. In these cases, it often is suffi-
cient to do Step 4 just once for each such variety of data.
And if the unit test framework already contains methods for
hypothesis testing of classes or methods with those charac-
teristics, Steps 3 and 5 reduce to characterizing the data and
selecting an appropriate statistical test method. This signif-
icantly reduces the effort necessary for using this stochastic
testing methodology.

7. CONCLUSION
We have been very satisfied so far with the results of using

automated, statistically-based unit tests in UrbanSim. For
example, the tests exposed an error in our implementation of
the Residential Location Choice model — the same bug that
we used as an example in this paper. Also, the stochas-
tic test framework has allowed us to deal effectively with
the problem of tests failing when they should have passed.
Switching from a normal distribution to a Poisson distribu-
tion reduced these incorrect failures significantly for the tests
that are checking counts. In operational use over a period
of four and a half months, we observed only two incorrect
failures, which is reasonable given the results from our ini-
tial experiment for choosing α (in step 7 of Guidelines). The
tests are now much more comprehensible to both modelers
and developers. Finally, we have more confidence in our
system now that we are using tests based upon rigorous sta-
tistical theory. What became an intractable problem with
our former version of UrbanSim seems quite tractable and
pleasant now.

We plan to continue to refine our use of this testing frame-
work, and in the process, continue to gather data and case
studies regarding the real-world utility of such tests. The
framework is also part of our upcoming release of Opus
(www.urbansim.org), making it available to all researchers
using Opus for their modeling systems. This methodology is
of course not restricted to urban modeling — it is applicable
to testing stochastic algorithms of all kinds. We look for-
ward to seeing the types of design patterns and agile software
development practices that emerge from its application.

8. ACKNOWLEDGMENTS
This research has been funded in part by Grant Nos. EIA-

0121326 and IIS-0534094 from the National Science Foun-
dation, and in part by a partnership with the Puget Sound
Regional Council.

9. REFERENCES
[1] A. Afifi, V. A. Clark, and S. May. Computer-aided

Multivariate Analysis. Chapman & Hall, fourth
edition, 2004.

[2] K. Beck. Extreme programming explained: embrace

change. Addison-Wesley, Reading, Mass., 2000.

[3] K. Beck. Test-Driven Development – By Example.
Addison-Wesley, Reading, Mass., 2003.

[4] K. Beck and E. Gamma. Test infected: Programmers
love writing tests. http://junit.sourceforge.net/
doc/testinfected/testing.htm. last visited
19-jan-2006.

[5] M. Ben-Akiva and S. R. Lerman. Discrete Choice

Analysis: Theory and Application to Travel Demand.
The MIT Press, Cambridge, Massachusetts, 1987.

[6] Y.-F. Chen, D. S. Rosenblum, and K.-P. Vo. Testtube:
A system for selective regression testing. In ICSE ’94:

Proceedings of the 16th International Conference on

Software Engineering, pages 211–220, Los Alamitos,
CA, USA, 1994. IEEE Computer Society Press.

[7] M. Fowler and M. Foemmel. Continuous integration.
Technical report, ThoughtWorks,
http://martinfowler.com/articles/

continuousIntegration.html, 2006. last visited
22-jan-2006.

[8] B. Freeman-Benson and A. Borning. YP and urban
simulation: Applying an agile programming
methodology in a politically tempestuous domain. In
Proceedings of the 2003 Agile Development

Conference, Salt Lake City, Utah, June 2003.
Available at http://www.urbansim.org/papers.

[9] A. Hunt and D. Thomas. Pragmatic Unit Testing. The
Pragmatic Programmers, LLC, 2003.

[10] D. Kranzlmueller. Testing nondeterministic
message-passing programs with NOPE. In SPDT ’98:

Proceedings of the SIGMETRICS Symposium on

Parallel and Distributed Tools, page 152, New York,
NY, USA, 1998. ACM Press.

[11] D. Lee and M. Yannakakis. Principles and methods of
testing finite state machines–a survey. Proceedings of

the IEEE, 84(8):1090–1123, August 1996.

[12] J. D. McGregor and D. A. Sykes. A Practical Guide to

Testing Object-Oriented Software. Addison-Wesley,
2001.

[13] A. Mood, F. A. Graybill, and D. C. Boes. Introduction

to the Theory of Statistics. McGraw-Hill, third
edition, 1974.

[14] L. Nachmanson, M. Veanes, W. Schulte, N. Tillmann,
and W. Grieskamp. Optimal strategies for testing
nondeterministic systems. In ISSTA ’04: Proceedings

of the 2004 ACM SIGSOFT International Symposium

on Software Testing and Analysis, pages 55–64, New
York, NY, USA, 2004. ACM Press.

9

[15] R. E. Noonan and R. H. Prosl. Unit testing
frameworks. In SIGCSE ’02: Proceedings of the 33rd

SIGCSE Technical Symposium on Computer Science

Education, pages 232–236, New York, NY, USA, 2002.
ACM Press.

[16] M. Noth, A. Borning, and P. Waddell. An extensible,
modular architecture for simulating urban
development, transportation, and environmental
impacts. Computers, Environment and Urban

Systems, 27(2):181–203, Mar. 2003.

[17] H. Ševč́ıková, A. Raftery, and P. Waddell. Assessing
uncertainty in urban simulations using Bayesian
melding. Submitted for publication - draft available
from http:

//www.urbansim.org/papers/BMinUrbansim.pdf,
2006.

[18] D. P. Sidhu and T.-K. Leung. Formal methods for
protocol testing: A detailed study. IEEE Transactions

on Software Engineering, 15(4):413–426, April 1989.

[19] I. Sommerville. Software Engineering. Addison-Wesley,
Pearson Education Limited, England, sixth edition,
2001.

[20] K. E. Train. Discrete Choice Methods with Simulation.
Cambridge University Press, 2003.

[21] P. Waddell. UrbanSim: Modeling urban development
for land use, transportation, and environmental
planning. Journal of the American Planning

Association, 68(3):297–314, Summer 2002.

[22] P. Waddell, A. Borning, M. Noth, N. Freier, M. Becke,
and G. Ulfarsson. Microsimulation of urban
development and location choices: Design and
implementation of UrbanSim. Networks and Spatial

Economics, 3(1):43–67, 2003.

[23] P. Waddell, H. Ševč́ıková, D. Socha, E. Miller, and
K. Nagel. Opus: An open platform for urban
simulation. Presented at the Computers in Urban
Planning and Urban Management Conference,
London, June 2005. Available from
www.urbansim.org/papers.

[24] M. Yannakakis. Testing finite state machines. In
D. Lee, editor, STOC ’91: Proceedings of the

Twenty-third Annual ACM Symposium on Theory of

Computing, pages 476–485, New York, NY, USA,
1991. ACM Press.

10

