Eliminating Redundancies in Sum-of-Product Array Computations

Steven J. Deitz
Bradford L. Chamberlain
Lawrence Snyder

In 15th ACM International Conference on Supercomputing (ICS'01), pages 65-77, June 2001.

Abstract: Array programming languages such as Fortran 90, High Performance Fortran and ZPL are well-suited to scientific computing because they free the scientist from the responsibility of managing burdensome low-level details that complicate programming in languages like C and Fortran 77. However, these burdensome details are critical to performance, thus necessitating aggressive compilation techniques for their optimization. In this paper, we present a new compiler optimization called Array Subexpression Elimination (ASE) that lets a programmer take advantage of the expressibility afforded by array languages and achieve enviable portability and performance. We design a set of micro-benchmarks that model an important class of computations known as stencils and we report on our implementation of this optimization in the context of this micro-benchmark suite. Our results include a 125% improvement on one of these benchmarks and a 50% average speedup across the suite. Also we show a speedup of 32% improvement on the ZPL port of the NAS MG Parallel Benchmark and a 29% speedup over the hand-optimized Fortran version. Further, the compilation time is only negligibly affected.

postscript | PDF