MoonRiver: Deep Neural Network in C++

Chung-Yi Weng
Computer Science & Engineering
University of Washington
chungyi@cs.washington.edu

Abstract

Artificial intelligence resurges with its dramatic improvement in recognition and
prediction. The driving force is deep neural network. Although there are lots
of existed packages, like Caffe, TensorFlow, PyTorch, or MXNet, to help people
apply neural network technique to the problems, the running algorithm behind
them is obscure. In order to overcome this, we decide to implement deep neural
network in C++ from scratch, called MoonRiver. This is not only for uncovering
the secrets behind deep neural network but also offering a good code base to help
us discover more essential advancement in the future.

There are several goals in developing MoonRiver. The first is independence: we
hope MoonRiver could be lightweight. It shouldn’t depend on any third-party
libraries, and therefore could be easily compiled just using standard C++ compiler.
It makes it possible to port MoonRiver on any OSes and machines. The second is
scalability: MoonRiver should make users easily design any networks and scale
to large ones with minimum effort.

We demonstrate the effectiveness of MoonRiver by training and testing auto-
encoder and LeNet. The codes used to define these networks are concise and
the experimental results are promising.

1 Overview

Deep neural network is a black box. The packages of neural network, like Caffe, TensorFlow,
PyTorch, or MXNet, are another black boxes. In order to uncover the secrets behind these boxes, we
want to implement deep neural network in C++ from scratch, called MoonRiver. This is not only for
comprehensively understanding the algorithm running in deep neural network but also for offering
a good code base to improve quality and performance of the learning technique essentially in the

future.

Several properties are desired in designing MoonRiver.

1.

The report is organized as follows. We describe MoonRiver supported feature in Sec. [2] Sec. 3]
introduces how to use MoonRiver to design and train a customized network, taking LeNet as a
running example. In Sec.[] we demonstrate the effectiveness of MoonRiver by showing the training
setting and testing results on two networks - auto-encoder for image generation and LeNet for image

Independence: MoonRiver is lightweight. It shouldn’t have any dependencies on any

third-party libraries. It could be easily compiled by standard C++ compiler.

. Portability: MoonRiver should be easily ported on any OSes and machines.
. Convenience: MoonRiver makes it easy for users to design any networks they want.

4. Scalability: MoonRiver should be easily scaled to large network with minimum effort.

classification. The possible extensions and future works are explained in Sec. [3]

2 Supported Features

Here we describe all currently MoonRiver supported features. In a nutshell, MoonRiver implements
most necessary layers and activation functions to do image classification and generation, and also
offers several effective optimizers to update training coefficients.

Here is the summary of all features MoonRiver supports:

1. Layer
(a) Convolutional Layer
(b) Fully Connected Layer
(c) Max Pooling Layer
(d) Softmax Layer
(e) Flatten Layer
2. Activation:
(a) Linear
(b) Relu
(¢) Tanh
(d) Sigmoid
3. Optimizer:
(a) SGD
(b) Momentum
(c) RMSprop
(d) Adam
4. Cost Function:
(a) Mean Square Error
(b) Negative Log Likelihood
5. Misc:
(a) MNIST Data Loader
(b) Mini-batch Random Sampler
(c) Network Saving and Loading

Notice DropOut and Batch Normalization are not supported right now, should be added on in the
future.

ndino

=
o

Convolution Max Pooling Convolution Max Pooling %

10@5X5 10@2X2 20@5X5 20@2X2

Figure 1: The network architecture of LeNet.

3 Usage

Here we explain how to use MoonRiver to design a customized network and how to train it. We
take LeNet as a running example because of its elegant architecture and prestigious fame on image
classification.

Although I believe most readers have already known the architecture of LeNet, for completeness of
the report, I still illustrate this famous architecture in Figure. [T]

If we use MoonRiver to implement LeNet, the codes we have to write are only as follows:

void LeNet::Init()

{
int total layer = 8;
m_layers = std::vector<lLayer*>(total layer);
m_layers[@] = new ConvolutionallLayer(1, 1@, 5, RELU);
m_layers[1] = new MaxPoollLayer(2);
m_layers[2] = new Convolutionallayer(1@, 20, 5, RELU);
m layers[3] = new MaxPoollayer(2);
m_layers[4] = new FlattenLayer();
m_layers[5] = new FullyConnectedLayer(32@, 50, RELU);
m_layers[6] = new FullyConnectedLayer(5@, 10);
m_layers[7] = new SoftmaxLayer(1@);
return Network::connect_layers();

¥

Notice how easily we set an activation function in each layer, and if no activation function is set, the
output of the layer will be directly fed into the next layer without passing any activations.

Next, We explain how to train LeNet by leveraging the training data from MNIST data set. The
training codes are shown as follows. We carefully add notes on the codes to explain how it works.

LeNet lenet;
// Train LeNet in each epoch
for (int i = @; i < LEMET_TOTAL_EPOCH; i++)
{
// Randomly select training samples for each mini-batch
MiniBatchSampler batch_sampler;
batch_sampler.RandomSample(train_dataset.m_images, train_dataset.m_labels, 18, LENET_MINIBATCH_SIZE);
const std::vector<Tensor> &batch_samples = batch_sampler.GetBatchSampleTensors();
const std::vector<Tensor> &batch_labels = batch_sampler.GetBatchlLabelTensors();
// Train LeNet in each mini-batch
for (int j = @; j < (int)batch_samples.size(); j++)
{
// Forward propagation
const Tensor &input = batch_samples[j];
Tensor output;
lenet.Forward(input, output);
// Compute loss
NLLLoss loss;
double error = loss.Forward(output, batch_labels[j]);
// Backward Propagation
Tensor gradient = loss.Backward(error, output, batch_labels[j]);
lenet.Backward(gradient);
// Update training coefficients - use Momentum
SGDOptimizer: :MOMENTUM = @.5F;
lenet.Update(LENET LEARNING RATE, SGD);
}
H

So that’s all! Things become super easy when using MoonRiver to create a new network and train it
efficiently.

4 Experimental Results

In this section we demonstrate the effectiveness of MoonRiver by training and testing two networks:
LeNet and Auto-Encoder. The former is for image classification, whereas the letter is for image
generation, or you can view it in another perspective, image dimension reduction.

4.1 LeNet

The goal of LeNet is for each input handwritten image to predict which digit it belongs to. So it can
be considered as solving an image classification problem. Here is our setting in training LeNet:

e Training Set: 60,000 MNIST images
Mini-batch Size: 64
Total Epochs: 10

Optimizer: Momentum

Cost Function: Negative Log Likelihood

We test the trained model with 10,000 testing images from MNIST dataset, which are not included
in the training set. The testing/classification results are shown as follows:

e Negative Log Likelihood Loss: 0.038
e (lassification Accuracy: 98.97% (9,897/10,000)

. -
M M . m o (g}
_ o o " O + o)
_g + + + 2] =
3 o = o (T} ©
- (1) o SO 3 c
- — R R =
c [= f o.
%
<122 12 .
64 64 ~
128 128",
28X28=784 28X28=784

Figure 2: The network architecture of Auto-Encoder.

4.2 Auto-Encoder

Another network we used to test MoonRiver is auto-encoder. The main goal of auto-encoder is to
encode an image as a code which is usually has lower dimension than the original image(Notice the
term “code” used here means low dimensional representation of a image instead of programming
code we used before). The idea is to look for an encoding function to reduce the image dimension
from high to low, and another decoding function to reconstruct the high dimensional image from
the low dimensional code. The encoding and decoding functions are trained through an end to end
neural network training. The auto-encoder architecture we design is shown in Figure[2] Note the
yellow layer in the middle of the network is code layer, which only has two dimensions.

Here is the setting of training the auto-encoder:

e Training Set: 60,000 MNIST images
e Mini-batch Size: 64

Total Epochs: 10

Optimizer: Adam

Cost Function:

— Mean Square Error
— Mean Square Error + Code L2 norm regularization

Notice that we use two different cost functions to train the auto-encoder. The below is the result
of using only mean square error. We show the result by drawing the codes, which are only 2-
dimensional, on a 2D image, called code map. It shows significant clustered effect where the codes
belongs to the same digits are clustered in the code map.

]
o 0 ° o8 n:n“m
o, ° o o0 ©
3"0"{:?5’:%0 o o

Figure 3: The code map from the training where we only use mean square error as the cost function.

But notice the codes could be highly distributed in the code map if we only use mean square error
as the cost function because they can be any values without any penalties. So we try another cost
functions which regularizes L2 norm of codes and hopefully could get the map where all codes are
centralize around the origin. It works! The result is shown in the following image, which the codes
are more evenly distributed in the 2D space.

Figure 4: The code map where we use mean square error plus code regularization as the cost func-
tion.

In the end, we show some sample reconstruction image results in Figure[5] These images are gen-
erated by passing the input images (at top tow) to the trained auto-encoder and then retrieved from
the end of the network. The reconstruction images should be as close as possible to the input image
(Note the criteria is exactly the cost function we call it mean square error before).

OH /932 V3| #3

0949/ 94&\5 |93

Figure 5: The sample reconstruction results. (Top row) Ground truth. (Bottom Row) Reconstructed
images.

5 Conclusion and Future Works

We design a new deep neural network framework, MoonRiver, from scratch. It was implemented in
C++. It is lightweight and supports any OSes where have standard C++ compilers. It also let users
could easily create a customized network and train it efficiently. There are still lots of extensions we
can do in the future. Here we list some of them:

e Support GPU acceleration
e Support Recurrent Neural Network, like LSTM
e Support GAN

e Convert existed trained network, like AlexNet, VGG-Net, or ResNet, into MoonRiver ac-
cepted network format

MoonRiver is the start instead of the end. We hopefully in the future we could look for more essential
advancement in deep neural network based on the good code base we have already developed.

	Overview
	Supported Features
	Usage
	Experimental Results
	LeNet
	Auto-Encoder

	Conclusion and Future Works

