
Chandrakana Nandi, Max Willsey, Amy Zhu, Yisu Remy Wang, Brett Saiki,
Adam Anderson, Adriana Schulz, Dan Grossman, Zachary Tatlock

OOPSLA 2021

Rewrite Rule Inference Using
Equality Saturation

Rewrite Rules Are Ubiquitous!

Compilers

Program Synthesizers

Simplifiers / Optimizers

SMT Solvers

ML Frameworks

Compilers

Program Synthesizers

Simplifiers / Optimizers

SMT Solvers

ML Frameworks

Rewrite Engines must be Efficient and Reliable!

Performance and reliability are key for a
TRS [Newcomb et al. OOPSLA’20]

Compilers

Program Synthesizers

Simplifiers / Optimizers

SMT Solvers

ML Frameworks
Performance and reliability are key for a

TRS [Newcomb et al. OOPSLA’20]

Who writes the rewrite rules?
Typically hand written by experts

Time consuming, often takes years

Too few / too many rules

Unsound rules

But…Designing Rewrite Rules is still Hard!

Compilers

Program Synthesizers

Simplifiers / Optimizers

SMT Solvers

ML Frameworks
Performance and reliability are key for

a TRS [Newcomb et al. OOPSLA’20]

A 3-Step Approach for Inferring Rewrite Rules

Joshi et al. 2002, Bansal et al. 2006, Singh et al. 2016, Menendez et al. 2017, …

Compilers

Program Synthesizers

Simplifiers / Optimizers

SMT Solvers

ML Frameworks
Performance and reliability are key for

a TRS [Newcomb et al. OOPSLA’20]

A 3-Step Approach for Inferring Rewrite Rules

a, b, 0, +, …

a b 0

+ + + + + …

+ …+ + +

Enumerate terms
from a grammar

Joshi et al. 2002, Bansal et al. 2006, Singh et al. 2016, Menendez et al. 2017, …

Compilers

Program Synthesizers

Simplifiers / Optimizers

SMT Solvers

ML Frameworks
Performance and reliability are key for

a TRS [Newcomb et al. OOPSLA’20]

A 3-Step Approach for Inferring Rewrite Rules

a, b, 0, +, …

a b 0

+ + + + + …

+ …+ + +

Enumerate terms
from a grammar

Find candidates: interpret
over concrete inputs

a b 0

+ + + + + …

…

“Fingerprints”

+ + + +

Joshi et al. 2002, Bansal et al. 2006, Singh et al. 2016, Menendez et al. 2017, …

Compilers

Program Synthesizers

Simplifiers / Optimizers

SMT Solvers

ML Frameworks
Performance and reliability are key for

a TRS [Newcomb et al. OOPSLA’20]

A 3-Step Approach for Inferring Rewrite Rules

a, b, 0, +, …

a b 0

+ + + + + …

+ …+ + +

Enumerate terms
from a grammar

Find candidates: interpret
over concrete inputs

a b 0

+ + + + + …

…

“Fingerprints”

+ + + +

Joshi et al. 2002, Bansal et al. 2006, Singh et al. 2016, Menendez et al. 2017, …

(x + y) (y + x)

Compilers

Program Synthesizers

Simplifiers / Optimizers

SMT Solvers

ML Frameworks
Performance and reliability are key for

a TRS [Newcomb et al. OOPSLA’20]

A 3-Step Approach for Inferring Rewrite Rules

a, b, 0, +, …

a b 0

+ + + + + …

+ …+ + +

Enumerate terms
from a grammar

Find candidates: interpret
over concrete inputs

a b 0

+ + + + + …

…

“Fingerprints”

+ + + +

Joshi et al. 2002, Bansal et al. 2006, Singh et al. 2016, Menendez et al. 2017, …

(x + 0) x

Compilers

Program Synthesizers

Simplifiers / Optimizers

SMT Solvers

ML Frameworks
Performance and reliability are key for

a TRS [Newcomb et al. OOPSLA’20]

A 3-Step Approach for Inferring Rewrite Rules

a, b, 0, +, …

a b 0

+ + + + + …

+ …+ + +

Enumerate terms
from a grammar

Find candidates: interpret
over concrete inputs

a b 0

+ + + + + …

…

“Fingerprints”

+ + + +

Joshi et al. 2002, Bansal et al. 2006, Singh et al. 2016, Menendez et al. 2017, …

(x + x) + (x + y) (x + x) + (y + x)

Compilers

Program Synthesizers

Simplifiers / Optimizers

SMT Solvers

ML Frameworks
Performance and reliability are key for

a TRS [Newcomb et al. OOPSLA’20]

A 3-Step Approach for Inferring Rewrite Rules

Joshi et al. 2002, Bansal et al. 2006, Singh et al. 2016, Menendez et al. 2017, …

a, b, 0, +, …

a b 0

+ + + + + …

+ …+ + +

Enumerate terms
from a grammar

Find candidates: interpret
over concrete inputs

Filter candidates
to get final ruleset

a b 0

+ + + + + …

…

“Fingerprints”

+ + + +

x + 0 0 + x
y + 0 0 + y

x + y y + x

Remove redundant rules

Compilers

Program Synthesizers

Simplifiers / Optimizers

SMT Solvers

ML Frameworks
Performance and reliability are key for

a TRS [Newcomb et al. OOPSLA’20]
Joshi et al. 2002, Bansal et al. 2006, Singh et al. 2016, Menendez et al. 2017, …

x, y, 0, +, …

x y 0

+ + + + + …

+ …+ + +

Enumerate terms
from a grammar

Find candidates: interpret
over concrete inputs

Filter candidates
to get final ruleset

x y 0

+ + + + + …

…

“Fingerprints”

+ + + +

x + 0 0 + x
y + 0 0 + y

x + y y + x

Remove redundant rules

A 3-Step Approach for Inferring Rewrite Rules

Exponentially
many terms!

Too many
candidates, some

potentially
unsound!

Hard to find a
small, useful

ruleset

Compilers

Program Synthesizers

Simplifiers / Optimizers

SMT Solvers

ML Frameworks
Performance and reliability are key for

a TRS [Newcomb et al. OOPSLA’20]
Joshi et al. 2002, Bansal et al. 2006, Singh et al. 2016, Menendez et al. 2017, …

x, y, 0, +, …

x y 0

+ + + + + …

+ …+ + +

Enumerate terms
from a grammar

Find candidates: interpret
over concrete inputs

Filter candidates
to get final ruleset

x y 0

+ + + + + …

…

“Fingerprints”

+ + + +

x + 0 0 + x
y + 0 0 + y

x + y y + x

Remove redundant rules
Remove unsound rules

Equality Saturation for Inferring Rewrite Rules

Exponentially
many terms!

Too many
candidates, some

potentially
unsound!

Hard to find a
small, useful

ruleset

This Talk:

Inferring Small, Useful Rulesets Faster
using Equality Saturation!

What is Equality Saturation?

(a * 2) / 2

What is Equality Saturation?

(a * 2) / 2 a

What is Equality Saturation?

(a * 2) / 2 a
???

What is Equality Saturation?

(a * 2) / 2 a
(x * y) / z x * (y / z)

y / y 1
x * 1 x

Rewrite
rules!

What is Equality Saturation?

How to Apply Rewrite Rules?

(a * 2) / 2
(x * y) / z x * (y / z)

a * (2 / 2)

(a * 2) / 2
(x * y) / z x * (y / z)

a * (2 / 2)

a * (2 / 2) a * 1
y / y 1

How to Apply Rewrite Rules?

(a * 2) / 2
(x * y) / z x * (y / z)

a * (2 / 2)

a * (2 / 2) a * 1
y / y 1

a * 1
x * 1 x

a

How to Apply Rewrite Rules?

Destructively, In a Specific Order

(a * 2) / 2
(x * y) / z x * (y / z)

a * (2 / 2)

a * (2 / 2) a * 1
y / y 1

a * 1
x * 1 x

a

Order of rule application affects result

Missed opportunities for optimizations

Same order may not work for all inputs

Old expression is lost
e.g., supporting commutativity is hard
without additional tricks to ensure
termination!

Equality Saturation Mitigates Phase Ordering!

(a * 2) / 2
(x * y) / z x * (y / z)

a * (2 / 2)

a * (2 / 2) a * 1
y / y 1

a * 1
x * 1 x

a

Initial term E-graph

Apply all
rewrite rules!

Extract

Optimized term

e.g., AST size

(a * 2) / 2

How Does Equality Saturation Work?

(a * 2) / 2

How Does Equality Saturation Work?

/

*

a 2

(a * 2) / 2

How Does Equality Saturation Work?

/
E-node

E-class

*

a 2

(a * 2) / 2

How Does Equality Saturation Work?

/ E-class

(x * y) / z x * (y / z) *

a 2

E-node

(a * 2) / 2

How Does Equality Saturation Work?

/ E-class

(x * y) / z x * (y / z) *

a 2

/

*

a 2

*

/

(a * 2) / 2, a * (2 / 2)

E-node

(a * 2) / 2

How Does Equality Saturation Work?

/ E-class

(x * y) / z x * (y / z) *

a 2

/

*

a 2

*

/

(a * 2) / 2, a * (2 / 2)
Represents
both terms!E-node

Compilers

Program Synthesizers

Simplifiers / Optimizers

SMT Solvers

ML Frameworks
Performance and reliability are key for

a TRS [Newcomb et al. OOPSLA’20]
Joshi et al. 2002, Bansal et al. 2006, Singh et al. 2016, Menendez et al. 2017, …

x, y, 0, +, …

x y 0

+ + + + + …

+ …+ + +

Enumerate terms
from a grammar

Find candidates: interpret
over concrete inputs

Filter candidates
to get final ruleset

x y 0

+ + + + + …

…

“Fingerprints”

+ + + +

x + 0 0 + x
y + 0 0 + y

x + y y + x

Remove redundant rules
Remove unsound rules

Equality Saturation for Inferring Rewrite Rules

Exponentially
many terms!

Too many
candidates, some

potentially
unsound!

Hard to find a
small, useful

ruleset

Equality Saturation for not just

applying rewrites, but to also

infer them!

Enumeration

Candidate Generation

Rule Selection

Ruler

Enumeration

Candidate Generation

Rule Selection

Ruler

Enumeration Modulo Equality Saturation

a b 0

+ + + + +

+ + + +

Exponentially
many terms!

…

…

a, b, 0, +, …

a b 0

+ + + + +

+ + + +

Exponentially
many terms!

Enumerate over
an E-graph

…

…

E-classesa, b, 0, +, …

Enumeration Modulo Equality Saturation

a b 0

+ + + + +

+ + + +

…

…

a b 0

+ + + + +

+ + + +

a b 0

+ + + + +

+ + + +

Exponentially
many terms!

…

…

…

…

E-classes

(x + x) + (x + y)

(x + x) + (y + x)

=

 Apply current ruleset
(x + y) (y + x)

a, b, 0, +, …

Enumeration Modulo Equality Saturation

Enumerate over
an E-graph

a b 0

+ + + + +

+ + + +

a b 0

+ + + + +

+ + + +

Exponentially
many terms!

…

…

…

…

 Apply current ruleset
(x + y) (y + x)

a b 0

+ + + + +

+ + + +

…

…

E-classes Merge equivalent termsa, b, 0, +, …

Enumeration Modulo Equality Saturation

Enumerate over
an E-graph

a b 0

+ + + + +

+ + + +

a b 0

+ + + + +

+ + + +

Exponentially
many terms!

…

…

…

…

 Apply current ruleset
(x + y) (y + x)

a b 0

+ + + + +

+ + + +

…

…

E-classes Merge equivalent termsa, b, 0, +, …

Enumeration Modulo Equality Saturation

Enumerate over
an E-graph

Shrinks the term space by

applying rewrites as they are

learned!

Enumeration

Candidate Generation

Rule Selection

Ruler

Candidate Generation by
Characteristic Vector Matching

a b 0

1
-2
7
4

3
5
-7
-5

0
0
0
0

Seed initial E-classes with
concrete values (cvecs) from the

domain

Candidate Generation by
Characteristic Vector Matching

a b 0

+ + + + + …

1
-2
7
4

3
5
-7
-5

0
0
0
0

Seed initial E-classes with
concrete values (cvecs) from the

domain

2
-4
14
8

4
-3
0
-1

4
-3
0
-1

6
10
-14
-10

1
-2
7
4

Compute the cvecs for newly
enumerated E-classes

Candidate Generation by
Characteristic Vector Matching

a b 0

+ + + + + …

1
-2
7
4

3
5
-7
-5

0
0
0
0

Seed initial E-classes with
concrete values (cvecs) from the

domain

2
-4
14
8

4
-3
0
-1

4
-3
0
-1

6
10
-14
-10

1
-2
7
4

(x + y) (y + x) Compute the cvecs for newly
enumerated E-classes

Candidate Generation by
Characteristic Vector Matching

a b 0

+ + + + + …

1
-2
7
4

3
5
-7
-5

0
0
0
0

Seed initial E-classes with
concrete values (cvecs) from the

domain

2
-4
14
8

6
10
-14
-10

1
-2
7
4

(x + y) (y + x)

(x + 0) x
Compute the cvecs for newly

enumerated E-classes

4
-3
0
-1

4
-3
0
-1

Candidate Generation by
Characteristic Vector Matching

a b 0

+ + + + + …

3
5
-7
-5

0
0
0
0

Seed initial E-classes with
concrete values (cvecs) from the

domain

2
-4
14
8

6
10
-14
-10

Compute the cvecs for newly
enumerated E-classes

4
-3
0
-1

4
-3
0
-1

Validate
candidates using

SMT, fuzzing,
model checking

1
-2
7
4

1
-2
7
4

(x + y) (y + x)

(x + 0) x

Enumeration

Candidate Generation

Rule Selection

Ruler

Rule Selection with Equality Saturation

(x * y) (y * x)

(x * 1) (1 * x)

(y * 1) (1 * y)

(x + y) (y + x)

(x + 0) (0 + x)

(y + 0) (0 + y)
C =

(x * 1) (1 * x)

(y * 1) (1 * y)

(x + y) (y + x)

(x + 0) (0 + x)

(y + 0) (0 + y)

(x * y) (y * x)

Rank sound candidates based
on generality and pick top-k (2)

Rule Selection with Equality Saturation

C =

R

(x * 1) (1 * x)

(y * 1) (1 * y)

(x + y) (y + x)

(x + 0) (0 + x)

(y + 0) (0 + y)

Rank sound candidates based
on generality and pick top-k (2)

(x * y) (y * x)
Instantiate
and add to

rule E-graph

Rule Selection with Equality Saturation

R

a 0 b

+ + +

(x * 1) (1 * x)

(y * 1) (1 * y)

(x + 0) (0 + x)

(y + 0) (0 + y) +

Instantiate
and add to

rule E-graph

Rank sound candidates based
on generality and pick top-k (2)

(x + y) (y + x)

(x * y) (y * x)

Rule Selection with Equality Saturation

R

a 0 b

+ + +

(x * 1) (1 * x)

(y * 1) (1 * y)

(x + 0) (0 + x)

(y + 0) (0 + y) +

Instantiate
and add to

rule E-graph

1

* * * *

Rank sound candidates based
on generality and pick top-k (2)

(x + y) (y + x)

(x * y) (y * x)

Rule Selection with Equality Saturation

R

Run equality
saturation

(x + y) (y + x)

(x * y) (y * x)

(x * 1) (1 * x)

(y * 1) (1 * y)

(x + 0) (0 + x)

(y + 0) (0 + y)

Instantiate
and add to

rule E-graph

a 0 b

+ + ++

1

* * * *

Rule Selection with Equality Saturation
R

Run equality
saturation

(x + y) (y + x)

(x * y) (y * x)

(x * 1) (1 * x)

(y * 1) (1 * y)

(x + 0) (0 + x)

(y + 0) (0 + y)

Instantiate
and add to

rule E-graph

a 0 b

+ +

1

* * * *

All four rules are
redundant and

therefore discarded!

Rule Selection with Equality Saturation
R

++

Run equality
saturation

(x + y) (y + x)

(x * y) (y * x)

(x * 1) (1 * x)

(y * 1) (1 * y)

(x + 0) (0 + x)

(y + 0) (0 + y)

Instantiate
and add to

rule E-graph

a 0 b

+ +

1

* * * *

All four rules are
redundant and

therefore discarded!

Rule Selection with Equality Saturation
Continue processing
until candidate set is
empty or has only
unsound ones left!

R

++

Run equality
saturation

(x + y) (y + x)

(x * y) (y * x)

(x * 1) (1 * x)

(y * 1) (1 * y)

(x + 0) (0 + x)

(y + 0) (0 + y)

Instantiate
and add to

rule E-graph

Larger top-k makes Ruler faster

Smaller top-k gives smaller rulesets

See paper for detailed comparison!

a 0 b

+ +

1

* * * *

Rule Selection with Equality Saturation
R

++

Run equality
saturation

(x + y) (y + x)

(x * y) (y * x)

(x * 1) (1 * x)

(y * 1) (1 * y)

(x + 0) (0 + x)

(y + 0) (0 + y)

Instantiate
and add to

rule E-graph

Larger top-k makes Ruler faster

Smaller top-k gives smaller rulesets

See paper for detailed comparison!

a 0 b

+ + ++

1

* * * *

Shrinks the candidate space by

applying rewrites as they are learned!

Rule Selection with Equality Saturation

Ruler

Equality Saturation “Soundiness”

Equality Saturation amplifies unsoundness!

Equality Saturation “Soundiness”

Equality Saturation amplifies unsoundness!

a 0 1

*

Equality Saturation “Soundiness”

Equality Saturation amplifies unsoundness!

(y * 0) 1

a 0 1

*

(y * 0) 0

current
ruleset

Equality Saturation “Soundiness”

Equality Saturation amplifies unsoundness!

(y * 0) 1

a 0 1

*

(y * 0) 0

current
ruleset

Run equality
saturation on
term E-graph

Equality Saturation “Soundiness”

Equality Saturation amplifies unsoundness!

(y * 0) 1

a 0 1

*

(y * 0) 0

current
ruleset

Run equality
saturation on
term E-graph

a

0

1

*

Equality Saturation “Soundiness”

Equality Saturation amplifies unsoundness!

(y * 0) 1

a 0 1

*

(y * 0) 0

current
ruleset

Run equality
saturation on
term E-graph

a

0 1*

Unsound merge, 0 != 1

Implementation

https://github.com/uwplse/ruler

Implemented in Rust

Uses egg for equality saturation

https://github.com/uwplse/ruler

Ruler vs Other tools (CVC4)
 How do the rulesets compare?

Ruler vs Humans (Herbie)
Can Ruler compete with experts?

Evaluation

Comparison with CVC4

Comparison with CVC4

Comparison with CVC4

Comparison with CVC4

Comparison with CVC4

Fraction of the 1782 rules
from CVC4 that the 188 rules
from Ruler can derive via
equality saturation

Comparison with CVC4

Ruler infers a smaller,
useful ruleset faster

Ruler vs Other tools (CVC4)
 How do the rulesets compare?

Ruler vs Humans (Herbie)
Can Ruler compete with experts?

Evaluation

Comparison with Human-written Rules

Comparison with Human-written Rules
52 rational rules, designed by
the developers over 6 years

55 / 155 benchmarks are purely
over rational arithmetic

Comparison with Human-written Rules
52 rational rules, designed by
the developers over 6 years

55 / 155 benchmarks are purely
over rational arithmetic

Comparison with Human-written Rules

| x * y | | x | * | y |
| x * x | x * x

Discovered by Ruler,
resolved the GitHub issue!

52 rational rules, designed by
the developers over 6 years

55 / 155 benchmarks are purely
over rational arithmetic

End-to-End: Rational Herbie

None: Remove all rules

Herbie: Herbie without any changes

Ruler: Herbie with Ruler’s rules

Both: Herbie with both original and Ruler’s rules

Rational Herbie: Comparing Accuracy

None: Remove all rules

Herbie: Herbie without any changes

Ruler: Herbie with Ruler’s rules

Both: Herbie with both original and Ruler’s rules

Ruler’s rules are at least as good
as the original Herbie rules

Rational Herbie: Comparing AST Size

Ruler’s rules are at least as good
as the original Herbie rules

None: Remove all rules

Herbie: Herbie without any changes

Ruler: Herbie with Ruler’s rules

Both: Herbie with both original and Ruler’s rules

Rational Herbie: Comparing AST Size

Ruler’s rules are at least as good
as the original Herbie rules

None: Remove all rules

Herbie: Herbie without any changes

Ruler: Herbie with Ruler’s rules

Both: Herbie with both original and Ruler’s rules

See paper for
more results!

Rewrite Rule Inference Using Equality Saturation
Equality
Saturation
improves all
three steps!

Ruler: https://github.com/uwplse/ruler

