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Who writes the rewrite rules? 
Typically hand written by experts 

Time consuming, often takes years 

Too few / too many rules 

Unsound rules

But…Designing Rewrite Rules is still Hard!
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Equality Saturation for Inferring Rewrite Rules

Exponentially 
many terms!

Too many 
candidates, some 

potentially 
unsound!

Hard to find a 
small, useful 

ruleset

This Talk: 

Inferring Small, Useful Rulesets Faster 
using Equality Saturation!
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Rewrite 
rules!
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Destructively, In a Specific Order

(a * 2) / 2
(x * y) / z x * (y / z) 

a * (2 / 2)

a * (2 / 2) a * 1
y / y 1

a * 1
x * 1 x

a

Order of rule application affects result 

Missed opportunities for optimizations 

Same order may not work for all inputs 

Old expression is lost
e.g., supporting commutativity is hard 
without additional tricks to ensure 
termination!



Equality Saturation Mitigates Phase Ordering!
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Initial term E-graph

Apply all 
rewrite rules!

Extract

Optimized term

e.g., AST size
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How Does Equality Saturation Work?

/ E-class

(x * y) / z x * (y / z) *

a 2

/

*

a 2

*

/

(a * 2) / 2, a * (2 / 2)
Represents 
both terms!E-node
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Equality Saturation for Inferring Rewrite Rules

Exponentially 
many terms!

Too many 
candidates, some 

potentially 
unsound!

Hard to find a 
small, useful 

ruleset

Equality Saturation for not just 

applying rewrites, but to also 

infer them!
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Enumerate over 
an E-graph

Shrinks the term space by 

applying rewrites as they are 

learned!
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Rule Selection with Equality Saturation

(x * y) (y * x) 

(x * 1) (1 * x) 

(y * 1) (1 * y) 

(x + y) (y + x) 

(x + 0) (0 + x) 

(y + 0) (0 + y) 
C =



(x * 1) (1 * x) 

(y * 1) (1 * y) 

(x + y) (y + x) 

(x + 0) (0 + x) 

(y + 0) (0 + y) 

(x * y) (y * x) 

Rank sound candidates based 
on generality and pick top-k (2)

Rule Selection with Equality Saturation

C =

R



(x * 1) (1 * x) 

(y * 1) (1 * y) 

(x + y) (y + x) 

(x + 0) (0 + x) 

(y + 0) (0 + y) 

Rank sound candidates based 
on generality and pick top-k (2)

(x * y) (y * x) 
Instantiate 
and add to 

rule E-graph

Rule Selection with Equality Saturation

R



a 0 b

+ + +

(x * 1) (1 * x) 

(y * 1) (1 * y) 

(x + 0) (0 + x) 

(y + 0) (0 + y) +

Instantiate 
and add to 

rule E-graph

Rank sound candidates based 
on generality and pick top-k (2)

(x + y) (y + x) 

(x * y) (y * x) 

Rule Selection with Equality Saturation

R



a 0 b

+ + +

(x * 1) (1 * x) 

(y * 1) (1 * y) 

(x + 0) (0 + x) 

(y + 0) (0 + y) +

Instantiate 
and add to 

rule E-graph

1

* * * *

Rank sound candidates based 
on generality and pick top-k (2)

(x + y) (y + x) 

(x * y) (y * x) 

Rule Selection with Equality Saturation

R



Run equality 
saturation

(x + y) (y + x) 

(x * y) (y * x) 

(x * 1) (1 * x) 

(y * 1) (1 * y) 

(x + 0) (0 + x) 

(y + 0) (0 + y) 

Instantiate 
and add to 

rule E-graph

a 0 b

+ + ++

1

* * * *

Rule Selection with Equality Saturation
R



Run equality 
saturation

(x + y) (y + x) 

(x * y) (y * x) 

(x * 1) (1 * x) 

(y * 1) (1 * y) 

(x + 0) (0 + x) 

(y + 0) (0 + y) 

Instantiate 
and add to 

rule E-graph

a 0 b

+ +

1

* * * *

All four rules are 
redundant and 

therefore discarded!

Rule Selection with Equality Saturation
R

++



Run equality 
saturation

(x + y) (y + x) 

(x * y) (y * x) 

(x * 1) (1 * x) 

(y * 1) (1 * y) 

(x + 0) (0 + x) 

(y + 0) (0 + y) 

Instantiate 
and add to 

rule E-graph

a 0 b

+ +

1

* * * *

All four rules are 
redundant and 

therefore discarded!

Rule Selection with Equality Saturation
Continue processing 
until candidate set is 
empty or has only 
unsound ones left!

R

++
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Equality Saturation “Soundiness”

Equality Saturation amplifies unsoundness!

(y * 0) 1 

a 0 1

*

(y * 0) 0 

current 
ruleset

Run equality 
saturation on 
term E-graph 

a

0
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*



Equality Saturation “Soundiness”

Equality Saturation amplifies unsoundness!

(y * 0) 1 

a 0 1

*

(y * 0) 0 

current 
ruleset

Run equality 
saturation on 
term E-graph 

a

0 1*

Unsound merge, 0 != 1



Implementation

https://github.com/uwplse/ruler 

Implemented in Rust 

Uses egg for equality saturation

https://github.com/uwplse/ruler


Ruler vs Other tools (CVC4) 
  How do the rulesets compare? 

Ruler vs Humans (Herbie) 
Can Ruler compete with experts?

Evaluation
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Comparison with CVC4

Fraction of the 1782 rules 
from CVC4 that the 188 rules 
from Ruler can derive via 
equality saturation
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Comparison with Human-written Rules

| x * y | | x | * | y |
| x * x |  x * x

Discovered by Ruler, 
resolved the GitHub issue!

52 rational rules, designed by 
the developers over 6 years 

55 / 155 benchmarks are purely 
over rational arithmetic



End-to-End: Rational Herbie

None:    Remove all rules 

Herbie:   Herbie without any changes 

Ruler:    Herbie with Ruler’s rules 

Both:     Herbie with both original and Ruler’s rules
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Ruler’s rules are at least as good 
as the original Herbie rules
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Rational Herbie: Comparing AST Size

Ruler’s rules are at least as good 
as the original Herbie rules

None:    Remove all rules 

Herbie:   Herbie without any changes 

Ruler:    Herbie with Ruler’s rules 

Both:     Herbie with both original and Ruler’s rules

See paper for 
more results!



Rewrite Rule Inference Using Equality Saturation
Equality 
Saturation 
improves all 
three steps!

Ruler: https://github.com/uwplse/ruler




