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Uncertainty is crucial to understanding human judgments. Whether it’s annotators pro-

ducing data used to train and evaluate machine learning systems, teaching staff assigning

grades to open-ended student responses, or online communities adjudicating the moderation

action to apply to a piece of content, many groups and individuals need to account for and

address the uncertainty that comes along with making judgments. As the application of

computing technology expands to more areas of society, groups and individuals are faced

with the need to make judgments on increasingly complex, subjective, and nuanced tasks

at scale.

This dissertation presents a set of novel tools and processes that improve upon how we

capture, distinguish, and address various sources of uncertainty present in individual and

collective human judgments. I will start by introducing, Goldilocks, a tool for conducting

scalar rating annotations that enables different sources of uncertainty to be distinguished

while also improving consistency. Then I will introduce case law crowdsourcing as a process

that enables capturing similar insights about uncertainty on complex categorical classifica-

tion judgment tasks by utilizing prior decisions in the form of precedent cases. Following

this, I will present Cicero, a tool that addresses one specific source of uncertainty – disagree-

ment – through multi-turn, contextual deliberation. Finally, I will tie together individual

tools for understanding and addressing uncertainty through a dynamic workflow that applies

a targeted intervention on a per-instance scale to reduce uncertainty using measurements



that allow us to distinguish the source of uncertainty. I conclude by discussing the limi-

tations of current tools and give some insights for future work in designing new tools and

processes that natively support judgment under uncertainty.
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GLOSSARY

AMBIGUITY: Uncertainty observed in judgments that manifests through each individual

adjudicator judging a case.

ADJUDICATOR: In this work, we will refer to a person conducting scale-based judgments

on cases generally as an ‘adjudicator’.

CASE: A general term to refer to a specific instance of a problem in the human judgment

process, encompassing the item being judged and any associated contextual informa-

tion. For example, a case in an image annotation problem may take the form of a

single image, while a case in a content moderation problem may consist of the post

being moderated as well as background context like metadata about the post author.

DISAGREEMENT: An emergent uncertainty resulting from interpreting the judgments by

multiple different adjudicators on a case in aggregate.

SCALE-BASED JUDGMENT: A scale-based judgment is a judgment task where a single

case is judged by an adjudicator against a scale, such as a rating scale or set of

categorical labels.
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Chapter 1

INTRODUCTION

The digital revolution and the advent of modern computing have brought significant

changes to human civilization, of which one of the most paradigm shifting is that it has

enabled humanity to automate intellectual work at a scale never seen before. Throughout

the years, advances in computing have expanded our perception by allowing us to make

sense of vast swaths of information, increased our productivity by allowing us to coordinate

across space and time, and democratized the accessibility of knowledge by allowing us to

retrieve information on demand. With the recent advances in the capabilities of artificial

intelligence (AI) and machine learning (ML), computing has also presented opportunities

to assist us in a new frontier—the realm of making judgments.

Historically, the ability to make judgments—by considering a collection of observations,

forming an understanding, and coming to a conclusion—has been seen as a uniquely human

trait. However, the pervasiveness of modern computing has driven the demand for formal-

izing these components of judgments through the medium of data, be it measurements from

sensors to decisions coded up by humans. In the field of medicine, doctors rely on digi-

tally recorded diagnostic tests and imaging, and note down their diagnosis and treatment in

electronic health records [103]. In the field of education, teachers are increasingly utilizing

digital learning management systems to collect student assignments, conduct exams, and

assign grades [246, 163, 33]. Even communities are taking advantage of data to inform and

record their judgments, from academic communities using preference data to coordinate

the planning of conference sessions [53] to Wikipedia moderators using logs to investigate

attempts to distort consensus via sockpuppetry [251]. Consequently, all of this data has

then opened up the opportunity for computers to automate the task of making judgments

at scale by simulating how we do it ourselves. As these models become more capable at

capturing complexity, though, we are also creating higher demand for the data that these
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models fit to, and inevitably, as with any data, we run into the problem of uncertainty.

While mechanisms for measuring, understanding, and addressing uncertainty in measure-

ments like sensor readings are often built into the data collection process, the same cannot

be said for those decisions coded up by humans, which are often captured through tools

that over-estimate the confidence of individuals and then aggregated with models that make

under-informed assumptions about agreements of a group.

In this dissertation, I argue that an important and oft-overlooked uncertainty lies in the

scale-based human judgments we collect and that if we are to create data-driven computa-

tional tools for assisting human judgments, we need new tools and processes to empower

groups and individuals to create better data under uncertainty. More concretely:

We need better tools and processes to collect and interpret human judgments

that account for the presence of diverse sources of uncertainty. And in order to

address this demand, we need to build: (1) tools for mitigating and capturing

various sources of uncertainty during the initial collection of human judg-

ments; (2) workflows to address uncertainty observed after judgments are

collected; and (3) meta-processes to dynamically coordinate when and how to

apply uncertainty interventions throughout a human judgment collection

task.

This dissertation serves to explore some directions for how the broader space of tooling

around collecting, interpreting, and addressing uncertainty in human judgments can be

designed and improved. In this work, I will introduce and evaluate tools used to collect

scale-based human judgments across several input modalities such as continuous scalar

rating and categorical classification, and demonstrate how they can be used to capture and

distinguish various sources of uncertainty. I will also explore the space of interventions that

help to more effectively address one of the sources of uncertainty—disagreement. Finally,

I’ll present a design for a higher-level meta-process that ties together tools for measuring

uncertainty with interventions to address uncertainty, making for a more efficient approach

to systematically account for uncertainty. In combination, the systems and workflows I will

describe in this thesis provide the initial foray toward building tooling that natively account
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for uncertainty and empower both those collecting judgments and making judgments to

evaluate and express uncertainty.

1.1 Uncertainty and Scale-based Human Judgments

While the broad space of “human judgments” covers a wide variety of scenarios—ranging

from high-stakes judgments in the legal space that involve months or years of effort by

expert lawyers all the way down to everyday snap decisions like a group of friends choos-

ing which restaurant to go to—much of the human judgments we formalize into data for

training computation systems is created through scale-based judgments where groups of

non-experts are asked to place an individual case (the entity being judged, such as a digital

photo, an online comment etc.) onto a scale (a set of pre-defined judgments, such as a

set of labels for object recognition, or a continuous numeric scale for toxicity etc.). This

kind of human judgment task is quite common largely because of its simplicity: Scale-based

judgments often require little effort from the people producing the judgments (the human

adjudicators) as they only need to make their decision by selecting from a pre-defined set

of possible outcomes. Having judgments selected out of a pre-defined set also reduces the

amount of expertise needed, since it can be easier to arrive at an answer using strategies like

the process of elimination. Lastly, unlike other types of judgments, such as pairwise com-

parisons where relationships between cases are captured rather than judgments on the case,

scale-based judgments produce data that is easy to consume later since each judgment is

a single standalone answer. As a result of this simplicity, scale-based judgment tasks have

seen massive adoption in the realm of crowdsourced dataset creation, where non-expert

crowds are quickly assembled to do a large amount of simple “microtasks”. With relatively

minimal effort, requesters on crowdsourcing platforms can define the problem they want to

collect judgments for in the form of a scale-based judgment task template, automatically

assemble individual cases from their data, and then deploy these cases as a large batch of

microtasks to crowd marketplaces where non-expert crowd workers can pick up and com-

plete them. To support this, a variety of tools and workflows geared towards improving the

quality of these judgments has been developed, mainly manifesting in the form of quality

control mechanisms and designs for crowd tasks. However, as problems we are collecting
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scale-based judgments on have increased in complexity and subjectiveness, limitations in

how these tools engage with uncertainty has meant that it is time for us to develop better

tools for scale-based judgments.

1.1.1 Engaging with Uncertainty in Human Judgment Tools

Many early forms of these scale-based judgment tasks centered around collecting data on

objective properties of the cases being judged and largely using human adjudicators as

a (somewhat noisy) sensor. For example, scale-based judgments were used to recognize

characters in written text [177, 164], categorize images based on what was depicted in

them [226], or verify whether specific relationships were present from natural language

snippets [178, 305]. In these situations, it was often assumed that an objective ground

truth existed (often in the form of an expert judgment), and the crowd ‘sensors’ offered a

way to approximate this truth albeit with some noise to contend with. Thus, the earliest

attempts at engaging with the uncertainty in the form of judgments that did not agree,

focused on identifying which sensors (human adjudicators) were more reliable (accurate).

Some tools were developed to de-noise the human judgment data post-hoc, focusing on

improving overall quality of data filtered judgments by using voting mechanisms [269] over

individual responses or, later, softer approaches that only re-weighted them [65]. Other

tools focused on the initial collection of the judgments, making use of training and testing

procedures to weed out low-performing human adjudicators [292, 74], or incorporating ‘gold’

cases with known answers to continuously evaluate the reliability of them [200] on the job.

As these tasks scaled up, though, deeper inspection into the quality of annotations

revealed that in many cases disagreeing human judgments were not the fault of crowd

workers being unreliable non-experts, but rather reflected the fact some cases were just

more challenging to the point where even experts could not confidently determine what

the “ground truth” was—the case was just ambiguous. Tasks like text recognition or object

classification might seem simple and straightforward, but as one looks into the specific sets of

cases, you will eventually get cases where it’s impossible to tell whether that was a ‘6’ or a ‘0’

or whether that blob in the distance is a person or just an image artifact. With this, tools had
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to contend with the fact that, indeed, sometimes given the information and context available

in the case, no ground truth existed. The answer was just indeterminable. Of course, that

didn’t mean nothing could be done: Tools started incorporating the measurement and

monitoring of uncertainty—in the form of inter-annotator agreement [115] on a case when

they were otherwise high quality, it may be too ambiguous, in which case sometimes the

decision was made by the requesters or experts to exclude it from the set of cases altogether.

With the overall successful utilization of scale-based judgments on these objective judg-

ment tasks, we also started seeing the expanded application of these tools to more complex

and nuanced tasks. Now scale-based judgments were being used to measure vaguely defined

or subjective concepts, such as the sentiment of a piece of text [30], the toxicity of a com-

ment [10], the amount of effort to perform a task [116], or the quality at which a (generated)

image adequately reflected a caption [272]. Unlike earlier tasks, these new judgment tasks

present even more complexity when it comes to uncertainty. Rather than simply missing

“ground truth” because experts fail to confidently determine it, in these settings it’s often

the case that the entire concept of an ‘expert’ does not make much sense—what’s to say

one judgment of the adequacy level of a generated image is better than another? Indeed,

as we build these new datasets of judgments, these judgments are serving to establish the

“ground truth” rather than being a low-cost method to approximate it. It may be tempting

to continue working with these new sources of uncertainty using existing tools, but we run

the risk of either artificially creating clarity on a problem when there isn’t [106], or remov-

ing subjectivity in an attempt to avoid uncertainty so thoroughly that the problem we are

collecting judgments on no longer resembles the original problem. At the end of the day, the

various sources contributing to uncertainty have not disappeared—individual adjudicators

are still making mistakes, cases can still be ambiguous, and the truth may not clear—so we

need new tools to better engage with new complexities in uncertainty.

1.1.2 Understanding and Quantifying Uncertainty

Whether it’s errors, ambiguous instances, inconsistent scale interpretations, or simply an-

notators disagreeing, various difference sources can contribute to the final uncertainty in
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human judgments. Thus before we can really discuss the tools to capture and mitigate

some of these sources of uncertainty, we need to introduce some ways that have been used

to think about how to categorize and quantify the sources of uncertainty.

One classic framework, utilized by fields like biostatistics [132] but also gaining traction in

AI and ML [130], is to understand uncertainty based on what we could have done to address

it. This framework categorizes uncertainty into two main types: epistemic uncertainty,

where we could have theoretically reduced the uncertainty if we had better measurement

instruments (e.g., a more precise scale or ruler), a made fewer simplifications for convenience

(e.g., accounting for some factor that we omitted because its effect was small), or under-

stood the property itself better (e.g., knowing that something is a factor in the outcome in

the first place); and aleatoric uncertainty, where we cannot reduce the uncertainty because

it an inherent component of stochasticity involved in the process that generated the data

in the first place (e.g., a random dice roll). Under this interpretation, we can see that com-

ponents of scale-based judgment tools like quality control mechanisms mainly engaged with

epistemic uncertainty, while agreement metrics and thresholds for identifying ambiguous

cases engaged with aleatoric uncertainty. However, while this framework presents practi-

cal insights into how we might quantify and address uncertainty, some have also criticized

the utility stability of this distinction in practice [91]. As our understanding of a problem

improves, what was once considered irreducible aleatoric uncertainty could end up actually

being the result of epistemic sources of uncertainty we had not yet identified. For example,

in scale-based judgments on toxicity, we might observe disagreements attributable to differ-

ences in personal preference towards the use of profanity—perhaps an irreducible aleatoric

uncertainty. However, digging deeper we might conclude that the personal preference may

be affected by cultural background of those human adjudicators, and (should we want to)

we may be able to better model it through first collecting demographics that we did not

before—thus making the problem epistemic.

As seen above, defining a comprehensive theoretical framework for quantifying uncer-

tainty is still an open problem and ultimately what makes one framework more useful than

another may depend on how the quantified uncertainty is then used to produce actionable

insights for each specific problem. In this work, I will not attempt to create or prescribe
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any particular theoretical framework for quantifying uncertainty, but instead look at some

possible ways to distinguish sources of uncertainty that can lead to actionable insights for

scale-based human judgment tools. One of the lenses I’ll use to look at uncertainty is

through the distinction of two types of uncertainty—ambiguity and disagreement—the

distinction of which I will introduce below:

Ambiguity derives from the idea that, in scale-based judgment tasks, there will be

individual cases being judged where the case does not include enough information or context

for a judgment to be confidently established. Earlier we have discussed this idea in the

context of experts and establishing ground truth for annotation. To make the idea broadly

applicable to situations where there are no experts, I will define the idea of ambiguity as

follows:

Ambiguity is uncertainty observed in judgments that manifests through each

individual adjudicator judging a case.

For example, an annotator judging a classification task for whether a person is present in an

image encountering a dark image where they couldn’t confidently tell if a person was present

would reflect ambiguity—the particular case was ambiguous to this particular annotator.

It’s important to note that, ambiguity doesn’t always have to result from a property that’s

solely related to the instance itself, rather it can also reflect a mismatch between level of

resolution the human adjudicator can provide and the options of the scale: A reviewer

who is asked to give a 1–5 star rating judgment of a restaurant can encounter ambiguity

if they did not have a strong opinion of a mediocre restaurant. Similarly, annotator on a

classification task might also encounter ambiguity if they found that their judgment did not

correspond to any of the provided label options or if they believe multiple labels apply in a

single-label task [207].

Disagreement derives from the idea that, in scale-based judgment tasks involving mul-

tiple adjudicators, different adjudicators may still produce different judgments that are in-

compatible with each other. In existing tools and workflows where adjudicators provide no

additional information for their judgment, disagreement is often used as the only observable

measurement of uncertainty, with different hypotheses of what factors actually contribute
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to the observed disagreement. Here, though, I will define disagreement as:

Disagreement is an emergent uncertainty resulting from interpreting the judg-

ments by multiple different adjudicators on a case in aggregate.

For example, annotators who disagree on whether the presence of profanity alone makes a

piece of text toxic may give the same comment different toxicity ratings. We note that the

quality of the our observation of disagreement depends on how well a tool or process for

human judgment determine incompatibility. In existing single-choice tools the observation

of disagreement may be limited to a binary case of whether the judgments match exactly,

while tools that have better expressivity (like ranges or multi-choice sets) may be able to

allow measurement of cases where there is partial agreement between human adjudicators.

Like ambiguity, there can be different reasons for disagreement, ranging from different in-

terpretations of scale options, different lines of reasoning, different background knowledge,

or simply different individual preference.

As we can see from the examples above, while this is not necessarily comprehensive,

ambiguity and disagreement can represent very distinct sources of uncertainty in group

judgments that can provide actionable insight into different potential avenues for interven-

tions. In the case of ambiguity, it makes more sense to attempt to resolve the uncertainty

by focusing on individual judgments, such as adding more context so each adjudicator has

more information to work with. On the other hand, when there is disagreement, it makes

more sense to resolve the disagreement by identifying where different adjudicators diverge,

such as by having adjudicators deliberate with with each other.

With this in mind, in the next sections, I will introduce a set of new tools and work-

flows for working with scale-based human judgments aimed at addressing the limitations of

existing tools by focusing on ambiguity and disagreement.

1.2 Building Better Tools for Scale-based Human Judgments

Now that I have introduced the background around uncertainty and scale-based human

judgment tools, I will lay out the vision of how we can build better tools for scale-based

human judgments given the new complexities involved in the problems we’re collecting
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judgments on. In this section, I will dive into two sub-problems that can be resolved by

better tools: (1) how uncertainty caused by limitations of prior tools can be mitigated while

making sure remaining uncertainty is still captured; and (2) how to address uncertainty,

focusing on the case of disagreement, once it is observed.

1.2.1 Mitigating and Capturing Uncertainty in Initial Judgments

Mitigating uncertainty by calibrating understanding of scales: One of the strengths

of scale-based human judgments is the simplicity of being able to interpret each judgment

individually with respect to the scale. However, this can be a problem if different adjudica-

tors don’t have a shared understanding of the scale. Before we can build tools to effectively

collect scale-based human judgments, we need to first ensuring that there is a consistent

understanding of the scale across human adjudicators. Traditionally, this consistency has

been achieved through creating guidelines and training or selecting experts, however these

approaches often don’t scale when the task is complex or when the task has subjective

components that we don’t want to prescribe a criteria for. For example, in cases where the

goal of the judgment task is to assess the opinions or preferences of communities or end

users [13], training or selecting for “experts” does not make sense. Instead, for complex

and nuanced tasks, we propose that, rather than try to achieve a perfect set of criteria,

past cases that have already been judged can be used as a way to ground a scale that may

otherwise be unfamiliar to adjudicators. In the later chapters, I will present how this idea of

prior cases serving as anchors can manifest in various different task modalities from scalar

ratings to categorical classification.

Enabling adjudicators to express uncertainty in initial judgments: Making

sure that scales are consistent is the first step towards uncertainty tools that can scale to

the new space of complex and nuanced tasks. However, even when scales are consistent,

adjudicators will still face ambiguous individual cases. For example, take the task of rating

items on a scale. Traditional tools often don’t attempt to capture this ambiguity directly,

instead asking adjudicators to give their best-effort precise answer and infer uncertainty

from the resulting disagreement in the collected judgments [288]. However, measuring
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uncertainty at this phase can already be too late—we no longer have the context around

which the original adjudicator made their judgment, meaning that we need to make post-hoc

assumptions about whether disagreeing judgments are due to adjudicators being uncertain

about their answer and randomly choosing an acceptable judgment or if adjudicators simply

do not agree with each other. On the other hand, some prior work has also recognized this

limitation, and instead opt to have the adjudicators self-report uncertainty by estimating

their own confidence [55]. While self-reported uncertainty is better than no information

about uncertainty, asking annotators to assess their own level of confidence itself can be

unreliable [157]. Therefore, we should make sure that tools for human judgments that not

only enables adjudicators to express uncertainty, but also do so without imposing too much

additional effort for estimating their own uncertainty. In later chapters, I will introduce

how we created more expressive and intuitive interfaces for capturing uncertainty in various

task modalities.

1.2.2 Addressing Uncertainty After Judgments: The Case of Disagreement

In subsection 1.1.1, we introduced why effectively capturing uncertainty in initial judgments

can be important. But what about the uncertainty that we observe once the judgments are

made? To arrive at a solution for working with uncertainty, we also need to consider how we

can address uncertainty after a judgment. One common source of uncertainty in judgments

results from the disagreement between adjudicators. The idea of deliberation has been

shown by prior work to be potentially effective in resolving disagreement [237]. However,

there are different ways to set up deliberation workflows which can affect how effective they

are in practice. Like the case of initial judgments, I argue that 3 important aspects that can

improve the effectiveness of deliberation: (1) creating shared understanding through context;

(2) allowing for more expressivity during deliberation; and (3) training adjudicators on how

to deliberate.

Just like how creating a shared understanding of scales is important for reducing uncer-

tainty in initial judgments, having a shared context means that adjudicators have common

ground to establish their arguments from. When tasks are defined through guidelines and
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criteria, I argue that it’s important for deliberation tools to ensure that the guidelines

are consistently understood and followed. On the other hand, when tasks don’t have clear

guidelines, past judgments and precedents can instead serve as context to establish common

ground.

Similar to the initial annotation, the ability for adjudicators to express complex ar-

guments is also crucial for effective deliberation. Early crowd deliberation systems often

focus on reducing task complexity at the cost of expressivity. For example, systems like

MicroTalk [77] utilized a shortened form of deliberation by only having one round of a

‘reconsider’ workflow where justifications for the disagreement are shown and annotators

re-evaluate their answer. However, one-shot justification workflows like this don’t allow

adjudicators enough expressivity to provide a well supported argument. Thus, I argue that

like with judgments, deliberation workflows should provide ways for adjudicators to express

their argument comprehensively as needed such as enabling .

Finally, I will also note that the process of deliberation is complex and deliberation that

can constructively resolve disagreements also rely on effective arguments being made and

understood [237]. To facilitate this, I argue that it can be important to provide training to

layperson adjudicators before they engage in deliberation, especially focusing on teaching

them how to assess others’ arguments and form their own.

1.3 Meta-Processes for Crowd Uncertainty

Uncertainty can appear in multiple different settings for human judgment tools and we

discussed several cases of this in subsection 1.1.1, ranging from errors to genuine disagree-

ments. While we need new tools to capture and address new sources of uncertainty from

increasingly challenging tasks, we should also recognize that individually the new tools we

build won’t be a one-size-fits all solution. Beyond individual tools and workflows outlined

in the previous section, I argue that to fully support uncertainty in human judgments, what

we ultimately need are meta-processes to coordinate how we collect human judgments and

apply interventions for reducing uncertainty observed. Specifically, an uncertainty-aware

meta-process for human judgments should involve the following general steps: (1) We need

to make sure that tools for collecting judgments allow us to capture uncertainty of human
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Figure 1.1: A diagram that illustrates meta-processes for crowd uncertainty and how var-

ious works presented in this thesis contribute to building such a workflow. These higher

workflows inovlve both tools to capture and distinguish uncertainty as well as workflows to

address uncertainty.

adjudicators during the initial judgment process; (2) We need to use these measurements

to distinguish and quantify different sources of uncertainty; (3) This understanding of

uncertainty should inform how we choose interventions to address sources of uncertainty

in a targeted way; (4) Uncertainty should be made available to downstream consumers of

collected judgments.

In subsection 1.2.1, we discussed how new designs for annotation tools can improve

how we may capture uncertainty for some types of nuanced and subjective tasks. More

generally, though, as we tackle new tasks and modalities of human judgments we need to

also consider how to enable adjudicators to express and communicate their uncertainty as

part of their judgments [274].

In subsection 1.1.2, we also discussed how different approaches to quantifying uncertainty

can lead to insights about the potential actions that can be taken. As our understanding of

uncertainty in various tasks evolve, meta-processes can take advantage of this understanding

to make distinctions that attribute the captured uncertainty to its source.

On the intervention side, work by both us and others have explored interventions for

uncertainty often times have concluded that effectiveness of interventions can depend on
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a variety of factors [50, 237]. For example, one such finding was that deliberation was

ineffective at resolving disagreements when there was uncertainty about cases in the form

of ambiguity. A meta-process for collecting human judgments can use the quantified in-

formation about sources of uncertainty to decide what the best course of intervention is

before addressing it—in this case, making sure that ambiguity is addressed before before

attempting deliberation.

Finally, such meta-processes preserve information about uncertainty throughout the hu-

man judgment process. This means when data regarding human judgments is made avail-

able to downstream applications, such as to train machine learning models or build intelli-

gent automation tools, consumers of the data are no longer required to make assumptions

about why uncertainty is present. By keeping track of our understanding of uncertainty,

new meta-processes for human judgments can provide the opportunity to improve the trans-

parency around the data that grounds automated models [24, 262], and allow us to diagnose

when potential issues like biases crop up.

1.4 Thesis Contributions

The focus of my dissertation is on how to design tools and crowd workflows so that groups

and individuals can better understand and address uncertainty present in their judgments.

I contribute research mainly around 3 aspects of this goal: improving the consistency in

scale interpretations through the use of precedents and anchors, creating novel interfaces

and representations of uncertainty to capture uncertainty at the point of judgment, and

empirical observations about different characteristics of uncertainty for several scale-based

judgment tasks. In this section we will give an overview of these contributions.

1.4.1 Improving Consistency through Precedents and Anchors

With the shift towards more subjective and nuanced scale-based judgment tasks, existing

tools and workflows for collecting human judgments often do not offer sufficient means for

groups of adjudicators to form a shared understanding of the various choices on the scale,

leading to uncertainty in the form of inconsistent interpretations of the same scale choice. In

this work, I demonstrate how we can improve the consistency of scale interpretation across
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adjudicators through the use of prior annotated examples to ground understanding. In

chapter 3, I focus on improving consistency in a continuous scalar rating annotation setting.

I present the tool, Goldilocks, where we utilize past annotated cases as examples presented

through both local and global anchors, to ground the inter-annotator understanding of

otherwise abstractly defined scale levels. I demonstrate that the use of examples along with

traditional text anchors leads to increased consistency across crowd annotators, with an

especially prominent effect for tasks that involve more subjectivity. In chapter 4, I turn to

focus on improving consistency of categorical judgments when decision bounds are unclear

and difficult to specify through guidelines. I present the idea of case law crowdsourcing,

where past annotated cases are made available to crowd adjudicators, who use them to

assemble their judgment on new cases in the form of sets of precedent cases supporting

their judgment. I demonstrate that the judgments made through precedent sets resulted in

increased consistency on new cases. Finally, in chapter 5, I found that qualitatively when

crowd workers engaged in synchronous deliberation, they also tended to invoke prior cases

(in the form of discussions and chains of reasoning they have encountered) as means to

support their arguments and build a consistent justification. Thus throughout this work,

I make the case that the use of past judgments, in various forms across various judgment

modalities, can be an effective way to improve consistency when tasks are complex or

subjective and traditional approaches like guidelines are difficult to create (complex) or

undesirable (subjective).

1.4.2 Novel Interfaces and Uncertainty Representations

Another limitation I identified with existing approaches in this work is that traditional tools

to collect initial judgments often don’t enable efficient ways for crowd adjudicators to in-

dicate their uncertainty—either by ignoring uncertainty entirely or requiring adjudicators

to estimate their own uncertainty with no assistance. I present solutions to this limitation

in the form of novel interfaces and associated representations of judgments that improve

the ability for human adjudicators to express their uncertainty. In chapter 3, I introduce

the idea of utilizing ranges to establish intuitive representations of uncertainty in scalar
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rating tasks. By using ranges to represent individual judgments, we can easily recover in-

formation about ambiguity and disagreement. Additionally, to support crowd annotators in

creating ranges our system, Goldilocks, breaks down the rating creation into to steps, sup-

porting the establishment of lower and upper bounds separately and assisting the creation

of these bounds through enabling simple comparisons. In chapter 4, I introduce the idea of

sets of precedents as a way to establish new judgments in categorical classification tasks.

Representing judgments through sets of precedents allows us to capture both the intended

judgment and the supporting justification of each adjudicator, and additionally allows us

to diagnose situations when adjudicators struggled to make well-justified judgments in re-

gions of the decision space that are under-supported by past cases. Our workflow, case law

crowdsourcing, supports the creation of these precedent sets though a case exploration sys-

tem that recommends past cases that may be relevant while allowing crowd annotators to

adjust the criteria used to inform the recommendation. Through these tools and workflows,

I make the case that new representations like ranges and precedent sets can provide more

understanding of uncertainty to inform downstream interventions and that novel interfaces

can support the efficient elicitation of judgments in these new representations.

1.4.3 Different Characteristics of Uncertainty in Scale-based Human Judgment Tasks

Finally, one of the contributions this work also makes is in building empirical understanding

of the characteristics of uncertainty in several types of scale-based human judgment tasks,

such as: word similarity, toxicity rating, satiety rating, age estimation, interpersonal conflict

adjudication etc.. In chapter 3, I found that consistency in the interpretation of scales may

be affected based on the characteristics of those scales. For judgment tasks that may be

subjective and involve unfamiliar scales, such as rating satiety and toxicity, we found that

annotators had lower consistency naturally, as opposed to tasks like age estimation where

we expect annotators to be more familiar with the scale. This suggests that the consis-

tency of scale interpretations can make a difference in terms of contributing to additional

uncertainty. I also find that through the experiments in chapter 6, that when annotating

datasets, the type of uncertainty involved in each case can significantly affect how effective
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an uncertainty reduction intervention is, with a mis-targeted intervention failing to provide

significant reduction in uncertainty as opposed to correctly targeted interventions which

can. Additionally, I find that uniformly applying a single intervention regardless of what

sources contribute to uncertainty for each instance can be detrimental to reducing overall

uncertainty around judgments. Through these findings, I make the case that uncertainty

can manifest in complex ways that vary depending on tasks, and processes that build bet-

ter understanding around the uncertainty in each task are crucial if we want to effectively

address uncertainty in human judgments.

1.5 Thesis Overview

In chapter 2, I will first position this work in the context of related research that looks

into how uncertainty arises in human judgments, how harms can arise from not properly

accounting for uncertainty when building upon human judgment data, and the systems and

models already in place to address certain types of uncertainty.

Following this, from chapter 3 to chapter 5 I will introduce several novel designs for

tools that aim at understanding and addressing uncertainty in various stages of the human

judgment process. Starting with chapter 3, I first introduce a novel design for an annotation

tool, Goldilocks, that allows capturing uncertainty around scalar rating judgments, while

also improving on consistency. Following that, in chapter 4 I introduce the idea of case

law crowdsourcing where prior decisions on a task – in the form of “precedent” cases

– are used to form judgments allowing us to capture and understand uncertainty around

categorical classification judgments while also improving on consistency of the judgments.

In chapter 5, I present and evaluate Cicero, a workflow and tool that focuses on addressing

the disagreement that contributes to uncertainty around group judgments on complex tasks

by utilizing multi-turn and contextual discussions.

Finally, in chapter 6, I present an end-to-end meta-process that utilizes the insights into

sources of uncertainty acquired through uncertainty aware annotation tools to dynamically

select targeted interventions that address different sources of uncertainty directly.

At the end, I will discuss aspects of the broader implications of this work with respect

to the larger ecosystem of human judgments in chapter 7, followed by a recap of the con-
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tributions and an overview of ongoing and future work in chapter 8.

Content Warning: Some chapters in this thesis involve tasks that pertain

to the annotation of sensitive user-generated content such as toxic and/or

offensive online comments and posts or politically sensitive text.

We may include un-edited excerpts of this content as a part of the text or

figures used to illustrate aspects of our tool design and/or findings. We will

include additional warnings in the text before such content appears, or in

the case of figures/tables, as a part of the caption.
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Chapter 2

BACKGROUND AND RELATED WORK

Humans have had to contend with uncertainty for as long as we have had to make

measurements and form judgments around them. As a result, there is an extensive history

of work in the areas of statistics, cognitive psychology, and a variety of social, medical, and

political domains, that look into the uncertainty surrounding judgments. Additionally, with

the increasing prominence of computing systems and the increased dependence on collecting

and creating data about the world, there is also a growing area of work around designing

human-computer interfaces and processes to truthfully and accurately elicit and capture

the uncertainty judgments from humans.

In this chapter, I will start by introducing some prior work that establishes approaches

on how we think about uncertainty as a part of making judgments as humans, including the

biases in our mental approaches to uncertainty. I will then look at the various ways that have

been proposed by prior work to define, distinguish, and measure uncertainty both in general

measurement and specifically for subjective human judgments. Following this, I will discuss

the space of research into tools, systems, and processes that have been developed to collect

human judgments and reduce uncertainty. Finally, I will examine some of the challenges and

issues that are surfacing as a result of the increasing reliance on human judgment datasets

collected from crowds, and how work in fields of AI and HCI have approached potential

solutions.

2.1 Measuring and Distinguishing Sources of Uncertainty

Uncertainty has been an integral component of measurement for as long as we have had to

make observations about the world. In the traditional setting of measurement and metrol-

ogy, uncertainty is often characterized as a measure of the dispersion of the values that could

be reasonably attributed to the property measured [150]. Commonly this may be repre-
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sented through a statistical lens [60, 102] like standard deviations, confidence intervals, and

in many cases through the statistical distribution itself. This view can be useful for under-

standing uncertainty that comes from our inability to achieve a deterministic understanding

of the systems we are measuring [280].

However, while the statistical understanding of uncertainty provides a good way to gen-

eralize measurements across many domains, a drawback of this view of uncertainty – in the

form of a single distribution – is that it fails to attribute why the uncertainty we observe

arises in the first place [130]. This can be especially limiting when the ability to distinguish

the source of uncertainty provides additional insight into how we may (or may not) address

it. For example, suppose we were asked to characterize the height of a sampled group of

individuals. One contributing factor of uncertainty lies in the natural variations across in-

dividuals in their height—the stochastic randomness in individual heights results in a limit

on our ability to provide a single deterministic measurement for the group. On the other

hand, the precision of the instrument (e.g., a tape measure) we use to collect each individual

height in the first place, also results in limits on how well we can characterize the final mea-

surement. Both of the above can result in what we observe as increased uncertainty if we

were to characterize these measurements through a distribution over values. However, the

distinction between the two sources of uncertainty provides additional insight if we want to

address this uncertainty: While better instruments may allow us to reduce the latter type

of uncertainty, we shouldn’t expect to be able to reduce the former type of uncertainty as it

reflects the natural variation in the property we are measuring. Building upon this idea, one

view categorizes the sources of uncertainty based on : aleatoric (or aleatory), where uncer-

tainty arises from the natural unpredictable variance in the property/phenomena measured;

or epistemic, where uncertainty arises from a the limitations of our models, tools, and un-

derstanding [121]. Under this view of uncertainty, it follows that epistemic uncertainty

can be targeted and reduced while aleatoric uncertainty should mainly be accommodated

for.

The distinction of aleatoric and epistemic uncertainty doesn’t always make for an insight-

ful categorization of uncertainty [91]. This can be seen more prominently when subjective

judgments are involved, where it can be difficult to tell whether subjective disagreements
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reflect a kind of aleatoric uncertainty inherent to the subjective nature of the judgments

or a kind of epistemic uncertainty resulting from the vague nature of a subjective question

lacking a clear criteria. And indeed, beyond this separation, many other ways to understand

and categorize sources of uncertainty have been explored and proposed. As one example,

Soden et al. [250] examines how work in field of human-computer interaction (HCI) has

engaged with uncertainty and notes that it can also be useful to understand sources of

uncertainty through lenses like understanding the politics (distribution of power) that pro-

duce uncertainty, or viewing uncertainty as the evolution of how problems are understood

and solutions envisioned. There is continuing work around how to categorize and quantify

sources of uncertainty around data, each servicing different types of insights. Depending

on the specific characteristics of the human judgments involved, it may be the case that

different approaches to distinguish uncertainty should be selected. In this work, we don’t

seek to comprehensively review these possible categorization approaches as there are many

different human judgment tasks and different desired uses for the judgments collected.

2.1.1 Uncertainty Around Human Judgments

In the example presented in the previous section, we touched on how uncertainty can mani-

fest in traditional measurements of objective properties. However, in recent years, there has

also been a growing demand for conducting measurements of properties based on human

judgments in the form of data annotations on subjective or nuanced tasks. For example,

datasets have been collected where human raters evaluated properties like toxicity [294],

credibility [25, 192], or the degree which text is emotionally manipulative [128]. This in-

creased utilization of human judgment has presented a new set of challenges regarding

uncertainty.

The idea of human judgments as a measurement tool has been around since the inception

of tools like Likert scales [201, 172]. However, unlike a fixed measurement tool which

can conduct measurements consistently and at known levels of confidence, the uncertainty

surrounding human judgments can vary based on the item being judged and the human

adjudicators themselves [288]. Additionally, even expert human adjudicators often disagree
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with each other [236] or even with oneself upon revisiting [106]. All of these aspects of

human judgment contribute to the final uncertainty we observe in the collected data. In

some cases, this uncertainty itself presents as a strength of crowdsourced human judgments,

with systems increasingly recognizing uncertainty in these judgments may not be reducible

and instead embracing its use in downstream tasks [144, 79, 80]. We have seen that diverse

sets of human adjudicators can bring their different backgrounds, perspectives, and schools

of thinking [270, 145] into the judgment they produce, contributing to an aggregated level

of wisdom beyond each individual [6].

2.1.2 Annotator Positionality and Human Biases

However, along with the strengths of human judgments also comes limitations and pitfalls

if they aren’t applied correctly. While the uncertainty surrounding human judgments can

certainly reflect the diversity of perspectives across groups of adjudicators, it’s also impor-

tant to recognize that data created from human judgments is also often affected by human

cognitive biases [119] and the politics of those making the judgments [238]. Unfortunately,

the rising demand for data in fields like machine learning has sometimes meant that limited

effort goes in to understanding and addressing human biases in the datasets being used [230].

Cognitive biases have long been studied as a component of human judgment [119, 271,

196] and with the increasing use of crowdsourcing as a means to generate or annotate

datasets, many of the same cognitive biases can crop up in the resulting data if unchecked

during the design of the crowd tasks [83]. In the past, researchers have explored the effects

of cognitive bias throughout various stages of crowdsourcing, from the recruitment of partic-

ipants [14] to the instructions that crowdworkers use to complete their task [204]. In many

cases, cognitive biases also mean that we can’t reliably depend on human adjudicators to

self-correct, with individuals often unable to accurately assess their own performance [157]

and groups prone to fixate on certain suboptimal ideas [4]. Recent work on cognitive biases

in crowdsourcing have presented checklists that assist task designers to think about poten-

tial cognitive biases in task design [78], though the same work has shown that cognitive

biases remain under-addressed in practice today.
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In addition to including cognitive biases, the datasets constructed from the decisions of

humans will also reflect the positions of those involved [238, 69]. In recent years, we have

seen this limitation increasingly acknowledged across various areas where the positionality

of individuals or groups become embedded in various aspects of data. For example, the

selection of what is included in datasets can encode biases of those making decisions and this

can be seen across many domains from computer vision [70, 59] to work on fact checking [5]

where prior work has shown that political affinity can affect how human adjudicators select

posts to be checked. Similarly, annotator beliefs and identities also factor in to how they

judge content, such as what is toxic [234] or what constitutes hate speech [232, 284]. This

can be affected by various aspects of the identities of annotators [69], ranging from their

cultural background [139], beliefs [69], and generally who they are as individuals [229].

2.2 Reducing Uncertainty

While it is important to understand what sources can contribute to uncertain human judg-

ments, in many cases where human judgments are collected, simply knowing that the final

answer was uncertain is often an unsatisfactory result. In fact, many sources of uncertainty

are produced by aspects of the judgment process that we have control over—from how we

recruit adjudicators to how we design and convey the problems to be judged.

In the following subsections, I will discuss how prior work has proposed approaches to

reduce uncertainty through some factors that we do have control over. As most scale-based

judgments today are collected through crowdsourced tasks—short microtasks completed

by non-expert adjudicators, I will first start by looking at 3 aspects related to reducing

uncertainty in a crowdsourcing setting: (1) reducing the effect of errors through qual-

ity control; (2) improving how tasks are conveyed to non-expert crowdworkers through

improving tasks and instructions; and (3) resolving disagreements between crowd par-

ticipants through deliberation. Then, I will discuss some prior work that looks at how

uncertainty is reduced in other settings where human judgments are utilized, focusing on two

scenarios: high stakes situations that involve expert judgments, and low stakes subjective

judgments and opinions.
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2.2.1 Automated Quality Control for Crowdsourcing

Because crowdsourcing systems and workflows rely on work done by non-expert crowd

workers, quality control mechanisms have always been a central concern in designing these

systems [87, 180]. Early crowdsourced annotation was presented as a way reduce the de-

mand for expert annotators when a large amount of data was needed. The tasks that

crowd annotation was applied to focused on those where ground truth—the answer that

expert annotators would produce—could be established. Thus, automated quality control

systems focused on reducing errors introduced by noisy or “low-quality” workers. The

simplest approaches being voting mechanisms, such as majority vote [248] or later tourna-

ment voting [259], that were used to annotate natural language datasets. However, voting

assumes that crowd workers would have similar performance characteristics and that the

signal around correct answers is above the noise introduced by worker error (i.e., that the

majority answer is probably the right one). Subsequent work recognized that, even within a

similarly recruited pool of crowd workers, the ability of each worker to arrive at the shared

ground truth may differ [290, 287]. As a result, differences between workers were modeled

through latent parameters, such as worker quality, which were learned through maximum

likelihood estimates using processes like that proposed by Dawid and Skene [65]. Later

automated quality control systems iterated upon this line of work utilizing more complex

models that accounted for aspects like the particular type of annotation task and the dif-

ficulty of individual items in addition to parameters about worker quality [186, 180]. In

addition to quality estimation, methods like Bayesian truth serum [215] allowed crowd task

designers to create processes that did not penalize workers even when they disagreed with

the majority.

However, due to the formulation of this problem as a matter of quality control, all of these

methods assume that some correct answer exists for each case being judged. As more human

judgment tasks have been deployed through crowdsourced platforms, we have found that

this assumption rarely holds true in practice, especially across a sufficiently large set of cases

where cases that cannot be decided are bound to appear. Instead, more modern views into

quality control often focus on selecting for better crowd workers based on their performance
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on problems where we know ground truth exists, utilizing continuous evaluation through

gold-standard questions [118, 74, 200].

Undoubtedly, quality control is something that still needs to be considered for anyone

deploying tasks on crowdsourcing platforms today [3]. This is also reflected in this work,

where we also employ quality control mechanisms to select for honest participants. However,

managing and mitigating error from crowd platforms is an artifact of the medium in which

we explore crowd uncertainty, and thus these approaches will not be a focus of this work.

2.2.2 Instructions and Training

With the diminishing returns provided by the noise view into judgment uncertainty, the

design of the task itself became an new focus as an important factor that affected the quality

of the annotations. Prior work has found that, when tasks were poorly designed or under-

specified, workers often became confused about what was requested and produced additional

errors [293]. Rubrics have been proposed as a solution to this problem by providing a

shared set of clear actionable instructions that is available to all workers [298]. Indeed,

when implemented well, rubrics provide an easy way to calibrate and unify how different

workers approach a problem (or in the case of our focus, a scale-based human judgment

task). However, comprehensive rubrics can be very difficult to create in many situations,

especially when the judgment tasks are complex and difficult to specify [166]. Within the

area of crowdsourcing, prior work has explored avenues to reduce the effort required to make

good instructions. Some have proposed that crowd annotators can be consulted to suggest

areas for improvement [35], while others have proposed using the amount of uncertainty

observed after annotation to discover potentially under-specified edge cases [213]

Alongside the improvement on instructions, training of workers also became an impor-

tant aspect of improving the quality (and thus reducing the uncertainty) around answers.

Methods such as gated instructions [178] have been proposed which combine quality control

mechanisms (in the form of gating) with training procedures to calibrate worker under-

standing. Training is also not necessarily limited to being a procedure conducted at the

start of a crowd task. For example, Dow et al. [76] conducted experiments demonstrating
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that timely, task-specific feedback during the task helps crowd workers learn, persevere,

and produce better results. Even quality control mechanisms can be repurposed to provide

training as well, such as exposing answers to gold-standard test questions after they have

been used for quality control [118].

Sometimes training doesn’t all need to be provided by the task requester. Beyond

individual training, feedback from peers can also help train workers: Ho et al. [120] show that

peer communication improves work quality while Kobayashi et al. [154] demonstrate that

reviewing can help workers self-correct. Additionally, Zhu et al. [310] noted that workers

who review others’ work perform better on subsequent tasks.

Instructions and training can both be effective ways to reduce uncertainty in human

judgment settings too by improving the consistency of task understanding across crowd ad-

judicators. However, in many cases, creating high quality instructions and training requires

significant effort and expertise [35]. Additionally, any issues in instructions and training can

easily manifest as problems in the data produced at the end [99, 204], meaning that clari-

fying tasks via complex instructions and training may not be possible for many subjective

or nuanced tasks. In our work, we will look at alternatives to traditional instructions and

training that allow us to preserve nuance and subjectivity in human judgment tasks.

2.2.3 Surfacing and Resolving Disagreement

Not all uncertainty stems from confusion about the the tasks themselves. In some cases,

even when there is little ambiguity in the cases being judged, crowd adjudicators may still

disagree on what the answer should be. This disagreement can be the result of different

ways crowd adjudicators reason about the problem [270]. However, without more under-

standing of the disagreement, there is little hope of being able to resolve it. Researchers

have demonstrated that having annotators to submit “rationales” along with their answers,

such as through highlighting portions of text [300, 187] or an image [73], and training clas-

sifiers using these rationales can result in better classification performance. This suggests

that the context and reasoning encoded through rationales contains additional information

about why disagreement occurs and that if utilized properly may also lead to ways to resolve
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disagreement.

Extending from the idea of rationales for training models, Drapeau et al. [77] present

the idea of using peer rationales to surface and resolve disagreements during the annotation

process itself (as opposed to post-hoc). By acquiring rationales in the form of justifications

and then presenting them to peer annotators when disagreements are encountered, peers

may be convinced to change their answer if they see a rationale that addresses their dis-

agreement. More broadly, Wiebe et al. [292] have also shown that in small group in-person

settings, getting annotators to reconsider their positions and discuss them with other work-

ers can be beneficial to the quality of annotations. ConsiderIt [156] applies similar ideas to

political judgments, using the creation of pro/con lists to encourage participants to think

about alternative positions, and potentially leading to fewer direct disagreements.

On the other hand, a different line of work poses that disagreement perhaps should not

be resolved by the annotators directly. In structured labeling [158], researchers propose a

workflow where annotators can encode disagreements about classification rationale by cre-

ating evolving taxonomies organized by potential uncertainties in criteria. In the follow up

work by Chang et al. [46], this approach is further developed to enable groups of annotators

to build shared taxonomies around rationale-based clusters that encode but not resolve dis-

agreements. With this approach, the responsibility to resolve disagreement is instead passed

on to a task requester, who acts as the ultimate source of truth in removing the uncertainty

in disagreements. While the idea of a final dictator can be desirable for some classification

tasks, it can also be inadequate if the requester in question is not the authority that should

be making the final judgment.

In cases where it is undesirable to have a requester dictate how disagreement is resolved,

we look back to rationales for a solution. While softer approaches like reflecting on peer

rationales [77] can potentially reduce disagreements, they aren’t effective against all types of

disagreement. Rationales are limited in how much context they can provide, and when the

source of disagreement is not covered in the rationale, it may not help prevent disagreement

at all. To solve this, there has been work on explicitly using full deliberation processes

to actively resolve disagreements when they are observed [237, 50]. These works have

shown that for complex but unambiguous tasks, a full deliberation process can be effective
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at reducing uncertainty by resolving disagreements explicitly. In our work, we explore

deliberation as one way of reducing uncertainty in human judgments.

2.2.4 Managing and Reducing Uncertainty in High-Stakes Judgments

Of course, processes for performing judgments under uncertainty exist in many fields be-

yond the space of crowdsourcing annotation [243, 235, 254]. Among these, the task of

managing and reducing uncertainty can be especially important when judgments need to be

made under high-stakes situations among experts. To account for this, processes have also

correspondingly been developed in these areas fields to manage and reduce uncertainty.

As one example, within the realm of the judicial system (in this example specifically

focusing on that of the United States), uncertainty can be present in many forms throughout

the judgment process with many mechanisms to address it. In order for a jury to make an

informed decision, they need to consider the evidence that contextualizes a case, which can

often come with uncertainty both resulting from the ambiguity of the evidence itself and

the positionality of the opposing sides presenting the evidence. To reduce this processes

around discovery and presentation have been formulated to address the introduction of

uncertainty around context [175]. Additionally, as the final judgment is produced by a

group of individual jurors, uncertainty can arise from disagreements in interpretations of

the evidence, with deliberation used as a means for the jury to make sense of what has been

presented and the corresponding implications [263]. These processes can be very labor and

attention intensive, often spanning multiple days of concentrated work. Of course, judicial

systems, even with their complex processes for managing uncertainty, are still not a perfect

solution to the problem of reducing uncertainty. For example, juries also suffer from human

biases during their deliberation [43] and it can be difficult to keep track of details in the

deliberation process [267]. Additionally, some have argued that institutions like the supreme

court can act as final adjudicator, resolving disagreements through closed processes [249]

Similar to the legal space, in the medical domain where doctors need to make diagnosis

and treatment judgments under uncertainty, deliberation is often also used as a tool to

resolve uncertainty in the form of disagreements in interpretation [236]. Though, unlike
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social settings, the medical domain also involves diagnostic testing, which come with more

traditional metrological guarantees about the uncertainty around outputs [132].

Many of the strategies used by other fields have provided inspiration for the tools like

deliberation processes that presented in this work.

2.2.5 Working with Uncertainty in Subjective Judgments

While crowdsourcing is often used to collect subjective judgments today, methods for work-

ing with uncertainty in subjective judgments has existed before their application in crowd-

sourced settings [201, 268, 42]. In fact many of the mechanisms used in crowdsourcing are

concepts borrowed from classical situations of working with uncertainty in human judg-

ments.

Survey mechanisms for measuring subjective responses, such has Likert scales [172],

were introduced as ways to understand subjective judgments. Along with them, methods

have been produced to mitigate uncertainty of these responses. More generally, atten-

tion check questions have been proposed for surveys as quality control mechanisms [242].

On the other hand, methods such as the calibrated sigma method [285] have also been

proposed to remedy the uncertainty resulting from uncalibrated results when comparing

between-group Likert responses. Additionally, extensions of the Bayesian truth serum into

subjective tasks [215, 214] has also improved the reliability of responses and measurements of

uncertainty surrounding them by removing incentives that bias decisions towards consensus,

which if not accounted for may mask the presence of uncertainty.

On the theoretical side, the Dempster-Schafer theory [240] and others like fuzzy logic [299]

provided frameworks for people to conduct reasoning about uncertainty without resorting

to concrete probabilistic estimates. All of these approaches served as inspiration for our

work, where we address judgments involving subjectivity which can be easily affected by

biases.

2.3 Uncertainty in Downstream Tasks

Human judgments are used in many different downstream applications and as a result the

uncertainty around human judgment data creates implications for how this data can be
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used in downstream tasks. In this section, I will first discuss the challenges of uncertainty

in downstream tasks, focusing on the topics of evaluation of AI systems and creating data

for training systems on subjective judgment tasks. Then, I will discuss some solutions

that have been proposed to manage uncertainty in downstream tasks, both automated

solutions that focus on creating better models and human-in-the-loop solutions that

involve collaboration between automated systems and humans under uncertainty.

2.3.1 Human Evaluation of AI Systems

The evaluation of generative AI systems has become an increasingly important challenge

in recent years. Compared to AI systems that select an answer among a set of choices,

generative systems produce free-form output that can’t be easily verified against a reference

answer. Traditional approaches of evaluating this kind of generative AI system output

often focused their effort on enabling rapid evaluation at low cost. As a result, many

metrics have been proposed to use human-annotated data to construct benchmarks that

are then evaluated by machines (e.g., BLEU, METEOR [40, 2, 68]) through measures of

similarity. However, as the performance of models has increased, the higher quality of

the output of models often means that automated evaluation approaches can struggle to

tell apart similarly high performance models, with some automated approaches penalizing

models that produced output that would otherwise be acceptable by a human but did not

contain components of the reference answer. As a result, human rating has become an

increasingly oft used tool to evaluate performance of models on generative tasks [312] (e.g.,

summarization [85], translation [171]) in fields like natural language processing. Humans

can more easily judge characteristics like fluency, relevance, and conciseness, which cannot

be easily and reliably assessed with automated metrics [108]. Human rating has also been

used to evaluate the output of chatbots [239, 170], to judge search results [129], or assess

clustering quality [301].

Increasingly, human ratings (both comparative and absolute) are becoming an integral

aspect in facilitating comparisons between models through evaluation leaderboards and

shared tasks [252, 148], where consistency and robustness of comparative results are cru-
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cial. However, we also see that human raters can often disagree on these evaluations [210]

and the type of evaluation used can affect results too [252] as seen in shared task evaluations

switching from relative rating to absolute Likert scales. This has led to traditional eval-

uations sometimes presenting over-estimates of actual performance that are only observed

after within-annotator uncertainty is accounted for [106]. Therefore, creating benchmarks

that can account for the various sources of uncertainty as well as adapt to the ever-changing

set of tasks and systems is important if we want to accurately understand the performance

of AI systems.

2.3.2 Ground Truth from Subjective Tasks

Another important application of human judgment is to establish a source of ‘ground truth’

as a way to define tasks. For example, human judgments have been used as a way to build

knowledge bases of human common sense reasoning [233], to model how humans make

judgments on morality [140], to simulate toxic situations [98], or to define concepts like

natural language inference [207] and word senses [144]. In all these cases, it’s important to

understand and document the uncertainty surrounding the human judgments as they are

ultimately the foundation of the task definition, rather than necessarily what was intended

by those collecting the data [90]. Recent work has shed light into how insufficient under-

standing of the uncertainty in these datasets can cause significant issues with downstream

models trained on them [99, 230]. Along these lines, some work has also called out the

need to document aspects of these datasets [97, 18, 211] including providing dis-aggregated

data. On the model side, recent work has also explored how data with uncertainty may

be used to train more robust models [216, 89] that can respond identify when no certain

answer is possible [218]. Thus capturing and presenting the uncertainty around both indi-

vidual judgments and group collective judgments can be crucial for building downstream

AI systems.

In other areas, the use of crowd judgments for establishing ‘ground truth’ can be useful

as a way of creating more legitimate and transparent processes used to define otherwise

subjective standards. For example, prior work in online community moderation has shown
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that the use of digital juries to make judgments on content and moderation actions [86,

202, 123] can provide insight into the community’s values – both that of individual jurors

and any disagreements across the jury group. Indeed, on the data side, some have proposed

that the presentation of uncertainty itself can be a way of increasing transparency [24, 13]

into how judgments on these traditionally subjective tasks are made.

2.3.3 Incorporating Uncertainty in Machine Learning

With the increasing recognition of problems caused by mistreatment of uncertainty in

datasets [262], recent work on the modeling side has proposed that models should be trained

with the uncertainty in the original judgments in mind. One area of work explores the

idea of training models by taking into account the uncertainty around labels rather than

simply the aggregated answer, such as in the case of image classification [297] or ranking

tasks [296]. Similarly, encoding human judgment uncertainty through soft labels (which

represent probabilistic distributions over the label space) has also been proposed as alter-

natives for training [89, 295], with some recent proposed work that utilizes uncertainty

information through soft labels on a per-annotator level [57]. Some have also proposed that

models should be trained directly on dis-aggregated data, treating learning from different

annotators as separate learning sub-tasks [63, 211]. Others have also shown that label-level

disagreement information for labels can be beneficial to training deep learning models [282],

with uncertainty information serving to improve robustness of models under adversarial

conditions [216].

The idea of utilizing dis-aggregated training also has implications in the space of ensuring

fairness of the resulting models. One instance of this idea is reflected in the recently proposed

concept of jury learning, where demographic information surrounding annotators can be

used to reconfigure the composition of what judgments are used to inform machine learning

models [105]. Reconfiguring how uncertain judgments are used ties into a broader line of

work of value-sensitive algorithm design [311] seeking to improve the state of the world

rather than continue to perpetuate historic biases.

In our work, we also seek to tie in to this body of work in downstream applications by
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making available not just measurements of uncertainty, but also richer insights into what

contributes to uncertain human judgments.

2.3.4 Communicating Uncertainty to Facilitate Human-AI Collaboration

While building standalone models that help automate traditional human judgments can

certainly be important, in many cases AI systems are often used to support human decision-

making processes via human-in-the-loop (HITL) processes [109, 264]. Work in human-

AI collaborative systems have shown that simply improving the performance of the AI

often is not sufficient for such collaborations to be effective—in order for AI systems to

be effective partners that support humans, they need to account for the mental model

of human partners [16]. Existing work around explainability mechanisms has introduced

various mechanisms for AI models to present information about their proposed judgments,

often including aspects that visualize and communicate uncertainty, such as confidence

scores [117]. However, in many cases the systems that are being built today still fail to

achieve real collaboration in the form of complementary performance [17]. It is often the

case that information about the AI’s uncertainty presented through traditional metrics

such as confidence scores doesn’t provide much benefit for human decision makers, who

struggle to interpret what this uncertainty means. Only recently has it been demonstrated

that complementary performance is indeed possible, but only in cases where the cost for

verification is much lower than that of completing the task altogether [275].

In collaboration between humans, we often utilize information conveyed about uncer-

tainty to build mental models of when we can rely on our partners. However, the current

space of tools used to communicate uncertainty of AI models is much more limited, lead-

ing to challenges in building trust and reliance on AI [84]. This increased prominence of

hybrid human-AI collaborative processes has led to increased attention on how models rep-

resent and consequently communicate uncertainty to human decision-makers, with works

in visualization exploring how to most effectively communicate uncertainty to human col-

laborators [110]. Yet, because existing models are still built to model uncertainty through

probabilistic metrics like confidence scores and distributions, uncertainty information is of-
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ten still difficult to convey concretely to human partners in a way that can positively improve

collaboration outcomes [307]. In my work, we look into some alternative representations of

judgments that also encode uncertainty, which may provide a new avenue for thinking about

AI systems that produce outputs that also natively encode uncertainty in an interpretable

way.

As we have seen from the instances in the sections above, there is a significant and

increasing demand for ways to better capture uncertainty and learn uncertainty from down-

stream applications that utilize human judgment data. In our work, we explore how better

tooling around human judgment processes can allow us to capture and maintain understand-

ing around the sources of uncertainty throughout the human judgment process, making this

information available to downstream applications. We also propose new representations

of judgments that encode uncertainty in ways intuitive to human annotators, which may

prove useful for bridging the communication gap between human-AI collaborative decision-

making.
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Chapter 3

GOLDILOCKS: UNCERTAINTY IN SCALAR RATING JUDGMENTS

In this chapter, we present Goldilocks, a novel crowd rating elicitation technique for col-

lecting calibrated scalar annotations that also distinguishes inherent ambiguity from inter-

annotator disagreement. We introduce two main ideas: grounding absolute rating scales

with examples and using a two-step bounding process to establish a range for an item’s

placement. We test our designs in three domains: judging toxicity of online comments,

estimating satiety of food depicted in images, and estimating age based on portraits. We

show that (1) Goldilocks can improve consistency in domains where interpretation of the

scale is not universal, and that (2) representing items with ranges lets us simultaneously

capture different sources of uncertainty leading to better estimates of pairwise relationship

distributions.

3.1 Introduction

Much of modern machine learning is built on the foundation of human-annotated data. As

the application of these models has expanded into more socially embedded and contextually

nuanced domains [9, 192, 198], collecting high quality, consistent, and robust data from

human annotators has become an increasingly important yet challenging task [25]. As one

example, the ability to gather human evaluations of the toxicity of a piece of text is a nec-

essary precursor to being able to build toxicity models to support online communities [294]

as well as capture and mitigate harmful outputs generated by large language models [98].

However, traditional rating methods commonly used today, like absolute or comparative

rating, can produce inconsistencies in ratings across annotators and even with a single

annotator’s ratings [10, 229]. This is due to issues such as lack of a common interpretation

of the scale in the case of absolute rating, as well as lack of global context in the case of

comparative rating [285, 288, 56]. Additionally, while current rating methods can capture
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1

HARDER TO EAT EASIER TO EAT

Find the lower bound

HARDER TO EAT EASIER TO EAT

HARDER NOT HARDER NOT EASIER EASIER

2 Find the upper bound 3 Annotated
item gets
added to
the scale

Item to be
annotated

Figure 3.1: The Goldilocks annotation process involves placing items onto a continuous scale

that is populated with items that have previously been annotated. The process is broken

down into three parts. (1) Find the lower bound by moving the left handle of the slider

towards the right and away from its initial position on the far left of the scale. Continue

until encountering an item on the scale that is either greater than or indistinguishable from

the item to be annotated. (2) Find the upper bound in the same way but moving the right

handle towards the left. Continue until encountering an item on the scale that is less than

or indistinguishable from the item to be annotated or until the two handles are on top of

each other, representing complete certainty. (3) Finally, the lower and upper bounds of the

item get added to the scale to join the existing items. Thus, an annotator will be able to see

and compare against their own prior annotated items as they annotate more items. Images

of fruit are taken from XKCD: https://xkcd.com/388/

uncertainty in the ratings, it is difficult to dissect whether the uncertainty is a result of

inherent ambiguity in the item—where certain items cannot be confidently distinguished

from each other [80]—or from disagreement between annotators on where the item should be

placed. Distinguishing these sources of uncertainty offers the potential of better capturing

biases between annotators. It also allows us to develop more calibrated models that only

make high-confidence distinctions between items when a human would have as well [113].

In this paper, we propose a new design for collecting scalar annotations called Goldilocks1

that combines the ability to make direct comparisons between items with the simplicity of

1Somewhat like Goldilocks in “Goldilocks and the Three Bears”, annotators must make use of multiple
comparisons.

https://xkcd.com/388/
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a continuous absolute rating scale (Figure 3.1). To accomplish this, Goldilocks introduces

two main ideas—(1) Calibration using Prior Annotations: we provide previously annotated

items as anchors to ground interpretations of the scale both within and across annotators.

(2) Item-level Resolution Elicitation using Ranges: we use a two-step process to collect

lower and upper bounds for each item instead of a single placement. Goldilocks combines

strengths from both absolute and comparative ratings as annotators make multiple com-

parative judgments while placing an item on an absolute scale. In addition, by directly

eliciting an annotator’s own judgment of an item’s inherent ambiguity instead of relying on

aggregating inter-annotator agreement, Goldilocks can separate agreement from perceived

ambiguity.

To understand the effectiveness of these designs, we conducted three studies comparing

aspects of the Goldilocks annotation process against traditional methods. In the first ex-

periment, we evaluated whether anchoring scales with a shared set of previously annotated

items can improve consistency of item placement across annotators. In the second exper-

iment, we examined whether including an annotator’s own prior annotations as anchors

improves self-consistency. Our final experiment evaluated how well ranges captured using

Goldilocks can recover the distribution of pairwise relationships as measured by traditional

absolute and comparative rating. Each of our experiments were conducted in three domains

representative of the subjective or ambiguous rating tasks that can be challenging for tra-

ditional methods: judging toxicity of online comments (short text), estimating satiety

of food depicted in images (visual), and estimating age from portrait photos (visual).

From the experiments examining anchors, we found that the addition of shared example

anchors to ground rating scales improves rating consistency between annotators in domains

where shared understanding of the scale is low. We also found indications that showing

one’s prior annotations in a session as additional anchors may improve self-consistency on

examples where there is high initial uncertainty. From the experiment examining ranges,

we found that our two-step range annotation process allows us to infer pairwise relationship

distributions that are more robust—simultaneously reflecting both uncertainty of single

annotators and disagreement between annotators—compared to alternatives with a single

value. Finally, we found that the size of range annotations provides an interpretation of



37

uncertainty that is distinct from the uncertainty modeled via inter-annotator disagreement.

We conclude with a discussion of the limitations and opportunities for Goldilocks. Re-

garding efficiency, while our approach is more costly than performing just one of absolute

or comparative rating, our method is cheaper than performing both, which would be neces-

sary to recover the richer data that Goldilocks generates. We discuss cases where a deeper

understanding of uncertainty can be important for generating more trustworthy model pre-

dictions. We also discuss what we envision as a scaled-up Goldilocks workflow: utilizing

iterative improvement through multiple annotation sessions with designs for bootstrapping

the initial set of anchors along with interesting problems to be explored in each of these

aspects.

3.2 Related Work

In this section we review prior work on absolute and comparative rating designs.

One of the most common designs for collecting human ratings today is through absolute

rating scales, often in the form of Likert or semantic differential scales [172, 201]. When

a consistent interpretation of the scale can be established across annotators, designs based

on absolute rating can offer many benefits such as being very efficient (only requiring a

single annotation per item) and providing easily interpretable ratings that are globally

contextualized (rather than depending on other items). However, many annotation domains

do not have commonly accepted scales, meaning that divergent interpretations of a scale

based on abstract text descriptions can become a source of disagreement and inconsistency

across annotators [285]. Even within an annotator’s own annotations, the lack of a well

defined scale means that to maintain consistent ratings, they must refer to their own memory

of their past decisions which can be unreliable [36]. Accounting for these inconsistencies

requires additional effort—either through additional calibration [96] or just identifying and

reporting them [100]. Absolute scales can also be locally unreliable [288]—because items

are only ever compared against the scale’s anchors, pairwise comparisons between two items

with similar values can only be rigorously done if the measurement resolution (uncertainty

around the values) is also accounted for.

As many consistency problems in absolute rating systems result from the lack of direct
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comparisons between actual items, a natural solution is to look towards the other major

alternative—comparative ratings [268]. In comparative rating systems, items are compared

against against one another directly, circumventing the need for a scale as a proxy and

providing highly reliable measurements of local relationships. This kind of comparison can

also be more intuitive for annotators leading to comparative systems sometimes suggested

as a more accurate alternative for ranking items [149, 170]. However, collecting compar-

ative ratings can be considerably more costly (on the order of N comparisons per item)

unless sampling and ranking aggregation methods or partial comparisons, which trade off

additional uncertainty, are used [142, 149]. The focus on local comparisons makes it easy

for an annotator to inadvertently produce annotations that are not globally self-consistent,

requiring post-hoc corrective action that may not reflect an annotator’s actual judgment.

Abandoning global context also means that if a rating score (rather than ranking) is desired,

a numeric mapping like Elo rating needs to be done [56], which often come with assumptions

about uniform spacing between items.

Past work has explored hybrid approaches that combine aspects of comparative and

absolute annotation. For example, Sakaguchi et al. [227] present EASL, a hybrid approach

where items are rated using continuous absolute scales but similar items are grouped to-

gether for annotation allowing for some degree of comparison and contextualization. While

similar in motivation, our work differs in that we make comparison an integral part of

the annotation process rather than an optional source of context, allowing us to provide

more consistency by grounding comparison against global anchors and capture uncertainty

intuitively by using comparisons to establish bounds.

Beyond the individual drawbacks mentioned above, neither of the two traditional anno-

tation methods supports effective separation of the sources of uncertainty as a part of the the

annotation process [130]. These sources include both aleatoric uncertainty, or irreducible

ambiguity inherent to the item being rated, and epistemic uncertainty, or disagreement on

the placement of the item. Absolute rating forces annotators to resolve inherent ambiguity

into a precise placement causing both sources of uncertainty to be mixed. Meanwhile, com-

parative rating only provides an indirect view into inherent ambiguity through the size of

equivalence sets. Separating the two sources of uncertainty is especially desirable as it can
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be an important tool for understanding properties of the items being annotated separate

from biases or divergent interpretations among annotators.

3.3 Design

Absolute rating can suffer from inconsistent scale interpretations while comparative rating

lacks global context. Our design for the Goldilocks annotation system takes a hybrid ap-

proach, with the specific goals of: (1) improving consistency (between annotators and over

time within annotator), and (2) enabling intuitive indication of uncertainty with respect to

the scale for each example being labeled.

In this section, we will describe the designs that address each of the goals above followed

by additional aspects of operating the complete annotation workflow. At the end, we will

discuss specific details of the design decisions we made for our implementation separate

from the overall design of the Goldilocks annotation process.

3.3.1 Grounding with Prior Examples

We base the main interactions in Goldilocks around an absolute rating design. To mitigate

the aforementioned drawbacks of absolute rating, Goldilocks uses prior examples in addition

to abstract descriptions to ground the scale, making it possible to make pairwise comparisons

while still using absolute rating interactions. Prior work has shown that human judgments

measured explicitly with comparisons can be easier than direct labels for some tasks [245,

308, 279], and fixed reference anchors have been used in other procedures to provide a more

concrete grounding of scales [277]. Similar ideas that use comparisons against samples to

contextualize abstract scales also exist in other fields like cognitive psychology [256].

Goldilocks uses a set of previously-annotated examples to add two additional pieces

of information to the absolute rating scale—global grounding and local comparisons,

as shown in Figure 3.2. With global grounding, a small set of representative examples

are selected and placed as anchors along the rating scale, similar to existing text-based

anchors for levels in traditional absolute rating. Using concrete examples allows annotators

to quickly understand and estimate where each item could fit on the scale. Since there can

be many previously-annotated examples, we make sure to only visualize a smaller subset
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Global Grounding
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Figure 3.2: A screenshot showing the comparisons that annotators can make while placing

the upper or lower bound of an item on the scale in the Goldilocks annotation process. To

support grounding with examples, Goldilocks provides: (A) global grounding by selecting

5–7 previously annotated items that are maximally spread out on the scale and placing

them as anchors to support coarse and fast global adjustment. (B) Local comparisons of

previously annotated items directly to the left and right of the slider handle are shown as

an annotator scrubs the handle across the slider. Local items that are not one of the global

examples are inserted as anchors. Together, this allows annotators to make fine-grained

local adjustments.
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of examples (around 5 to 7, similar to typical numbers of Likert levels) that are maximally

spread out along the scale. In practice, there are many ways to select these examples. The

specific selection process we used is outlined in 3.3.4.

While global grounding is useful for making coarse placements, it alone is insufficient for

narrowing down specific placement of items. To help the annotators find specific placements,

Goldilocks also surfaces local comparisons by showing the immediate neighborhood above

and below a position on the scale. As annotators scrub along a continuous scale, we show

side-by-side comparisons between the current indicated position and the closest items above

and below this position. Placements of these neighbors are also indicated on the scale itself,

allowing for annotators to adjust proportional distance to each neighbor based on their

evaluation of the item being placed. These designs together allow for a more consistent and

concrete instantiation of the scale across multiple annotators.

Finally, Goldilocks addresses local self-consistency by supporting dynamic augmentation

of the anchor examples used to ground the rating scale: as annotators progress in an anno-

tation session, their own annotations for earlier items are also incorporated into the set of

references alongside any pre-seeded ones (Step 3 of Figure 3.1). These personal annotations

will then also take part in both global grounding and local comparisons, making it possible

to directly compare new items against past annotations produced in the same session.

One potential limitation for any annotation process involving examples is how to start

the annotation when no past examples are available. Goldilocks accounts for this with a

separate procedure to curate an initial seed set that is deployed when past examples do not

exist. We will dive into more detail about the selection of this initial seed set of items to

jumpstart annotation in Section 3.3.3. In the discussion section, we will also discuss avenues

of addressing other challenges in example-based grounding such as scaling up annotation

with iterative improvement and addressing density as the scale becomes populated with

more annotated examples.
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3.3.2 Two-Step Range Annotation

Not all items can be meaningfully distinguished from all other items by an annotator.

Instead of forcing the breaking of ties, most designs for side-by-side comparisons allow

annotators to indicate “indistinguishable” or “tied” pairs [165]—however, there is no such

elicitation process for traditional absolute rating designs. With Goldilocks, we propose a

new process that allows annotators to indicate “indistinguishable” pairwise relationships on

an absolute rating scale. To achieve this, we take inspiration from prior work [81], where

annotators were asked to select all potentially relevant labels for an item instead of a single

best label option. We extend this into the continuous scale domain by introducing the

concept of eliciting “range” labels—where upper and lower bounds establish a subsection

of the scale representing where an item could be placed. Our range-based approach is

also reminiscent of methods like best-worst scaling [149] in comparative rating, which can

efficiently capture pairwise relationships across many items.

Prior designs have explored alternatives to eliciting uncertainty for scalar annotations,

such as in the form of a weighted distribution across surrounding anchor labels [55]. How-

ever, estimating distributions in this way can be challenging for humans, as an annotator

has little guidance on how to allocate weight to the anchoring labels they find reasonable.

In Goldilocks, we can take advantage of the comparisons affored by grounding examples to

contextualize distributions intuitively. Specifically, we break down the process of eliciting

ranges into two steps: finding the lower bound and then finding the upper bound (Steps 1

and 2 in Figure 3.1). In the first step, an annotator can utilize the past example anchors

to quickly search for where to place the lower bound of an item using comparisons to work

up the scale and finding the position where they can no longer confidently decide that the

closest reference should be lower on the scale than the annotated item. Similarly, in the

second step, an annotator establishes the upper bound working down from the scale and

stopping when they can no longer identify a reference item as higher than the annotated

item.

Positions of anchor items on the scale are themselves internally represented by ranges.

During each step, the anchors are visualized using the corresponding opposing bound: when
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Figure 3.3: Screenshots illustrating the two steps in the cold start process for Goldilocks.

Step 1 (Left): A seed set can be created by using the cold start interface to randomly

draw examples and drop existing ones to create an adequately sized representative set of

examples. Step 2 (Right): The items from the seed set are placed onto a scale by adjusting

their position relative to each other, forming the initial values that can be used to bootstrap

the annotation tasks in Goldilocks. These initial items can later be reintroduced in the

Goldilocks annotation process once other items have been annotated, in order to collect

ranges.

finding the lower bound for an item, anchor items are placed on the scale according to their

upper bound values and vice versa for the upper bound (shown in Figure 3.1). This two-step

process allows an annotator to easily establish a range that is intuitive and meaningful—it

represents the range where the annotator is no longer able to confidently distinguish items.

3.3.3 Cold Start Process

Annotation of any item in the Goldilocks process requires there to be previously-annotated

items using the same scale in order to populate the grounding examples and comparisons.

However, if prior annotations do not exist yet, they must be created in what we call the

cold start process.

The cold start process (shown in Figure 3.3) consists of two steps—representative ex-

ample selection and placement on a scale. In the example selection step, Goldilocks draws
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a certain amount of un-annotated examples randomly from the set of data to be annotated.

An annotator can then adjust this set by requesting to draw additional random examples

or dropping existing examples. The goal is to adjust this set to be more representative such

that there are at least a certain number of examples in the set (defined based on task) and

that the examples are maximally different from each other. A similar sample and replace

approach was used in Alloy [48] to bootstrap good seed sets for clustering. In the placement

step, the annotator successively places all the examples onto an absolute rating scale by

comparing them against each other, with the ability to adjust the position of any item on

the scale. The scale can be blank at the outset or be initialized with text anchors as shown

in Figure 3.3.

The cold start process can be completed with recruited annotators, where the resulting

placements are aggregated across them to create the set of seed examples that become

the first set of Goldilocks example anchors. Alternatively, the cold start process can be

completed by the task designer or by domain experts, making it a way for requesters to

specify a scale without having to design a set of training instances. In this case, the steps

in the cold start process are used to assist the exploration of the dataset. Once additional

items have been annotated using Goldilocks, the set of anchor examples can be augmented

with this newly annotated data. If desired, the initial seed examples can be re-annotated

by removing them from the scale and re-introducing them as new items to be placed in an

iterative improvement fashion.

3.3.4 Implementation Details

We outline specific details about our implementation of Goldilocks that we use for experi-

ments. We implemented Goldilocks based on a custom slider component using JavaScript,

HTML, and CSS. Global grounding examples were incorporated as part of the scale via

fixed anchor tick markers below the scale. Examples were then rendered in a fixed size

box attached to each tick mark. Images were scaled to cover the box, and short text was

presented as as scrollable content within each box (Fig 3.2). The interface selects global

grounding examples by sorting the set of potential examples and progressively selecting
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examples that are at least a certain minimum distance from each other. As an annotators

scrolls the slider handle, we dynamically search for immediate neighbor examples above and

below the slider position and render them as additional anchors placed among the global

grounding examples. Neighbor examples are also placed next to the item being annotated to

facilitate comparison. Vertical positioning of the rendered anchor examples is dynamically

adjusted so that they never visually overlap with each other.

As our experiments were conducted on the Amazon Mechanical Turk crowdsourcing

platform, we also implemented a gated training [178] phase for each of the annotation ex-

periments. This phase focuses on training the crowd workers to use the annotation interface

rather than annotating a specific task domain, so we used a common training example based

on age estimation across all domains. Workers are presented with a prompt describing the

task and interface, including specific actions that can be performed using the interface. As

workers complete each annotation step for the training task, we check their partial answers

against the reference and provide just-in-time feedback if they make a mistake. Once the

worker accurately completes the training task, they will progress into the actual annotation

task and given the specific instructions for the domain they are annotating. We imple-

mented some basic quality control measures to prevent gaming of the task such as requiring

workers to have interacted with the slider before they are allowed to proceed onto the next

item.

3.4 Experiments

In order to answer the research questions behind our Goldilocks designs, we conducted

annotation experiments using data from 3 domains on the Amazon Mechanical Turk (AMT)

platform and using interfaces that isolate specific aspects of Goldilocks for experimentation.

Specifically, we tested the following hypotheses:

• RQ1: Does grounding with examples improve consistency?

– H1-a: Using example-based anchors reduces the amount of disagreement between

annotators on ratings of items compared with using semantic text descriptions

as anchors.
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– H1-b: Including an annotator’s own annotations from the session as additional

anchors results in improved self-consistency reflected by less disagreement with

their past placement when placing items again.

• RQ2: Does the range-based process create robust output for understanding relation-

ships between items?

– H2-a: Range annotation captures item resolution and thus can more accurately

model distributions of pairwise relationships (more than, less than, indistinguish-

able) compared to distributions produced by comparing single value annotation

output.

– H2-b: Resolution of items captured using range annotation are better for mod-

eling pairwise relationships than resolution captured through inter-annotator

(dis)agreement.

• RQ3: Does the uncertainty about items captured through the size of the ranges cor-

relate with uncertainty captured in the form of inter-annotator disagreement in tra-

ditional semantic scale absolute ratings?

3.4.1 Annotation Task Design

We describe in more detail the task design we used in our annotation experiments, including

interfaces derived from Goldilocks and ones from traditional annotation. Unique crowd

workers were recruited to use one of the following interfaces to provide annotations for a

group of examples:

• Single Value with Semantic Anchors (SV-SA): In each step, annotators are

are asked to find a slider position that represents the placement of one item in the

annotation sequence using a semantic scale as reference (Figure 3.4 top).

• Single Value with Example Anchors (SV-EA): In each step, annotators are

asked to find a slider position that represents the placement of one item in the anno-

tation sequence using a scale anchored by other example item instances (Figure 3.4
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bottom). Depending on the experiment and condition, the annotator’s past place-

ments in earlier steps may become additional anchors for steps in the future.

• Pairwise: Annotators were asked to compare all pairs of items. For each step in the

annotation sequence, an annotator was presented with 1 reference item and a list of

items it has not been compared to yet. For each item, the annotator was asked to

judge the relationship of that item compared with the reference item (>,<,≈).

• Range with Hybrid Anchors (R-HA): This represents the full proposed Goldilocks

design. Annotators are given both semantic labels and example instances as reference

anchors. For each item, an annotator is first asked to place a lower bound marker

for the item followed by placing an upper bound marker. Ranges annotated in earlier

steps are incorporated as additional anchors.

Our first study (3.4.5) examines whether example anchors (SV-EA) improve agreement

between annotators compated to semantic anchors (SV-SA). Following that, our second

study (3.4.6) examines whether including an annotator’s past placements improves within

annotator consistency when using the SV-EA annotation design. Finally, in our last study

(3.4.7), we collect ground truth pairwise relationships directly using the Pairwise interface,

and compare how well we can recover the distribution of these relationships using data from

the traditional single-value semantic anchor approache (with SV-SA) with that of the full

Goldilocks range annotation design (R-HA).

In all cases, annotators were first given a brief gated “interface training” instructional

stage where they are guided to annotate a single item (based on an age estimation domain)

using the annotation interface they were assigned. Instructions are provided during the pro-

cess to guide them through using the interface and feedback is given if the annotator makes

a mistake in the annotation. Once an annotator completes the annotation process without

mistake, they are given details about the actual task domain they are annotating. Each

annotator is then prompted to annotate a sequence of items using the assigned condition’s

interface.
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3.4.2 Annotation Domains and Datasets

We selected the following 3 annotation domains to to conduct annotation tasks: toxicity,

satiety and age. These domains were selected to represent common types of rating tasks

that have subjective aspects where a Goldilocks style approach to annotation could be

desirable. These tasks also span two different modalities, short text and image, which

closely align with rating tasks commonly conducted.

Toxicity

For this task domain, annotators judge the degree of toxicity in a short online comment,

estimating how strongly the author of the comment intended to offend. Research has demon-

strated that human judgments of online toxicity vary considerably from rater to rater due to

subjectivity of the task [229]. The toxicity domain represents a short text annotation task

where annotators compare pieces of text that only consist of a couple of sentences. Similar

tasks include judging fluency of text generation or judging text sentiment. To produce the

annotation dataset for this domain, we sampled a 50:50 label-balanced subset of 100 com-

ments from the Jigsaw comment toxicity classification challenge dataset [294] behind the

Perspective API2 which contains Wikipedia comments and binary labels of toxicity. Only

comments that had between 4 and 280 characters (after markup removal) were sampled.

When presenting the task to crowd workers, we borrow Perspective API’s definition of a

toxic comment: ‘a rude, disrespectful, or unreasonable comment that is likely to make you

leave a discussion’. We also contrastively define healthy comments as those ‘relevant to the

discussion’ and further note that comments ‘can express disagreement’.

Satiety

For this task domain, annotators judge how filling (satiable) is the food depicted in an image,

taking into account the type of food and the portion size. The satiety domain represents an

annotation task that contains uncertainty in the visual modality. Prior research has shown

that while pairwise comparisons of food for expected satiety can result in robust ratings,

2https://www.perspectiveapi.com

https://www.perspectiveapi.com
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personal familiarity also resulted in biases [37]. We produced the annotation dataset by

selecting a subset of food types from the Food-101 dataset [31] and then sampling images

for each selected food type up to a total of 80. One round of manual inspection was also

done to verify food was clearly discernible in all images.

Age

For this task domain, annotators estimate the age of the subject depicted in a photo. The

age domain is another annotation task in the visual modality that contains uncertainty,

however age is grounded to a concrete scale that we expect most people to be already

familiar with. We produced the annotation dataset by sampling a subset of 100 portrait

images from the FG-NET face dataset [92].

3.4.3 Anchors for each Domain

To maintain consistency across experiments, we defined a set of text-based semantic differ-

ential scale anchors and a set of example anchors for each domain that was held constant

across experiments. For the semantic scale anchors, we used text descriptions similar to 7-

point Likert or semantic differential scales. Example anchors consisted of 7 roughly evenly

spaced in-domain items each associated with a position on the scale.

For the toxicity domain, we used the following text descriptions for semantic scale

levels: “1 - Not Toxic at All”, “4 - Somewhat Toxic” and “7 - Extremely Toxic”. Other

levels (2, 3, 5, 6) on the scale were presented as a number without any associated description.

The 7 example anchors were manually picked from a set of annotated examples produced

from a pilot run of the cold start process with crowd annotators.

For the satiety domain, we used the following text descriptions for semantic scale levels:

“1 - Very Hungry’, “2 - Somewhat Hungry”, “3 - Almost Satisfied”, “4 - Satisfied’, “5 -

Full”, “6 - Very Full”, and “7 - Can’t Finish”. The 7 example anchors were produced by

the authors producing gold annotations directly using the cold start process interface.

For the age domain, we used text scale levels based on numeric age values ranging from

“0” to “60+” incrementing in steps of 10. The 7 example anchors were picked by finding
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all images corresponding to each semantic age level and then drawing a random one at each

level and assigning its value to be the ground truth age.

3.4.4 Crowd Annotator Recruitment and Compensation

We recruited annotators for our experiments from the Amazon Mechanical Turk crowdsourc-

ing platform from the United States with the qualification of approval rate no lower than

90% and over 1000 approved HITs completed in the past. Across all studies, annotators

were only allowed to participate in annotation if they had both not used the corresponding

interface and not annotated the domain before. Overall, we recruited 655 unique workers

across all 3 studies with an additional 44 unique workers who only participated in the pair-

wise annotation used to establish the ground truth for Study 3. For all annotation tasks,

we set a base pay of $0.10 which was given if the worker completed the training phase. Re-

maining compensation was distributed in the form of a bonus based on the interface being

used and the number of items annotated.

Participants assigned to the Single Value tasks (both with Semantic and Example

anchors) were given a per-item bonus of $0.03 (for annotating a group of 10 or 20 items).

Participants assigned to the Range tasks were given a per-item bonus of $0.05 (a total

of 10 items). Participants assigned to the Pairwise annotation tasks were given a per-

comparison bonus of $0.01 (a total of 45 comparisons). We set pay based on our estimate

of time needed taken from pilot studies and used completion bonuses to correct for any

discrepancies. Based on condition, a final completion bonus of $1.00, $0.50, or $1.00 for

each of the previously mentioned interfaces respectively was provided. We distributed the

final bonus in 2 batches as the initial completion bonus values we set for the tasks resulted

in a measured hourly pay that was lower than desired. The final hourly rate measured

between $9.70 and $10.90 across the various domains and interfaces when assuming the

median work time for each interface.

Manual quality checks were conducted on cases with a large number of similarly anno-

tated values across different items (e.g., consistently placing at 0 or 1) as well as abnormally

short work time, resulting in removal of 5 workers (and re-collection of corresponding anno-
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SEMANTIC Condition

EXAMPLE Condition

Figure 3.4: Screenshot showing the two interfaces conditions (top: semantic, and bot-

tom:example) used to evaluate consistency consistency between annotators. Examples

shown in figure are from the toxicity domain pilot tasks. (Content warning: toxic com-

ments including offensive and swear words are shown in their original form as a part of this

figure.)

tations) across all experiments. Removed workers were included in the counts of recruited

workers above. Within the removed workers, those intentionally spamming across their en-

tire sequence of annotations (choosing the exact same placement for all items) only received

the base pay for the task.

3.4.5 Study 1: Evaluating Consistency Between Annotators

We first explore whether example-based grounding presented in Goldilocks can improve

consistency between different annotators (H1-a). For this experiment, we assigned each

annotator to one of two conditions: semantic, where they were given 7-point text-based
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semantic anchors and presented with the SV-SA interface; or example, where they are

given 7 example instances placed onto the scale using the SV-EA interface. For each

domain, the anchors used are detailed in 3.4.3. We drew example anchor instances for the

toxicity and satiety domains from past pilots of semantic differential scale annotation

on a disjoint set of items, using average rating to establish their initial placement. For the

age domain, example instances were selected from a separate set of images drawn from the

same dataset using the included ground truth age labels for initial placement.

After the training, each annotator was tasked with annotating a sequence of 10 items

using the interface of the condition they were assigned. To create sequences, each domain’s

dataset was shuffled once and then partitioned into equal-sized disjoint sets. Each sequence

for each domain was annotated by 10 workers in each of the two conditions. Annotators’

placements of items on the scale was mapped as a continuous numeric value within the range

[0, 1]. For the toxicity domain, the first and last items in each sequence were set to the

same item to pilot measurement of within-annotator consistency, so only the 8 remaining

annotations were used for analysis in this experiment.

Results

To evaluate the amount of consistency between annotators for each annotated data point, we

computed the standard error across annotators as a proxy for the amount of disagreement.

We note that the standard error values are comparable across conditions as the range of

values on the scale and number of annotators was fixed between all conditions. We also

evaluated the significance of any difference by conducting a two-tailed paired t-test on the

standard error of each annotated item across each pair of conditions (semantic versus

example) in each domain. A summary of the results are shown in Table 3.1.

We observed a statistically significant decrease in value disagreement across annotators

for the toxicity and satiety domains, providing support for hypothesis H1-a. However,

we observed a statistically significant increase in disagreement across annotators for the

age domain, which contradicts H1-a. We then plotted the disagreement (standard error) in

both conditions for each item against the mean value across both conditions in each domain
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Table 3.1: Results for the experiment measuring consistency between annotators compar-

ing between semantic and example conditions. Average disagreement (Avg. Dis.) is

calculated as the standard error (over 10 annotators) for each instance averaged across all

annotated instances. Significance testing done as a paired t-test across conditions for dis-

agreement. We also examine how much of the 0-1 scale is being used by annotators on

average in each condition by averaging each annotator’s minimum and maximum rating

values.

Domain Condition Avg. Dis. Significance Scale Util. (Min, Max)

toxicity semantic 0.07348 P <0.001 0.773 (0.103, 0.876)

example 0.06379 Very Significant 0.794 (0.104, 0.899)

satiety semantic 0.06373 P < 0.005 0.603 (0.230, 0.833)

example 0.05548 Significant 0.635 (0.166, 0.801)

age semantic 0.02765 P < 0.001 0.696 (0.054, 0.751)

example 0.04443 Very Significant 0.593 (0.072, 0.665)

to understand the behavioral differences we see with the age domain as shown in Figure 3.5.

We find that the pattern for disagreement in the semantic condition is consistent with

behavior observed in prior work [288] for similar domains with subjectivity and uncertainty.

However, we note that overall disagreement between annotators was lower in the age domain

compared to the other two domains. We also noted that scale utilization was similar in

both conditions for the toxicity and satiety domains, exhibiting a slightly increase in

utilization of the full scale in the example condition. Prior work in psychology has shown

that increased spacing of items has relatively minimal effect on accurate placement when

items are discriminable [255] so we don’t expect this slight increase in scale utilization to

affect disagreement levels. However, opposite to the other domains, the utilization of the

scale in the age domain was 10% lower for the example condition. We hypothesize that

unlike the toxicity and satiety domains, estimating age from appearance is a domain
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Figure 3.5: Scatter plots of disagreement between workers (as measured by standard error)

for each item plotted against the mean annotated value of each item. Trendlines represent

a fit with a degree 2 polynomial.

where a numeric age scale is actually more consistently understood by human annotators,

thus example anchors provide no further benefit to annotators in understanding the scale.

The scatter plots in Figure 3.5c indicate that uncertainty for younger subjects was much

higher in the example condition. Combined with the lower scale utilization we observed

for example, we hypothesize that uncertainty about judging exact age is higher for older

subjects. As we only show example-based anchors in the example condition, this increased

uncertainty about the reference images depicting older subjects may have resulted in more

hesitation to use the higher values on the scale. This suggests that: (1) comparisons with

anchor examples mostly benefit cases where shared understanding of the scale is low, and

(2) example-based anchoring should be used in addition to semantic anchors as only using

example anchors can be detrimental to consistency if the domain is one where the semantic

scale has a high degree of shared understanding already. Drawing from this experiment, our

full Goldilocks annotation process uses both example-based anchors and semantic anchors

to frame the scale.

3.4.6 Study 2: Evaluating Consistency Over Time Within Annotator

For our second experiment, we explored the effect on self-consistency resulting from includ-

ing an annotator’s own past annotations as additional reference examples augmenting an
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initial seed set (H1-b). The example-based SV-EA interface was used for this experiment,

with each annotator was assigned one of the two conditions: control, where only the

seed set examples was used for reference anchors; or augment, where an annotator’s own

past annotations in the same session were included along the seed examples as references.

Since we are interested mainly in the effect on self-consistency, we reduced the initial set

of seed examples to just 3 examples for each domain drawn as a subset of the 7 example

instances used in the example condition of the previous experiment. We took the items

corresponding to the lowest, highest, and median ratings.

The items in each domain were shuffled and then partitioned into sequences of size 20,

resulting in 5 sequences for the toxicity and age domains and 4 sequences for the satiety

domain. Each annotator was given interface training and then subsequently tasked with

annotating one of the sequences (of 20 items). To probe for changes in the rating of an item,

we replaced the 10th and 20th items in each sequence above with repeats of the first item,

which we will refer to as the probe item. When the probe item is annotated in the augment

condition, the annotator’s own past annotation for the probe item will be withheld from

the set of reference items. We measure ∆1 as the size of the value change between the first

and second annotation attempts of the probe item and ∆2 as the size of the value change

between the second and third annotation attempts of the probe item.

Results

From Table 3.2 we can see that for most domain condition pairs, the absolute amount of

an annotator’s disagreement with their past rating tends to exhibit a natural decrease as

they get familiarized with the scale. Since the magnitude of initial self-disagreement for the

probe item varies for each annotator, comparing absolute change in self-disagreement can

be misleading as the same proportional change in self-disagreement will reflect as a larger

absolute change. To account for these factors, we instead look to the self-disagreement ratio

(∆2/∆1) as a measurement for the proportional decrease (or increase) in self-disagreement.

Ratios below 1 indicate that self-disagreement has decreased while those above 1 indicate an

increase. In Figure 3.6, we show a histogram of this ratio on a log-scale for each condition
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Figure 3.6: Histogram of distance ratios between first re-annotation and second re-

annotation of the probe item on a log scale. Negative values indicate more decrease in

disagreement with the annotator’s own answers while positive values indicate more increase

in disagreement with the annotator’s own answers. Ratios were smoothed using Laplace

smoothing with ϵ = 10−8.

in this study.

Our first step is understanding whether self consistency improves over time simply from

doing the task and being exposed to more examples. We conducted a sign test for each of

the task domains and find that in the toxicity domain, self consistency does improve over

time (P ¡ 0.005) for both control and augment conditions. Self consistency was not found

to have a significant across-the-board improvement in any of the other domains. Comparing

across the two conditions, we did not measure significant effect on self-disagreement ratio

in any of the 3 domains.

We then hypothesized that effect on self-consistency may not be uniform across all probe

items—if an annotator already has low self-disagreement in the first re-annotation round

(∆1), it likely implies there is little uncertainty about the placement of the item and thus

we shouldn’t expect further improvements. Considering this, we now look at only the

top 30% ‘most uncertain’ annotation sessions for each domain and condition combination,

as sorted by decreasing ∆1. This set consists of 15 sessions for the toxicity and age

domains and 12 for the satiety domain. In this high-disagreement subset of sessions, we

find that augmenting reference examples (augment) with past annotations in the session
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Table 3.2: Table breakdown of the change in rating for the probe item (compared to its last

most recent rating) when re-annotated for the first time (∆1) and when re-annotated the

second time (∆2). The “Top Avg. ∆” columns represent the averages when only considering

the instances where ∆1 was among the top 30% most uncertain.

Domain Condition Avg. ∆1 Avg. ∆2 Top Avg. ∆1 Top Avg. ∆2

toxicity No Self (control) 0.105 0.062 0.244 0.077

With Self (augment) 0.133 0.090 0.347 0.095

satiety No Self (control) 0.140 0.086 0.308 0.171

With Self (augment) 0.126 0.052 0.286 0.027

age No Self (control) 0.110 0.063 0.280 0.133

With Self (augment) 0.063 0.066 0.157 0.067

does result in a larger proportional reduction in self-disagreement (reflected through self-

disagreement ratios) when compared to control for both the toxicity and satiety

domains. For the satiety domain, median proportional decrease in self-disagreement was

0.076 (92% reduction in self disagreement) for the augment condition compared to 0.263

(74% reduction) for the control. The median ratios were 0.190 (81% reduction) and

0.310 (69% reduction) respectively for the toxicity domain. However, the limited amount

of data points in these groups means we do not have statistical power to claim significance.

Overall, we don’t find sufficient support for H1-b, but we note a pattern of improvement in

self-consistency for items with high initial self-disagreement when including an annotator’s

own prior annotations as additional references. Similar to the previous section, we were

unable to observe benefit of augmenting reference examples on the age domain, likely due

to the already limited utility of reference examples in this domain.
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3.4.7 Study 3: Evaluating Range Annotation

For the final experiment, we explored how robustly ranges produced by the two-step an-

notation process in Goldilocks reflect properties of relationships between items. In this

experiment, annotators were asked to annotate a sequence of items using the full Goldilocks

two-step annotation process (using the R-HA design shown in Figure 3.1). The annotation

experiments were conducted on the toxicity and satiety domains with sequences gener-

ated by shuffling each dataset and partitioning the dataset into groups of size 10, resulting

in 10 and 8 groups respectively for the two domains. We then recruited 5 annotators to

annotate each sequence in each of the domains.

At the start of the task, each annotator was first trained on how to use the two-step

annotation system described earlier in Section 3.3.2 by annotating a sample task with guid-

ance given during each step. After the annotator completes the training example item, they

then proceed to annotate the assigned sequence of 10 task items. To seed the initial refer-

ence examples, we used the same reference anchors as used in the first experiment. We also

included each annotator’s own annotations as anchors during their annotation in a similar

way as the augment condition in the second experiment.

Establishing Pairwise Relationship Distributions

In order to measure ground truth distributions over the pairwise relationships, we recruited

separate workers and used the Pairwise design to directly collect pairwise judgments on

relationships (>,<,≈) between all pairs of items in each group. Distributions across the 3

relationship types were then created by counting the proportion of annotators indicating

each type of relationship across for each pair of items. These distributions reflect the degree

of disagreement among annotators for the pairwise relationship.

We then considered how one would recover similar distributions across relationships for

pairs of items using the traditional approach of single-value absolute rating scales based on

semantic anchors, creating two alternative baselines. Since the traditional approach cannot

simultaneously elicit item ambiguity and agreement, producing a similar distribution would

involve a tradeoff.
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For the Direct baseline, we assume that there is no item-level ambiguity, meaning that

even local pairwise comparisons can be made by directly comparing the raw values from the

absolute rating. For example, we count an annotator as indicating a “>” relationship on a

pair (a, b) if their single rating scores indicate ra > rb. One can generally expect this to be

reliable when a and b are far apart on the scale but it can be much less reliable for close

neighbors.

For the Infer baseline, we assume that all disagreement observed between annotators

reflects the ambiguity of the item. In this case, we aggregate the individual ratings into

a single 95% confidence interval for each item by measuring the mean and standard error

between these samples. We then infer the relationship between of a pair of items by com-

paring the confidence intervals, treating overlapping intervals as indicating a relationship of

‘indistinguishable (≈)’. In this case, the distribution across relationships for a pair would

see all the probability mass allocated to the single relationship measurement produced by

the comparison.

Finally, with Goldilocks annotation, we have range evaluations on a per-annotator gran-

ularity. For each annotator, we can use their range labels to find the relationship between

two items, treating overlaps as indicating ≈. We can then produce a distribution by count-

ing the proportion of annotators indicating each relationship. With Goldilocks we don’t

need to make tradeoffs between measuring item ambiguity and agreement.

Results: Recovering relationships between items

To compare and quantify how robustly each of these methods recovers relationships, we

measured the Wasserstein distance between relationship distributions for each of the 3 ap-

proaches in 3.4.7 and the ground truth relationship distributions collected through pairwise

comparative rating. Table 3.3 shows that among the 3 methods to produce distributions over

pairwise relationships, recovering distributions using range labels most accurately agrees

with the ground truth distribution, supporting H2-a.

We found that using inter-annotator agreement to infer the inherent ambiguity (referred

to by prior works as “resolution”) of items results in an over-estimate of the amount of
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Table 3.3: Comparing the quality of the pairwise relationship distributions as recovered

by (1) ranges collected in Goldilocks, (2) directly comparing raw values picked by each

annotator, and (3) indirectly using ranges inferred from the 95% confidence intervals. De-

tails in 3.4.7. Wasserstein distance to the ground truth distribution (collected directly using

pairwise comparisons) was computed for each case. Goldilocks ranges produce distributions

the closest (least distance) to the ground truth.

Domain Avg. WD (Range) Avg. WD (Direct) Avg. WD (Infer)

toxicity 0.332314 0.366944 0.450556

satiety 0.424352 0.449444 0.597222

ambiguity. In the toxicity domain, 43.5% of the relationships that were distinguished in

the ground truth distribution collected directly through pairwise comparisons were inferred

to be “indistinguishable”, with this ratio as high as 68.1% in the satiety domain. In

contrast, ranges over-estimate ambiguity (under-estimating resolution) only about half as

often, with 22.1% and 30.9% respectively. This supports the idea that ranges are a better

model of resolution (H2-b).

Results: Comparing aggregation uncertainty with range sizes

Finally, we explored differences in the type of uncertainty measured through Goldilocks

annotation ranges sizes with uncertainty measured by confidence intervals of annotations

using semantic scales. We hypothesize that since ranges focus on capturing resolution

(distinguishability against peers) of items, the resulting uncertainty represented by the size

of ranges will be different than uncertainty represented by inter-annotator disagreement

metrics, though the two may still be related.

First we look at the behavior of the two kinds of uncertainty measurements across

the range of values on the scale. Figure 3.7 plots the two kinds of uncertainty: average

size of ranges and 95% confidence intervals for semantic scale annotation values. We find
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Figure 3.7: Comparison of uncertainty measured as range sizes from Goldilocks annotation

with uncertainty measured through standard error confidence intervals from traditional

single-value semantic scale annotation. Trendlines represent a fit with degree 2 polynomials.

that overall range sizes represent uncertainty lower than that measured by 95% confidence

intervals from aggregating semantic scale annotation (P ¡ 0.001). This makes intuitive sense

as we would expect item level resolution to be a tighter uncertainty. We also find that in

the toxicity domain, both types of uncertainty behave similarly with respect to extreme

values on the scale corresponding to lower values of uncertainty in definitions. In the

satiety domain, however, we found that lower values (corresponding to foods depictions

that are less satiating) corresponded to larger uncertainty in the form of disagreement but

not with range sizes. We think this may result from higher disagreement about what foods

are not satiating among different annotators but with annotators each confident about their

own determination of satiety (high resolution/distinguishablity of items).

Looking at correlation between the values produced by the two types of uncertainty,

we observe only very weak correlation between range sizes and confidence intervals (scaled

standard error) for both toxicity and satiety domains with R2 < 0.01 in both domains.

This indicates that the uncertainty we measure with ranges does not have significant corre-

lation with inter-annotator disagreement measures like standard error (RQ3). We note that

with range annotations, inter-annotator disagreement measures can be further computed



62

for the range bounds themselves to evaluate disagreement separately from item uncertainty

(resolution) captured by ranges. However, as single-value semantic scalar annotations can’t

facilitate separation of the two uncertainty types, we are unable to make direct compar-

isons.

3.5 Discussion

In the prior sections, we demonstrate that the ideas of grounding absolute rating scales with

examples and explicitly capturing item-level measurement resolution can be beneficial for

more consistent and robust annotation of subjective domains lacking shared understanding

of absolute ratings scales. In this section, we will discuss some of the other considerations

in adapting Goldilocks as a full annotation technique, including examining the annotation

efficiency (in terms of work time) of Goldilocks compared to hybrid application of traditional

methods and envisioning how Goldilocks may be scaled up to multiple annotation sessions

using iterative-improvement processes. We will also discuss limitations of the Goldilocks

process and potential avenues for future work.

3.5.1 Annotation Efficiency and Cost of Range Annotations

One of the main advantages of the Goldilocks annotation process is the ability to capture

item-level ambiguity and disagreement between annotators simultaneously through the use

of range annotations. However, separating these sources of uncertainty comes at an extra

cost for the data collection process—even though range bounds in Goldilocks can be collected

with low overhead compared to traditional absolute rating, the tasks can be more work for

the requester to set up. This presents a tradeoff for practitioners when deciding whether the

higher quality of data is worth the cost. Prior work simulating data annotation tasks inspired

by measuring objective properties has shown that, given a fixed budget, some learning

algorithms actually benefit more from a larger amount of lower-quality annotations on novel

examples rather than higher-quality annotations on fewer items [173]. Indeed, for these tasks

where disagreement is likely caused by noisy perception, it’s likely that a practitioner will

see relatively little benefit by separating item-level ambiguity from annotator disagreement.

However, with the rising demand for training data in domains that involves subjectivity or
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nuance, understanding and accounting for sources of uncertainty and limitations within the

data itself has become increasingly important for building models that are trustworthy rather

than just more performant [24]. Separating disagreement from inherent ambiguity using

range-based annotation can also offer better transparency about the annotation process and

data produced, allowing for the potential to diagnose model limitations and human biases

even into the future. In these cases, the higher cost of setting up Goldilocks annotations

can be justified by the richer information that can be derived from range-based rating data.

Of course, Goldilocks is not the only approach to capture both item-level ambiguity

and disagreement. It is possible to use traditional absolute and comparative rating to

separately collect scalar annotations and pairwise comparisons to recreate absolute rating

estimates and pairwise relationship distributions. We also wanted to understand whether

Goldilocks can provide efficiency benefits when compared to hypothetical hybrid approches

using only a combination of traditional annotation interfaces. We look at the work time

taken by crowd workers in our various experiments to extrapolate the effort necessary for

such an approach. Assuming a task group size of 10 items, we find that the Goldilocks

two-step workflow results in a median work time (including both training and annotation)

of 429.5s per worker per task group on the satiety domain and 592.5s per worker per

task group on the toxicity domain. Collecting only single value rating annotations with

Likert-style anchors takes a median work time of 307.5s per worker per task group on the

satiety domain and 238s per worker per task group in the toxicity domain. Finally,

comparative rating on a group of size 10 implies 45 pairwise comparisons to capture full

pairwise relationships, which takes a median time of 513.5s per worker per group and 502s

per worker per group for the two domains respectively. Thus we expect that at the same

level of redundancy for annotations, Goldilocks can be 20-48% more efficient through the use

of our two-step range-based annotation that collects ratings and relationship distributions

together. Consistency improvements of Goldilocks may be able to push efficiency further in

practice by requiring a lower amount of redundancy to achieve the same level of agreement.
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3.5.2 Goldilocks and Iterative Improvement

So far in this paper we have examined the ideas presented in Goldilocks only for single anno-

tation sessions where we didn’t need to update the anchor examples beyond incorporating

an annotator’s own ratings. In order to scale up to larger datasets, it becomes necessary to

perform annotations over multiple sessions which involve using aggregation approaches to

iteratively construct an updated set of anchors. To achieve this we envision a process based

on the idea of iterative improvement [176].

In each round of iteration, a group of annotators individually annotate a subset of the

dataset, sharing a ‘seed’ set of anchor examples used to ground the interpretation of the

scale, with their own annotations also incorporated as they progress along the annotation

session. Once all annotators have completed the session, the annotations collected will be

aggregated into a new set of seed examples used to ground the next round of iteration. In

addition to progressively annotating new examples, this iterative process may also be used

to revise past annotations, such as those created during the cold start process. This can be

accomplished by first removing the items to be revised from the set of grounding examples

and then re-annotating them as new items in an iteration. This process of periodically

aggregating annotations and then re-seeding anchor examples can serve as a method to

scale up annotations while ensuring a stable scale as annotators place items.

We believe that this represents a feasible design for scaling up annotation, and we envi-

sion further work can be done to explore options for aggregation and re-annotation strategies

as well as evaluate their effectiveness. We also see potential for using iterative improvement

as way to dynamically re-calibrate the definition of scales to account for distributional shifts

over time. For example, a scale that can dynamically adapt to improving quality of ma-

chine summarization systems can be adapted as a living benchmark. We think the ideas

presented in Goldilocks for single annotation sessions provide a first step into building an

effective iterative workflow.
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3.5.3 Limitations and Future Work

While Goldilocks provides a path to more consistent scalar annotation that also captures

uncertainty, we also recognize that the current design is still subject to some limitations

which we believe can be good avenues for future work.

Creating High Quality Seeds in Cold Start

The cold start process in Goldilocks provides a way to generate the initial seed set of ground-

ing examples that enable the comparisons and consistency benefits of Goldilocks. However,

the quality of this initial set of seed examples can also influence whether consistency benefits

can be realized. We observed some of these limitations when experimenting with example-

based anchors in the age domain. A good seed set should consist of examples that achieve

both good coverage of the scale and have low ambiguity themselves. When the seed set

achieves good coverage over the scale, the comparative process can allow seed examples

that are distinguishable to quickly be excluded from the range of the annotated item, re-

sulting in measurement resolution that mainly depends on the number of examples in the

seed set. However, a set of examples that is not representative of the full range of items

to be ranked can lead to issues of scale drift when these examples (that annotators may

desire to rate higher or lower than the current implied bounds of the scale) are encountered

in the future. The current cold start process provides some mitigation to the issue of rep-

resentativeness by incorporating a ‘resampling and replace’ phase to increase the diversity

of items in the seed set. However, for sufficiently large datasets this may not be enough to

capture rare items that are also outliers for the scale. For future work, we envision enabling

the ability for annotators to rescale the visible scale itself through an interaction similar to

zooming in or out, allowing the annotation of items that lie outside the current extremes of

the scale when they are encountered.

Another current limitation of the cold start process is that the cold start design cannot

effectively capture item ambiguity as we only elicit a single label for each reference item. In

pilot studies we found it infeasible to introduce ranges into the cold start process as there are

no anchors to compare against to effectively determine these ranges. It is possible to have



66

suboptimal seed sets where the seed items can have high ambiguity themselves, thus acting

as a lower bound on range sizes. We hypothesize that the iterative improvement process in

3.5.2 may offer a way to limit the impact of the cold start seeds if we can conduct subsequent

annotation rounds where we can instead seed with regular annotated range data, though

we leave exploration of this to a future study.

Addressing Long-form Tasks and Context

Some common tasks where crowd scalar ratings are desirable, such as evaluating relevance,

conciseness, fluency, or faithfulness of summaries produced by text summarization models,

can depend on understanding long-form context (e.g., a news article) or even multiple

documents [85]. While we have shown that Goldilocks can support annotation domains

based on small amounts of text (1-2 sentences) using a similar interface as the one used for

images, long-form text will require a different design for conducting comparisons both with

the global scale and local neighborhood.

Additionally, interactions in Goldilocks assume that items can be compared against other

items in the same dataset. However, when rating items with context, such as summarization

or translation, it is likely that reasonable comparisons can only be made with certain other

items sharing the same context (i.e., alternate summaries/translations of the same source).

A potential avenue for future work extending Goldilocks may exist in introducing virtual

views to the Goldilocks scale that enable contextual comparisons on the scale by only expos-

ing items sharing the same context. Future work on an algorithm for determining optimal

global example anchors could also take into account aspects that could make comparison

easier, such as similarity to the item being annotated.

Working with Density

One of the strengths of Goldilocks is the ability to use past annotations from any source,

including data from existing datasets to establish grounding for a scale. By providing past

annotations from a dataset as reference examples, it will be possible to augment the dataset

in a way that is consistent with past examples but also doesn’t require building complex
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rubrics. However, as the set of past annotations increases, it poses potential problems

for the local comparison aspect of the Goldilocks annotation process. There are practical

limitations on how fine adjustments can be on a slider-based scale, so as regions on the scale

become densely populated by examples, it becomes harder to use local comparisons to find

precise upper and lower bounds in those regions. Even small adjustments in a dense region

can mean moving across many reference points.

One potential solution to the density problem could come from allowing the scale to be

itself scaled, similar to that proposed in 3.5.3. Initially the full view of the scale is presented

along with global anchors for coarse navigation. As an annotator narrows down on a dense

region, they can increase the zoom level of the annotation scale to span just the dense region

across the entire width of the scale, increasing the amount of space and in turn reducing

interaction issues caused by density. New global anchors can be selected to allow for quick

navigation at the new zoom level.

3.6 Conclusion

In this paper, we present and evaluate Goldilocks, a novel technique to elicit scalar annota-

tions using the crowd that improves on consistency and captures pairwise relationships more

robustly. We show that by prior examples can be used as anchors to ground otherwise ab-

stract absolute rating scales (such as semantic or Likert scales) leading to more consistent

interpretation between workers. We find that including an annotator’s past annotations

in a session can lead to more self consistency on items that have high initial uncertainty.

Finally, we show that introducing range annotation into absolute rating can enable simulta-

neous elicitation of both perceived ambiguity on a per-annotator scale while also capturing

inter-annotator disagreement. This simultaneous measurement enables a better recovery of

pairwise relationship distributions.
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Chapter 4

CASE LAW CROWDSOURCING: USING PRECEDENTS TO
GROUND UNCERTAINTY IN CATEGORICAL JUDGMENTS

In the previous chapter, we presented a tool for conducting rating tasks in the form of

continuous scalar rating. However, while scalar ratings are common, the ordering imposed

by a rating scale does not translate to other judgment tasks, such as categorical judgments.

In this chapter, we introduce case law crowdsourcing, a novel approach to scale up

adjudication around complex decision bounds that takes inspiration from the legal concept

of case law, or law established by decisions from prior cases as opposed to by statutes.

In our workflow, previously decided cases form precedents to serve as fine-grained criteria

for judging new cases. Then, when provided with a new case, an annotator explores the

space of relevant prior cases and collects ones that they believe should be either positive

precedent or negative precedent for the current case. These two sets of cases serve to

illuminate the annotator’s decision bound, resulting in an elicitation of both the reasoning

behind their final judgment on the case and their confidence surrounding it. To enable

case exploration at scale, we contribute an interactive tool that recommends relevant cases

so that adjudicators can quickly understand the local decision bound around a case. In

an evaluation using prior human judgments taken from r/AmITheAsshole, we find that

case law crowdsourcing produces more consistent judgments across annotators compared to

traditional methods based on predefined criteria and examples. We also found that we are

able to identify situations where underspecified decision bounds were reflected through less

confident judgments.

4.1 Introduction

The use of human judgments, both from individuals and groups, has become increasingly

prevalent as a way to understand and produce ground truth answers for complex problems.

However, as the complexity of the problems increases, the ability to clearly define the criteria
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for making the “right” judgment becomes increasingly difficult or even impossible. Whether

it’s a community of Wikipedians debating about what should be included in an article [131],

or a group of moderators making a call on what to do with a post [153, 123], or even a

single crowd worker deciding whether an image fits the definition of some class of items [46],

it is crucial to establish clarity and consistency in what constitutes the distinctions used to

make that judgment—the decision bounds.

Traditionally, the job of discovering, defining, and conveying such distinctions has been

reserved for expert task designers. To accomplish this, task designers often start by ex-

amining some samples of the problem, followed by using their expertise to come up with

generalized procedures and criteria, and finally, conveying them to the adjudicators in the

form of task guidelines, instructions, and training mechanisms. Indeed, the result of these

procedures can be seen in the complex rules and guidelines established by Wikipedians,

moderators and crowdsourcing requesters [39].

However, this has led to a couple of problems when scaling such processes. For one,

creating and maintaining high quality guidelines is a costly job that requires a lot of expertise

and continuous involvement of experts [213]. This often results in long turnaround times

when new examples arise in areas where guidelines may have been absent—as we have

witnessed in how platforms have addressed the ever evolving types of misinformation [283].

Secondly, even with a good set of guidelines and criteria, it can be challenging to confirm

that they are being applied in a consistently manner by all human adjudicators. Many

times, decisions are made without documenting arguments, and even when arguments are

documented, there is often limited ability to systematically understand disagreements and

dissent.

Thus in this work, we propose a novel approach—case law crowdsourcing—that takes

inspiration from the concept of case law in legal systems to simultaneously address the

challenge of defining complex decision bounds and validating the judgments around them.

As a legal mechanism, case law makes use of past decisions–precedents–to define complex

nuanced decision bounds through establishing connections and distinctions between details

and facts in new cases against that of established ones. In this way, the precedents can serve

as an evolving set of guidelines, while the relationships established form a type of support
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or argument for the decision. In our proposed workflow, human adjudicators utilize an

exploration interface to understand the local decision bound around a case being adjudicated

without the need for complex guidelines and training. Adjudicators then use a set-based

annotation system to establish commonalities and distinctions between the adjudicated case

and any relevant precedent cases. These constructed sets then serve as the argument for the

judgment outcome from each adjudicator. By examining across sets produced by multiple

adjudicators, we can infer the level of consensus, conflict, and collective uncertainty around

each decision.

In this paper we make the following contributions:

• We introduce case law crowdsourcing as a generalizable technique and workflow for

rapid adjudication of novel cases through exploration of prior decisions and construc-

tion of precedent supporting sets.

• We implement a system for carrying out case law crowdsourcing at scale that enables

annotators to quickly home in on a relevant context for a given case and explore the

local decision bound.

• We show that our workflow produces more consistent judgments compared to using

guidelines for the same task, achieving a standard error disagreement value of 0.227

across annotators compared to 0.406 using traditional guidelines.

• We also show that while the quality of judgments can be affected by the quality

of precedents, it is possible to identify situations where past cases are insufficient

as precedents by looking at how consistently positive precedent sets are constructed

across different annotators.

4.2 Related Work

In this section, we examine four areas that motivate and inform our work: (1) the prevalence

of modern tasks/domains that involve complex decision bounds; (2) traditional approaches

in crowdsourcing to deal with complex bounds; (3) why it is desirable to have rationales
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when tasks are complex; and (4) tools and techniques from legal practitioners carrying out

case law.

4.2.1 Complex Decisions in Human Judgment

Humans have been making decisions based on complex criteria for millennia. This has only

increased as our lives have become more complicated, intertwined, and information dense.

But a number of major shifts due to advances in technology in the last several decades have

led to a need to collect human judgments on complex tasks at an unprecedented scale.

One major shift has been the rise of online social media, leading to an explosion in

content creation and, in response, a desire for moderation of that content that has risen in

tandem. As human expression is multi-faceted and ever-changing, so are the types of con-

tent that communities and platforms seek to moderate, including ill-defined concepts such

as toxicity [273, 161], misinformation [25], or hate speech [225]. As different communities

have differing conceptions of undesired or objectionable expression [44, 45], communities

oftentimes recruit volunteer moderators from within their community to manually conduct

moderation [185], as they can weigh complex criteria such as the tradeoffs between dif-

ferent values their community holds [286]. When it comes to platforms that host content

for millions or billions of people, conducting moderation so that judgments are attuned to

cultural or community nuances becomes significantly more challenging, if not utterly in-

tractable [139]. Still, platforms make an effort to be comprehensive and consistent when

judging different categories of violative content. They try to achieve this through exten-

sive training of thousands of paid moderators [223] and the maintenance of long internal

guidelines and training manuals delineating a laundry list of positive and negative carveouts

and examples for each category of content [152]. One leaked set of internal manuals from

Facebook contained over 1,400 pages across over 100 manuals [112].

A second major shift has been a rise in the use of machine learning, where powerful

models for classifying text, images, and other content can be built that are trained on large

human-labeled datasets [244, 141]. While earlier models focused more on classifying more

objective and narrowly defined concepts, increasingly models are being built and deployed



72

for classifying more socially and culturally situated concepts [106]. For instance, in the

field of natural language processing, researchers have built classifiers to automatically tag

some of the complex concepts that content moderators currently determine manually [294].

To build these models, researchers must curate large datasets that are hand labeled by

crowdsourced human annotators in a consistent manner. However, when labeling these

concepts, annotators often produce labels that conflict with each other. Sometimes, this

is due to annotator positionality, where annotators bring in their own lived experiences

and subjective biases when interpreting a concept [69]. Other times, the content itself

may be difficult to label in certain ambiguous cases [49], or the guidelines as a whole are

incomplete or ambiguous [46]. Still other times, researchers will disagree on what should be

the definition for a concept [90] and even domain experts on the task may also disagree on

the criteria [25].

4.2.2 Training the Crowd on Complex Decisions

Due to the demand for human judgments on complex decisions at scale, researchers have

developed human workflows, computational techniques, and other strategies for training

lay annotators on complex decision bounds. In their quest for consistent and high quality

judgments, task designers have determined the importance of clear and carefully worded

instructions and rubrics [293]. It is also common for task designs to incorporate a training

phase for annotators to learn the rubric; researchers have also proposed implicit training

via ordering of tasks [166] or adapting training to the annotator [34]. However, task design

remains a difficult and time-consuming process, typically requiring some iterations between

the task designer authoring the task materials, deployments with crowd annotators, and

analysis of resulting annotations, leading to potential revisions to the task, and so on.

Some research attempts to improve this process by guiding task designers through rubric

iteration with input from the crowd [35, 213]. Beyond rubrics, past research has also focused

on the aspect of training for workers via automated methods [289] or through task designs

like gated instructions [178]. Additionally, there has also been effort focusing on the sub-

goal of constructing or selecting examples as a way to train crowd workers on challenging
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classification tasks [118, 247].

In addition to the expert led approaches, other prior works have explored a different

direction, focusing on the data as it is being annotated. For example, structured label-

ing [158, 46] promotes the idea that crowd workers can explore the space of instances in an

almost ‘unsupervised’ way, forming clusters of similar cases that with undetermined labels

that may be regrouped by experts in a post-hoc way. Alternatively, others have proposed

that hard cases can be detected [217] during annotation and rerouted [281] to other workers

as needed.

4.2.3 Exploring Cases and Precedents

Advances in modern computing have also presented new solutions for those learning or prac-

ticing law [155]. One major advancement has been the increased capability of computer-

assisted legal research. While early computer assistance mainly provided the ability to

conduct keyword searches over legal databases [253], modern systems have seen many im-

provements that provide context aware or semantic search capabilities [179, 266, 127] under

the assistance of improvements in machine learning and artificial intelligence.

Beyond the space of computer-assisted legal research, there have also been advances in

the general area of open faceted and semantic search [47] that make use of the improved

quality of similarity metrics based on embeddings [219]. These systems and approaches

provide some of the building blocks we used to implement our prototypes for case law

crowdsourcing.

4.2.4 Importance of Justifying Crowd Decisions

Alongside the increased demand for conducting human judgments on complex decisions at

scale, there is also a renewed interest in making sure that crowd decisions are produced with

quality in mind. one of the ways to accomplish that is by eliciting rationales [162] as an

extension of just bare labels. Indeed rationales themselves can be a way of increasing the

quality of crowd judgments [62]. For example, some crowdsourcing systems have explored

the use of deliberation [77, 50] as a way of utilizing rationales to improve data quality.
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However, deliberation can be costly and often needs some conditions to be fulfilled in order

to be effective [236]. It can be easy to end up with a costly process [75] that provides limited

utility.

Increased quality of data is not the only reason for collecting rationales. The act of

collecting rationales can itself often provide a level of procedural legitimacy [86, 202]. For

example, in content moderation settings, people want explanations for judgments [137]

taken against content and it has been shown that providing these rationales in the form of

explanations can lead to fewer reoffenses [138]. Benefits of rationales in decision quality can

also be realized in these settings, allowing for consistent and repeatable judgments [123].

4.3 Design

In this section, we present a model of the workflow that we envision for a case law inspired

crowdsourcing adjudication process. We first outline the general procedure and intermediate

tasks (Figure 4.1) that each individual adjudicator performs to create their judgment on a

novel case. Then, we dive into specific components of each intermediate task in the workflow

and present the designs we developed to support scaling these tasks so that they can be

completed by novice crowd workers with little training. Finally, we talk about how we

can utilize the sets of precedent cases selected by crowd adjudicators to understand the

judgments of the crowd as well as the bases these judgments are formed.

4.3.1 Case Law Crowdsourcing

The judgment procedure in case law crowdsourcing (Figure 4.1) draws from the idea of using

precedents as a means to produce consensus decisions in legal systems based on common

law. Simlar to common law jurisdiction where a small group of expert lawyers conduct

legal research and analysis to produce an argument for their client based on statutes and

precedents, in case law crowdsourcing, a crowd adjudicator assembles an argument for their

annotation judgment on the new case based on selecting past decided annotations. As such,

the case law crowdsourcing workflow consists of the following stages:

1. Selecting the relevant context: Annotation instances are decomposed, when pos-
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Figure 4.1: A diagram that illustrates the case law crowdsourcing workflow. After adjudi-

cators are presented with a new case to be judged, they will first use the case exploration

tool to explore potentially relevant precdents. Adjudictors can tune the recommended prece-

dents by (1) toggle context from the judged case to be included or excluded. Then (2) based

on the relevant past cases retrieved, adjudicators select cases (3) to construct two sets of

precedents to support their judgment of the current case—positive precedent indicating a

similar case or negative precedent indicating a distinct one. Once multiple adjudicators have

constructed their judgments, results can be aggregated (4) surfacing any disagreements or

ambiguities in the judgments. Details about each stage of the workflow are provided in

Section 4.3.1.
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sible, in a way that allows adjudicators to select what context in that instance they

think is relevant to making their judgment.

2. Receiving recommendations of relevant past cases: Based on the relevant facts

selected, past cases are found and recommended to adjudicators. Adjudicators use

these cases to form an understanding of the decision bound around the judged case.

3. Selecting precedent cases: The adjudicator then selects the cases that they would

like to use as precedent in anchoring the decision bound around the current case. This

is done in the form of picking positive precedents (i.e. cases sharing similar context

and judged following the same principles/reasoning) or negative precedents (i.e.

cases sharing similar context but judged under different principles/reasoning) from

the current case.

4. Aggregating judgments across adjudicators: Judgments from multiple adjudi-

cators are compared and aggregated. Group judgments can then be derived by looking

at which cases were commonly used by many adjudicators as precedents and what the

past judgments were.

However, as case law crowdsourcing is built around utilizing non-expert crowd adjudica-

tors to make decisions about lower stakes or subjective annotation judgments while under

more resource constraints, aspects of traditional common law jurisdiction have also been

simplified or relaxed. Our workflow makes a balance between providing support for judg-

ments through precedent cases while also making sure the intermediate tasks are not too

challenging by omitting aspects such as having adjudicators explicitly compose arguments.

4.3.2 Precedent Case Exploration

The first stage of the case law crowdsourcing workflow involves the research component. In

this stage, adjudicators locate relevant past cases from which they learn the decision bounds

as well as select precedents that are adopted to form their judgment. In our workflow, this

takes the form of an interactive case exploration tool (Figure 4.2). The case exploration
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tool presents the case being judged to the crowd adjudicator, alongside with a list of ranked

relevant prior decisions. Past cases that are candidates for precedents are displayed as cards

featuring both the case summary and any context. The final judgment of these prior cases

is also displayed within the list.

The list of recommended prior cases are selected and ranked by comparing them against

the case being judged using a similarity metric. Depending on the domain involved and how

instances can be decomposed, the actual selection of this metric may vary. For example, in

our experiments, one domain we used involves natural language text in the form of Reddit

posts. In this case, each case (in the form of a post) can be decomposed into sentences

that describe the case background. Considering this, we selected a similarity metric based

on distances in a text embedding space. We used DistilBERT [231] to compute sentence

embedding vectors that were then aggregated into an overall document embedding for each

case. We then used cosine similarity as the metric to compare cases.

In addition to the list of cases selected by default, the case exploration tool also facilitates

active exploration in the space of past cases directed by the crowd adjudicator. Since not

all aspects of a case will be relevant for the judgment, similarity scores that use the entire

context of a case can result in candidates that have superficial similarities (e.g. mentioning

specific names or locations that are not relevant to a decision) but aren’t meaningfully

related. To address this, the case exploration tool allows adjudicators to “turn off” irrelevant

contextual facts by excluding them from the similarity metric. In this case of text based

tasks, crowd adjudicators can click on a sentence to toggle whether it is used or ignored

for the purposes of similarity comparison. The adjudicator can also progressively expand

the space explored around past cases by asking for cases similar to an existing one (“more

cases like this”) or sampling cases along a particular judgment (“more ¡positive/negative¿

cases”). This exploration process is enabled throughout the judgment process, so as crowd

adjudicators assemble the cases that make up their judgment, the can also come back at

any time to adjust the criteria and sample more cases in the neighborhood.
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4.3.3 Assembling Sets of Positive and Negative Precedent Cases

As crowd adjudicators explore the space of precedent cases, they also work on completing

their main task of assembling their judgment. However, unlike traditional approaches in

crowdsourced argumentation where adjudicators are asked to provide their judgment along

with an argument to support it [77], our workflow takes advantage of the fact that precedent

cases have an existing associated judgment so adjudicators need only find the cases to adopt

as precedent rather than making their judgment first and writing arguments to support it.

In order to construct their argument (and corresponding judgment), adjudicators are

asked to focus on categorizing past cases discovered through the precedent case exploration

stage, based on their relevance to the current judgment. The goal of adjudicators in this

stage is to find cases based on the following:

• Positive Precedents: A past case should be marked as a “positive precedent” if the

crowd adjudicator believes that the same principles or evidence leading to the past

decision can be adopted for the new case being judged. These are cases that fall on the

same side of the decision bound of the judged case. We instruct crowd adjudicators to

prioritize finding these types of cases where past decision can be adopted if possible.

• Negative Precedents: A past case can be marked as “negative precedent” if the

crowd adjudicator believes that despite being in the neighborhood of similar cases,

some principle(s) or evidence leading to the past decision does not apply to the current

case. Negative precedents don’t necessarily have final decisions that would be different

from the current case being judged. Instead, a negative precedent indicates that some

reasoning or principles leading to the precedent don’t apply to the current case.

• Cases can also be left uncategorized. This encompasses cases that are either not

relevant, don’t share principles/criteria with the current case.

Crowd adjudicators use an “binning” interface (similar to that of organizing a folder)

where they can curate these sets of cases either via drag-and-drop or through buttons

presented on each case. Each case can only be placed in one of these sets, and once a
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Figure 4.2: A screenshot of the case exploration tool prototype currently showcasing the

example used for training. (A) Shows the case that is currently being judged. (B) Shows

the candidate cases recommended by the case exploration tool. (C) Shows the area that

organizes the positive and negative precedents. Cases can be added/removed either with

the action buttons or through drag-and-drop.

case is added to a set as an “positive” or “negative” precedent, it will be omitted from any

recommended lists of potential precedent cases.

When assembling these sets, adjudicators are prompted to aim for finding at least one

“positive” precedent case. However, as is the case in common law judicial systems, it is

possible for adjudicators to fail to find relevant precedents for a case that is novel. In

these cases, adjudicators are allowed to submit their judgment even if it consists only of

“negative” precedent cases without a positive case.

4.3.4 Interpreting Judgments Individually and in Aggregate

Once individual adjudicators have assembled their sets of precedent cases, the sets of prece-

dents can be interpreted as judgments on the case. This allows our workflow to produce
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both traditional classification judgments of a case while also enabling the observation of any

disagreements. To produce the final judgment for an adjudicator, we can observe the cases

that they selected as positive precedents. As these cases indicate situations that the adjudi-

cator agrees matches that of the current case being judged, we can apply the precedents by

adopting the judgment of these positive precedent cases as the judgment that should also

be applied to the current case. If an annotator did not find any positive precedents, that

indicates that they believe the current case to be in a situation where the decision bounds

needed to make a judgment are not clear and thus a judgment can’t be reliably made.

In addition to producing these simple final judgments, positive and negative precedents

also allow us to interpret the degree of agreement between adjudicators. Disagreement

between adjudicators can arise as 2 types: (1) omissions, where a past case selected as a

precedent by one adjudicator was not selected at all by another; and (2) conflicts, where a

past case was selected as a positive precedent by one adjudicator and a negative precedent

by another. The first type of disagreement provides a signal about the ambiguity around

the precedent – the more often it is selected the more confident the group is that the past

case is sets a good precedent. The second type of disagreement provides a signal about

how different annotators may disagree on their interpretation of the case. We note that,

the presence of a conflict in the precedents won’t always result in observed disagreement

of the judgment on the case. For example, one adjudicator might select two past cases

with the same judgment as both being positive precedents while another may believe one

of these cases relies on principles that don’t generalize to the new case. In this situation,

even though the final judgment may appear to agree, different adjudicators actually have

different interpretations of the decision bounds for the task.

4.3.5 Prototype and Implementation Details

We implemented a prototype of this case law crowdsourcing workflow in the form of a

browser-based annotation tool that can be deployed on a crowdsourcing platform like Ama-

zon Mechanical Turk (Figure 4.2). Details about each case being judged and any previously

judged cases are managed in a backend service. Crowd workers can make adjustments to
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the context used to recommend relevant cases by clicking on the details (Figure 4.2, (A),

each sentence is a togglable unit) to toggle them on/off. When the context is adjusted, the

toggle state is sent to the backend, which constructs a transient ‘synthetic case’ with only

the enabled details, and computes a document embedding vector for this case. We then

compute the cosine similarity score between the new embedding vector and the existing

cases to rerank the set of candidate precedents, which are then sent over as the updated

recommendations.

4.4 Experiments

We conducted two experiments to evaluate aspects of the judgments produced through

case law crowdsourcing. Specifically we were interested in answering the following research

questions:

• RQ1: Are group judgments more consistently produced when grounded by precedents

in case law crowdsourcing?

• RQ2: Are we able to distinguish situations where precedents are insufficient to ground

complex decisions?

4.4.1 Experiment Setup

To answer these questions we designed two annotation experiments. For our first experi-

ment, we explore the consistency aspect of case law crowdsourcing by recruiting annotators

to judge a set of cases under one of two conditions. In the control condition, annotators

are provided with traditional instructions and training based on guidelines and fixed exam-

ples. For each case, annotators provided a single judgment in the form of a class label (not

the asshole or asshole). In the case-law condition, annotators are instead given access to

the case exploration tool (Figure 4.2). Using this tool, annotators are asked to construct

sets of positive and negative precedents which then form their judgment on the case. We

then compare the amount of disagreement between labels produced in each condition to

evaluate the level of consistency across annotators.
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For our second experiment, we explored whether the case law crowdsourcing is sensitive

to identifying situations where good precedent candidates are not available. To construct

scenarios where precedents may be insufficient, we used a sentence embedding-based metric

to find and exclude the top 10 most similar cases in the neighborhood around each case being

judged. We then conducted annotation using the case law crowdsourcing workflow using

this new set of cases as potential precedents. We compared the sets of positive and negative

precedents produced in this insufficient-precedent condition against the results from

the case-law condition to evaluate whether there is an observable difference when the

precedents are insufficient to ground the decision bounds.

4.4.2 Task Domain

For our experiment data, we drew examples from a dataset [199] of posts collected from

r/AmITheAsshole, a subreddit featuring community posts and judgments about interper-

sonal conflict scenarios. Posts in this subreddit usually feature a description of a real world

scenario or situation where two parties (one of which is often the author) are in conflict

over an action or matter. Context and background information that the author believes

is relevant is also included, often in great detail, in the body of these posts. Community

participants then judge whether the author’s actions are considered ethically acceptable

given the situation. The task of making judgments on interpersonal conflicts presents a

representative instance of the type of domain where case law crowdsourcing processes can

provide potential benefits—in this case individual cases are complex and the exact crite-

ria for making judgments is difficult to summarize into a set of comprehensive guidelines.

Cases in this dataset were categorized under 1 of 4 judgment types: not the asshole, asshole,

everyone sucks, or no assholes here.

For our experiments, we focused on subset of instances sampled from instances where

consensus judgment was either not the asshole or asshole. We also filtered out any cases

that contained too few details (one or fewer sentences) or other text inconsistencies due to

data extraction artifacts. Cases were then truncated to contain 10 sentences of background.

From these cases, we randomly sampled 25 instances (divided into 5 groups of 5 cases) to
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serve as target cases to be judged by the crowd. Remaining cases in the sampled subset

served as the pool from which we drew candidates for precedents in the case exploration

tool.

4.4.3 Participants and Recruitment

We recruited crowd annotators through the Amazon Mechanical Turk (AMT) platform. For

each group of 5 cases in each condition, we recruited 5 unique annotators to conduct the

annotation resulting in a total of 75 annotators. In all conditions, we aimed for a $16/hr

pay for the crowd annotators. Participants were paid $2.00 as base payment for completing

the training, followed by a bonus after completing the annotations. In the case-law and

insufficient-precedent conditions, participants were paid an additional $6.00 bonus for

completing the 30 min annotation task to create the sets of positive and negative precedents

through the case law crowdsourcing workflow. In the control condition, participants were

paid a $2.00 bonus for completing the 15 min annotation task to directly select the judgment

class (not the asshole or asshole) based on text guidelines.

4.4.4 Results

RQ1: Consistency

Figure 4.3: Figure shows the consistency of judgments (as measured by standard error)

across annotators under all 3 conditions. We observe that conditions based on case law

adjudication resulted in higher consistency reflected through lower standard error.

For our first experiment, we examined whether the judgments produced through the
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case-law condition were more consistent compared to those produced from directly collect-

ing judgments through the control condition. As adjudicators in the case-law condition

produce sets of positive and negative precedents instead of directly producing a judgment,

we use the precedents to interpret what the judgment of the annotator would be (as noted

in Section 4.3.4). Specifically, for each adjudicator in the case-law condition, we look at

the cases in their set of positive precedents. If the prior judgments of all positive precedents

is unanimous, then we adopt that judgment as the annotator’s judgment of the new case.

If prior judgments of the set of positive precedents is not unanimous, then we interpret

the annotator’s judgment as undetermined. We use the disagreement between annotators

to evaluate how consistently judgments can be produced. To evaluate disagreement, we

generalized [27] the 3 possible categorical judgment types that can be produced by each

annotator on a scale by assigning judgments of not an asshole as 1, undetermined as 0,

and asshole as -1, noting that the uncertain undetermined case falls in between the two

extremes. We found that the mean disagreement as measured through standard error was

0.227 for the case-law condition and 0.406 for the control condition (Figure 4.3). As the

target cases annotated were the same in both conditions, we use a paired t-test to compare

across conditions, observing that this difference is statistically significant at P < 0.01.

We note that this observed result falls within our expectations. The task domain of

adjudicating interpersonal conflict scenarios is inherently complex and comes with a set of

complex criteria that can be challenging to capture with traditional annotation guidelines

and examples. While guidelines can be helpful in generalizing decisions across higher-level

concepts (such as whether the actions in the scenarios was ethical), the complexity involved

in the context and background of each interpersonal conflict case means that most cases

will likely also need more specific guidance.

RQ2: Detecting Insufficient Precedents

For our second experiment, we examine whether the potential problem of precedents that

are insufficient for informing judgments can be detected through our case law crowdsourcing

workflow. As in case law legal systems, while the consistency afforded by adopting prece-
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(a) Adoption rate (% annotators who in-

cluded) of the most common case in the

Pos./Neg. sets across annotators.

(b) Amount of cases selected per annotator

Pos./Neg. precdedent

Figure 4.4: Comparing properties of the Pos./Neg. precedent sets created by annotators in

the case-law and insufficient-precedent conditions.

dents for new judgments can be desirable, blindly applying a precedent that does not share

circumstances with the case being judged can also lead to a consistent but an incorrect or

biased judgment. We conducted this experiment to evaluate whether we can identify and

correct from situations where precedents start to fail in grounding decisions and it may be

desirable to fall back to an alternate process to judge a novel case. Specifically, we look at

whether reducing the relevance of precedents around the target cases results in measurable

differences in the sets of positive and negative precedents created by crowd adjudicators.

We compared the sets of positive and negative precedents produced between the case-

law condition (where the regular precedents were available), against the sets produced in

the insufficient-precedent condition (where precedents relevant to judging target cases

were intentionally removed to create an ambiguous condition), focusing on 2 aspects: (1)

Is there a difference in the consistency of cases selected by different adjudicators, and (2)

Is there a difference in the amount of cases adjudicators end up selecting for each set of

precedents.

As adjudicators can potentially select any case as a precedent, we evaluate the consis-

tency of precedents by focusing on the case that was most commonly included as a prece-

dent, looking at the positive and negative precedent sets separately. For these cases, we
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then looked at the proportion of adjudicators who did include the case as a precedent. By

focusing on the consistency of agreement in the ‘most common’ precedent, we can account

for the inherent base differences in quality of available precedents. Comparing between

the case-law and insufficient-precedent conditions, we found that when looking at

the case that was most commonly included in the set of positive precedents, an average

of 52.8% of adjudicators would include this case under the case-law while only a 43.0%

of adjudicators included this case in the insufficient-precedent condition (Figure 4.4).

Even stratified across each individual case judged, we found around a similar margin of

difference between the adoption rate of this most common precedent, with this result being

statistically significant under a paired t-test with P ≈ 0.0046 < 0.01. We did not see a

similar gap in the adoption rate of the most common precedent for the negative precedent

set, with an average adoption rate of 31.1% and 35.8% for the two conditions respectively

(no significant difference).

Looking at the amount of cases adjudicators end up selecting for each set of precedents,

we also found some differences. On average, adjudicators picked around the same amount of

cases for their positive precedents, at 1.15 cases/adjudicator in the case-law condition and

1.21 cases/adjudicator in the insufficient-precedent condition. However, crowd adjudi-

cators tended to pick more negative precedents when the relevance of precedents was lower:

1.27 case/adjudicator in the insufficient-precedent compared to 0.95 cases/adjudicator

in case-law. However, we note that this difference in amount of cases was not statistically

significant under a paired t-test, with P ≈ 0.08 > 0.05.

Based on these observations, we find that the case law crowdsourcing workflow does

exhibit different behaviors depending on the relevance of the precedents provided, with a

more reliable signal coming from the evaluating the consistency between adjudicators in

choosing positive precedents. However, we also note the observation that, regardless of the

relevance of precedents, adjudicators ended up picking similar amounts of cases for their

positive precedents. This hints that under these settings adjudicators can be biased to aim

for a certain amount of positive precedents even when it is not required. This implies that

unless care is taken to detect the case of poor precedents, the quality of positive precedent

sets constructed individuals can be reflective of the overall quality of candidate cases for
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precedents.

4.5 Discussion

In the sections above, we have presented the design of our case law crowdsourcing workflow

and conducted evaluations to validate its utility. In this section, we will discuss some of the

limitations that arise from using case law crowdsourcing and potential solutions for future

work.

4.5.1 Balancing Guidelines and Precedent Cases

While precedents can be useful in defining challenging local decision bounds, guidelines can

still be more efficient in situations where the decisions are simpler and can be conveyed easily

in a summarized form. Indeed in even in many challenging real world tasks with complex

decision bounds, such as content moderation [273, 161], misinformation identification [25],

and data annotation [305], not all decisions will be challenging and there will often be sets

of cases where the decision bounds that separate them are significantly less complex than

those around the edge cases. Additionally, while case law crowdsourcing presents a way to

improve consistency when past judgments exist, a certain level of bootstrapping still needs

to be performed first to create the first judgments that will become those future precedents.

Considering these aspects, it is important to find a balance between taking advantage

of the efficiency provided by traditional instructions and guidelines, and improving the de-

cisions on the edge. One direction to address finding this balance may come from systems

that make use of measurements on the consistency of annotations under traditional guide-

lines [213] to identify problem areas that could then be redirected to a case law crowdsourcing

process.

4.5.2 Overruling and Reversing Precedents

One property that comes with adopting the metaphor for precedent cases from the legal

space is the eventuality that precedent judgments may one day be overruled or reversed.

Indeed, within the space of case law, it is common for new judgments to set precedents
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that overrule earlier rulings or for past case judgments to be reversed. In the realm of tools

for computer assisted legal research, this problem is often solved through the process of

shepardizing 1 where automated tools can assist in determining whether a precedent has

been overruled or is still “good law”.

However, while changes in precedent decisions can present challenges to cases built

on them, the use of precedents also enables the potential for automated tools to address

these changes, even for case law crowdsourcing. We note that the sets of negative and

positive precedents produced in the case law crowdsourcing process not only serve to inform

judgments, but can also be a form of referencing. By constructing and traversing the graph

over the chains of references produced through precedent sets, the case law crowdsourcing

workflow can also adapt to future instances where precedents can be overruled or reversed,

providing additional value. Unlike datasets constructed from direct judgments, which must

be re-annotated should criteria change, sets of judgments made in the form of precedent

cases enables affected judgments to be easily identified in case of an overruled or reversed

case, thus reducing the amount of re-annotation effort needed to maintain consistency.

4.5.3 Resolving Conflicts Between Adjudicators

Finally, while the workflow we present in case law crowdsourcing provides a means for con-

flicts to be identified through comparing each individual adjudicator’s choice of precedents,

in many situations it can also be desirable to resolve conflicts and disagreements and produce

consensus decisions. However, depending on the task being judged, the most adequate way

to address conflicts can differ. For example, in content moderation, prior work has shown

that the perceived legitimacy of the resolution process can affect community acceptance of

the decision [202] so process legitimacy may be an important consideration in this case.

Additionally, who takes part in resolving conflicts can also vary. While in some situations it

may be useful to have adjudicators resolve conflicts among themselves [46, 50], for certain

annotation tasks, experts like task requesters may have specific goals in mind and may end

up having the final say in dictating how conflicts should be resolved [35]. Given the large

1https://www.lexisnexis.com/documents/LawSchoolTutorials/20081015085048_large.pdf

https://www.lexisnexis.com/documents/LawSchoolTutorials/20081015085048_large.pdf
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variability, we don’t attempt to prescribe any particular way of resolving conflicts, instead

focusing on providing insight into different types of conflicting judgments.

4.6 Conclusion

In this paper, we present a novel approach to human judgment on complex tasks in the form

of case law crowdsourcing. Through experiments, we demonstrate that case law crowdsourc-

ing produces more consistent judgments compared to directly collecting judgments while

also providing rationale in the form of positive and negative precedents.
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Chapter 5

CICERO: ADDRESSING UNCERTAINTY BY RESOLVING
DISAGREEMENT THROUGH DELIBERATION

In the previous two chapters, we presented tools and workflows for human judgment with

the crowd that allows us to improve the consistency of judgments and capture uncertainty.

However, how can we address uncertainty once we know it’s there?

In this chapter, we present Cicero, a new workflow that improves crowd accuracy on

difficult tasks by engaging workers in multi-turn, contextual discussions through real-time,

synchronous argumentation. Our experiments show that compared to previous argumenta-

tion systems which only improve the average individual worker accuracy by 6.8 percentage

points on the Relation Extraction domain, our workflow achieves 16.7 percentage point

improvement. Furthermore, previous argumentation approaches don’t apply to tasks with

many possible answers; in contrast, Cicero works well in these cases, raising accuracy from

66.7% to 98.8% on the Codenames domain.

5.1 Introduction

Crowdsourcing has been used for a wide variety of tasks, from image labeling to language

transcription and translation. Many complex jobs can be decomposed into small micro-tasks

[177, 22, 197, 54]. After such decomposition, the primary challenge becomes ensuring that

independent individual judgments result in accurate global answers. Approaches ranging

from aggregation via majority vote [248] to programmatic filtering via gold-standard ques-

tions [200] have all been created to achieve this goal. Further improvements have led to

more intelligent aggregation such as expectation maximization (EM) [65, 290, 287]. How-

ever, EM may still fall short, especially on hard problems where individual judgments are

unreliable. Indeed, some researchers have concluded that crowdsourcing is incapable of

achieving perfect accuracy [66].

Yet recently, argumentation has been shown to be an effective way to improve the accu-
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Figure 5.1: Discussion interface for use in Cicero, inspired by instant-messaging clients,

showing a fragment of an actual discussion in the Relation Extraction domain. (1) Presents

the question (sentence + claim) and both sides’ beliefs. (2) Initial discussion is seeded with

the workers’ justifications. (3) Options added to facilitate termination of a discussion once

it has reached the end of its usefulness.
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racy of both individual and aggregate judgments. For example, Drapeau et al.’s

MicroTalk [77] used a pipelined approach of: 1) asking crowd workers to assess a question’s

answer, 2) prompting them to justify their reasoning, 3) showing them counterarguments

written by other workers, and 4) allowing them to reconsider their original answers to im-

prove individual judgments. In principle, this simplified form of argumentation allows a

single dissident worker, through force of reason, to steer others to the right answer. Fur-

thermore, the authors showed that argumentation was compatible with EM; combining the

two methods resulted in substantial gains in accuracy.

However, while asynchronous argumentation systems like MicroTalk attempt to resolve

disagreement, the steering power of a one-round debate is limited. Workers are only shown

a pre-collected justification for an opposing answer; they aren’t challenged by a specific

and personalized argument against the flaws in their original reasoning. There is also no

back-and-forth interaction that could illuminate subtle aspects of a problem or resolve a

worker’s misconceptions—something which may only become apparent after several turns

of discussion. Furthermore, since justifications are pre-collected, workers need to write a

generic counter argument; while this works for binary answer tasks, it is completely imprac-

tical for tasks with many answers; such a counter-argument would typically be prohibitively

long, refuting n− 1 alternatives.

This paper presents Cicero, a new workflow that engages workers in multi-turn and

contextual argumentation to improve crowd accuracy on difficult tasks. Cicero selects

workers with opposing answers to questions and pairs them into a discussion session using

a chat-style interface, in which they can respond to each other’s reasoning and debate

the best answer (Figure 5.1). During these exchanges, workers are able to write context-

dependent counter-arguments addressing their partner’s specific claims, cite rules from the

training materials to support their answers, point out oversights of other workers, and

resolve misconceptions about the rules and task which can impact their future performance

on the task. As a result of these effects, workers are more likely to converge to correct

answers, improving individual accuracy. Our experiments on two difficult text based task

domains, relation extraction and a word association task, show that contextual multi-turn

discussion yields vastly improved worker accuracy compared to traditional argumentation
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workflows.

In summary, we make the following contributions:

• We propose Cicero, a novel workflow that induces multi-turn and contextual argu-

mentation, facilitating focused discussions about the answers to objective questions.

• We introduce a new type of worker training to ensure that workers understand the

process of argumentation (in addition to the task itself) and produce high quality

arguments.

• We develop Cicero-Sync, a synchronous implementation of our workflow using real-

time crowdsourcing, and apply it to conduct the following experiments:

– In the Relation Extraction domain introduced by MicroTalk [77], we show that

contextual, multi-turn argumentation results in significantly higher improvement

in accuracy: a 16.7 percentage point improvement over individual workers’ pre-

argumentation accuracy v.s. a 6.8 point improvement using

MicroTalk’s one-shot argumentation. When aggregating the opinions of mul-

tiple workers using majority vote or EM, we see 5 percentage points higher ag-

gregate accuracy, accounting for cost.

– Using a version of the Codenames domain [309], that has many answer choices

(making MicroTalk’s non-contextual argumentation untenable), we show that

Cicero is quite effective, improving individual worker accuracy from 66.7% to a

near-perfect 98.8%.

– We qualitatively analyze the discussion transcripts produced from our experi-

ments with Cicero-Sync, identifying several characteristics present in contex-

tual, multi-turn argumentation.

5.2 Cicero Design

In this section, we present the Cicero workflow as well as design considerations in a syn-

chronous implementation of the workflow used for our experiments. We first explain the
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Figure 5.2: Cicero System Diagram. Solid arrows indicate paths for workers through the

system. Dotted arrows indicate how questions are allocated through the system.

rationale for contextual, multi-turn discussions and give an overview of our Cicero work-

flow. We then talk about the decision to implement our workflow in a synchronous system—

Cicero-Sync. Finally, we discuss the design choices we made to (1) create an interface

for effective real-time discussion, as well as (2) improve instructions and training for the

domains we examined.

5.2.1 Contextual and Multi-Turn Discussion

In natural forms of debate, participants who disagree take turns presenting arguments which

can refute or supplement prior arguments. Our Cicero workflow is designed around the

concept of emulating this process in a crowd work setting by using paired discussions fa-

cilitated by a dynamic matching system. Participants are matched with partners based on

their current beliefs and are encouraged to present their arguments over multiple turns.

While real-life debates may include multiple participants each responsible for addressing

arguments on different aspects of a problem, in the crowd setting we can utilize the diversity

of workers to cover a broad set of views and reasoning; thus, to simplify the process, we
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focus on a two-participant discussion model.

5.2.2 Workflow Overview

Since argumentation happens on an ad-hoc basis, it’s much more flexible to have our work-

flow focus on managing transitions between different states a worker may be in instead of

defining a single pipeline. Due to this, our design of the Cicero workflow follows an event-

based definition model where the automatic task assigner allocates tasks as workers’ state

changes. Figure 5.2 summarizes how our workflow allocates worker resources and questions

in a dynamic way.

Initially, workers are recruited from a crowd work platform (such as Amazon Mechanical

Turk) and are immediately assigned to a training task. Workers who pass training and

the associated gating tests [178] enter the worker pool and wait to be assigned work. Then,

instead of a fixed workflow, our event-based automatic task assigner decides which type of

task and question to assign to a worker subject to a set of constraints. As workers complete

their tasks and update the beliefs of questions in the working set, new candidate tasks

are dynamically selected and allocated. Cicero’s dynamic matching engages workers across

diverse pairings, which has been shown to promote better output in large creative tasks

such as in Salehi et al. [228].

In Cicero, there are two main types of tasks that the automatic assigner may assign to

an idle worker: assess and discussion.

• The assess task acquires one worker from the worker pool who is then presented with

one question — in our case a single question in the domain — that asks for an answer

to a multiple choice question and optionally a free-form justification for their position.

This task is a combination of the assess and justify microtasks in MicroTalk [77] as a

single task.

• The discussion task acquires two workers from the worker pool who are both shown

a discussion interface for a question. At the end of a discussion, the justification text

may be updated for both workers. This task is a multi-turn, contextual version of the
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reconsider task in Microtalk [77], which actively engages both workers. We will cover

details on the design of the discussion task in later sections.

The automatic task assigner is defined as a policy that decides which type of task should

be allocated when a worker changes their state (such as upon completing a micro-task)

and, depending on domain, can be designed to prioritize specific kinds of tasks, particular

questions or qualities such as minimizing worker wait time and increasing concurrent work.

In general, the task assigned can be adapted to the goals of the requester. However,

there are a few general constraints that the task assigner must follow:

• Incompatible beliefs: A discussion may only be assigned to workers if they have in-

compatible beliefs. Implicitly, this also requires existence of the both beliefs, implying

they must have been collected (e.g., via assess tasks).

• No repeated discussions: Two workers may only discuss a question if they have

never discussed the question with each other before.

These constraints guarantee that the workflow will eventually terminate when there are

no more workers who disagree and have never paired with each other.

There are many benefits to dynamically allocating partners. Since pairings aren’t fixed,

Cicero can automatically adapt to existing workers dropping out and new workers entering

the pool. Additionally, in contrast to previous systems [77, 237], Cicero’s automatic task

assigner sequentially exposes each worker to discussions with multiple partners for a partic-

ular question. This allows for the possibility of a minority opinion reaching and convincing

the majority. A worker who is convinced by a minority belief is able to spread the new

answer as they may now be matched with workers they used to agree with, increasing the

size of the minority.

5.2.3 Cicero-Sync: A Real-Time Implementation

While the Cicero workflow does not constrain the type of interaction during a discussion

task, we decided to test out the effectiveness of our workflow using synchronous discussions.
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A synchronous and real-time discussion environment allows us to mimic real world con-

tinuous dialogue spanning many turns thus preserving discussion context in a simple and

natural way.

In Cicero-Sync, workers are held in a waiting room until a partner becomes available.

Once workers are matched into a discussion, they will not be assigned other tasks for the

duration of that discussion and are expected to give each other their undivided attention.

We note that, while useful for experiments, this design has limitations: the synchronous

nature of discussions means that some workers will have to wait for a partner to become

available and workers need to be online and active within the same time window, both of

which imply a higher cost to the requester.

Additionally, there are many practical challenges to implementing and setting up syn-

chronous real-time experiments with crowd workers, including implementing real-time client-

server communication and working with APIs for worker recruitment and payment [126].

Fortunately, there have been enough real-time, crowd deployments [22, 26] that many useful

lessons have been distilled [125]. We elected to use TurkServer [183], whose tools simplify

the interfacing with Amazon Mechanical Turk for worker recruitment and task manage-

ment and allow us to automatically track worker state as well as building our worker pool

(Figure 5.2) using the TurkServer lobby.

5.2.4 Discussion Interface

The discussion task is the most important and defining task of the Cicero workflow. We

considered multiple different options for the discussion interface focusing on ways to organize

discussion structure and facilitate discoverability.

Early proposals included designs that were inspired by the posts-and-replies interfaces in

social network timelines and the split-view pros-and-cons interfaces used in ConsiderIt, a po-

litical, argumentation system [156]. Our pilot studies showed that these methods were cum-

bersome and non-intuitive, so we decided on a free-form instant messaging (chat) metaphor

for the discussion task (shown in Figure 5.1).

When a pair of workers enter a discussion, they are placed into a familiar instant mes-
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saging setting, where they can freely send and receive messages. Each message is tagged

with being either from the worker themself (“me”) or their unnamed partner (“partner”).

An additional “exit” section below the chat interface allows either participant to terminate

the discussion if they feel that it is no longer useful. Workers can utilize this exit mechanism

to indicate that a consensus was reached or that no agreement is possible between them.

The discussion interface can be easily adapted to specific needs of each experiment

domain: In the Relation Extraction domain, the justifications collected from earlier assess

or discussion tasks are used to seed the system, which we found to be beneficial in starting

a conversation. In the Codenames domain, a drop-down menu below the text input field

accommodates switching to alternate answers during the discussion addressing the non-

binary nature of the questions.

5.2.5 Optimizing Task Instructions

Good instructions are essential for high inter-annotator agreement [178]. We observed in

early pilot experiments that arguments which refer explicitly to parts of task guidelines were

more effective at convincing a partner. However, the original task guidelines and training

did nothing to encourage this practice. Workers came up with different ways to refer to parts

of the instructions or training examples, but this was inconsistent and frequently caused

confusion. References to the guidelines were hard to identify making it harder for workers

to determine correct invocations of rules in the Relation Extraction domain pilots. Since

arguing in synchronous discussion sessions is time-sensitive, creating rules and shorthands

that are easy to cite is important for discussion efficiency.

We adjusted the task guidelines for the Relation Extraction domain from those in Mi-

croTalk, re-organizing them into five concrete and easy-to-cite rules as shown in Fig-

ure 5.3. Each rule was given a shorthand so that workers can unambiguously refer to a

specific rule and aid in identification of proper or improper rule usage during the discus-

sions. We observed that citing behavior became more consistent within discussions with

workers frequently utilizing our shorthands in the discussion context. In the Codenames do-

main, which has simple instructions but a lot of example cases, we designed the instructions
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Figure 5.3: Screenshot of our LivedIn assess task (Relation Extraction domain) instructions

containing 5 citable rules including the definition. Shorthands (in bold) allow for efficient

citation of rules during discussion and within justifications (as shown in the example’s

justification).
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to both show the general guidelines and also provide a way for workers to review examples

from training if they decide to reference them.

5.2.6 Selecting and Training Effective Workers

In initial pilots with Cicero-Sync, we noticed that workers were performing inconsistently.

Following Drapeau et al., we tried filtering for “discerning workers” using the Flesh-Kincaid

score [136] to eliminate workers whose gold-question justifications were poorly written; to

our surprise, this did not increase worker quality, but it did substantially reduce the number

of possible workers. Filtering workers based only on gold standard question performance

was also ineffective as it did not train workers to understand the rules required for our

complex tasks.

Instead, we implemented a gating process [178], that can both train and select workers

at the same time. Workers are presented with questions laid out in a quiz-like format.

Each training question is provided along an introduction of related concepts from the task

instructions. The questions are interleaved with the instructions in an interactive tutorial

where new questions are presented as new concepts are introduced to reinforce worker

understanding. Automated feedback is given when a worker selects an answer. At the end,

workers’ performance on a set of quiz questions is recorded. If a worker’s accuracy on the

quiz falls below a certain threshold, the worker will be asked to retry the training section

(a limited number of times) with the order of the quiz questions randomized. Workers are

dismissed if they exceed the retry limit.

5.2.7 Selecting and Training Effective Argue-ers

In existing argumentation systems [77, 237], training focuses on the target task instruc-

tions, however, not all kinds of arguments are productive. Argument forms and norms that

contribute to positive discussion have been studied in the education community, termed

‘accountable talk’ [190]. During our pilot studies, we found that many workers’ arguments

weren’t accountable, and realized that we need to train workers how to argue in order to en-

sure that discussions between workers are productive. To address this, we designed a novel
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justification training task incorporated as a part of the training process to train the

workers to recognize good justifications and arguments before they interact with a partner.

In this training task, workers encounter a sample assess task, followed by a justification-

like task where, instead of a free-form justification, workers are asked to select the best one

from a list. We then provide feedback in the form of an argument for why a justification is

better or worse with reference to the task rules. By undergoing this training, workers are

exposed to both how to think about justifications and what an effective counter-argument

can be.

In the Relation Extraction domain, specifically, each incorrect option targets a poten-

tial pitfall a worker may make when writing a justification, such as: failure to cite rules,

incomplete or incorrect references to the rules, or making extended and inappropriate in-

ferences. In the Codenames domain, questions can have ten or more possible answers, so

it’s not practical to create and present multiple justifications for all of them. Therefore, the

training is adjusted to instead show a reference counter-argument when a worker selects an

incorrect answer that refutes the incorrect choice and supports a correct one. Our sample

questions are designed to illustrate different argumentation strategies in different situations

as the rules in this domain are simpler.

We note that this design of exposing the concept of arguments to workers during training

can be generalized to many domains by providing feedback in the form of counter-arguments.

By training workers to recognize and analyze arguments (before they enter a live discussion),

our justification training promotes more critical discussion.

5.2.8 Worker Retention and Real-Time Quality Control

Due to the synchronous nature of discussions in Cicero-Sync, workers may become idle for

short periods of time when they are waiting to be matched to a partner. To ensure that idle

workers in the worker pool are available for future matching, we implemented a real-time

lobby design where workers wait while a task is assigned. This design was mainly inspired

by both the default lobby provided in TurkServer [183] and from a worker-progress feedback

design developed by Huang et al. [125] for low-latency crowdsourcing. While in the lobby,
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workers are presented with information on their peers’ current status, such as how many

workers are currently online and which workers may become available soon. Workers also

see statistics on their work, which is tied to bonus payments, and are encouraged to wait.

In Cicero-Sync, the task assigner is configured to immediately assign work as it becomes

available. While in the lobby, a worker can voluntarily exit with no penalty if either their

total waiting time exceeds a preset threshold or if they have completed a sufficient number

of tasks (a single discussion in Cicero-Sync).

In addition, while our gating process is designed to select workers serious about the task,

we do incorporate several techniques to assure that workers stay active when a task gets

assigned to them. Individual tasks, such as assess tasks, impose anti-cheating mechanisms

to discourage spammers from quickly progressing. These mechanisms include character

and word count minimums and disabling of copy-paste for free-form entries. Workers are

also encouraged to peer-regulate during discussion — participants can indicate a partner’s

inactivity upon ending a discussion with no agreement. Paired with corresponding payout

incentives, these methods ensure that most workers stay active throughout the duration of

an experiment.

5.3 Experiments

We deployed our experiments on our synchronous implementation, Cicero-Sync, to ad-

dress the following questions: 1) Does multi-turn discussion improve individual accuracy

more compared to existing one-shot reconsider based workflows?; 2) Is multi-turn discus-

sion effective in cases where acquiring justifications to implement one-shot argumentation

(reconsider) is impractical?; and 3) Do discussions exhibit multi-turn and contextual prop-

erties?

We selected two domains to evaluate the research questions above: a traditional NLP

binary answer task, Relation Extraction, for comparing against one-shot argumentation

and a multi choice answer task, inspired by the word relation game Codenames, to evaluate

Cicero in a non-binary choice domain.

In the following sections, we first introduce the experiment setup and configuration,

then we introduce each domain and present our results for experiments on that domain. At
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the end, we present a qualitative analysis of discussion characteristics and explore whether

discussions can improve future accuracy.

5.3.1 Experiment Setup

Cicero’s design enables interleaved assignment of different task types (assessments or dis-

cussions) for individual workers. This can be beneficial in reducing worker waiting overhead

by assigning individual tasks when paired tasks are not available. However, in order to eval-

uate the effects of contextual, multi-turn argumentation under a controlled setting, we need

to isolate the process of assessment and argumentation. For our experiments, we imple-

mented a “blocking” task assigner that avoids interleaved concurrent tasks and is designed

to assign the same type of task to a worker until they have answered all questions of that

type.

The blocking assigner includes a few extra constraints in addition to those required by

the workflow:

• Gold Standard Assessments: The task assigner assigns assess tasks for gold stan-

dard questions to evaluate quality of workers who passed the training and gating quiz

phase. Workers are assigned these questions before any other questions. No discus-

sions are ever initiated for these questions; they let us control for worker quality and

filter workers that do not pass the gating threshold.

• Greedy Matching: The task assigner tries to assign a discussion as soon as such

a task is available. In the case of multiple candidates, the task assigner picks one

randomly.

Additionally, the blocking assigner doesn’t allocate any discussions until a worker has

finished Assess-ing all questions. This allows us to collect the initial answers of a worker

before they participate in any argumentation.

We adjusted Cicero-Sync to include these experimental constraints. The resulting sys-

tem used in experiments consists of three distinct stages: Training, Assess, and Discussion

/ Reconsider with workers progressing through each stage sequentially.
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We conducted a between subjects experiment with 2 conditions. In the discussion

condition, workers are matched to partners in synchronous discussion sessions after they

complete the Assess stage according to the allocation policy described earlier. In the re-

consider condition, we implemented the adaptive workflow and task interface as described

in MicroTalk [77] to represent one-shot argumentation. In this condition, workers are adap-

tively asked to justify or do reconsider tasks depending on their initial answer: When a

worker is the only worker with a particular answer for a question, they will be asked to

provide a justification for their answer. Reconsider tasks are only assigned to a worker

if there is a previously justified answer opposing their current answer. We evaluated the

Relation Extraction domain with this experiment setup.

Additionally, we examined the performance of Cicero on multiple choice questions with

many answers through the Codenames domain. It is infeasible to run a reconsider con-

dition on this domain (as we detail later), so workers only participate in the discussion

workflow. We also included an extra individual assessment stage to examine whether work-

ers were learning from discussions. For simplicity, we may refer to this as the codenames

condition.

5.3.2 Recruiting and Incentives

We ran experiments on Amazon Mechanical Turk, using workers who had completed at least

100 tasks with a 95% acceptance rate for both of our experiment domains. We recruited a

total of 102 workers across the discussion, reconsider, and codenames conditions (60, 28, 14

respectively), with a gating pass ratio of 64%, 43%, 63% for each respective condition.

Worker drop-out (post-gating) was 1, 0, 2 for each respective condition.

Within each domain, we calibrated our subtask payments by observing the average

worker time for that subtask from a pilot run and allocating an approximately $7 hourly

wage. Our training bonus of $1.00 for successfully completing training and the gating quiz

is also calibrated using the average time it takes workers to complete the training session.

For the Relation Extraction domain (discussion and reconsider conditions), workers

are paid $0.10 as base payment and $1.00 for passing the Training stage. Workers are then
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paid a per-question bonus of $0.05 for an assessment and $0.05 for a justification during

the Assess stage. Depending on the condition, a bonus of $0.50 is paid for participating

in a discussion task and $0.05 for a reconsider task in the last stage. Note that in the

discussion condition, a justification is always collected for each question during the Assess

stage so workers always get a $0.10 per-question bonus. These per-question incentives are

chosen to match those used in MicroTalk [77].

For the Codenames domain, workers are paid $0.20 as base and $1.00 for passing the

training stage. Workers are paid a per-question bonus of $0.20 for each correct answer and

a per-discussion bonus of $0.50 for participating in a discussion with an extra $0.25 for

holding the correct answer at the end of discussion.

While it is possible to design a more complex incentive structure, our main goal for

this set of incentives is to discourage cheating behavior and align with that of MicroTalk.

We think these incentives are consistent with those used in other, recent crowdsourcing

research [178].

5.3.3 Relation Extraction Domain: Binary Answer

In the interest of comparing to previous work, we evaluated our method on a tradition

NLP annotation task of information extraction (IE) — identifying structured, semantic

information (relational tuples, such as would be found in a SQL database) from natural

language text [111]. The task is of considerable interest in the NLP community, since most

IE approaches use machine learning and many exploit crowdsourced training data [304, 209,

7, 178].

Specifically, we consider the problem of annotating a sentence to indicate whether it

encodes the TAC KBP LivedIn relation — does a sentence support the conclusion that

a person lived in a location? While such a judgment may seem simple, the official LDC

annotation guidelines are deceptively complex [260]. For example, one can conclude that a

national official lives in her country, but not that a city official lives in her city. Figure 5.3

defines the task, showing the instructions given to our workers.

We created a set of 23 challenging TAC KBP questions drawing from the 20 used in
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Figure 5.4: Comparison for improvement in average worker accuracy (Relation Extraction

domain) for each batch (subset) of questions (Batches 1–3) as well as on the entire set of

questions (All).
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MicroTalk [77] and adding 3 additional questions from Liu et al. [178]. This set was then

divided into 3 batches of size 7, 8, and 8 for our discussion experiments. For gold standard

questions, we selected 3 simple questions from the TAC KBP set, each of which can be

resolved with an invocation of one rule. Upon recruitment, each worker is also presented

with a 6 question gating quiz and are allowed 2 attempts to pass the gating threshold.

Gating questions were written to be simple and unambiguous, testing whether the worker

was diligent and had absorbed the guidelines.

5.3.4 Multi-turn vs. One-shot Workflows

Our first experiment compares worker accuracy for the multi-turn, contextual discussion

workflow design against that of a one-shot (non-contextual) reconsider workflow on the

binary answer Relation Extraction domain (i.e., Cicero vs. MicroTalk). We deployed

both conditions with the configuration described in the experiment setup with the gating

threshold set at 100%—workers needed to answer all gold standard questions correctly to be

included. Also, since workers need to complete all assessments before starting discussions

which would cause increased waiting time on a large set of questions, we deployed the

discussion condition experiments in 3 batches (N = 9, 16, 13) corresponding to the 3

batches the experiment questions were divided into. In the reconsider condition (N = 12),

workers were put through our implementation of the adaptive workflow from MicroTalk

on all questions.

From the plot shown in Figure 5.4 we can see that the discussion condition (Cicero)

improves average worker accuracy by 16.7 percentage points over the initial accuracy com-

pared to 6.8 for the reconsider condition (statistically significant, t-test at p = 0.0143).

We performed a t-test on the initial accuracy of workers across both conditions for each

batch and found no statistically significant difference (p = 0.77, 0.78, 0.67) indicating that

workers of similar quality were recruited for each of our batches. On average, workers

participated in 7.7 discussions (σ = 4.75) and were presented with 16.8 reconsider prompts

(σ = 3.83) in the one-shot workflow.

We do note that discussions are more costly, largely due to paying workers for time spent
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Candidates business, card, knot

Positive Clues suit, tie

Negative Clues corporation, speed

Explanation Workers must find the single best

candidate word that is related in meaning

to some positive clue word, but none of

the negative clues. In this example,

all three candidates are related to

some positive clue: a suit

for business, a suit of cards, and to tie a

knot. However, business relates to

corporation and knot is a unit of speed.

Card is the best answer: it’s related to

a positive clue, while being largely

unrelated to any negative clues.

Best Answer card

Table 5.1: Example of a simple question used for training from the Codenames domain.

Real questions have around 7-10 candidate words.

waiting for their partner to respond. Each Cicero-Sync discussion took an average of 225.3

seconds (σ = 234.8) of worker time compared to a one-shot reconsider task averaging 13.6

seconds (σ = 15.0). We believe that an asynchronous implementation of Cicero could

reduce overhead and dramatically lower costs.

5.3.5 Codenames Domain: Multiple Choice with Many Answers

Previous work using one-shot argumentation [77, 237] focused mainly on evaluating argu-

mentation in domains that only acquired binary answers such as Relation Extraction or

sarcasm detection. These systems ask workers to fully justify their answer, which can be
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done by arguing against the opposing answer and for one’s own.

However, we observed that this is not sufficient to represent a wide variety of real world

tasks. As the number of answer options grows, it becomes increasingly inefficient and

even infeasible to ask workers to provide full, well-argued justification for their answers

beforehand. Full justifications for multiple choice answers would need to address not only the

worker’s own answer, but also argue against all remaining options, making the justifications

long and difficult to understand. Multi-turn discussion can address these scaling issues

through back-and-forth dialog through which workers argue only against their partner’s

specific answer.

Inspired by the popular word association Codenames board game, we created a new test

domain that requires choosing between numerous possible answers. Similar game-based do-

mains have been adopted to evaluate cooperative work designs such as in DreamTeam [309],

which utilized a cooperative version of Codenames, and CrowdIA [169], which used a mys-

tery game. The objective in the game is for each team to identify the tiles assigned to them

from a shared list of word tiles. Clue words are given by one team member (the “spymas-

ter”) who can see the assignment of word tiles (which ones belong to which team) while

other teammates have to find the correct word tiles for their team while avoiding the tiles

assigned to the other team.

Our Codenames task domain draws inspiration from the competitive aspect of the game.

We observe that late into the game, good word guesses are often informed by both the

teammate clues (which should be matched) and opponent clues (which should be avoided).

With this observation, we created tasks which consist of a list of candidate words, several

positive and several negative clue words. Workers, in the role of a team member, are

instructed to find the single best candidate word that is related in meaning to some positive

clue word but none of the negative clues. An example of this task can be seen in Table 5.1.

Each question contains around 2 positive clues, 2–3 negative clues and 7–10 candidate words.

We created 3 gating questions, 7 experiment questions, and 1 question for the individual

assessment stage for this task. We used a gating threshold of 66.7%. While Codenames

is not a typical task for crowd work, as also noted in DreamTeam, we think its aspect of

multiple choice answers is representative of a whole class of similar tasks that lack effective
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Figure 5.5: Initial and final accuracy of multi-turn argumentation on the Codenames domain

with 95% confidence intervals.

one-shot argumentation strategies.

The loose definition of words being “related” in the Codenames domain reduces the

amount of worker training required for participation since it utilizes common knowledge of

language. However, this may lead to ambiguity in reference answers which would be unde-

sirable. We elected to manually create a set of questions which were validated to have only 1

objectively best answer. The distractors for each question and our reference argument were

evaluated with a group of expert pilot testers. We confirmed that all participants agreed

with our reference counter-arguments against the distractors and also with our reference

answer. In the pilot test, we also noted that this task can be very challenging even for

experts as multiple word senses are involved in distractors.

5.3.6 Evaluating on Multiple Choice Tasks with Many Answers

Our second experiment (N = 12) examines the performance of Cicero-Sync on multiple

choice answer tasks from the Codenames domain, a domain that would be very inefficient
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for one-shot argumentation (justifications would need to address up to 9 alternatives). We

achieved a final average worker accuracy of 98.8% compared to 66.7% initial accuracy (Fig-

ure 5.5) – a 32.1 percentage point improvement.

We tested the significance of this improvement through an ANOVA omnibus test with

a mixed effects model using worker initial accuracy as a random effect and found that

the improvement was statistically significant at (F (1, 57.586) = 85.608, p = 5.445x10−13 <

0.001). The average duration of each discussion was 123.56 seconds (σ = 64.79) and each

worker had an average of 6.3 discussions (σ = 3.89).

5.3.7 Discussion Characteristics

We can see from the previous experiments that multi-turn, contextual argumentation is

effective at improving worker accuracy across a variety of tasks, but are the discussions

actually taking advantage of multi-turn arguments and the context being available? To

answer this question, we collected and analyzed the transcripts recorded for each domain:

Relation Extraction and Codenames.

We computed statistics on multi-turn engagement by analyzing the number of worker-

initiated messages – each of which is considered a turn. We found that in the Relation

Extraction domain, discussions averaged 7.5 turns (σ = 6.1, median of 5) while in the Co-

denames domain discussions averaged 8.3 turns (σ = 4.23, median of 7). We also found

that in Codenames, the number of turns correlates to convergence on the correct answer

(F (1, 31) = 7.2509, p < 0.05) while we found no significant relation between turns and

convergence (p > 0.1) in the Relation Extraction domain. We note that in Relation Extrac-

tion, discussions are seeded with workers’ justifications from the assess task (equivalent to 2

non-contextual turns, which should be added to the average numbers above for comparison

purposes) whereas discussions in the Codenames domain use actual contextual turns to com-

municate this information. Compared to workers in Relation Extraction conditions, workers

in the Codenames discussions sometimes utilized extra turns to reason about alternative

choices neither worker picked when entering the discussion.

Additionally, we noticed several patterns in the discussion text that appeared in both
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Relation Extraction Codenames

Refute 42% 59%

Query 25% 35%

Counter 34% 14%

Previous 16% 10%

Table 5.2: Proportion of each pattern appearing in discussions that converged to the correct

answer for each domain. Refute and Query suggest utility of multi-turn interactions while

Counter and Previous mainly suggest utility of context.

domains. We further examined these patterns by coding the the discussion transcripts

(147 from Relation Extraction and 38 from Codenames). We surveyed the discussions

looking only at patterns specific to argumentation and came up with 8 patterns related to

argumentation techniques and 6 reasons workers changed their answer.

We then narrowed down the argumentation patterns by removing any that were highly

correlated or any that had just 1–2 examples and finalized the following 4 prominent patterns

as codes:

• Refute: Argue by directly giving a reason for why the partner’s specific answer

is believed to be incorrect. Examples: “Small [partner choice] is the opposite of

large [negative clue] and will not work”; “Louisana [sic] isn’t a country, therefore

NonCountry applies.”

• Query: Ask the partner to explain their answer, a part of their answer or ask for a

clarification in their explanation. Examples: “Why do you think it should be bill?”;

“How would bridge work?”

• Counter: Pose a counter-argument to a partner in response to their explanation.

Example: A: “Erdogan’s government is nationally affiliated with Turkey.” B: “[...]

The sentence could be interpreted as one of Turkey’s allies is helping them with the

EU thing.”
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• Previous: Explicitly state that knowledge/line of reasoning acquired from a previous

discussion is being used. Example: “I had window at first too, but someone else had

bridge, but they thought bridge because of the card game bridge, and that made sense

to me”;

We found that workers used these contextual patterns frequently during their discussions

for both domains with 77.6% and 86.8% of all discussions utilizing at least one pattern

in the Relation Extraction and Codenames domains respectively. We can also see that

distribution of patterns across the two domains (Table 5.2) on discussions converging to

the correct answer indicates that the utility of each pattern may be different in different

domains. We hypothesize that the higher frequency of Counter and lower frequency of

Query in Relation Extraction is likely due to the justification seeding which reduced need

for workers to ask for explanations but encouraged more counter-arguments.

We also condensed the reasons for workers changing their answer down to 3 basic cat-

egories: learning about the task (rules), agreeing on meaning of concepts in a question,

and being convinced by an argument. After coding the discussions, we found that the

distribution of the reason for changing answers was 18%, 3%, 79% for Relation Extraction

domain and 17%, 28%, 55% for Codenames, across each category (task, question, convinced)

respectively showing that discussions could help workers understand the task.

We also observed that 70% of all discussions and 75% of discussions converging to the

right answer used our rule shorthands when referring to the rules instead of describing

them. However, we note that simply citing shorthands doesn’t correlate with convergence

of a discussion (p > 0.1).

5.3.8 Do Workers Learn Through Discussion?

While we didn’t design discussions to be used as a way of training workers, many reported

that they “understood the task much better” after discussions in pilot experiment feedback

so we explored the effects of discussions on workers’ future accuracy. We tested a worker’s

performance by adding post-test questions after they finished their corresponding experi-

ment condition. We selected 4 questions for the Relation Extraction domain and 1 for the
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Figure 5.6: Scaling of majority vote (green) and EM-aggregated performance (blue) for one-

shot argumentation (Microtalk) on the Relation Extraction domain, computed by simulation

(100 simulations per budget) excluding training cost. While expensive due to the use of

real-time crowdsourcing, EM-aggregated performance of Cicero-Sync (shown as a red dot)

is higher.

Codenames domain, all of comparable difficulty to the main questions, to be individually

evaluated.

Average accuracy on the individual evaluation sections trended higher for the discussion

condition: accuracies were 66.7%, 69.3%, and 73.9% for the baseline (no argumentation),

reconsider and discussion conditions respectively in the Relation Extraction domain and

46.7% and 52.0% for the baseline and discussion conditions in the Codenames domain.

However, ANOVA on all conditions for each domain shows no statistically significant in-

teraction (F (1, 49.1) = 0.013, p > 0.1 and F (2, 58.3) = 1.03, p > 0.1 for Codenames and

Relation Extraction respectively) between the experiment condition and the accuracy on

the individual evaluation questions. We conjecture that need for argumentation may be

reduced as workers better learn the guidelines through peer interaction [160, 76], but the

difficult questions will likely always warrant some debate.
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5.4 Discussion

While each discussion task in Cicero-Sync required more worker time, we found signif-

icantly higher gains to individual worker accuracy compared to the reconsider condition

from MicroTalk. We believe that much of the increase in work time stems from our

decision to use synchronous, real-time crowdsourcing in Cicero-Sync, leading to higher

per-argument-task costs. Under a synchronous environment, workers must wait for other

workers’ actions during and in-between discussions. Since our experiments are focused on

evaluating the multi-turn argumentation workflow, synchronized discussions allowed us to

better collect data in a controlled way. Many efficiency optimizations, that we did not ex-

plore, could be implemented to run the Cicero workflow at scale in a more cost effective

way. Specifically, an asynchronous implementation of Cicero would eliminate the need for

workers to wait for each other, reducing costs. However, if the synchronous implementation

were run at larger scale on a much larger set of problems, there would be proportionately

less overhead. A semi-asynchronous workflow can be created using notifications and re-

minder emails [237]. Larger asynchronous group discussions can also be made possible

through summarizing discussions [302] thus reducing the cost of new participants getting

up to speed.

Argumentation, whether one-shot or multi-turn, may not be appropriate for many tasks,

even those requiring high-effort [52]. For example, if one is merely labeling training data

for supervised machine learning (a common application), then it may be more cost effective

to eschew most forms of quality control (majority vote, EM or argumentation) and instead

collect a larger amount of noisy data [173]. However, if one needs data of the highest pos-

sible accuracy, then argumentation — specifically contextual, multi-turn argumentation —

is the best option. We simulated the effects of recruiting more workers according to the

policy described in [77] at higher budgets. Figure 5.6 shows performance for one-shot argu-

mentation after aggregating answers across all workers using EM along with the aggregated

Cicero-Sync results. We observe that accuracy plateaus for one-shot argumentation, con-

firming previous reports [66, 77], and that Cicero achieves 5 percentage points higher

aggregated accuracy compared to previous work, even when accounting for the higher cost
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of multi-turn discussions.

In the end, the most cost effective crowd technique depends on both problem difficulty

and quality requirements. High-cost methods, like argumentation, should be reserved for

the most difficult tasks, such as developing challenging machine learning test sets, or tasks

comprising a high-stakes decision, where a corresponding explanation is desirable.

5.5 Conclusion & Future Work

In this paper, we explored the potential for multi-turn, contextual argumentation as a

next step for improving crowdsourcing accuracy. We presented Cicero, a novel workflow

that engages workers in multi-turn, contextual argumentation (discussion) to improve crowd

accuracy on difficult tasks. We implemented this workflow using a synchronous, real-time

design for discussions tasks and created the Cicero-Sync system. Since the quality of a

discussion depends on its participants, we also designed and implemented gated instructions

and a novel justification training task for Cicero-Sync to ensure competent discussions

through improving workers’ ability to recognize and synthesize good arguments.

We demonstrate that our implementation of Cicero-Sync, the synchronous version of

the Cicero workflow, is able to achieve two things:

• Higher improvement in accuracy compared to a state-of-art, one-shot argumentation

system on a difficult NLP annotation task: a 16.7 percentage point improvement

over individual workers’ pre-argumentation accuracy v.s. a 6.8 point improvement

using one-shot argumentation and 5 percentage points higher aggregate accuracy when

aggregating the opinions of multiple workers using majority vote or EM, accounting

for cost.

• Very high accuracy in a non-binary choice answer task that would be impractical with

one-shot argumentation: 98.8% accuracy (a 32.1 percentage point improvement over

the initial accuracy.)

Both these accuracies are much higher than can be achieved without argumentation.

Traditional majority vote and EM without argumentation approaches plateau at 65% on
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similar questions [77]. Additionally, we observed several interesting patterns of discourse

that are enabled by multi-turn, contextual argumentation and note that many successful

discussions utilize these patterns.

There are many future directions for improving the argumentation workflow and system

implementation. Currently, the cost of argumentation is still relatively high but cost may

be reduced further as discussed earlier.

There are also details in the interactions that could be examined in future work. While

we kept workers anonymous between discussions, benefits of assigning pseudonyms as a

persistent identity [237] in repeated sessions may be worth considering. Additionally, the

idea of utilizing worker produced highlights to refer to the task guidelines and question

in [237] could be incorporated in a future iteration to extend our concept of rule short-

hands.

We also envision that better models of discussions could allow a future system to only

pair arguments where the outcome reduces uncertainty. Furthermore, there is potential

in incorporating natural language processing techniques to identify and support positive

behavior patterns during argumentation and opportunities for learning from misconceptions

surfaced during discussion to improve training and task instructions [35].

Finally, we believe argumentation techniques can be extended to a wider range of tasks

and meta-tasks, including issues like micro-task organization studied in Turkomatic [159]

and flash teams [220], as well as offer new avenues for human-machine collaboration.
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Chapter 6

JUDGMENT SIEVE: BUILDING DYNAMIC WORKFLOWS TO
ADDRESS UNCERTAINTY WITH TARGETED INTERVENTIONS

In the previous chapters, we presented tools for capturing uncertainty in various judg-

ment modalities as well as a workflow to address uncertainty in the form of disagreements.

However, in practice uncertainty can arise from multiple sources, such as ambiguity due to

limited context, or disagreements due to different perspectives or an underspecified task,

and sometimes both at the same time. Simply applying one intervention to reduce un-

certainty could result in ineffective or counter-productive scenarios where adjudicators are

forced to deliberate on cases they agree is ambiguous. Thus, rather than create one-size-fits-

all interventions, if we make use of uncertainty-aware judgment tools tools to distinguish

the source of uncertainty, we can target an intervention to solve the most prevalent source

of uncertainty.

In this chapter, we introduce a new approach to reduce uncertainty in tasks involving

group judgment in a targeted manner—by utilizing measurements that separate different

sources of uncertainty during an initial round of judgment elicitation, we can then select a

targeted intervention adding context or deliberation to most effectively reduce uncertainty

on each item being judged. We test our approach on two tasks: rating word pair similarity

and toxicity of online comments, showing that targeted interventions reduced the uncer-

tainty score of the targeted source for the most uncertain cases. In the top 10% cases, we

saw an ambiguity reduction of 21.4% and 25.7%, and a disagreement reduction of 22.2% and

11.2% for the two tasks respectively. We also found that our simulated dynamic approach

reduced the average uncertainty scores for both sources as opposed to uniform approaches

where reductions in average uncertainty from one source came with an increase for the

other.
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Figure 6.1: A high-level overview of the workflow: (1) Human judgments are collected using

an annotation tool that quantifies distinct sources of uncertainty; (2) For each instance,

scores that correspond to sources of uncertainty (i.e., ambiguity and disagreement) are

computed; (3) Instances with more disagreement are given the deliberation intervention

to resolve disagreements, producing new guidelines; (4) Context is collected for instances

with more ambiguity and incorporated into the instance.

6.1 Introduction

Uncertainty is an unavoidable challenge in many tasks that involve making judgments on

items. In particular, judgments that involve groups of people must grapple with uncertainty

often, as uncertainty in the group setting can arise from both uncertainty experienced by

individuals in the group as well as uncertainty at the group level. Individuals in the group

may each feel some level of uncertainty due to the ambiguity of the item they are judging,

making it hard to personally decide on a judgment. At the same time, even if individuals

are certain in their personal judgments, group uncertainty can still arise due to disagreement

between members of the group, which can come from differences in perspectives of the group

members that have not been addressed via a specification in the task instructions.
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For example, a group of community moderators determining whether a post should be

taken down for being harmful may face uncertainty due to ambiguity in the language used

and the poster’s intent [208]. At the same time, differences in background and culture [139]

mean that members of the community may often disagree on what even is harmful [15]

and what actions should be taken as a consequence [13]. Similarly, in the education set-

ting, teaching assistants and instructors are often faced with uncertainty when grading open

ended assignments. While the goal of grading is to evaluate a student’s level of understand-

ing, a poorly designed assignment question may lead to an answer that does not clearly

demonstrate the student’s understanding one way or the other. Separately, if a shared

grading rubric doesn’t specify what to do in a particular case, different graders may end up

relying on personal judgment, creating disagreement and inconsistencies [246].

Failure to account for uncertainty during the process of human annotation can lead

to unreliable and inconsistent measurements [288] even in domains involving expert judg-

ments [58]. Additionally, biases resulting from different backgrounds and perspectives of

individuals in the group can also create biased group judgments if not properly accounted

for [232, 234]. Due to these observations, in many areas, approaches and processes have

been developed to measure uncertainty in data in order to discard unreliable judgments

[24, 106, 211] or to create systems that can make use of disaggregated data [89, 167, 282].

While accounting for existing uncertainty is important for building more robust processes,

when it comes to actually making decisions, in many cases intervention to reduce uncertainty

becomes necessary.

One intervention to reduce uncertainty tackles the ambiguity in the item being judged by

providing additional context to help make a decision. For example, providing information

such as the parent post of a comment has been shown to sometimes result in an opposite

judgment of the toxicity [208]. However, context is complex, and collecting the full scope

of relevant context for all cases can be difficult [251]. Thus, it is often infeasible to collect

context for all instances ahead of time. Another way to reduce uncertainty tackles the dis-

agreement between individual judgments in the group. Several methods have been proposed

to address disagreement by adding greater specification to the task, such as through the use

of anchoring examples [49] to ground task understanding and using measured uncertainty
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to find unclear guidelines [181]. Other methods tackle the underlying issue of differing per-

spectives, where deliberation has been shown to improve consensus [237, 50, 86]. However,

these interventions also come at a high cost, often requiring a synchronous collaboration

process.

Not only are these interventions costly but applying an intervention meant to address

one form of uncertainty when the cause of uncertainty lies elsewhere may lead to wasted

effort. For instance, prior work has found that resolution of disagreements via deliberation

can fail when the context is ambiguous or missing [237]. On the other hand, more context

may not be helpful if group members are certain about their judgment but still need to

resolve disagreements. Instead of applying all of these costly interventions in every case

that presents uncertainty, if we can measure and distinguish the sources contributing to

group uncertainty for each case, then it would be possible to select a more targeted and

effective intervention on a per-case level.

In this paper, we present a new workflow, Judgment Sieve, for efficiently reducing un-

certainty in group judgments. Judgment Sieve involves a decision process that selects a

targeted intervention based on the types of uncertainty observed during the initial anno-

tation of each item (Figure 6.1). When individual uncertainty is detected, we focus on

acquiring more context to reduce ambiguity in the item; when disagreement between an-

notators is detected, we focus on engaging annotators in deliberation to reconcile their

diverging perspectives and better specify the task instructions.

We make the following contributions in this paper:

• We present Judgment Sieve, a workflow for reducing uncertainty in group judgment

scenarios by utilizing measurements related to ambiguity and disagreement for each

instance. We also provide a prototype implementation of this workflow for scalar

rating tasks.

• We conduct annotations on two scalar rating task domains: word pair similarity rating

(wordsim) and toxicity rating (toxicity), and verify that adding context and deliber-

ation are effective interventions for reducing ambiguity and disagreement

respectively.
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– In the top 10% most ambiguous cases, we observed a 21.4% (wordsim) and 25.7%

(toxicity) reduction in ambiguity by introducing context.

– Similarly for the top 10% highest disagreement cases, we saw a 22.2% (wordsim)

and 11.2% (toxicity) reduction in disagreement by introducing guidelines created

from deliberation.

• However, we also observed that a broad application of interventions over all items can

increase uncertainty in some circumstance, where adding context increased disagree-

ment by 2.06% (wordsim) and 3.54% (toxicity).

• We conduct a simulation experiment to evaluate the targeted intervention aspect

of Judgment Sieve which selects an intervention based on the type of uncertainty

measured in the initial annotation. We find that targeted selection of interventions

applied to the most uncertain examples resulted in reductions in the overall means of

both uncertainty sources as compared to a uniform approach where reductions in one

source of uncertainty came with an increase in the other. Though, we do note that

when including instances where our dynamic approach did not assign any intervention,

this reduction was not statistically significant.

6.2 Related Work

There is an increasing recognition in the spaces of machine learning and social computing

that accounting for and addressing uncertainty in crowd judgments is an important problem

to tackle. In this section we will review this body of prior work, focusing on: (1) establishing

the distinction between error and uncertainty; (2) understanding how (aggregate) measures

of uncertainty have been utilized in existing systems and workflows; (3) exploring some

theoretical frameworks around distinguishing sources of uncertainty; and (4) discussing prior

work around context and deliberation and how they informed the design of the interventions

we will be using to address the sources of uncertainty.
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6.2.1 Error v.s. Uncertainty

In the past, much work around reducing observed uncertainty in group judgments has been

focused on mitigating errors, especially in contexts where such judgments are elicited from

the crowd [248, 135]. In crowdsourcing settings, the common assumption is that crowd

workers conducting judgments are often non-experts with relatively limited training and

experience. As a result, the problem of uneven quality and reliability of participants can

still be an important concern today [118]. Many approaches to reducing error often focus

on adjusting the task design itself to provide clear executable instructions to crowd workers

and reducing the opportunities for making mistakes [293, 203]. Additionally, procedures and

workflows have been developed to improve the efficiency of training [93], selecting [178], and

maintaining a high-quality set of attentive crowd annotators [21].

In addition to work on the design side, automated approaches and models have also

been developed to correct for errors utilizing the responses of others in the group [65] or via

measurements of worker quality through the use of gold standard questions [292]. However,

one of the limitations of these approaches is that they often come with the assumption

that ground truth can be established with certainty given only the information in the task

presently, an assumption that is increasingly mismatched for the types of annotation work

being conducted today [99]. Prior work has found that in many human judgment tasks, the

information provided by the task guidelines and individual instances is not sufficient even

for experts to make judgments with certainty [207, 82, 11]. Sometimes this is the result of

the task criteria being too vague or potentially self-contradictory [288, 207, 167]. In other

cases, individual cases might just be unclear [23] or have plausible alternative contexts under

the assumption of which an alternative judgment may be reached [232].

Finally, we also note that not all errors are unintentional aspects of the task. In crowd

work settings, we can also experience errors that are the result of workers who may not

make an honest attempt at the task [205, 278]—sometimes referred to as spamming workers.

However, spamming activity is often motivated by adversarial financial incentives and can be

coordinated [72], which means it may be more effective to instead adjust task and incentive

designs to discourage spam in the first place. Additionally, as with all human judgments,
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crowd work is subject to biases as a result of the recruitment pool [71] and, more generally,

human cognitive biases [119].

While addressing errors is still an important and integral part of any crowd-based work-

flow, the increasingly important challenge falls upon how to account for these sources of

uncertainty not caused by annotator errors but rather arise from the annotators and task.

In our work, we mainly focus on creating a workflow that engages with these sources of

uncertainty rather than looking into mechanisms to control or reduce errors. This means in

practical applications of the Judgment Sieve workflow, we expect each component to also

utilize existing designs proposed by prior work to address errors (such as gated instruc-

tions [178] and mechanisms to check for attention).

6.2.2 Accounting for Uncertainty in Human Judgments

As mentioned in the previous section, uncertainty is present in many situations where

human judgments are involved. As a result, existing literature has also presented a variety

of different ways to engage with and account for uncertainty in these human judgments.

The most straightforward way that is used to account for uncertainty today, is by using

it as a filter—if the annotators don’t agree, then the judgment could not be made reliably.

Following this approach, common solutions make use of measurement to evaluate the level

of disagreement, such as inter-rater reliability [115], after judgments are made and discard

data that falls above a disagreement threshold or acquire more judgments until sufficient

agreement is reached [226, 305]. Often times, achieving a certain level of annotator agree-

ment is used as a certificate of the quality of a dataset [248]. However, as has been observed,

annotated instances naturally lie on a spectrum of uncertainty [262, 288] so dropping ex-

amples may lead to a biased sampling of instances. Many are calling for more visibility into

how datasets are constructed [97] beyond that of just agreement metrics.

Beyond selecting for instances, uncertainty has also been proposed as a way of reflecting

on unclear guidelines or under-specified tasks. For example, work in crowdsourcing has

utilized uncertainty as a way to identify guidelines that are unclear [182, 181, 35]. Alterna-

tively, uncertainty has also been harnessed to create guidelines and taxonomies when edge
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cases are present [46].

One final approach to working with uncertainty focuses on incorporating uncertainty as

a part of downstream models that utilize human judgments. For example, recent systems

have been introduced that learn from labels with uncertainty [297, 296]. In the space of

machine learning, there is an increasing body of work that seeks to harness dis-aggregated

labels as additional training data for models [133, 89] and uncertainty aware models have

been shown to achieve higher performance. Not simply limited to training data, uncertainty

in labels has also seen use in creating more robust evaluation [106]. However, even when

built to utilize uncertainty information, automated systems are not sufficiently flexible and

still fail to address uncertainty in the same socially cognizant way humans can [28].

More recently, there is an increased recognition that not all sources of uncertainty should

be treated the same as, even within a single dataset, different instances or cases can have

different types of uncertainty. Instead some have proposed that we should categorize and

quantify uncertainty in order to optimally address it.

6.2.3 Quantifying Sources of Uncertainty

Traditionally, quantification of uncertainty was often done through a statistical lens, by

presenting and inferring a probability distribution [60] from the judgments collected. Along

this view, recent works have made efforts to quantify uncertainty through capturing dis-

tributions over responses. However, capturing answer distributions can be costly [55] and

distributions themselves offer little insight into the sources that may have contributed to

what is eventually observed statistically—requiring further analysis and data collection to

discern [288].

More recently, there has also been work that looks at teasing apart these differences by

drawing from classical formulations of uncertainty [121, 151]. One such framework proposes

that uncertainty around human judgments can be viewed as arising from two main sources:

aleatoric (or aleatory) uncertainty—where uncertainty arises from the natural unpredictable

variance in the property/phenomena measured, and epistemic uncertainty—where uncer-

tainty arises from a the limitations of our models, tools, and understanding [130, 280].
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However, others have also critiqued the practical utility of this formulation of uncertainty,

as our evolving understanding of the problem can often mean what was once seen as irre-

ducible uncertainty is actually a result of factors not yet known [91].

In this work, we make use of one approach for distinguishing sources of uncertainty:

through the lens of ambiguity and disagreement. This approach allows us to distinguish

the uncertainty introduced by. We note that more generally, there can be many different

meaningful ways to quantify and distinguish sources of uncertainty that may suit differ-

ent end goals for addressing uncertainty [250]. While we primarily focused on ambiguity

and disagreement in the evaluation of our workflow, it should be noted that our workflow

could be adapted to a different framework for quantifying uncertainty by utilizing different

interventions targeted for such alternative distinctions.

6.2.4 Providing Context to Disambiguate

One source of uncertainty in human judgments is often attributed to the ambiguous na-

ture of what is being judged. Some have attributed this kind of ambiguity as the result

of a fundamental lack of sufficient context surrounding the case to be judged. Additional

context is commonly used to reduce uncertainty by adding clarity to the instances being

decided on. In toxicity rating tasks, adding context about parent posts can affect the out-

come [208, 284] while context is also often necessary for investigating online abuse [189].

Many tasks in natural language processing have also seen context added to improve per-

formance [124]. Indeed, the idea of establishing context has also been crucial for human

judgment outside that of annotation or crowdsourcing tasks. Classical areas, such as in the

legal space where judgments are involved often have complex specialized procedures involv-

ing experts to establish context around a case [175]. In the field of education, more effective

student performance assessments also involve considering context in the form of evidence of

understanding shown through students’ responses rather than just the answers [184].

More generally, though, knowing what context to acquire ahead of time can be difficult.

In the domain of content moderation, context may be sought out directly as a part of the

moderation process. For example, Wikipedia moderators dealing with problematic behavior
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in talk pages, may need to investigate the potential use of sock-puppet accounts. This often

involves analyzing additional context like a user’s past behaviors on the platform, metadata

associated with their posts, and interactions with related content, beyond the text directly

involved in the moderation decision [251]. In other cases, communities may choose to

investigate cases based on their expertise and spotting discrepancies, drawing historical

context such as in the case of Civil War portrait identification [193]. Additional context

can also target issues with the instance, such as cases where objects in images may be

occluded [168], context may take the form of additional images to be collected.

6.2.5 Resolving Disagreement through Rubrics and Deliberation

Another common source of uncertainty in human judgments can be attributed to underlying

disagreements between individual adjudicators of a case. Many sources can contribute to

these disagreements, ranging from inconsistent interpretation of the task criteria to the

diverse backgrounds of adjudicators resulting in different perspectives.

For tasks involving crowd annotation, rubrics [94] have been proposed as an effective

tool to convey requirements and resolve confusion about aspects of the task. However,

rubrics that can cover all the edge cases can be hard to create even by experts, so prior

work has utilized crowd participants to help create rubrics [181, 212, 35] by finding areas of

high disagreement and asking for suggested guidelines. Rubrics and guidelines can also be

implicit, such as in the form of examples [166] or anchors that allow comparison with prior

cases [49].

Beyond challenges in creating rubrics, rubrics and guidelines also have limitations when

applied. Even when expert-created guidelines are used, adjustments and refinements may

be necessary after judgments are made to address issues with the original guidelines [257].

Additionally, beyond layperson crowds, groups of experts judging instances may also just

disagree on what the criteria should be [236]. In certain higher-stakes domains like ed-

ucation [246], medical diagnosis [29], or legal judgments [265], it is often the case where

the expertise of the humans results in existing guidelines not being applied exactly, instead

often conditionally overridden or even contested and overturned. In socially embedded do-
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mains, like content moderation, guidelines can also fall out of alignment as distributional

properties of the data or adjudicators shifts, such as when social norms shift on online plat-

forms [261, 101] or in broader society. In these situations, past judgments and the criteria

that they used may be contested by future adjudicators.

Finally, unclear tasks are not the sole source of disagreement. Even when task goals

and guidelines are clear, annotators with different perspective may still disagree about how

to judge an item based on different reasoning perspectives [145]. Prior work to automate

and scale up deliberation through crowdsourcing has shown that simple reflection-based

approaches can be effective at resolving disagreements [77, 156]. More recent work utilizes

synchronous deliberation [50, 237] to provide contextual deliberation where those partici-

pating in deliberation can quickly form targeted arguments for the particular points of dis-

agreement. Some have also examined the trade-offs between various forms of deliberation

design choices (such as the participants, deliberative process, communication medium, etc.)

and found that effective deliberation involves building an environment that best matches

the task [64]. Of course, more broadly, the successful use of deliberation to resolve dis-

agreement can also depend on other factors. For example, it can be important to make

sure deliberation participants are trained to argue effectively [50] and communicate in a

way that is collaborative and inclusive [41], especially given the conflicting nature of de-

liberation. Additionally, the dynamics of deliberation (an intellective task) as groups also

means that it can be important to make sure that those matched into deliberation teams

are compatible [291].

In our work, we draw from existing literature on disagreement resolution to build out

one of our interventions—deliberation. However, designing the right deliberation can be

challenging and depends on the participants and tasks, so our application of a simpler form

of deliberation may very likely be less effective than customizing deliberation for the tasks

involved.

6.3 Design

In this section we will describe our design of the Judgment Sieve workflow. Our workflow

consists of the following procedure (as also illustrated in Fig. 6.1):
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1. Collect judgments on each instance from individuals in the group using a process that

allows measurement of both individual ambiguity and group disagreement for each

instance.

2. Compute two scores for each instance: Ambiguity (Ma) and Disagreement (Md), based

on the measurements in the previous step.

3. For each instance, based on its ambiguity and disagreement measurements, assign

potential interventions:

• If ambiguity score is above a set threshold, the instance is assigned the context

intervention. Under this intervention, additional context is gathered for the

instance and incorporated into it.

• If disagreement score is above a set threshold, the instance is assigned the de-

liberation intervention. Under this intervention, a new group is recruited to

re-annotate the instance and then conduct deliberation focusing on their dis-

agreements on the judgment for the instance. At the end of the deliberation for

each instance, the group will then collectively produce a suggestion for a new

general guideline that they think best resolves the disagreement.

4. Incorporate the new information produced from the interventions. Additional context

acquired is included as part of the corresponding instance. Additional guidelines

produced are included into the judgment task definitions.

5. Repeat the process as necessary until an acceptable level of uncertainty is reached.

In the remaining parts of this section, we will go into more detail about each aspect of

the workflow design.

6.3.1 Measuring Sources of Uncertainty

In order to select the right intervention, we first need an approach to understand what

sources may be contributing to the group’s current uncertainty on each instance. In our
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(a) When annotators find instances am-

biguous, wider ranges—reflecting more

rating levels they find acceptable—are pro-

duced.

(b) When annotators disagree about the

rating, we will see their ranges be placed

in different locations on the scale, resulting

in less overlap.

Figure 6.2: Illustration showing the how the two sources of uncertainty—ambiguity and

disagreement—can manifest in the form of range measurements produced by a range-based

rating annotation tool like Goldilocks [49].

workflow, we focus on two distinct sources of uncertainty: the amount of ambiguity inherent

to each judgment (Ma) and the amount of disagreement between judgments (Md). On a

high level, one way to think about the distinction between these two sources of uncertainty

is through who contributes to the uncertainty: Ambiguity reflects each individual annota-

tor’s certainty about their judgment of the item directly collected through our annotation

interface (Fig. 6.3); Disagreement is an emergent property that results from aggregating

judgments across the individual annotators.

In our experiments, we look at a common application of our workflow in the context

of making rating judgments on a continuous scale. Before we can apply targeted interven-

tions, we first need an annotation approach that allows us to distinguish different source of

uncertainty. Most common annotation tools that focus on rating judgments measure un-
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certainty through aggregation, utilizing disagreements as a proxy for uncertainty [288, 88].

However, in order to apply effective interventions, we need an approach that is able to dis-

tinguish the sources of uncertainty. Some prior work have incorporated means for individual

annotators to indicate their confidence through directly providing estimates of their own

uncertainty [55], however, humans are generally not good at making these types of assess-

ments [271]. For our specific application of scalar rating, we make use of an annotation

method introduced by prior work, Goldilocks [49], which proposes a way to separately col-

lect measurements on the sources of uncertainty evaluated by each annotator individually

during their annotation process. Goldilocks achieves this by adapting rating judgments as

a range annotation task where instead of single ratings, raters produce a range ([l
(x)
i , u

(x)
i ])

that reflects values that they find acceptable to place the item.

Using the range annotations collected through this approach, we can define two met-

rics that quantify different sources of uncertainty for each instance (x). We first look at

ambiguity—the situation where an individual annotator is unsure about the rating of the

instance being judged. With the range-based annotation procedure, we can see that this

kind ambiguity would be reflected through the size of the range produced, with “wider”

ranges corresponding to more ambiguity around the rating (Figure 6.2a). Thus we can de-

fine an ambiguity score for each instance to be the average size of all ranges collected from

the group of annotators participating in the judgment process.

Ambiguity(x, i) = u
(x)
i − l

(x)
i

Ma(x) =
1

|N |
∑
i∈N

Ambiguity(x, i)

As for (dis)-agreement between participants, we can see that when range-based annota-

tion is used, the more annotators agree, the more likely it is that the ranges they produce

will overlap. So a natural metric can be formed by looking at the amount—in this case the

ratio—of an annotators range that overlaps with that of another (Figure 6.2b). However,

unlike with range sizes which relate to the fixed scale, simply computing the overlap would

result in a metric that is also affected by the size of the ranges (or in our case, the ambigu-
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ity). We can see that as the absolute size of any of the ranges increases (reflecting higher

ambiguity), the likelihood of that range to overlap with another also increases, resulting in

a higher overlap ratio. To account for this and derive a metric for disagreement, we don’t

directly use the overlap ratio, but instead compare the difference between the measured

overlap ratio and the expected overlap ratio given the size of the ranges being compared.

We note that for any range [l, u], the expected overlap ratio of it compared to another uni-

formly randomly placed range [l′, u′] is equal to the size of the other range (u′ − l′). Given

the observations above, we define (dis)-agreement as:

Overlap(l, u, l′, u′) = max(min(u, u′)−max(l, l′), 0)/(u− l)

Agreement(x, i) =
∑

j ̸=i∈N
Overlap(li, ui, lj , uj)− (uj − lj)

Md(x) = − 1

|N |
∑
i∈N

Agreement(x, i)

Intuitively, higher agreement scores for an annotator on an instance would indicate more

agreement between that annotator and their peers. Positive scores imply that the agreement

on this instance was higher than random—that annotators leaned towards agreement, while

negative scores indicate lower than random agreement—that the annotators leaned towards

disagreement. We note that such a definition of agreement for each annotator is generally not

commutative (i.e., the agreement between a pair of annotators A, B measured from A is not

necessarily equivalent to that measured from B). This reflects the natural asymmetry present

in agreement as exposed through range overlap—for a hypothetical pair of annotators, the

one with a “narrower” (subset) range may agree with their “wider” (superset) partner as

both accept the ratings in the “narrow” range, while from the partner’s perspective some

ratings that they indicated as acceptable were not accepted by their “narrower”-ranged

partner. Finally, to make the metric intuitive, we can take the negation of the “agreement”

metric to define disagreement. We can arrive at a per-instance disagreement score by taking

the average disagreement across all annotators.
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Figure 6.3: A screen capture of the interface used in the annotation process. This annota-

tion tool allows us to collect measurements of individual judgments by annotators of their

observed ambiguity of each item and allows us to measure disagreement through comparing

the ranges across different annotators.

6.3.2 Gathering Additional Context

In cases where ambiguity is high among individual judgments, context has been shown to be

an effective way to reduce this uncertainty in both traditional human judgment settings [236]

as well as for group judgments facilitated in the form of crowdsourced tasks [189]. However,

depending on the judgment task involved, context itself can encompass a wide variety of

types of information, all of which come with varying amounts of cost involved to capture

while not necessarily proving effective for reducing ambiguity. Even when capturing context

is cheap, presenting too much context can risk exhausting the limited attention capacity

of human adjudicators and bog down the judgment process [224] and misleading context
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could result in bad decisions [267]. As a result, if we want to have human judgments that

are scalable, it is likely that attempting to comprehensively capture context will be an

intractable goal. Thus we need to build a process for gathering additional context that can

be informed by measurements of what cases are actually ambiguous and may benefit from

context. In this section, we will give some examples of how we envision additional context

to be gathered for various task settings, and present some cases on how measuring sources

of uncertainty can inform the collection of additional context.

In the first example, we look at how context may be added in a group judgment setting

involving community or platform moderators making content moderation judgments.

Content moderation in many online communities often takes the form of a group of modera-

tors who need to collectively decide on a moderation action (such as demoting or removing

content, placing a ban on the user, or doing nothing) [86, 188]. While many cases may

have clear evidence supporting a certain action, historically there have been high-profile

cases where limited context contributed to journalistic content being classified as porno-

graphic [101, 134, 194]. In other cases, context, like historic behavior or metadata (e.g.,

IP addresses, time, device fingerprints), can be used to establish background information

that affects the severity of the moderation action, where repeated offenses or attempts to

evade enforcement can result in different (often more severe) actions being taken [251]. Our

workflow facilitates this flexibility by surfacing judgments that may lack sufficient context

to adjudicators. For example, a group of moderators using our workflow might identify a

list of cases where observed ambiguity was high. These moderators can then examine each

case, noting any types of context that may be helpful to clarify the judgment. Separate

investigation processes might then be invoked to gather this information which can then be

incorporated as part of a “casebook” surrounding the content [86].

In our second example, we look at what it might mean to gather context in a setting

involving data annotation by a group of crowd workers. Ambiguity in annotation set-

tings often happen because of the variations in the quality of data. For example, in large

image annotation tasks, there can often be images that are unclear [67] or categories that

are difficult to decide on with the available information such as species identification for

animals [122]. Traditionally, because datasets are fixed ahead of time, context cannot be
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gathered during the annotation process. Instead annotators may be asked to flag instances

that are unclear, with some processes also allowing a description of why the case was un-

clear. Requesters may then go through the unclear instances, replacing them with clearer

instances if possible or discarding them when they cannot acquire new data. For example,

some natural language datasets may be constructed by extracting spans from a corpus. In

this case, should some extracted span be ambiguous, the requester can adjust the extrac-

tion process to include additional context from the surrounding text. However, we do note

that, more often the scale of the data involved in crowdsourced annotation often means

that requesters forgo context entirely in favor of dropping data points as individual data

points are often not worth the effort to disambiguate. Plus, requesters need to rely on

self-reported flagged instances, which crowd workers may not be eager to indicate. Our

workflow adapts to this by providing uncertainty measurements baked into the annotations

themselves, meaning that requesters can more reliably identify cases they may want to col-

lect context for. This can be useful when constructing challenge datasets where the goal is

to create tasks that are difficult but not ambiguous.

As a consequence of the varied types of context, there isn’t a single approach to gather

context common across all domains. Instead, we envision that the process will vary based

on what context is relevant to making better judgments on the task itself. Our workflow

discusses the general process of acquiring context abstractly by modeling the process as a

whole in the form of a context intervention applied to an individual instance of a case.

As it is not our goal to develop novel ways to acquire context, in our later experiments, we

will use datasets that already contain pre-acquired contextual information and compare the

case of withholding context against providing it as a proxy for a separate context acquisition

process.

6.3.3 Using Deliberation to Resolve Disagreement

The design of our deliberation process is inspired by prior work on resolving disagreement us-

ing synchronous deliberation [237, 50]. In our workflow, the disagreement metric Md is used

to automatically find candidate instances that may benefit the most from deliberation—
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cases where disagreement is the primary source of uncertainty. Then a group deliberates on

each example by first independently performing a judgment on the item, and then collec-

tively discussing synchronously. Judgments from each group member is visualized during

the deliberation process and the group is collectively prompted to use this to compare their

own judgment to those of their peers. Deliberation participants are prompted to consider

and elaborate to peers the criteria they used to make their judgment. However, unlike in

traditional deliberation systems where the outcome of the deliberation is a judgment on the

instance, the goal of our deliberation process is to produce a generalizable guideline for re-

solving similar disagreements. After engaging in the discussion-based deliberation process,

participants are prompted to consider the perspectives they observed during deliberation as

well as the deliberation outcome to collaboratively propose a guideline for future examples

that resolves the difference in perspective for this instance.

After all the deliberations have concluded, proposed guidelines can be collected and, if

needed, de-duplicated. This produces a final set of guidelines that can be incorporated back

into the task, so that future disagreements of a similar type are accounted for in the task

itself. We note that this overall workflow is also reminiscent of prior methods proposed

to utilize worker-provided feedback to improve the quality of instructions in crowdsourcing

tasks [181, 212]. However, our workflow makes use of the deliberation process to focus

the participants on proposing more effective resolutions that account for the disagreements

observed rather than inadequate instructions.

6.3.4 System Prototype Implementation

In prior sections, we’ve presented our workflow from a more conceptual perspective. Now

we will describe the technical details around the prototype1 that we used to conduct our

experiments. To build out the system prototype for our workflow, we created 2 main

components: (1) an annotation application to collect range-based scalar ratings enabling

the measurement of ambiguity and disagreement (Figure 6.3); and (2) a deliberation

application that collects range-based ratings and then matches participants into synchronous

1Code available: https://github.com/Social-Futures-Lab/targeted-interventions-code

https://github.com/Social-Futures-Lab/targeted-interventions-code
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deliberation sessions (Figure 6.4).

Our annotation application follows the general design of Goldilocks [49] and is im-

plemented as a static web application with the input annotation data and output annota-

tor responses stored directly through Amazon Mechanical Turk (AMT). We use a custom

JavaScript toolkit2 to interface with AMT and coordinate the experiment conditions and

data storage. Our deliberation application is inspired by the design of prior synchronous

deliberation systems [237, 50]. We use a front-end to interface with AMT and acquire data

about instances to be judged in a way similar to our annotation application, with an addi-

tional Python-based back-end server that coordinates the real-time synchronous discussions.

As our focus is on evaluating the workflow, unlike prior synchronous deliberation systems

which incorporate complex dynamic matching algorithms to address issues like unrespon-

sive partners, our back-end server uses a human-guided matching mechanism (the details

of which we describe in Section 6.4.3) facilitated by an internal-facing dashboard.

6.4 Experiments

To evaluate the effects of interventions on group judgment uncertainty, we conducted an-

notation experiments to collect measurements on the uncertainty of group judgments both

before any interventions were conducted and after each intervention was applied. For each

instance annotated, we collected ambiguity and disagreement measurements using the our

range based annotation application under the following conditions: baseline—no interven-

tion applied, context—context was included as a part of each instance, and delibera-

tion—additional guidelines from the deliberation intervention were provided as part of the

task.

6.4.1 Tasks

For our experiments, we selected two annotation-based tasks that commonly produce uncer-

tainty in group judgments: word similarity (wordsim) and toxicity rating (toxicity). Both

task domains have seen use in prior work and are examples of tasks that contain multiple

2Code available: https://github.com/jmchn1994/amt-shim-template

https://github.com/jmchn1994/amt-shim-template
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sources of uncertainty during judgment.

The wordsim domain consists of examples based on an the WordSimilarity-535 Test

Collection [88] and is structured as a task to judge the relatedness of pairs of words on

a 0-10 scale. This domain was selected because it features varied sources that contribute

to uncertainty of both the group and individuals. For one, the “relatedness” of words as

a concept is only vaguely defined in the wordsim task itself, which can lead to different

notions of the relatedness between different people reflected as different schools of thought

such as comparing the relatedness of words through various facets such as their meaning,

usage, generality and occurrence patterns. Additionally, many of the words involved in

this task have multiple word senses. Because no context is provided to disambiguate which

word sense is implied, individual annotators must also decide how to reconcile the ambiguity

resulting from possible word senses. To seed the range-based annotation process, we used the

existing similarity annotations to select 5 seed word pair examples that were evenly spaced

along the range with the lowest variance. We then assembled our annotation dataset by

selecting a random subset of 50 word pairs divided into 5 groups of 10 from the remaining

items.

The toxicity domain consists of comments collected from a Wikipedia Talk Pages [208]

and is structured as a task to judge the toxicity of each individual comment on a continuous

rating scale with 7 point semantic differential scale labels. Judging toxicity itself is a task

that comes with considerable uncertainty and disagreement. We note that prior work has

shown that the background of each annotator and the circumstances in which comments

are posted can greatly affect whether the annotator will see the same post as more toxic

or not [234]. This gives rise to natural disagreement and ambiguity in annotations. As

some comments can be many paragraphs long greatly increasing annotation effort, we first

filtered the dataset to select only instances where neither the comment or parent comment

exceeded a length of 280 characters. Then, to seed the range-based annotation process, we

used the existing toxicity annotations from the dataset source to selected 5 seed comment

examples that were evenly spaced along the range with the lowest variance. We then created

our annotation dataset by selecting a random subset of 50 comments divided into 5 groups

of 10 from the remaining items.
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6.4.2 Acquiring Context

The process of acquiring context in general is usually dependent on the specific goals of

the group and the task. As this process is separate from the workflow itself and we did

not seek to evaluate the quality of context acquired, we instead simulated the process of

acquiring context by using task datasets that were already augmented with context. During

annotations in the baseline, context of each item was withheld from the annotators, while

it was made available during the context condition.

For the wordsim task, we took inspiration from prior work [124], which used example

sentences that contained the word as a way to provide context. For each word in our dataset,

we constructed its context by drawing an example sentence that made use of the word in the

same form as it appears in the wordsim pair. These example sentences were drawn from

WordNet [191] when available and when examples were not available, an online dictionary

service3 was used. When multiple word senses existed, a random one was selected to draw

the example sentence from. Shorter example sentences were prioritized with long sentences

manually simplified. Context for each word pair was then constructed by appending the

example sentence for each word involved in the pair.

In the case of the toxicity task, our dataset source [208] already contains context infor-

mation provided in the form of the parent comment of each comment. Context was provided

to the annotators by appending the parent comment associated with the item along with a

label indicating that it was the parent post.

6.4.3 Conducting Deliberation

We used a crowd task to conduct deliberation to produce guidelines for the deliberation

intervention. At the start of the task, each participant first goes through a training session

that teaches them to use the annotation interface. After completing this session, partici-

pants are placed in a waiting room where they may be assigned either an assessment session

or a deliberation session. In an assessment session, the participant uses the range-based

annotation interface to provide their judgment for the instance annotated. In a deliberation

3https://www.merriam-webster.com/

https://www.merriam-webster.com/
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session, a participant is matched with 1-2 partners and asked to use a real-time synchronous

discussion interface (Figure 6.4) to discuss the disagreement observed in their range anno-

tations and to collaboratively produce a guideline for future annotators. Guidelines can be

proposed or updated by any participant and participants may only leave the discussion after

a guideline has been proposed. The allocation of assessment and deliberation sessions was

done semi-automatically: While a participant is in the waiting room, the deliberation sys-

tem makes available a set of sessions available to that participant. A deliberation facilitator

can then pick among these options to assign to the participant.

Once the deliberation was complete, the final guideline proposals were collected for each

item. We then manually de-duplicated proposals by removing those that were similar.

Minor modifications were also made to proposals so that they were phrased in a uniform

way for each task domain. The proposals collected were then incorporated into the task

instructions for the deliberation condition annotation experiments, with 5 new guidelines

added to the toxicity task and 6 added to the wordsim task.

6.4.4 Recruitment

We recruited crowd workers from Amazon Mechanical Turk (AMT) to conduct the anno-

tations using an annotation interface based on Goldilocks [49] for each of the conditions:

baseline, context and deliberation. For each condition in each domain, we recruited

25 workers (150 in total). Each participant was given 10 items to annotate for each task

deployed. Within each domain, we made sure that a worker could not participate in more

than 1 annotation task (displaying a notice and preventing further progression if any tasks

beyond the first were attempted), ensuring unique worker pools between conditions in the

same task domain. A base payment of $1.0 was given to participants for completing a train-

ing task with another $1.0 at the end if they completed all annotations. For each annotation

completed, participants were paid $0.3 in the wordsim domain ($3.0 total) and $0.5 in the

toxicity domain ($5.0 total). The median hourly pay was measured to be $13.5 and $15.9

for the two domains respectively.

Additionally, we also recruited separate AMT workers to participate in deliberation ses-
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sions on instances in each domain in order to create the guidelines used in the deliberation

condition. For each domain and task group, we recruited 4 discussion participants (a total

of 40). We used qualifications to ensure that the workers participating in the deliberation

sessions did not participate in the annotations. Workers were paid $20 for participating in

an hour-long discussion task involving 10 discussion and 10 annotation sessions. A bonus of

$4 was given for workers who actively participated in discussions beyond the required 10.

6.4.5 Simulation Experiment

With the annotation experiment data for each of the 3 conditions collected, we are able

to simulate the outcome of selecting a targeted intervention for each instance. For our

simulation experiment, we used the ambiguity Ma and disagreement Md scores collected

during the baseline condition to decide the intervention to use for that instance.

For our experiments, we selected a threshold value of 0.1, which targets the instances

that ranked in the top 10% in terms of either ambiguity score or disagreement score. To

conduct the simulation, instances were sorted by their Ma and Md scores collected from

the baseline condition. We use this to determine a cutoff threshold for the ambiguity and

disagreement scores (M̄a, M̄d). Then, for each instance in the dataset, we first check its

ambiguity score. If Ma(x) ≥ M̄a, we assign the context intervention by drawing annotation

values from the context condition for this instance and moving on to the next instance.

Otherwise, we check the disagreement score, and if Md(x) ≥ M̄d, we will draw annotation

values from the deliberation condition for this instance. If neither uncertainty metric was

above the threshold, we leave annotation values from the baseline condition unchanged.

6.4.6 Results

To evaluate our workflow, we focused on 2 main aspects: evaluating the effect of each

intervention on the type of uncertainty it targets, and evaluating whether dynamically

selecting a targeted intervention based on uncertainty measurements for each example can

more efficiently reduce uncertainty compared to a uniform application of intervention.

Specifically, we evaluate the following hypotheses:
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• H1-a (Interventions are Effective): An intervention is effective at reducing the

source of uncertainty it targets: context will be most effective at reducing ambiguity,

while deliberation will be most effective at reducing disagreement.

• H1-b (Interventions are Targeted): An intervention is not effective at reducing

the type of uncertainty it does not target.

• H2 (Efficient Uncertainty Reduction): A decision process based only on un-

certainty measurements collected without any intervention can select a more optimal

intervention for each instance that reduces uncertainty more efficiently than a uniform

application of an intervention over all instances.

Effectiveness of Targeted Interventions

In this section, we will examine whether our hypotheses for the effectiveness and targeted

nature of interventions is supported in our two task domains. To test our hypotheses, we

extract 2 subsets of instances (slices) from each task based on the primary source of uncer-

tainty measured during the baseline annotation. For each domain, we selected the top 10%

instances that had the highest measured ambiguity as a “Most Ambiguous” slice and the

top 10% instances that had the highest measured disagreement as a “Most Disagreement”

slice. Then for each set of instances, we tracked their uncertainty after re-annotation fol-

lowing each intervention (context and deliberation). We visualize these measurements

in Figure 6.6.

Looking at the slice of “Most Ambiguous” instances in each domain, we found that only

the context intervention condition was observed to be statistically significant in reducing

the ambiguity across both the wordsim and toxicity task domains (p < 0.001, observed

only between the baseline and context conditions using Tukey’s HSD). We found sim-

ilar results for the slice of “Most Disagreement” instances when it came to disagreement,

observing only statistically significant reduction in disagreement between deliberation

and baseline pairings (p < 0.001). This supports H1-a indicating that interventions are

effective in reducing the type of uncertainty it targets.



143

We also examined how interventions affected the other (non-targeted) source of un-

certainty. In both the wordsim and toxicity domains we did not observe statistically

significant interactions of between the non-targeted condition and baseline. While lack

of observing significance does not indicate that the non-targeted conditions had no effect

on the source of uncertainty, it does indicate that they are not as effective as the targeted

intervention, thus this provides some partial support for H1-b. Curiously, we did find that

on the “Most Disagreement” slice in the wordsim domain, while deliberation was signif-

icant in reducing that disagreement, it also had a significant effect on increasing ambiguity.

Due to the nature of the task, we hypothesize that the guidelines produced from delibera-

tion resulted in participants considering more factors (word senses, indirect relationships)

when determining the relatedness of words and as a consequence of the lack of any other

context, they found the instances to be more ambiguous.

Efficiency of Decision Process

Popping up a level and looking at the case of uniformly applying each intervention across the

all instances in the entire dataset (Figure 6.7), we found that context was able to reduce

ambiguity in both domains (p = 0.0027 < 0.01 and p < 0.001 for the wordsim and toxicity

domains respectively). However, this seems to also come at a slight cost, also raising the

mean disagreement in both cases (p = 0.026 > 0.01, not signif.4, for toxicity, p > 0.01,

not signif., for wordsim). This indicates that applying the same intervention across-the-

board to all instances can come with tradeoffs, potentially causing increases in sources of

uncertainty it was not meant to address. When looking at the deliberation condition, we

found no statistically significant effects on either uncertainty source when applied across the

entire dataset, with slight increases in the mean value on both measurements. This suggests

that while deliberation can be useful for instances with the most disagreement, applying it

broadly may be harmful. This result is broadly in line with prior work on deliberation that

suggests deliberation is likely only effective when items are already low in ambiguity [237]

and should be used primarily on the challenging high disagreement cases.

4We set an a priori significance level at p < 0.01 throughout our statistical tests.
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Next, we compare our results from the simulated decision process where instances are

assigned different interventions based on whether their uncertainty is primarily caused by

ambiguity or disagreement. When comparing against the baseline, we found that our sim-

ulated process (simulation-0.1) resulted in lower mean values from both ambiguity and

disagreement measures in both domains. However, this decrease was not measured to be

statistically significant. The lack of significant results is not unexpected, though, as our

simulated selection approach only applies an intervention to the top 10% of instances with

highest ambiguity and disagreement as measured during the baseline annotations (only

affecting at most 20% of instances) while all the remaining instances retained their origi-

nal annotations. We also note that increasing the decision threshold biases results toward

the context condition—more significant decreases in ambiguity at the cost of higher dis-

agreement. Interestingly, we observed that our two task domains responded differently to

our simulated decision process, with wordsim achieving the most reduction of uncertainty

through reducing disagreement (-8.7%), while toxicity achieved more reduction of ambigu-

ity (-6.4%). We hypothesize that this may be due to disagreements being more challenging

to resolve in toxicity judgments. In the end, while we don’t show H2 to be true in a

statistically significant way with one round of targeted intervention, we do see a differences

that may allow us to avoid trade-offs of balancing uniformly adding context or deliberating

on all instances.

6.5 Discussion

In this section we will first examine the effect of varying the thresholds for selecting in-

terventions and discuss how thresholds (which affect uncertainty reduction on a per-round

basis) work in conjunction with iterative improvement style application of our workflow.

Then we will discuss some qualitative observations on the guidelines produced through de-

liberation and how it may relate to the differences we observe across our two task domains.

Following that, we will discuss how our workflow coordinates situations that involve both

ambiguity and disagreement and discuss how our workflow can generalize across different

tasks and modalities beyond the crowdsourced scalar rating annotation we used in our

experiment. Finally, we will discuss some of the limitations of the two interventions we
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explored—context and deliberation—as well as avenues for future work that may resolve

some of these limitations.

6.5.1 Intervention Selection Thresholds and Iterative Improvement

In section 6.4.6, we found that we are able to observe reductions in both types of uncertainty

by simulating a decision process that applied interventions to the top 10% of instances with

highest ambiguity and disagreement, respectively, though not at a statistically significant

level. As at most 20% of the instances would affected, one question that arises is what

happens if we change this threshold to allow interventions to be applied to more (or fewer)

instances. To explore this question, we adjusted the simulation parameters to simulate the

decision process under additional thresholds as shown in Figure 6.8).

Through these simulations, we can observe that the two task domains tested respond

differently in terms of their sensitivity to the targeted intervention selected. For the word-

sim domain, we find that applying targeted interventions reduces overall disagreement but

achieves relatively little benefit to overall ambiguity. From our results in Section 6.4.6,

we know that the context intervention is effective at reducing ambiguity for those most

ambiguous instances, which indicates that the deliberation intervention likely caused

increases in ambiguity on the high-disagreement cases that canceled out the reduction of

ambiguity provided by context. We hypothesize that in this domain, the additional guide-

lines led to more comprehensive views on “word similarity” with annotators realizing that

cases they would have been certain about (and thus disagreed with each other on) were

actually ambiguous (and that they wouldn’t have considered those alternative interpreta-

tions had it not been for the guidelines). On the other hand, for the toxicity domain, we

find almost the opposite scenario where targeted interventions resulted decreased overall

ambiguity but had minimal change to (or even increases to) overall disagreement. This

suggests that for this domain, more context may have reduced the ambiguity around the

setting of the online comments, but may have surfaced new disagreements on what toxicity

means for the different annotators [234].

While this simulation result itself is interesting, we note that in practice, one would not
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be able to find an “optimal” threshold using this approach as each intervention would need

to be applied to all instances, resulting in a very inefficient process. Instead, we posit that

improving the threshold to be more optimal would likely not be the most effective way to

achieve gains in uncertainty reduction in practice, rather, a better approach lies in the appli-

cation of our workflow in an iterative improvement [107] formulation where our workflow

is run in additional iterations that operate on the data and task after application of the

interventions from a previous round. Prior work has already shown that some uncertainty

interventions, like deliberation, used in our workflow may only be effective on instances

that have low ambiguity and may be counterproductive otherwise [237, 50]. Indeed, we

even observe this in Figure 6.7, where we found that uniformly applying deliberation across

all instances can slightly increase overall disagreement in both domains. However, targeted

application of deliberation can reduce disagreement even if indiscriminate application does

not (Figure 6.8d). This suggests that, a more effective approach lies in iterating on the

workflow rather than optimizing thresholds: after each iteration of the workflow, instances

that were ambiguous (and thus not suitable for deliberation) may now be less ambiguous,

potentially opening them up to deliberation as an effective intervention in the next round.

By focusing on tuning the threshold, we are unable to utilize this benefit as thresholds

only affect how interventions are selected within a single iteration. In an iterative con-

struction of the workflow, selection thresholds can instead be seen as a way to control the

rate of uncertainty reduction per-round (almost akin to a “learning rate”)—lower values are

more conservative, affecting overall uncertainty less but more likely to avoid interventions

cancelling out each others’ benefits, whereas higher values reflect a more optimistic view

on interventions, increasing the likelihood of failing to reduce uncertainty in a round, but

having a larger impact at each step when it works.

Of course, there are more aspects to consider in the potential design of an iterative

workflow. One aspect we briefly touched on in Section 6.2.5 is the idea of a conceptual drift

in how groups make judgments. As tasks, group members, and social norms potentially

shift over time [303], the judgments that are made and the uncertainty around them can

also shift. Here we can envision a potential way where iterative workflows may allow us to

adapt to these conditions depending on how we structure such iterations. For shorter term
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decisions, groups such as communities, may want to make use of iteration that recruits or

utilizes the same adjudicators (such as the group of moderators). This allows us to reap

the benefits of uncertainty reduction as our interventions address the uncertainty from the

same group of adjudicators. However, across longer time spans, a group may wish to switch

to new adjudicators to re-calibrate uncertainty under new conditions. This opens up the

potential of creating new guidelines or augmenting with new context that is more applicable

new sources of uncertainty.

6.5.2 Utility of Guidelines Produced

In our results, we saw that applying deliberation across the entire dataset can result in

increases in disagreement even though we also observe that it reduces disagreement for

those cases with the highest disagreement. To explore this, we qualitatively examined

several of the guidelines produced through the deliberation process to examine how they

may not have been effective at scaling to more instances.

For the wordsim domain, we found that deliberation resulted in guidelines that out-

lined additional criteria for what would be considered as “similar”, such as: “Antonyms

(light/dark, good/evil) are similar.”, “Causal [sic] and effect between words make them

more similar.”, and “Words part of a natural progression are more similar.”. However,

while these guidelines would have likely provided more consistent criteria around the word

pairs that were deliberated on to produce them, they still leave opportunities for disagree-

ments around applying them—e.g., would a certain word pair be considered a cause-effect

pairing or natural progression? For the toxicity domain, we found that deliberation resulted

in new guidelines such as the following: “Statements about policies not people are not con-

sidered toxic.”, “Demeaning or condescending statements are likely to be toxic.”. Like in

wordsim, these guidelines are also overall rather narrow (“statements about policies”) or

could be vague when context was limited (“condescending statements”).

While this is not a comprehensive exploration of the effectiveness of producing guidelines,

we note that it does provide some insight into why guidelines produced by our particular

deliberation formulation may not have generalized well. However, our goal in the evaluation
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of Judgment Sieve is less focused on showing the effectiveness of our particular deliberation

approach, which utilizes a flat hierarchy and only involves non-expert crowdworkers, and

rather attempts to provide deliberation as a proof-of-concept. Indeed, we envision that in

practical application of Judgment Sieve, groups are likely to decide to use alternatives to

resolving disagreements that are not just a reproduction of our prototype. For example,

in content moderation applications, an expert-led deliberation process may resolve some

of the issues around the guidelines produced being too specific. Alternatively, for tasks

like grading, groups of graders may forgo deliberation and instead defer the resolution of

disagreement to others higher up in the hierarchy, like instructors.

6.5.3 Ambiguity and Disagreement All at Once

As we have observed in our experiments, while ambiguity and disagreement are largely

distinct types of uncertainty, it is also not uncommon for an instance to have both high

ambiguity and high disagreement. What should one choose to focus on when this occurs?

In our simulated version of targeted intervention, we opted to prioritize resolving ambiguity

before disagreement. This decision was informed by prior work indicating that the delib-

eration intervention we used (in the form of self-contained synchronous online discussions)

may be ineffective when dealing with cases with high ambiguity [237], leading to lack of

final resolution. However, in other more general applications of our workflow, it may be

more productive to take a hybrid approach that actually starts off with a discussion. For

example, in the case of content moderation, some moderation decisions may need to involve

both creating new consensus on guidelines to address a novel type of content (as has been

seen in platforms’ adaptations to misinformation campaigns related to COVID-19), as well

as collecting evidence (current scientific consensus, evaluating whether content is connected

to larger misinformation campaigns, etc.) that backs a final decision. In these situations,

starting off with an open deliberation setting can allow a group to first understand the space

of context that will become necessary, directing a more effective context collection process

later on in the process. A promising avenue of future work may be to develop approaches to

hybridize the collection of context and the deliberation process, allowing groups to switch
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back-and-forth between the two as needs arise.

6.5.4 Generalizing our Approach Across Different Tasks and Modalities

In our experiments, we mainly evaluated our workflow through a set of crowdsourced anno-

tation tasks focusing on short text-based tasks under a continuous rating scale. However,

more broadly speaking, there are many more scenarios (e.g., expert involved group judg-

ments), tasks domains (e.g., longer form text, instances with multimedia), and judgment

modalities (e.g., single or multi-label categorical classification) involving group human judg-

ments where it can be beneficial to reduce uncertainty in a targeted way. We expect that

the workflow proposed in this paper and the idea of separating sources of uncertainty should

be able to generalize to these types of tasks and processes involving group judgments by

adapting new mechanisms for collecting judgments and incorporating corresponding meth-

ods to distinguish the sources of uncertainty. In this section we will focus on discussing how

we envision our process may be generalized to other input modalities, as well as different

group judgment scenarios beyond crowdsourced annotation.

In this work, we evaluated Judgment Sieve on the specific judgment modality of con-

tinuous scalar ratings. However, other modalities for human judgments, such as categorical

classification, are also commonly used, even in some of the task domains we explore like

data annotation and content moderation. More generally though, the workflow we intro-

duce in Judgment Sieve can theoretically be adapted to other decision modalities as long as

there are annotation methods that allow us to separate sources of uncertainty and construct

interventions that can effectively target those sources of uncertainty. Taking the example

of categorical classification, prior work has tackled the problem of uncertainty in categori-

cal classification through tools like soft labels [57] where annotators provide self-evaluated

confidence weights over each class as opposed to a binary decision. Thus, to apply Judg-

ment Sieve, we could make use of annotation tools that produce soft labels over categorical

classification as our human judgment mechanism. We can then construct measures of am-

biguity based on aspects like the dispersion (e.g., variance) of the distribution produced by

each human annotator, and create measures of disagreement using distribution divergence
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metrics (e.g., KL divergence, Wasserstein distance) between annotators. This would allow

us to then apply domain specific interventions that target these sources of uncertanty.

Another dimension for generalizing our approach lies in its applicability beyond crowd-

sourcing settings, where non-expert human adjudicators are used to make judgments on

lower-stake tasks. For example, take the case of an education setting, where instructors

and teaching assistants may want to obtain a clearer picture of how well each students is

learning the material by grading their assignments. In this case, the task of grading assign-

ments is a group judgment scenario where graders are trying to reduce uncertainty over the

assessment of the student’s score. Just like with our annotations, this uncertainty can arise

from different sources: sometimes a grading rubric may have criteria that are too coarse,

where very different types of mistakes may evaluate to the same score; on the other hand,

sometimes a rubric may have inconsistencies, leading to different graders disagreeing about

how to score the same problem. Using the Judgment Sieve workflow, a group of teaching

staff can systematically diagnose these issues by taking measurements on their judgments.

Questions may be assigned to multiple graders to measure whether there is disagreement,

while graders can also be prompted self report any answers that they found the rubric to not

adequately address. Based on the sources identified, the uncertainty might be addressed by

a staff discussion that resolves conflicting rubric items, or by assigning partial credit in cases

where the rubric was too coarse. By coordinating measurements and targeted interventions

following our general workflow, it becomes easy to make progress to systematically reducing

uncertainty surrounding the judgment.

Of course, there are still limitations to our workflow and scenarios where it may fail to

provide benefits. If the task skews heavily towards one particular type of uncertainty, the

extra effort to measuring and distinguishing the sources of uncertainty may not be worth it if

there are limited interventions available. For example, when a task is focused on capturing

subjective personalized results such as preference elicitation, disagreement may not be a

useful aspect of uncertainty to address. Similarly, when a task is purely perceptual such as

evaluating sensory inputs, one may not be able to apply interventions to ambiguity as they

arise from a limitation in one’s ability to perceive. In these cases, while distinguishing the

sources of uncertainty can be interesting, they likely don’t provide a more effective way to
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reduce uncertainty compared to just applying the intervention that is available as informed

by overall uncertainty.

6.5.5 Caveats of Context

While in general context can be effective in reducing ambiguity, in our experiments, we also

observed cases where additional context contributed to an increase in uncertainty, especially

when the context is unexpected. For example, on the wordsim domain, while examining

the cases where ambiguity increased after the introduction of context, we observed cases

like “bank, money” showing increased ambiguity. Looking into these cases, we found that

because our context is based on example sentences for randomly selected word senses, the

example of “He sat on the bank of the river” was provided as a part of the context for this

pair. In this case, the context was likely unexpected for the annotators, who, after realizing

the presence of this alternative word sense, accounted for the increased ambiguity in their

annotation of a word pair that would have otherwise been clear. Indeed in this case, the

change is likely desirable and reflects a real increase in the uncertainty about instances, so

focusing on reduction of a single uncertainty aspect doesn’t paint the whole picture. We

envision that these are situations where a more iterative approach can provide additional

benefit—the additional context might then give rise to new disagreements on whether the

sentence example is meant to ground the example or just supplement possible word senses,

allowing focus to move to the new uncertainty about the under-specified task.

In a broader sense, though, there are limits to how far additional context can go, and we

will eventually run into diminishing returns of more context, so an iterative workflow should

account for this. Information about an open scientific problem or ongoing investigation can

be interesting pieces of context, but also provide little to resolve ambiguity. Depending

on the application, it may be desirable to keep track of changes during the re-annotation

processes: if context is not improving uncertainty, the process may need to decide to hold

uncertainty at the current level, only conducting more annotations if new information arrives

or guidelines change.
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6.5.6 Limits to Scaling Task Specification with Deliberation

Finally, we also note that there are limits to scaling the current design of our delibera-

tion process. In the current process, deliberation produces additional guidelines which are

incorporated into the instructions. While processes like de-duplication and reorganization

can be done by task requesters, as the task specification becomes increasingly precise, the

instructions grounding the task itself can eventually become too large for those making

judgments to keep track of [293]. This issue can be seen in the case of content moderation,

where paid contract moderators typically must go through extensive training and review

many pages of instructions and examples in order to improve their consistency with other

moderators. If the guidelines become too complex, their ability to resolve disagreement

can be greatly reduced as people struggle to understand or even find a relevant guideline.

A potential solution to dealing with complex task specifications may arise from looking at

solutions in the realm of legal case building, another example of a space where ‘guidelines’

are almost impossibly complex. Taking inspiration from how lawyers build judgments from

case law, instead of continuing to add additional specifications to a task’s instructions, the

instructions are kept at a manageable level of detail, and instead greater resolution around

the specification comes primarily from reviewing prior judgments (in the form of precedent

cases). More work is needed to consider how to design systems to allow easier exploration

of prior judgments when determining how to judge a new item consistently.

6.6 Conclusion

In this paper, we present a new workflow for more efficiently reducing uncertainty in group

judgments by applying a targeted intervention on each instance based measurements relat-

ing to ambiguity and disagreement. Through our experiments, we find that the interventions

of adding context and conducting deliberation do most effectively reduce the type of un-

certainty it targets. We also observe that dynamic selection of interventions on a per-item

bases has the potential to avoid the trade-offs in uniformly applying interventions to all

items.
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Figure 6.4: A screen capture of the deliberation interface used in our experiments. There

are 3 main components to the interface: (1) A preview of the instance that was rated, (2)

A visualization of the range answers of each participant shown on the same scale, and (3)

The synchronous discussion area.
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(a) A sample of items primarily exhibit-

ing ambiguity (blue) and their new uncer-

tainty after applying the context inter-

vention.

(b) A sample of items primarily exhibit-

ing disagreement (orange) and their new

uncertainty after applying the delibera-

tion intervention.

Figure 6.5: An illustrated figure showing how the uncertainty of a small sample of items

moved within the uncertainty space. Items indicated in orange exhibited primarily dis-

agreement. Items indicated in blue exhibited primarily ambiguity. Arrows point to the new

location in the uncertainty space after applying the targeted intervention. Scores are re-

scaled such that the origin (0, 0) represents the average ambiguity and average disagreement

across all items. Positive values indicate above average uncertainty score measurements.
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(a) Ambiguity for each slice on the wordsim task (b) Disagreement for each slice on the wordsim

task

(c) Ambiguity for each slice on the toxicity task (d) Disagreement for each slice on the toxicity

task

Figure 6.6: Point plots for each task domain that shows the ambiguity and disagreement

measures under the baseline, context and deliberation intervention conditions. For

each measure, we look at two slices of the dataset: The instances in the top 10% by am-

biguity Ma (“Most Ambiguous”) and those in the top 10% by disagreement Md (“Most

Disagreement”). Error bars indicate 95% confidence intervals.
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(a) Comparison for the wordsim task domain

(b) Comparison for the toxicity task domain.

Figure 6.7: Point plots for each domain that show the ambiguity and disagreement mea-

sured after applying a uniform intervention (context or deliberation) across all in-

stances and from simulating the selection of different interventions targeted to each instance

simulation-0.1. Error bars indicate 95% confidence intervals.
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(a) Overall ambiguity on the wordsim task (b) Overall disagreement on the wordsim task

(c) Overall ambiguity on the toxicity task (d) Overall disagreement on the toxicity task

Figure 6.8: Plots showing the simulated interventions applied at different thresholds of 0%

(no interventions applied), 5%, 10%, 15%, 20%, and 25%. For all plots, lower values reflect

less uncertainty from the corresponding source. Three reference lines are provided on each

graph to indicate the average uncertainty measurements of: baseline (grey), context

(orange), and deliberation (green). Error bars indicate 95% confidence intervals around

simulations, confidence intervals for the reference lines are not shown (see Figure 6.7 in-

stead).
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Chapter 7

DISCUSSION

In the previous chapters we have presented, evaluated, and discussed several novel tools

and processes for understanding and addressing uncertainty. With this chapter, I will discuss

some of the implications of this body of work.

First, I will discuss why uncertainty-aware tools are necessary for the current wave

of scale-based human judgment tasks. Then, I will discuss how the tools and processes

presented in this work can be applied to downstream usage scenarios. I will discuss some

of the implications of the precedent-based approach to defining human judgment problems

and what it means for the construction of datasets that can evolve along with society in

the future. Following that, I will touch on some of the lessons we learned while building

uncertainty-aware tools and the design implications they bring for incorporating these ideas

in your own tools or tasks. At the end, I will overview some ongoing and envisioned future

work that extend on and develop the ideas presented in this thesis.

7.1 The Importance of Uncertainty-Aware Tools for Human Judgment

From chapter 3 to chapter 6, I have demonstrated that by utilizing new tools and workflows

that are built to account for uncertainty present in scale-based human judgments, we can

achieve higher consistency across annotators on nuanced and subjective scales while also

providing insights necessary to select and apply interventions to reduce uncertainty. How-

ever, some may note that a common aspect of these uncertainty-aware human judgment

tools and workflows is that they require some extra effort from both crowd adjudicators

and those conducting the judgment tasks to apply in practice. This extra effort can range

from additional time to explore precedent or anchor cases, to full synchronous tasks where

one needs to coordinate with another peer adjudicator. With the increasing power and

expressivity of machine learning models, it is natural to wonder whether we can forgo this
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extra expense by applying approaches that train on dis-aggregated data or utilize uncer-

tainty measurements on data produced by existing human judgment tools and processes,

as proposed by recent literature in the machine learning space [63, 89, 57]. Here I will

make the case that, for complex and nuanced tasks, the additional cost involved in using

uncertainty-aware human judgment tools is well justified, and that, while new models that

can better take advantage uncertainty information will benefit the quality of automated

judgments, they are complementary to collecting better human judgments in the first place.

There is no substitute for capturing uncertainty directly in initial judgments.

As we have discussed in our overview of prior work, there have been various approaches that

utilize collected judgments to provide post-hoc measurements of uncertainty [288, 262].

However, these approaches all depend on post-hoc interpretation of what may have been

the source of uncertainty. When adjudicators are faced with uncertainty that they cannot

express through existing tools, they end up being forced to work around it rather than

recognize it. Individual adjudicators may resolve their uncertainty randomly to an agreeable

judgment, or they may err on the side of trying to be conservative with their answer to stay

in-line with their expectation of the majority [215]. By not providing adjudicators with

options to express uncertainty, we lose the opportunity to gauge the adjudicators’ natural

evaluation of uncertainty and run the risk of reinforcing the confidence of adjudicators.

Uncertainty-aware meta-processes allow for targeted interventions for re-

ducing uncertainty informed by uncertainty measurements. While incorporating

uncertainty as a component of downstream systems can contribute to models that more

faithfully reflect properties of the existing data, in some cases it can be desirable to diag-

nose and reduce uncertainty by refining the problem. In chapter 6, we found that while

uncertainty reduction interventions can be generally effective, when applied indiscriminately

across cases, they can create additional confusion if the targeted type of uncertainty is not

present or is not a main source of uncertainty for individual cases. This can even result in

an increase in uncertainty under some circumstances. Without methods that can capture

and distinguish the sources of uncertainty present on an individual case level at the outset

of data collection, downstream applications that attempt to reduce uncertainty may find

that they now have to spend extra effort to investigate the uncertainty characteristics of
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their task, counteracting any cost savings.

Uncertainty with sources distinguished can provide additional value in the

form of transparency. In recent years, many have called out the need to introduce

transparency into the datasets created through human judgements [97, 18, 211]. While

dis-aggregated data and general uncertainty metrics provide some level of transparency into

the data, the lack of insight into the factors contributing to the observed uncertainty means

it can be difficult to diagnose problems that crop up down the line. With uncertainty-aware

judgment tools, judgments themselves are encoded in a way that preserves information

about the sources of uncertainty. This means that it is much easier to examine post-hoc

whether issues arise from the selection of annotators (disagreement) or the cases that were

judged (ambiguity).

7.2 Building on Understanding Uncertainty

So far we have described the ideas of uncertainty-aware tools, workflows, and meta-processes.

However, one may be curious how these tools can be applied in practice. In this section

I’ll discuss two envisioned scenarios where the ideas from this work can be applied: using

uncertainty-aware processes to build automated judgment tools based on machine learning,

and using uncertainty-aware processes to coordinate community decisions.

For machine learning practitioners building machine learning models, uncertainty-aware

processes mainly support two aspects of their task: assembling training data and of model

evaluation. For example, say a machine learning practitioner is tasked with creating train-

ing data to automate a system to identify spam-like emails. They can make use of tools

like Goldilocks, recruiting crowd participants to annotate a set of emails on a scale of how

spam-like it is. The practitioner starts by recruiting experts to conduct annotations over

a small set of messages, and then use those messages as the anchors for Goldilocks. The

practitioner can then use the uncertainty information in this process to diagnose any issues

with the data or problem specification, discovering any instances of messages that may be

hard to classify or situations where annotators disagree. Using this information they can

apply interventions of either adding more metadata to consider for ambiguous messages,

or having annotators deliberate on definitions of spam. Once the level of uncertainty is
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appropriate, the practitioner can use the resulting dataset to train a model. During evalu-

ation, a practitioner can have the model make predictions about messages presented in the

form of range-based scores. These can then be compared against ranges captured by human

evaluators and used to assess how often the system agreed with humans as well as evaluate

whether the system was over-confident (with self-assessed ambiguity that was lower than

that of humans) when it should not be.

For communities coordinating decisions, uncertainty-aware processes and tools can guide

larger procedures as a way to provide transparency and legitimacy of the process. For

example, consider a community making a decision on how to moderate a set of posts.

Such a community may decide to utilize a system like case law crowdsourcing (chapter 4)

to conduct the moderation process. Moderators in the community may recruit a group

of “jurors” by sampling a set of community members. These jurors can then be given

access to a case law crowdsourcing system, where they are each assigned some cases to

adjudicate and can utilize precedents to quickly assemble judgments without having to

learn complex sets of moderation rules. Community moderators can then aggregate the

judgments made by the juror panel to assess the uncertainty present in the judgments—for

cases where jurors overwhelmingly agreed on the relevant precedents to apply, the judgments

can be directly adopted, whereas cases can be elevated if there was disagreement or it was

observed that precedents did not sufficiently inform the jurors’ judgments. Given these

cases, moderators can also examine what type of uncertainty was present. Were some

precedents mostly agreed on while others had significant disagreement? Did some groups of

jurors have much more significant disagreement with other groups? By using the information

around uncertainty, the community moderators may get suggestions for whether effort was

needed to look into the case or if they should solicit the wider community’s opinion on

how to settle a disagreement. Once cases arrive at a final judgment with a sufficiently low

uncertainty, they can be incorporated into the set of precedents that inform the next round

of adjudication.
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7.3 Overturning Precedents and Living Datasets

One of the applications we envision with the datasets produced by uncertainty-aware tools

is the ability to provide a source of ground truth for social judgments and norms [13, 161].

Because judgments from systems like Goldilocks and case law crowdsourcing encode uncer-

tainty information on a per-annotator level, datasets of these judgments more accurately

reflect the characteristics of real individuals rather than aggregated simulations of human

adjudicators.

However, along with this also comes with a potential limitation that needs to be con-

sidered. Systems like Goldilocks and case law crowdsourcing achieve their consistency by

utilizing past judgments to calibrate scales across adjudicators either through anchors or in

the form of precedents. When used to construct socially informed datasets, such as moder-

ation decisions, social norms and collective identities can also become embedded into these

past judgments [69] which can serve to perpetuate past norms into the future. Of course,

this is not a problem unique to the tools we have introduced. Similar issues also pertain

to the precedents that ground and define the case law legal systems that inspired case law

crowdsourcing, and like with the concept of precedents, the legal system also presents a

solution that can inspire how we address the issue of facilitating this concept drift over

time. Within case law systems, there is the idea of overturning a precedent decision as a

way to indicate that norms and reasoning applied then should no longer apply now. Tak-

ing inspiration from this, we can create meta-processes for maintaining datasets into the

future where old judgments may be re-visited and, should current adjudicators change their

decision, overturned. In fact the construction of case law crowdsourcing even presents a

simple way to apply the idea of overturning precedents in practice. Because each judgment

is associated with a set of positive and negative precedents, these judgments actually form

networks of citations where judgments in the future establish dependencies on judgments

from the past. When a past judgment is revisited and overturned, we can relatively easily

evaluate the effect this has on other judgments that may have depended on it by traversing

the dependency graph. This can allow us to additionally flag candidate sets of judgments

that we may also want to revisit due to their dependence on the no longer valid precedent.
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The idea of revisiting past judgments can even be applied to the judgments made under

Goldilocks. Like with sets of precedents, the bounds in each Goldilocks judgment also form

an implicit dependency against the neighboring cases that ground it. Should cases around

the bounds of a case be adjusted, then we would get a useful signal that that case may also

need to be revisited.

So when should we revisit past precedents? In both systems, as more judgments are

made, it becomes more likely that the judgments of the past no longer reflect the norms

of the current adjudicators. Thus one way of coordinating and maintaining these datasets

for social ground truth can involve tracking expiration dates for past judgments. Once a

certain amount of time has elapsed after a judgment has been made, we might decide that

it should no longer be used as a precedent or anchor, and instead mark it as a candidate

for revisiting. One might also make the broader connection that this kind of gradual fading

of past judgments is in some ways similar to how learning rates in reinforcement learning

allow us to bias new decisions towards older or more recent observations.

7.4 Design Implications for Uncertainty-Aware Tools and Processes

Finally, we will discuss some design implications for creating new tools and processes to

capture, distinguish, and address uncertainty.

Utilize familiar aspects of existing tools and focus on re-framing how they

are used: In our work on Goldilocks, we found that while annotators often recognized

ambiguous instances during annotation, they can struggle to quantify how much ambiguity

is present. In our pilot tests, we experimented with designs where annotators could create

ranges similar to confidence intervals centered around a value and then adjust the size or

mean value of these ranges. However, this proved to be difficult to use as annotators had

to estimate the ambiguity of the instance and correct it after the fact. This prompted

us to approach the problem from the annotators’ side by looking at what judgments were

easier to make for them—in this case, comparative judgments. With this in mind, we ended

up with our final design for Goldilocks where a two-step process, each based on familiar

interactions similar to traditional slider scales but framed as using comparative judgments

to find a specific value for one of the bounds rather than an average placement of the item.
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We applied similar ideas when designing the case law crowdsourcing workflow. We expect

that for other domains and input modalities, it may also be important to consider utilizing

smaller judgments that are easier to conduct by the human adjudicators.

Through our experiments in Goldilocks, we also found that there was a significant variety

in the type of task that could affect the utility of different types of anchors. We found that

on tasks like age estimation, human annotators can often start off with high agreement on

the understanding of the scale, compared to tasks like toxicity and satiety estimation where

scales need to be interpreted or learned. This means that while tasks like age estimation

also contain instance level ambiguity, there is relatively little uncertainty resulting from the

interpretation of the scale itself, leading to example-based anchors not producing benefits

for consistency. For designs that work with some aspect of abstractly defined scales or

criteria, it may be important to include both example contexts and the original abstract

scale.

Training adjudicators on how to think critically can be important: In our work

on Cicero, we found that while the workers were given training on the task itself through

a gated instructions [178] process, the challenging nature of the task still meant that we

observed a considerable amount of disagreement in initial judgments. However, by training

the laypeople crowd to identify high quality justifications, we were able to improve the

ability for them to resolve disagreement and arrive at the more accurate answers through

the use of deliberation.

Uncertainty reducing interventions are often targeted and applying the wrong

intervention can have detrimental effects: In the work on targeted interventions, while

we did expect uncertainty interventions to target the type of uncertainty they were suitable

for, we also surprisingly found that applying them uniformly regardless of the main source

of uncertainty can reduce one type of uncertainty while raising the other. Indeed prior work

on deliberation [237] has shown that this intervention is not suitable for all situations. How-

ever, we found that if it was applied without discerning irresolvable cases whether context

was insufficient, uncertainty can increase leading to a negative effect.
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7.5 Ongoing and Future Work

In the sections above, I discussed some of the implications of the work presented in this

thesis. In this section, I will outline and discuss some ongoing projects that build on the

ideas presented in this thesis as well as potential avenues to develop the ideas further,

addressing more aspects of the human judgment ecosystem.

7.5.1 Ongoing: Extending Uncertainty Tools to New Modalities and Tasks

In this thesis, I present two tools and workflows, Goldilocks and case law crowdsourcing,

aim to improve how human judgments are collected for two common types of tasks—scalar

rating and categorical classification. With these tools we simultaneously tackle the issue

of improving consistency for human judgments in complex and nuanced tasks, while also

providing a way to capture uncertainty during initial judgments. However, beyond these

there are many other modalities where human judgments can be involved. For example,

a significant amount of annotation work is conducted in the visual domain for producing

image datasets that range from medical imaging diagnosis [8] to identifying pedestrian

behavior to train self driving vehicles [51]. Many of these domains involve uncertain human

judgments and while also being high stakes and sensitive to failures. An important future

direction of work would be to extend the set of uncertainty tools into other domains like

image annotation.

In addition to this, while annotation tools like Goldilocks can produce ground truth

data to construct datasets, the ability to distinguish sources of uncertainty also allows us to

gain understanding into the uncertainty surrounding existing annotation tasks. In line with

this idea, one additional direction for future work is to utilize uncertainty aware annotation

tools to produce measurements that allow us to understand the uncertainty present in

existing datasets and diagnose biases that may form as a result of limitations in the data

and annotators selected ahead of time [38].
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7.5.2 Building Uncertainty Tools to Support Online Communities

While the work in this dissertation focuses mainly on tools for understanding and addressing

uncertainty in a crowd annotation setting, many of the tools presented are not limited

to being used by layperson crowds. As we have seen in related work, communities are

increasingly using data and technology mediated decision processes to conduct tasks such

as content moderation [86]. However, many of these tasks also depend on humans making

judgments under uncertainty. Considering this, yet another area of research that could

be interesting to explore is how communities (with different social dynamics compared to

crowd work) can also utilize the tools and processes we built to address uncertainty in a

way that may be more transparent or legitimate to stakeholders in these communities.

7.5.3 Uncertainty-Aware AI Systems

Finally, as the main consumer of human judgment data, the field of AI and machine learning

has also been tackling challenges related to uncertainty. While there is an increasing amount

of models that make use of dis-aggregated data [63] or uncertainty distributions in the form

of soft labels [57] to improve training performance, few attempt to model uncertainty as a

result of distinct sources. This has led to models that are trained to reflect the judgments of

an ‘average annotator’. With new tools that allow us to separate the sources of uncertainty

in human annotation, there is the potential for the creation of new uncertainty-aware AI

systems that make judgments in a way that more faithfully reflects the characteristics of

the datasets [106] use to train them—in the form of a collection of judgments from distinct

individuals who each experience ambiguity and collectively may disagree.



167

Chapter 8

CONCLUSION

As we have seen through the research presented in this dissertation, we introduced and

studied several novel tools that are aimed at understanding and addressing uncertainty

throughout each aspect of human judgments with the crowd. We introduced novel inter-

faces for conducting annotation in multiple input modalities (scalar rating and categorical

classification) and provided a way to distinguish sources of uncertainty through the lenses

of ambiguity and disagreement using these new annotation tools. On the other end, we also

showed how context and multi-turn deliberation can result in better resolution of disagree-

ment, one of the sources of uncertainty. Finally, we explored how we could take advantage

of disentangled uncertainty measurements to build a workflow that can dynamically apply

targeted interventions to achieve more efficient and effective reduction of overall uncertainty.

In this chapter, we will summarize our main contributions, outline how our these findings

support the thesis statement, and conclude by providing several directions for future research

on exploring the question of understanding and addressing uncertainty of human judgments

from the crowd.

8.1 Contributions

This dissertation makes contributions towards our understanding in designing new tools and

processes that allow us to better understand and address uncertainty in human judgments.

chapter 2 examines the existing space of defining, interpreting, measuring, and reducing

uncertainty in human judgments. We explore the tools and processes related to uncertainty

have been proposed and the issues surrounding lack of adequately addressing uncertainty

in the fields of human computer interaction, crowdsourcing and artificial intelligence.

Then with Goldilocks (chapter 3), we explore a design that improves upon existing tools

for scalar rating annotation. Using a two-step range based annotation along with example-
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based anchors, Goldilocks provided better inter-worker consistency while allowing us to

separately capture and distinguish ambiguity and disagreement measurements as part of

the annotation process itself. Through experiments conducted on several subjective and/or

ambiguous task domains, I find evidence to support that the separate measurement of am-

biguity and disagreement better characterizes the uncertainty by allowing better recovery of

pairwise relationships. I also find evidence to support that example-based anchors improved

inter-worker consistency when the scale was subjective.

Following that, in chapter 4 we explore case law crowdsourcing as a design for an annota-

tion tool that enables us to scale up categorical adjudication on tasks where decision bounds

can be based on complex subjective reasoning and can’t be efficiently specified through

rubrics. By asking adjudicators to construct sets of positive and negative precedents, we

can understand the uncertainty around judgments of individuals and groups of adjudica-

tors. I demonstrate through experiments that the precedent-based judgments in case law

crowdsourcing produced more consistent judgments compared to traditional rubrics. I also

examined how uncertainty measured through precedent sets allowed identification of cases

when the precedents were not sufficient.

In chapter 5 we switch gears and examine how the disagreement component of uncer-

tainty can be addressed. Building off of prior work in crowdsourced argumentation tools,

we created a novel workflow, Cicero, that uses contextual and multi-turn deliberation to

resolve disagreement. We show that this approach results in higher accuracy of the final

consensus judgments.

In chapter 6 we tie together the tools for understanding and addressing uncertainty

through a dynamic workflow that uses the measurements of ambiguity and disagreement

produced by Goldilocks annotations to inform the choice of interventions targeted to each

instance. We found that the interventions of adding context and creating new guidelines

through deliberation did correspondingly target the ambiguity and disagreement sources of

uncertainty. We also found that uniform application of an intervention can be ineffective,

causing one source of uncertainty to increase while the other lowers. Using simulations we

found that applying a targeted intervention can result in a better balance where we don’t

need to trade off one type of uncertainty reduction for the other.
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Finally, in chapter 7 , I discuss some limitations of the systems presented and potential

solutions. I also discuss some design implications based on our experience creating these

uncertainty tools and workflows.

Overall, in this thesis I make the following contributions:

• Improving Consistency through Precedents and Anchors: I present the idea

of using past cases to ground complex or subjective scales in the form of precedents

and anchors, reducing uncertainty and improving the quality of data annotation work

with the crowd.

• Novel Tools and Interactions for Collecting Human Judgments and Re-

solving Disagreement: I present novel interfaces and interactions for collecting

judgments in a way that also allows us to distinguish different sources of uncertainty

as well as novel workflows to resolve disagreement through multi-turn and contextual

deliberation.

• Empirical Insights about Uncertainty in Human Judgment Tasks: I provide

empirical insights into characteristics and behaviors of uncertainty for a set of human

judgment tasks, showing that consistency in interpretation of scales depends on sub-

jectivity of tasks as well as showing that applying the wrong intervention can produce

overall harmful results that increase uncertainty.



170

BIBLIOGRAPHY

[1] Azad Abad, Moin Nabi, and Alessandro Moschitti. Self-crowdsourcing training for
relation extraction. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pages 518–523, 2017.

[2] Abhaya Agarwal and A. Lavie. Meteor, m-bleu and m-ter: Evaluation metrics for
high-correlation with human rankings of machine translation output. In WMT@ACL,
2008.

[3] Jon D. Agley, Yunyu Xiao, Dr. Rachael D. Nolan, and Lilian Golzarri-Arroyo. Quality
control questions on amazon’s mechanical turk (mturk): A randomized trial of impact
on the usaudit, phq-9, and gad-7. Behavior Research Methods, 54:885–897, 2021.

[4] JR Alan M. Jones. Victims of groupthink: A psychological study of foreign policy
decisions and fiascoes. pp. iii, 276. boston, mass.: Houghton mifflin, 1972. $4.50. The
ANNALS of the American Academy of Political and Social Science, 407(1):179–180,
1973.

[5] Jennifer Allen, Cameron Martel, and David G Rand. Birds of a feather don’t fact-
check each other: Partisanship and the evaluation of news in twitter’s birdwatch
crowdsourced fact-checking program. In Proceedings of the 2022 CHI Conference on
Human Factors in Computing Systems, CHI ’22, New York, NY, USA, 2022. Associ-
ation for Computing Machinery.

[6] Christopher Anderson. Wisdom of the crowds. Nature, 2006.

[7] Gabor Angeli, Julie Tibshirani, Jean Wu, and Christopher D. Manning. Combining
distant and partial supervision for relation extraction. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing, EMNLP 2014,
October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group
of the ACL, pages 1556–1567, 2014.

[8] Samuel G. Armato, Geoffrey McLennan, Luc M. Bidaut, Michael F. McNitt-Gray,
Charles R. Meyer, Anthony P. Reeves, Binsheng Zhao, Denise R. Aberle, Claudia I.
Henschke, Eric A. Hoffman, Ella Annabelle Kazerooni, Heber MacMahon, Edwin
J R Van Beeke, David F. Yankelevitz, Alberto M. Biancardi, Peyton H. Bland,
Matthew S. Brown, Roger M. Engelmann, G. E. Laderach, Daniel Max, Richard C.
Pais, D. P. Qing, Rachael Y. Roberts, Amanda R. Smith, Adam Starkey, Poonam
Batrah, Philip Caligiuri, Ali O. Farooqi, Gregory W Gladish, Cecilia Matilda Jude,



171

Reginald Munden, Iva Petkovska, Leslie E. Quint, Lawrence H. Schwartz, Baskaran
Sundaram, Lori E. Dodd, Charles Fenimore, David Gur, Nicholas A. Petrick, John B.
Freymann, Justin S. Kirby, Brian Hughes, Alessi Vande Casteele, Sangeeta Gupte,
Maha Sallamm, Michael Heath, M. Kuhn, Ekta Dharaiya, Richard Burns, David
Fryd, Marcos Salganicoff, V. Anand, Uri Shreter, Stephen Vastagh, and Barbara Y.
Croft. The lung image database consortium (lidc) and image database resource ini-
tiative (idri): a completed reference database of lung nodules on ct scans. Medical
physics, 38 2:915–31, 2011.

[9] Ishaan Arora, Julia Guo, Sarah Ita Levitan, Susan McGregor, and Julia Hirschberg.
A novel methodology for developing automatic harassment classifiers for twitter. In
Proceedings of the Fourth Workshop on Online Abuse and Harms, pages 7–15, 2020.

[10] Lora Aroyo, Lucas Dixon, Nithum Thain, Olivia Redfield, and Rachel Rosen. Crowd-
sourcing subjective tasks: the case study of understanding toxicity in online discus-
sions. In Companion Proceedings of The 2019 World Wide Web Conference, pages
1100–1105, 2019.

[11] Lora Aroyo and Chris Welty. Crowd truth: Harnessing disagreement in crowdsourcing
a relation extraction gold standard. WebSci2013. ACM, 2013(2013), 2013.

[12] Lora Aroyo and Chris Welty. Truth is a lie: Crowd truth and the seven myths of
human annotation. AI Magazine, 36(1):15–24, 2015.

[13] Shubham Atreja, Libby Hemphill, and Paul Resnick. What is the will of the people?
moderation preferences for misinformation. ArXiv, abs/2202.00799, 2022.

[14] Tal August, Nigini Oliveira, Chenhao Tan, Noah Smith, and Katharina Reinecke.
Framing effects: Choice of slogans used to advertise online experiments can boost re-
cruitment and lead to sample biases. Proc. ACM Hum.-Comput. Interact., 2(CSCW),
nov 2018.

[15] Stephanie Alice Baker, Matthew Wade, and Michael James Walsh. The challenges
of responding to misinformation during a pandemic: content moderation and the
limitations of the concept of harm. Media International Australia, 177:103–107, 2020.

[16] Gagan Bansal, Besmira Nushi, Ece Kamar, Walter S. Lasecki, Daniel S. Weld, and Eric
Horvitz. Beyond accuracy: The role of mental models in human-ai team performance.
In AAAI Conference on Human Computation & Crowdsourcing, 2019.

[17] Gagan Bansal, Tongshuang Sherry Wu, Joyce Zhou, Raymond Fok, Besmira Nushi,
Ece Kamar, Marco Tulio Ribeiro, and Daniel S. Weld. Does the whole exceed its
parts? the effect of ai explanations on complementary team performance. Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems, 2020.



172

[18] Emily M. Bender and Batya Friedman. Data statements for natural language pro-
cessing: Toward mitigating system bias and enabling better science. Transactions of
the Association for Computational Linguistics, 6:587–604, 2018.

[19] Emily M. Bender and Batya Friedman. Data statements for natural language pro-
cessing: Toward mitigating system bias and enabling better science. Transactions of
the Association for Computational Linguistics, 6:587–604, 2018.

[20] Birgitta Berglund, Giovanni Battista Rossi, James T. Townsend, and Leslie R. Pen-
drill. Measurement with persons : Theory, methods and implementation areas. Psy-
chology Press, 2011.

[21] Michael S. Bernstein, Joel Brandt, Robert C. Miller, and David R. Karger. Crowds in
two seconds: Enabling realtime crowd-powered interfaces. In Proceedings of the 24th
Annual ACM Symposium on User Interface Software and Technology, UIST ’11, page
33–42, New York, NY, USA, 2011. Association for Computing Machinery.

[22] Michael S Bernstein, Greg Little, Robert C Miller, Björn Hartmann, Mark S Ack-
erman, David R Karger, David Crowell, and Katrina Panovich. Soylent: a word
processor with a crowd inside. In UIST ’10 Proceedings of the 23nd annual ACM
symposium on User interface software and technology, pages 313–322. ACM Press,
2010.

[23] Lucas Beyer, Olivier J. H’enaff, Alexander Kolesnikov, Xiaohua Zhai, and Aäron
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cal cheat: Spamming schemes and adversarial techniques on crowdsourcing platforms.
In CrowdSearch, 2012.



177

[73] Jeff Donahue and Kristen Grauman. Annotator rationales for visual recognition. 2011
International Conference on Computer Vision, pages 1395–1402, 2011.

[74] Shayan Doroudi, Ece Kamar, Emma Brunskill, and E. Horvitz. Toward a learning
science for complex crowdsourcing tasks. Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems, 2016.

[75] Stephen L Dorton, Samantha B Harper, Glory A Creed, and H George Banta. Up
for debate: Effects of formal structure on argumentation quality in a crowdsourcing
platform. In International Conference on Human-Computer Interaction, pages 36–53.
Springer, 2021.

[76] Steven Dow, Anand Kulkarni, Scott Klemmer, and Björn Hartmann. Shepherding the
crowd yields better work. In Proceedings of the ACM 2012 Conference on Computer
Supported Cooperative Work, CSCW ’12, pages 1013–1022, New York, NY, USA,
2012. ACM.

[77] Ryan Drapeau, Lydia Chilton, Jonathan Bragg, and Daniel Weld. Microtalk: Us-
ing argumentation to improve crowdsourcing accuracy. In Proceedings of the AAAI
Conference on Human Computation and Crowdsourcing, volume 4, pages 32–41, 2016.

[78] Tim Draws, Alisa Rieger, Oana Inel, Ujwal Gadiraju, and Nava Tintarev. A check-
list to combat cognitive biases in crowdsourcing. In AAAI Conference on Human
Computation & Crowdsourcing, 2021.

[79] A. Dumitrache. Crowdsourcing disagreement for collecting semantic annotation. In
ESWC, 2015.

[80] A. Dumitrache, Lora Aroyo, and Chris Welty. Capturing ambiguity in crowdsourcing
frame disambiguation. In HCOMP, 2018.

[81] A. Dumitrache, Lora Aroyo, and Chris Welty. Crowdsourcing ground truth for medical
relation extraction. ACM Transactions on Interactive Intelligent Systems (TiiS), 8:1–
20, 2018.

[82] Anca Dumitrache, Lora Aroyo, and Chris Welty. Crowdsourcing ground truth for
medical relation extraction. ACM Trans. Interact. Intell. Syst., 8(2), jul 2018.

[83] Carsten Eickhoff. Cognitive biases in crowdsourcing. Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining, 2018.

[84] Joel S. Elson, Douglas C. Derrick, and Gina Scott Ligon. Examining trust and reliance
in collaborations between humans and automated agents. In HICSS, 2018.



178

[85] A. R. Fabbri, Wojciech Kryscinski, Bryan McCann, R. Socher, and Dragomir Radev.
Summeval: Re-evaluating summarization evaluation. ArXiv, abs/2007.12626, 2020.

[86] Jenny Fan and Amy X Zhang. Digital juries: A civics-oriented approach to platform
governance. In Proceedings of the 2020 CHI conference on human factors in computing
systems, pages 1–14, 2020.

[87] Daniel Fenner, Benjamin Bechtel, Matthias Demuzere, Jonas Kittner, and Fred Meier.
Crowdqc+—a quality-control for crowdsourced air-temperature observations enabling
world-wide urban climate applications. In Frontiers in Environmental Science, 2021.

[88] Lev Finkelstein, Evgeniy Gabrilovich, Y. Matias, Ehud Rivlin, Zach Solan, Gadi Wolf-
man, and Eytan Ruppin. Placing search in context: The concept revisited. ACM
Trans. Inf. Syst., 20(1):116–131, jan 2002.

[89] Tommaso Fornaciari, Alexandra Uma, Silviu Paun, Barbara Plank, Dirk Hovy, and
Massimo Poesio. Beyond black & white: Leveraging annotator disagreement via soft-
label multi-task learning. In Proceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 2591–2597, Online, June 2021. Association for Computational
Linguistics.

[90] Paula Fortuna, Juan Soler, and LeoWanner. Toxic, hateful, offensive or abusive? what
are we really classifying? an empirical analysis of hate speech datasets. In Proceedings
of the 12th language resources and evaluation conference, pages 6786–6794, 2020.
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