
Mike (Deyuan) He
� mikehe@princeton.edu · � @Mike He � cs.princeton.edu/~dh7120

� Education
Princeton University, Princeton, NJ 2022 – Est. 2027
Ph.D. in Computer Science
M.A. in Computer Science (Sep 2022 – May 2024)
Advisor: Prof. Aarti Gupta
Fields of study: Compilers; Formal Verification; Distributed Systems; Equality Saturation

University of Washington, Seattle, WA 2018 – 2022
B.S. in Computer Science, GPA: 3.89/4.0 (Cum Laude)
Advisors: Prof. Zachary Tatlock & Dr. Steven Lyubomirsky
Selected Honor: CRA Outstanding Undergraduate Researcher Award, Honorable Mention (2022)

� Research
PInfer: Invariant inference for distributed systems from traces Sep. 2023 – Now
Implementing specification miner for distributed systems using production/model traces.
• Implement a syntax-guided synthesis-based invariant generation algorithm
• Formulate invariant synthesis as boolean function learning problems

CatsTail: Synthesizing Packet Programs via Equality Saturation June. 2023 – Jan. 2024
CatsTail is an equality saturation-based P4 program synthesizer. Previousworks use SKETCH to syn-
thesize the program, which takes too long tomake debugging on actual hardware possible. Compared
with SKETCH, CatsTail is up to 30x/2000x faster (preliminary) in finding the optimal stage allocation
for Intel Tofino/Domino (Banzai ALU). I lead the design and implementation of CatsTail.

Verifiying correctness of SW/HWmappings June. 2023 – Now
hex is a language for accelerator operation explication and a tool for verifying the software-hardware
mapping correctness. My contributions and work in progress are
• Implemented a case study for FlexASR pooling instructions in hex and verified its correctness

against the software implementations.
• Designing memory layout mapping invariant inference/generation algorithm.
• Co-authored a paper in submission at OOPSLA’24

Improving Term Extraction with Acyclic Constraints Sep. 2022 – Feb. 2023
To have a better term extraction algorithm for egg, an equality saturation framework, we devise the en-
coding usingWeighted partialMaxSAT and include a set ofAcyclic constraints that ensures the acyclicity
of the extracted term. Our encoding demonstrates better solver time (∼3x speed up) for the case study
of extracting tensor programs. I led the development of the case study and the encoding, and authored
the workshop paper at PLDI EGRAPHS’23.

Pyrope: Towards Correct-by-construction Hardware Modeling Mar. 2022 – June. 2022
Pyrope is a Python-based framework for high-level hardware modeling. Pyrope enables expressing
proofs and guarantees of modeled instruction in Python and transpiles hardware models into Dafny
for verification. I led the development of Pyrope during my internship at Intel Labs.

3LA: Application-level Validation of Accelerator Designs June. 2021 – June. 2022
3LA is a software/hardware co-verification methodology for DL accelerators that aids hardware de-
velopers in performing early-stage application-level debugging. My contributions are

mailto:mikehe@princeton.edu
https://www.linkedin.com/in/mike-he-31620b192/
https://www.cs.princeton.edu/~dh7120/
cs.princeton.edu/~dh7120
https://www.cs.princeton.edu/~aartig/
https://ztatlock.net/
https://slyubomirsky.github.io/


• Led the development of flexmatch and extended Glenside to support a more diverse set of models.
• Implemented the compilation pipeline for VTA using BYOC interfaces of TVM.
• Implemented handwritten digit recognition (on CIFAR) and image classification (on ImageNet)

for VTA. Passed the mapping validation using 3LA.
• Co-authored a ASPLOS LATTE’21workshop paper.
• Co-authored a paper published at ACM TODAES.

Dynamic Tensor Rematerialization Jan. 2020 – Oct. 2020
Dynamic Tensor Materialization (DTR) is an online, heuristic-based checkpointing algorithm that en-
ables DL inference under constrained memory budgets. My contributions are
• Identified problems in the PyTorch DTR implementation.
• Designed the evaluation framework for DTR and extended the case studies to multiple new DL

applications (e.g. Unrolled GAN, UNet).
• Co-authored the paper published at ICLR’21.

� Publications
• Akash Gaonkar,Mike He, Yi Li, Bo-Yuan Huang, Andrew Cheung, Vishal Canumalla, Gus Smith,

Zachary Tatlock, Sharad Malik, and Aarti Gupta. Verification of software-to-hardware mappings
for machine learning accelerators. 2024 [in submission]

• Mike He, Haichen Dong, Sharad Malik, and Aarti Gupta. Improving term extraction with acyclic
constraints. InE-GraphResearch, Applications, Practices, andHuman-factors Symposium (EGRAPHS’23),
2023 [Paper]

• Bo-Yuan Huang*, Steven Lyubomirsky*, Yi Li,Mike He, Thierry Tambe, Gus Henry Smith, Akash
Gaonkar, Vishal Canumalla, Gu-YeonWei,Aarti Gupta, SharadMalik, andZacharyTatlock. Application-
level validation of accelerator designs using a formal software/hardware interface. ACMTrans. Des.
Autom. Electron. Syst., 2022 [Paper]

• Bo-Yuan Huang*, Steven Lyubomirsky*, Thierry Tambe*, Yi Li,Mike He, Gus Smith, Gu-YeonWei,
Aarti Gupta, SharadMalik, and Zachary Tatlock. From dsls to accelerator-rich platform implemen-
tations: Addressing the mapping gap. InWorkshop on Languages, Tools, and Techniques for Accelerator
Design (LATTE’21), 2021 [Paper]

• Marisa Kirisame*, Steven Lyubomirsky*, Altan Haan*, Jennifer Brennan, Mike He, Jared Roesch,
Tianqi Chen, and Zachary Tatlock. Dynamic tensor rematerialization. In International Conference on
Learning Representations (ICLR’21), 2021 [ArXiv]

� Service
• Member of Artifact Evaluation Committee of PLDI’24, POPL’24, MLSys’23, MICRO’21
• Mentor in the Ph.D. application mentoring program (Princeton, 2023)

� Internships
Amazon Web Services, Santa Clara, CA May. 2024 – Aug. 2024
Applied Scientist Intern (Formal Methods/LLMs)
Developing and refining PInfer that mines likely invariants for distributed systems from traces.
• Implementing syntax-guided synthesis of likely invariant
• Designing the mining algorithm as boolean function synthesis using SAT solvers

Taichi Graphics, Remote and Beijing, China June. 2022 – Sep. 2022
Compiler R&D Intern (C++/Python)

• Refactored the intermediate representation (IR) of Taichi Language
• Implemented standalone Tensor type for better compilation speed

https://only.rs/assets/papers/EGRAPHS2023.pdf
https://dl.acm.org/doi/10.1145/3639051
https://vlsiarch.eecs.harvard.edu/publications/dsls-accelerator-rich-platform-implementations-addressing-mapping-gap
https://arxiv.org/abs/2006.09616


• Adapted compiler passes (e.g. Load/Store forwarding, Dead code elimination, reachingdefinition,
etc.) to optimize for tensor type expressions

• Implemented LLVM-based code generation for tensor type for Superword-level vectorization

Intel Labs, Hillsboro, OR Mar. 2022 – June. 2022
Formal Verification Research Intern (Formal Methods/Python/Dafny)
Developed the Pyrope framework for correct-by-construction hardware modeling.
• Facilitated correct-by-construction hardware modeling purely in Python
• Encoded the correctness proof of (multi-)montgomery reduction algorithm in Python and verified

successfully by compiling to Dafny
• Unified “sources of truth” for correctness proofs and programming model implementations

UWPLSE, Seattle, WA Oct. 2019 – Sep. 2021
Research Assistant (PL/Compiler)
Responsible for conducting research with Prof. Zachary Tatlock, specifically,
• Implemented evaluations in the Dynamic Tensor Rematerialization project
• Designed a flexible matching algorithm for domain-specific language compilers.
• Led research projects with other undergraduate students
• Attended and presented at reading groups

� Selected Projects & Contributions
CatsTail: Synthesizing Packet Programs via Equality Saturation (Rust) GitHub
Music Scores: Reverse engineering of some arrangements (Lilypond) GitHub
flexmatch: Flexible offload pattern matching for DNNs (Python, Rust) GitHub
egg-taichi: Towards automated super-optimization for Taichi programs (Rust) GitHub
taichi?: High-performance parallel computing in Python (C++, Python) GitHub
Glenside?: Term rewriting for tensor programs (Rust) GitHub
veripy: auto-active verification for Python programs (Python) GitHub
dtlc: Dependently-typed lambda calculus (OCaml) GitHub
Sager: A demonic graph synthesizer for worst-case performance (Rosette, Racket) GitHub
Ruxl?: Applicatives, Monads and a “Future” for Rust (Rust) GitHub
Lambda Calculus: UTLC, STLC and System F in OCaml (OCaml) GitHub
SimGE: DTR for memory movement optimization (Rust) GitHub
Multi-Paxos: Implementation of Multi-Paxos in Java (Java) CSE 452
ETH Client: Implementation of an ETH-like Blockchain (Rust) COS 471

More on my GitHub
? : Contributor

� Teaching
• COS 516: Automated Reasoning about Software (TA, Princeton University)
• CSE 505: Principles of Programming Languages (TA, University of Washington)

� Skills
• Languages: C/C++, Python, Rust, OCaml, Coq, Dafny, etc. (Open to other languages)
• Compiler & Applied PL: Equality Saturation, Static Analysis, Computer-aided Reasoning, SMT
• PL Theory: Formal Verification, Type Theory, Mathematical Logic

https://github.com/AD1024/catstail
https://github.com/AD1024/Music-Scores
https://github.com/AD1024/flexmatch
https://github.com/AD1024/egg-taichi
https://github.com/taichi-dev/taichi
https://github.com/gussmith23/glenside
https://github.com/AD1024/veripy
https://github.com/AD1024/dtlc
https://github.com/AD1024/Sager
https://github.com/yihozhang/ruxl
https://github.com/AD1024/Advanced-PL/tree/master/hw5
https://github.com/AD1024/simge
https://github.com/AD1024
https://www.cs.princeton.edu/courses/archive/fall23/cos516/index.html
https://sites.google.com/cs.washington.edu/cse-505-spring-2021


• Systems: Distributed Systems, Machine Learning Systems, Data Center Systems
• Others: Algorithms and Data Structures
• Fun Fact: I am more seasoned in playing the violin than coding �; I have:

1. an Lv.9 certificate∗ (similar to ABRSM Grade 8) issued by Central Conservative of Music;
2. > 20-year violin solo experience;
3. Multiple 1st Prizes (various local competitions in Beijing) and a Silvermedal (Beijing regional)†;
4. 6-year experience with symphony orchestras; 3-year experience as the Principal 2nd Violinist;
5. 3-year experience with a piano quartet/quintet andmultiple string quartets (with 1 CDmade);
6. ∼ 4 public concerts with a philharmonic orchestra? at the The Giant Egg, Beijing, China.

∗ : The highest level for non-professionals
† : Awarded during middle and high school years.

? : The Beijing National Day School Philharmonic Orchestra

Last updated on April 20, 2024

https://www.abrsm.org/en-us/performance-grades/about-performance-grades
https://en.wikipedia.org/wiki/Central_Conservatory_of_Music
https://en.wikipedia.org/wiki/National_Centre_for_the_Performing_Arts_(China)

	"F19C Education
	Princeton University, Princeton, NJ
	University of Washington, Seattle, WA

	"F20E Research
	PInfer: Invariant inference for distributed systems from traces
	CatsTail: Synthesizing Packet Programs via Equality Saturation
	Verifiying correctness of SW/HW mappings
	Improving Term Extraction with Acyclic Constraints
	Pyrope: Towards Correct-by-construction Hardware Modeling
	3LA: Application-level Validation of Accelerator Designs
	Dynamic Tensor Rematerialization

	"F212 Publications
	"F255 Service
	"F121 Internships
	Amazon Web Services, Santa Clara, CA
	Taichi Graphics, Remote and Beijing, China
	Intel Labs, Hillsboro, OR
	UWPLSE, Seattle, WA

	"F1E5 Selected Projects & Contributions
	CatsTail: Synthesizing Packet Programs via Equality Saturation
	Music Scores: Reverse engineering of some arrangements
	flexmatch: Flexible offload pattern matching for DNNs
	egg-taichi: Towards automated super-optimization for Taichi programs
	taichi: High-performance parallel computing in Python
	Glenside: Term rewriting for tensor programs
	veripy: auto-active verification for Python programs
	dtlc: Dependently-typed lambda calculus
	Sager: A demonic graph synthesizer for worst-case performance
	Ruxl: Applicatives, Monads and a ``Future'' for Rust
	Lambda Calculus: UTLC, STLC and System F in OCaml
	SimGE: DTR for memory movement optimization
	Multi-Paxos: Implementation of Multi-Paxos in Java
	ETH Client: Implementation of an ETH-like Blockchain
	

	"F0EB Teaching
	"F013 Skills

