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� Education
Princeton University, Princeton, NJ 2022 – Est. 2027
Ph.D. in Computer Science
M.A. in Computer Science (Sep 2022 – May 2024)
Advisor: Prof. Aarti Gupta
Fields of study: Compilers; Formal Verification; Distributed Systems; Equality Saturation

University of Washington, Seattle, WA 2018 – 2022
B.S. in Computer Science, GPA: 3.89/4.0 (Cum Laude)
Advisors: Prof. Zachary Tatlock & Dr. Steven Lyubomirsky
Selected Honor: CRA Outstanding Undergraduate Researcher Award, Honorable Mention (2022)

� Research
PInfer: Invariant inference for distributed systems from traces Sep. 2023 – Now
Implementing specification miner for distributed systems using production/model traces.
• Implement a syntax-guided synthesis-based invariant generation algorithm
• Formulate invariant synthesis as boolean function learning problems

CatsTail: Synthesizing Packet Programs via Equality Saturation June. 2023 – Jan. 2024
CatsTail is an equality saturation-based P4 program synthesizer. Previousworks use SKETCH to syn-
thesize the program, which takes too long tomake debugging on actual hardware possible. Compared
with SKETCH, CatsTail is up to 30x/2000x faster (preliminary) in finding the optimal stage allocation
for Intel Tofino/Domino (Banzai ALU). I lead the design and implementation of CatsTail.

Verifiying correctness of SW/HWmappings June. 2023 – Now
hex is a language for accelerator operation explication and a tool for verifying the software-hardware
mapping correctness. My contributions and work in progress are
• Implemented a case study for FlexASR pooling instructions in hex and verified its correctness

against the software implementations.
• Designing memory layout mapping invariant inference/generation algorithm.
• Co-authored a paper in submission at OOPSLA’24

Improving Term Extraction with Acyclic Constraints Sep. 2022 – Feb. 2023
To have a better term extraction algorithm for egg, an equality saturation framework, we devise the en-
coding usingWeighted partialMaxSAT and include a set ofAcyclic constraints that ensures the acyclicity
of the extracted term. Our encoding demonstrates better solver time (∼3x speed up) for the case study
of extracting tensor programs. I led the development of the case study and the encoding, and authored
the workshop paper at PLDI EGRAPHS’23.

Pyrope: Towards Correct-by-construction Hardware Modeling Mar. 2022 – June. 2022
Pyrope is a Python-based framework for high-level hardware modeling. Pyrope enables expressing
proofs and guarantees of modeled instruction in Python and transpiles hardware models into Dafny
for verification. I led the development of Pyrope during my internship at Intel Labs.

3LA: Application-level Validation of Accelerator Designs June. 2021 – June. 2022
3LA is a software/hardware co-verification methodology for DL accelerators that aids hardware de-
velopers in performing early-stage application-level debugging. My contributions are
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• Led the development of flexmatch and extended Glenside to support a more diverse set of models.
• Implemented the compilation pipeline for VTA using BYOC interfaces of TVM.
• Implemented handwritten digit recognition (on CIFAR) and image classification (on ImageNet)

for VTA. Passed the mapping validation using 3LA.
• Co-authored a ASPLOS LATTE’21workshop paper.
• Co-authored a paper published at ACM TODAES.

Dynamic Tensor Rematerialization Jan. 2020 – Oct. 2020
Dynamic Tensor Materialization (DTR) is an online, heuristic-based checkpointing algorithm that en-
ables DL inference under constrained memory budgets. My contributions are
• Identified problems in the PyTorch DTR implementation.
• Designed the evaluation framework for DTR and extended the case studies to multiple new DL

applications (e.g. Unrolled GAN, UNet).
• Co-authored the paper published at ICLR’21.

� Publications
• Akash Gaonkar,Mike He, Yi Li, Bo-Yuan Huang, Andrew Cheung, Vishal Canumalla, Gus Smith,

Zachary Tatlock, Sharad Malik, and Aarti Gupta. Verification of software-to-hardware mappings
for machine learning accelerators. 2024 [in submission]

• Mike He, Haichen Dong, Sharad Malik, and Aarti Gupta. Improving term extraction with acyclic
constraints. InE-GraphResearch, Applications, Practices, andHuman-factors Symposium (EGRAPHS’23),
2023 [Paper]

• Bo-Yuan Huang*, Steven Lyubomirsky*, Yi Li,Mike He, Thierry Tambe, Gus Henry Smith, Akash
Gaonkar, Vishal Canumalla, Gu-YeonWei,Aarti Gupta, SharadMalik, andZacharyTatlock. Application-
level validation of accelerator designs using a formal software/hardware interface. ACMTrans. Des.
Autom. Electron. Syst., 2022 [Paper]

• Bo-Yuan Huang*, Steven Lyubomirsky*, Thierry Tambe*, Yi Li,Mike He, Gus Smith, Gu-YeonWei,
Aarti Gupta, SharadMalik, and Zachary Tatlock. From dsls to accelerator-rich platform implemen-
tations: Addressing the mapping gap. InWorkshop on Languages, Tools, and Techniques for Accelerator
Design (LATTE’21), 2021 [Paper]

• Marisa Kirisame*, Steven Lyubomirsky*, Altan Haan*, Jennifer Brennan, Mike He, Jared Roesch,
Tianqi Chen, and Zachary Tatlock. Dynamic tensor rematerialization. In International Conference on
Learning Representations (ICLR’21), 2021 [ArXiv]

� Service
• Member of Artifact Evaluation Committee of PLDI’24, POPL’24, MLSys’23, MICRO’21
• Mentor in the Ph.D. application mentoring program (Princeton, 2023)

� Internships
Amazon Web Services, Santa Clara, CA May. 2024 – Aug. 2024
Applied Scientist Intern (Formal Methods/LLMs)
Developing and refining PInfer that mines likely invariants for distributed systems from traces.
• Implementing syntax-guided synthesis of likely invariant
• Designing the mining algorithm as boolean function synthesis using SAT solvers

Taichi Graphics, Remote and Beijing, China June. 2022 – Sep. 2022
Compiler R&D Intern (C++/Python)

• Refactored the intermediate representation (IR) of Taichi Language
• Implemented standalone Tensor type for better compilation speed
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• Adapted compiler passes (e.g. Load/Store forwarding, Dead code elimination, reachingdefinition,
etc.) to optimize for tensor type expressions

• Implemented LLVM-based code generation for tensor type for Superword-level vectorization

Intel Labs, Hillsboro, OR Mar. 2022 – June. 2022
Formal Verification Research Intern (Formal Methods/Python/Dafny)
Developed the Pyrope framework for correct-by-construction hardware modeling.
• Facilitated correct-by-construction hardware modeling purely in Python
• Encoded the correctness proof of (multi-)montgomery reduction algorithm in Python and verified

successfully by compiling to Dafny
• Unified “sources of truth” for correctness proofs and programming model implementations

UWPLSE, Seattle, WA Oct. 2019 – Sep. 2021
Research Assistant (PL/Compiler)
Responsible for conducting research with Prof. Zachary Tatlock, specifically,
• Implemented evaluations in the Dynamic Tensor Rematerialization project
• Designed a flexible matching algorithm for domain-specific language compilers.
• Led research projects with other undergraduate students
• Attended and presented at reading groups

� Selected Projects & Contributions
CatsTail: Synthesizing Packet Programs via Equality Saturation (Rust) GitHub
Music Scores: Reverse engineering of some arrangements (Lilypond) GitHub
flexmatch: Flexible offload pattern matching for DNNs (Python, Rust) GitHub
egg-taichi: Towards automated super-optimization for Taichi programs (Rust) GitHub
taichi?: High-performance parallel computing in Python (C++, Python) GitHub
Glenside?: Term rewriting for tensor programs (Rust) GitHub
veripy: auto-active verification for Python programs (Python) GitHub
dtlc: Dependently-typed lambda calculus (OCaml) GitHub
Sager: A demonic graph synthesizer for worst-case performance (Rosette, Racket) GitHub
Ruxl?: Applicatives, Monads and a “Future” for Rust (Rust) GitHub
Lambda Calculus: UTLC, STLC and System F in OCaml (OCaml) GitHub
SimGE: DTR for memory movement optimization (Rust) GitHub
Multi-Paxos: Implementation of Multi-Paxos in Java (Java) CSE 452
ETH Client: Implementation of an ETH-like Blockchain (Rust) COS 471

More on my GitHub
? : Contributor

� Teaching
• COS 516: Automated Reasoning about Software (TA, Princeton University)
• CSE 505: Principles of Programming Languages (TA, University of Washington)

� Skills
• Languages: C/C++, Python, Rust, OCaml, Coq, Dafny, etc. (Open to other languages)
• Compiler & Applied PL: Equality Saturation, Static Analysis, Computer-aided Reasoning, SMT
• PL Theory: Formal Verification, Type Theory, Mathematical Logic
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• Systems: Distributed Systems, Machine Learning Systems, Data Center Systems
• Others: Algorithms and Data Structures
• Fun Fact: I am more seasoned in playing the violin than coding �; I have:

1. an Lv.9 certificate∗ (similar to ABRSM Grade 8) issued by Central Conservative of Music;
2. > 20-year violin solo experience;
3. Multiple 1st Prizes (various local competitions in Beijing) and a Silvermedal (Beijing regional)†;
4. 6-year experience with symphony orchestras; 3-year experience as the Principal 2nd Violinist;
5. 3-year experience with a piano quartet/quintet andmultiple string quartets (with 1 CDmade);
6. ∼ 4 public concerts with a philharmonic orchestra? at the The Giant Egg, Beijing, China.

∗ : The highest level for non-professionals
† : Awarded during middle and high school years.

? : The Beijing National Day School Philharmonic Orchestra

Last updated on April 20, 2024
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