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Many insects are capable of performing a wide variety of
sophisticated aerial maneuvers including both sustained
hovering and steady forward flight. In recent years a great deal
of progress has been made in our understanding of the unsteady
mechanisms underlying force production during hovering
flight. Evidence suggests that insects can use a variety of
mechanisms, including dynamic stall (Dickinson and Gotz,
1993; Ellington et al., 1996; Sane and Dickinson, 2001),
rotational lift (Bennett, 1970; Dickinson et al., 1999), wake
capture (Dickinson et al., 1999; Birch and Dickinson, 2003),
and the clap and fling (Weis-Fogh, 1973; Somps and Luttges,
1985; Spedding and Maxworthy, 1986). Most of these
phenomena have been investigated within the context of
hovering and it is not known to what extent forward velocity
modifies the efficacy of these mechanisms.

Robotic models have proved a powerful tool in the
investigation of aerodynamic mechanisms during flapping
flight (Bennett, 1970; Maxworthy, 1979; Dickinson and Gotz,
1993; Dickinson et al., 1999; Ellington et al., 1996; Sane and
Dickinson, 2001). Such models have allowed investigators to

examine the effects of wing rotation as well as wing–wake and
wing–wing interactions. A complication encountered when
studying flapping flight using robotic models is that of isolating
and quantifying the effect of a particular variable, such as wing
rotation or forward velocity, upon force production. One
technique commonly used by researchers to circumvent such
complications is to employ extremely simplified sets of wing
kinematics in order to elucidate and characterize a particular
feature of force production. An example of the effective use of
such a simplified set of kinematics is the study of ‘revolving’
wings (Usherwood and Ellington, 2002a,b) in which a
propeller arrangement is used to isolate the force generation
mechanisms of the downstroke and upstroke from the
complicating effects of pronation and supination.

The effect of advance ratio on revolving wings has been
considered previously in the context of helicopter
aerodynamics (Isaacs, 1946; van der Wall and Leishman,
1994). It is difficult, however, to apply these directly to insect
flight because helicopters use high aspect ratio wings operating
at relatively low angles of attack, conditions atypical of insect
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Recent studies have demonstrated that a quasi-steady
model closely matches the instantaneous force produced
by an insect wing during hovering flight. It is not clear,
however, if such methods extend to forward flight. In this
study we use a dynamically scaled robotic model of the
fruit fly Drosophila melanogaster to investigate the forces
produced by a wing revolving at constant angular velocity
while simultaneously translating at velocities appropriate
for forward flight. Because the forward and angular
velocities were constant wing inertia was negligible, and
the measured forces can be attributed to fluid dynamic
phenomena. The combined forward and revolving motions
of the wing produce a time-dependent free-stream velocity
profile, which suggests that added mass forces make a
contribution to the measured forces. We find that the
forces due added mass make a small, but measurable,
component of the total force and are in excellent
agreement with theoretical values. Lift and drag
coefficients are calculated from the force traces after
subtracting the contributions due to added mass. The lift

and drag coefficients, for fixed angle of attack, are not
constant for non-zero advance ratios, but rather vary
in magnitude throughout the stroke. This observation
implies that modifications of the quasi-steady model are
required in order to predict accurately the instantaneous
forces produced during forward flight. We show that the
dependence of the lift and drag coefficients upon advance
ratio and stroke position can be characterized effectively
in terms of the tip velocity ratio – the ratio of the
chordwise components of flow velocity at the wing tip due
to translation and revolution. On this basis we develop a
modified quasi-steady model that can account for the
varying magnitudes of the lift and drag coefficients.
Our model may also resolve discrepancies in past
measurements of wing performance based on translational
and revolving motion.
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flight. As a result, they are more amenable to a blade element
model in which sectional force coefficients derived from two-
dimensional (2D) studies are used to predict total aerodynamic
forces. In contrast, insect wings have a low aspect ratio,
approximately 2–10 (Dudley, 2000), and typically operate at
high angles of attack, often greater than 40°. Low aspect ratio
wings revolving at high angles of attack are known to form a
stable leading-edge vortex that is responsible for elevated force
coefficients (Ellington et al., 1996; Dickinson et al., 1999;
Birch and Dickinson, 2001). For this reason, previous models
of insect flight have used mean sectional force coefficients
derived from three-dimensional (3D) studies employing a
revolving wing. These differences between the aerodynamics
of helicopter rotors and insect wings highlight the need for a
rigorous study of the effect of advance ratio on the forces
produced by revolving wings of a shape, speed and angle of
attack typical of insects.

In this study, we characterize the effect of advance ratio on
aerodynamic force generation during forward flight using a
dynamically scaled mechanical model of Drosophila
melanogaster. Forces are measured over a range of advance
ratios spanning the transition from hovering to fast forward
flight. The kinematic pattern we used consists of a wing
revolving in a horizontal stroke plane with constant angular
velocity at a fixed angle of attack. From the instantaneous force
records we estimate the contribution due to added mass and
compare it with theoretical predictions. The added mass
component is then subtracted from the force traces and mean
sectional lift and drag coefficients are calculated. The mean
sectional lift and drag coefficients are found to depend upon
the angle of attack and the velocity profile experienced by the
wing. We show that this dependence upon angle attack follows
the same trigonometric relationships as that of hovering flight.
However, the variation of the force coefficients with velocity

profile is new and implies that modifications
to the quasi-steady model are required in
order to accurately predict forces during
forward flight. We show that the variation of
the force coefficients with velocity profile can
be effectively characterized in terms of the tip
velocity ratio of the wing. A modified version
of the quasi-steady model is presented that
incorporates this variation.

Materials and methods
Robotic fly apparatus

We designed a flapping robotic apparatus, similar to that
described previously (Dickinson et al., 1999), in which the
entire wing assembly was capable of linear translation
along the length of a towing tank (Fig.·1A). The drive
system for the two wings consisted of an assembly of six
computer-controlled servo-motors connected to the wing
gearbox using timing belts and coaxial drive shafts. The
wing assembly was mounted on a translation stage
consisting of two custom linear translation rails that were
connected via an idler bar. The translation stage was driven
by a single computer-controlled servo-motor. The wings
were immersed in a 1·m×2.4·m×1.2·m towing tank filled
with mineral oil (Chevron Superla® white oil; Chevron
Texaco Corp., San Ramon, CA, USA) of density ρ
0.88×103·kg·m–3 and kinematic viscosity 115·cSt at room
temperature. Custom software written in Matlab and C
permitted control of the robotic model from a PC. A 2D
force transducer attached to the proximal end of the wing
measured forces normal and parallel to the wing surface.
Each channel of the force transducer consisted of two
parallel phosphor-bronze shims equipped with four 350·Ω
strain gauges wired in a full-bridge configuration. We
designed the force transducer to be insensitive to the
position of the force load on the wing, and varying the
location of the load on the wing resulted in less than 5%
variation in the measured forces. The isometrically
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Fig.·1. (A) Diagram of robotic apparatus. The wing assembly is shown
mounted on linear translation rails above the 1·m×2.4·m×1.2·m towing
tank. (B) Coordinate system for the mechanical wing. Three angles are
used to specify the position of the wing: φ, θ and α. The instantaneous
stroke position, φ(t), is defined as the angular position of the projection of
the wing axis in the stroke plane. The instantaneous stroke deviation, θ(t),
is defined as the angle between the wing axis and the stroke plane. The
instantaneous angle of attack, α(t), is defined as the angle between the
wing’s chord and the tangent to its trajectory.
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enlarged wings of the robotic model were based on the planform
of a D. melanogaster wing. The wings of the robotic model, cut
from an acrylic sheet, had the following physical dimensions:
length (R)=0.25·m, aspect ratio (AR)=0.42, mean chord
(c)=0.06·m, area (S)=0.0150·m2 and width=0.0023·m. The non-
dimensional first and second moments of area of the wing are
r1

1(S)=0.59 and r2
2(S)=0.39, respectively (Ellington, 1984b). In

this study only a single wing of the robotic model was utilized,
so the results are not influenced by wing–wing interactions.

Kinematics

In a manner similar to that described previously (Sane and
Dickinson, 2001), the kinematics of the wings are specified by
the time course of three angles: stroke position φ, the angle of
attack α and stroke deviation θ (Fig.·1B). The relatively simple
kinematic patterns used in this study were chosen to isolate the
effects of advance ratio, stroke position, and angle of attack
upon aerodynamic force generation without the additional
complications of rotational forces or wing–wake interactions.

In the first set of kinematic patterns the wing was towed
through the oil at constant forward velocity while at the same
time revolving through a 500° arc at a constant angular velocity
of ±72·deg.·s–1. During each trial we maintained the angle of
attack at a fixed value. Four forward velocities were used in
these experiments: 0, 0.04, 0.08, 0.12 and 0.16·m·s–1. For each
forward velocity the angle of attack was systematically varied
in 10° increments, from 110° to –10° for a total of 96 runs. For
all of these trials, stroke deviation angle was fixed at zero.
Angle of attack is defined as the angle between the wing’s
chord and the tangent of the wing’s trajectory.

In the second set of kinematic patterns the wing was towed
through the oil at constant forward velocity of 0.16·m·s–1 at a
fixed stroke position angle of 0°. During each trial we
maintained the angle of attack at fixed value, which was varied
from –10° to 110° in 10° increments.

Dynamic scaling

Two non-dimensional parameters are required in order to
achieve an accurate dynamic scaling of the forces obtained via
the robotic model: the Reynolds number (Re), and the advance
ratio (Spedding, 1993). The Reynolds number is given by:

and the advance ratio J is given by:

where Vf is the forward velocity and ν is the kinematic
viscosity of the fluid. All of the wing kinematics used in this
study were performed at Re approx. 140, matching the value
appropriate for D. melanogaster (Lehmann and Dickinson,
1997). The advance ratios considered in this study are: ± 0,
1/8, 1/4, 3/8 and 1/2, corresponding to forward flight
velocities of 0, 0.41, 0.82, 1.23 and 1.64·m·s–1 for a fruit fly.
A review of available data on D. hydei (David, 1978) as well

as personal observations of D. melanogaster flying in a low-
speed wind tunnel suggests that this choice of forward flight
velocities spans a range from hovering to the fastest forward
flight.

A third dimensionless parameter that will prove useful in our
analysis is the tip velocity ratio µ:

which is defined as the ratio of the chordwise components of
flow velocity at the wing tip due to translation and revolution.
Over one period of wing revolution µ will range from –J to J
and can be uniquely identified with a given velocity profile
experienced by the wing.

Data acquisition and analysis

Force data from the 2D strain gauges were sampled at
1500·Hz using a Measurement Computing PCI-DAS-1000
Multifunction Analog digital I/O board (Middleboro, MA,
USA) and filtered offline using a zero phase delay low-pass
4-pole digital Butterworth filter, with a cut-off frequency of
3·Hz. The positions of the four servo-motors were acquired
simultaneously using the multifunction card and custom
electronics for decoding the quadrature encoders of the servo-
motors. In this manner it was possible to determine the
instantaneous position of the motors, and thus the wing.

Because the stroke amplitude of most insects is less than
180° the condition when φ is between –90° and 90° is of
particular interest. With this in mind, the stroke length used in
this study was selected to meet two criteria. First, the strokes
needed to be long enough so that there was sufficient time for
the force transients resulting from the acceleration of the wing
to disappear before φ was within the region –90° to 90°.
Second, the strokes needed to be short enough so as not to incur
any wing–wake interactions in this region. Accordingly, we
chose a pattern in which the wing revolved from 250° to –250°
or from –250° to 250°.

The force measured by the strain gauges at the base of the
wing can be decomposed into gravitational, inertial and fluid
dynamic components. The gravitational component of the
measured forces is due to the mass of the wing and the mass
of the sensor, and may be calculated and subtracted from the
measured forces. In practice the subtraction was determined by
moving the wing through sample kinematic patterns at very
low velocity, for which the aerodynamic and inertial forces are
negligible, and fitting the functions for the parallel and normal
measured forces:

G||(α) = A|| cos(π/2–α) + B|| (4)
and

G⊥(α) = A⊥ sin(π/2–α) + B⊥ . (5)

The functions were used to compute the gravitational forces
experienced by the wing for each kinematic pattern, which
were then subtracted from the measured force records.

The inertial component of the measured forces consists of
two components: the action of the acceleration forces on the

,µ=
V  cos(φ)f

Rφ
(3)

,J =
Vf

R|φ|
(2)

Re =
R|φ|c

ν
, (1)
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mass of the wing and sensor, and the added mass of the fluid
around the wing (see equation·21). The contribution of the
acceleration forces of the wing and sensor masses to the total
measured forces for the robotic apparatus are negligibly small
(Sane and Dickinson, 2001). The added mass component
experienced by the wing was estimated from the data obtained
when φ was between –90° and 90° in the following manner.
The force produced by the wing consists of the sum of the
translational and added mass force components. The
translational force component is typically proportional to the
square of the flow velocity. Because the flow velocity is a
symmetric function of stroke position, the translational force
component Ft should also be a symmetric function, and thus
Ft(φ) should be equal to Ft(–φ) for equal angles of attack. The
added mass force is proportional to the acceleration of the flow
in the direction normal to the surface of the wing. As the
acceleration of the flow is an antisymmetric function of stroke
position, the added mass force component Fa should be an
antisymmetric function of stroke position, and thus Fa(φ)
should be equal to –Fa(–φ) for equal angles of attack. This
observation shows that the difference between the force
measurements at stroke positions φ and –φ can be attributed
solely to added mass component of the forces because the
translational force components cancel. Thus, for fixed angle of
attack the added mass force can be estimated by:

Fa(φ) = G[F(φ)–F(–φ)] , (6)

where F(φ) and F(–φ) are the force measurements normal to
the wing at stroke positions φ and –φ, respectively.

The translational component of the forces was isolated by
subtracting the estimates of the forces due to added mass from
the measured forces. The instantaneous mean force coefficients
for lift and drag were then calculated using:

and

where FL is the measured lift, FD is the measured drag, r1
1(S)

is the non-dimensional first moment of wing area and r2
2(S) is

the non-dimensional second moment of wing area.
Equations·7 and 8 were derived from blade element theory

and take into account the changing instantaneous velocity
profile experienced by the wing. When µ is equal to zero the
usual mean force coefficients used for a stationary revolving
wing (Osborne, 1951; Sane and Dickinson, 2001; Usherwood
and Ellington, 2002a) are obtained:

and

In the limit that µ approaches infinity, equations 7 and 8
become typical mean force coefficients used in wind tunnel
studies:

and

The force coefficients given in equations 7 and 8 can be
viewed as functions of two parameters: the angle of attack α
and the tip velocity ratio µ. The variation of the lift and drag
coefficients with angle of attack for hovering flight is known
to be well approximated by trigonometric expressions
(Dickinson et al., 1999). In order to determine if these
relationships are still approximately true, normalized lift and
drag coefficients were derived for each angle of attack α. The
normalized lift coefficient is defined by:

and the normalized drag coefficient is defined by:

where maxµ and minµ are the maximum and minimum,
respectively, for the given α over all µ for which there is a
measurement.

In order to examine behavior of the lift and drag coefficients
as a function of tip velocity ratio, µ, the measured lift and drag
coefficients were fit via least squares, for each µ, to the
following equations:

CL(α,µ) = K0(µ)sinαcosα (15)
and

CD(α,µ) = K1(µ)sin2(α)+K2(µ)·, (16)

where K0(µ) is drag coefficient amplitude function, K1(µ) is lift
coefficient amplitude function, and K2(µ) is drag coefficient
offset function. Provided that for each µ the lift and drag
coefficients approximately follow the trigonometric
relationships with respect to α, the variation of the lift and drag
coefficients will be effectively captured by the variation of
K0(µ), K1(µ) and K2(µ). The expressions for lift and drag
coefficient given in equations·15 and 16 are periodic functions
of α. The amplitude of the periodic relationships are given by
K0(µ)/2 and K1(µ), respectively, and these functions will be
referred to as amplitude functions. The second term in the drag
coefficient expression, K2(µ), gives the offset of the periodic
relationship from zero and is referred to as the offset function.

Quasi-steady model

In this section we extend the quasi-steady model for
hovering flight (Sane and Dickinson, 2001, 2002) to the
special case of forward flight consisting of a revolving wing

CD,norm(α) =
max

CD(α ,µ)–minµ{CD(α,µ)}

µ{CD(α,µ)}–minµ{CD(α,µ)}
(14),

CL,norm(α) =
max

CL(α,µ)

µ{CL(α,µ)}
(13),

CD =
2FD

ρSVf
2cos2φ

. (12)

CL =
2FL

ρSVf
2cos2φ

(11),

CD =
2FD

ρS(Rφ)2r2
2 (S) 

(10).

CL =
2FL

ρS(Rφ)2r2
2 (S)

(9),

(8)CD = 
2FD

ρS(Rφ)2[r2
2(S)+2r1

1(S)µ+µ2]
,

CL = 
2FL

ρS(Rφ)2[r2
2(S)+2r1

1(S)µ+µ2]
(7) 

,
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translating at constant forward velocity. For simplicity we
assume that the angle of attack α, the angular velocity of the
wing , and the forward velocity Vf, of the wing are all
constant. Further, we set the deviation angle θ to zero so that
the stroke plane is horizontal. In our model the instantaneous
force generated by the wing is represented by the vector sum
of two components:

F = Fa + Ft , (17)

where Fa is the force due to the added mass of the fluid and Ft

is the instantaneous translational force.
For a wing revolving at instantaneous angular velocity and

moving forward at velocity Vf, the magnitude of the sectional
flow velocity is given by:

V(r) = |r + Vf cosφ|·, (18)

where r is the spanwise location of the wing section (Fig.·2).
The instantaneous acceleration of the flow is the same for each
wing section, i.e. it is independent of the spanwise location r,
and is given by:

V(r) = –Vf | | sinφ . (19)

For an infinitesimally thin wing the existence of an acceleration
in the flow implies that there will be an added mass component
to the force experienced by the wing that will be proportional
to the acceleration of the flow in the direction normal to the
surface of the wing:

V(r) sinα = –Vf | | sinφ sinα . (20)

The magnitude of the added mass force used in this model is
based on an approximation derived for the motions of an
infinitesimally thin 2D flat plate in an inviscid fluid (Sedov,
1965). In a manner similar to that described by Sane and
Dickinson (2001) we adapted it to the case of a 3D wing
revolving at constant angular velocity and translating with
forward velocity Vf through the fluid. The magnitude of the
force due to the added mass, which acts normal to the wing
surface, is given by:

where r is the non-dimensional spanwise wing position and
c(r) is the non-dimensional mean chord. Thus, the constant of
proportionality is given by:

and has units of mass. It is known that for identical
kinematics and geometry the added mass forces scale in
proportion to the other aerodynamic forces (Sane and
Dickinson, 2001). Thus, provided that the Reynolds number
is the same, the contribution of the added mass on the wing
of the robotic model and the wing of a fly should be identical.

Under the quasi-steady assumption, the translational force
term Ft depends solely upon the instantaneous angle of attack

and velocity profile experienced by the wing. Ft can therefore
be expressed in terms of the mean sectional force coefficients
in the following manner:

FL = GρSCLR2 2[r2
2(S)+2r1

1(S)µ+µ2] (23)
and

FD = GρSCDR2 2[r2
2(S)+2r1

1(S)µ+µ2] , (24)

where the mean sectional force coefficients, CL and CD, are
functions of the instantaneous angle of attack α and the
instantaneous velocity profile, which is uniquely determined by
the tip velocity ratio µ. An appropriate expression for the
dependence of the mean sectional force coefficients upon α
and µ can derived under the following assumptions. First, each
wing section is considered to be an infinitesimally thin 2D flat
plate. Second, the component of the force resulting from
pressure differences acts normal to the surface of the plate with
a magnitude proportional to the projected chord of the plate
perpendicular to the direction of flow. Third, the effect of skin
friction is represented by a constant additive drag force. Under
these three assumptions, the mean sectional lift and drag
coefficients may be written as follows:

and

where the ki,j are unknown constants that are determined via a

,CD =
k1,2+2k1,1µ+k1,0µ2

r2
2(S)+2r1

1(S)µ+µ2
sin2α +

k2,2+2k2,1µ+k2,0µ2

r2
2(S)+2r1

1(S)µ+µ2
(26)

CL =
k0,2+2k0,1µ+k0,0µ2

r2
2(S)+2r1

1(S)µ+µ2
sinα cosα (25)

0

1ρπc2R
4

c(r)2dr , (22)

Fa = –
Vf|φ|sinφsinαρπc2R

4
c(r)2dr , (21)
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Fig.·2. Diagram of sectional flow velocities. The wing is travelling
through the fluid at forward velocity Vf. (A) Downstroke. The wing
is sweeping into the incident flow. The magnitude sectional flow
velocity at wing position r is given by r +Vfcos(φ). (B) Upstroke. The
wing is sweeping with the incident flow. The flow velocity at wing
position r is given by –r –Vfcos(φ).
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least-squares fit to a suitable data set. Detailed derivations of
equations·25 and 26 are given in the Appendix.

Results
The lift and drag traces for a range of advance ratios and

different angles of attack are shown in Figs·3A–D and 4A–D.
Regions where the wing is between –90° and 90° roughly
approximate the phase of a downstroke or an upstroke between
wing rotations and are highlighted in gray. The stroke length
for each experiment was selected to ensure that transient
effects due to the starting accelerations had diminished to
negligible levels by the time the wing was within the
highlighted regions. The stroke mimics a downstroke or an
upstroke when the angular velocity of the wing is equal to
72·deg.·s–1 or –72·deg.·s–1, respectively.

The forces shown in Figs·3A–D,·4A–D vary with time as the
wing sweeps through the background flow. Because the
angular velocity of the wing is constant, the stroke position
of the wing is a linear function of time. Thus, the forces in the
figures may alternatively be viewed as varying with stroke
position. Such a view explicitly ignores any time dependence
in the flows and forces. This simplification is justified,
however, because the effect of the initial stroke position did
not measurably influence the φ-dependence of the forces. Thus,
while exhibiting a dependence upon φ, the forces showed no
intrinsic time dependence once the transients due to the starting
accelerations decayed. Because the flow velocity at each wing
section is a function of the stroke position, φ, the aerodynamic
forces experienced by the wing also depend upon φ. During the
downstroke, when the wing sweeps against the net flow, the
sectional flow velocities increase from r| | to r| |+Vf as φ goes
from –90° to 0°, and then decrease to r| | again as φ goes from
0° to 90°. The lift and drag forces, which depend on the square
of the flow velocity, reflect these changing velocities reaching
a maximum near φ=0°. During the upstroke, when the wing
sweeps with the background flow, the flow velocities decrease
from r| | to r| |–Vf as φ goes from 90° to 0°, and increase to
r| | as φ goes from 0° to –90°. Again, the effects of the
changing sectional flow velocities are reflected in the force
traces. As expected, the effect of stroke position on force
production is greater as advance ratio increases.

Added mass

Because the flow velocity experienced by each wing section
varies with time it will experience an added mass force. This
acceleration is the same for each wing section and is given by
equation·19. In Fig.·5, we plot the added mass force estimated
using equation·6 as a function of the absolute value of the
acceleration. The theoretical estimate for the added mass force
(equation·21) is shown for comparison. The magnitude of the
added mass force is quite small compared to the aerodynamic
forces and approaches the noise limit of our measurements for
low accelerations. However, the trend is quite clear and the
match between the theoretical estimate and the measured
values is reasonable. The theoretical estimate of the constant

of proportionality that relates acceleration to force is 0.96·kg,
whereas a linear regression to the data collected in all 96 trials
yields an estimated constant of proportionality of 0.98·kg,
which is statistically indistinguishable from the theoretical
value. This result suggests that added mass forces account for
the slight asymmetry in the lift and drag forces about φ=0,
which is evident in Figs·3 and 4.

Angle of attack

Using equations·7 and 8, lift and drag coefficients were
constructed from the force traces, after subtracting the
added mass component. Previous studies of hovering flight
(Dickinson, 1996, 1994; Ellington and Usherwood, 2001),
observed that, aside from a small contribution due to skin
friction, the translational component of the force experienced
by the wing is approximately normal to the surface of the wing.
Fig.·6 shows a plot of force angle, the angle between the total
force vector and the wing’s surface, versus α for all 96 trials.
At angles of attack above about 15° the force is approximately
normal to the surface of the wing. This suggests that for high
angles of attack differences in pressure normal to the surface
of the wing dominate force production. For small angles of
attack less than 15°, the force angle is less than 90°, an effect
that can be attributed to skin friction.

Prior studies of revolving or flapping model wings
(Dickinson et al., 1999; Usherwood and Ellington, 2002a,b)
have shown that the mean sectional lift coefficient is
proportional to sin(α)cos(α), whereas the mean sectional drag
coefficient, minus skin friction, is proportional to sin2(α). The
quasi-steady model presented earlier in equations·25 and 26,
suggests that for a fixed tip velocity ratio µ, these functional
relationships will still hold. However, the constants of
proportionality in the relationships are, in addition, functions
of the tip velocity ratio in the case of forward flight. To test
whether or not this approximation is valid, we calculated the
normalized lift and drag coefficients using equations·13 and
14 (Fig.·7A,B). Plots of the functions 2sin(α)cos(α) and
sin2(α) are shown for comparison. Agreement between the
normalized coefficients and the trigonometric functions is
quite close. This suggests that the mean sectional lift and drag
coefficients during forward flight behave in a manner
analogous to that during hovering with respect to angle of
attack, provided the effects of tip velocity ratio are properly
taken into account.

Tip velocity ratio

Given that the lift and drag coefficients obey the
trigonometric functional relationships given by equations·15
and 16 with respect to angle of attack, the task of determining
the effect of tip velocity ratio µ is reduced to characterizing the
amplitude and offset functions K1(µ), K2(µ) and K3(µ). In
Fig.·8 we plot the drag coefficient versus lift coefficient for
several tip velocity ratios. A fit of equations·15 and 16 for each
tip velocity ratio is shown for comparison. For angles of attack
greater than approximately 30°, both the lift and drag
coefficients decrease with increasing tip velocity ratio. For the
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drag coefficients at small angles of attack, this trend is
reversed. Also shown in Fig.·8 is a fit of equations·15 and 16
to hovering data from Birch et al. (2004). The values of the lift
and drag coefficients from the hovering data coincide with the
lift and drag coefficients from the zero tip velocity ratio case.
In general equal tip velocity ratios, regardless of the advance
ratio, result in equivalent force coefficients. However, at higher
advance ratios a greater range of tip velocity ratios is achieved
during each stroke.

The quasi-steady model, equations·25 and 26, suggests that

an appropriate functional form for the amplitude and offset
functions is that of a rational function whose numerator and
denominator are second order polynomial functions of µ. The
values of K0(µ), K1(µ) and K2(µ) estimated from the data are
shown in Fig.·9. Included in the figure for comparison are least-
squares fits of the functions:

to the estimated K1(µ), K2(µ) and K3(µ). The agreement

ki,2 +2ki,1 µ+ki,0 µ2

r2
2(S)+2r1

1(S)µ+µ2
(27)
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between the curve fits and the estimated functions is quite
close, suggesting that the functional relationship provided by
the model captures the behavior of the data with respect to µ
remarkably well.

Fig.·10 shows a plot of the lift coefficients versus drag
coefficients as a function of angle of attack for a non-revolving
wing, with a constant forward velocity of 0.16·m·s–1 and a fixed
stroke position angle of 0°. For this set of kinematics both the
advance ratio J and the tip velocity ratio µ are essentially
infinite. The quasi-steady model with coefficients determined
by the fit to the first set of kinematic patterns, with µ between

–0.5 and 0.5, can be extrapolated to predict the lift and drag
coefficients for the non-revolving wing by taking the limit of
equations·25 and 26 as µ approaches infinity:

CL = k0,0sin(α)cos(α) , (28)
and

CD = k1,0sin2(α) + k2,0 . (29)

Plots of equations·28 and 29 are shown in Fig.·10 for
comparison. The predicted and measured coefficients agree
reasonably well and the extrapolation of the quasi-steady
model accurately captures the trend as µ approaches infinity.

W. B. Dickson and M. H. Dickinson

Fig.·4. Instantaneous drag traces. The regions where the stroke position of wing is between –90° and 90° are highlighted in gray and roughly
approximate the phase of an upstroke or downstroke between wing rotations. Angle of attack α varied from –10° to 100° in steps of 10° for
each advance ratio. (Ai–Di) =72·deg.·s–1, advance ratio equal to 1/8, 1/4, 3/8 and 1/2, respectively. (Aii–Dii) =–72·deg.·s–1, advance ratio
equal to 1/8, 1/4, 3/8 and 1/2, respectively.
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Discussion
We used a dynamically scaled model to measure the

instantaneous lift and drag forces produced by a
simultaneously revolving and translating wing. The results
enable us to characterize the effect of advance ratio in the
absence of rotational forces and wing–wake interactions. The
force produced by the wing can be decomposed into two parts:
an added mass force and a translational component. The added
mass component of the force was measured using the
asymmetry in the forces with respect to stroke position and
closely matched theoretical predictions (Fig.·5). Lift and drag
coefficients for the translational force component were
constructed after subtracting the contribution due to added
mass. The lift and drag coefficients follow simple
trigonometric relationships with respect to angle of attack: the
lift coefficient is proportional to sin(α)cos(α) and the drag
coefficient to sin2(α) (Fig.·7). The amplitude and offset of the
these relationships is not constant, but depends upon the
velocity profile experienced by the wing. As the velocity
profile is completely determined by the tip velocity ratio, we
demonstrated that it is possible to characterize the dependence
of the force coefficients on the velocity profile in terms of the
tip velocity ratio. The fact that the lift and drag coefficients
depend upon the tip velocity ratio implies that modifications
of the quasi-steady model are required in order accurately to
predict forces during forward flight. To this end a modified
quasi-steady model that is capable of incorporating the
dependence of the force coefficients on the tip velocity ratio
was introduced. Finally, it was shown that the modified quasi-
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Fig.·5. Added mass component of the measured force as a function of
acceleration for all 96 trials (black circles). The theoretical estimate
from Sedov model is shown in red. Values are means ± 1 S.D.
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steady model generalizes in the correct manner as the tip
velocity ratios become large, as in the case of pure translation.

Added mass forces

The added mass forces estimated from experimental data
closely agree with the theoretical predictions made using
equation·21. Both the measured and predicted forces were
quite small in magnitude and represent less than 10% of the
total force generated by the wing. Also, over the course of an
actual stroke cycle they would average to zero so that net their
effect on average forces is insignificant. Nevertheless, it is
possible that they remain large enough to play a role in the

delicate force and moment balance that takes place during
aerial maneuvers.

For the kinematics considered in this study, the theoretical
predictions of the added mass force, based on an
approximation given in Sedov (1965), match the estimates
from experimental data quite well. It has been shown, however,
that for some types of wing kinematics this is not the case.
Birch and Dickinson (2003) considered the forces produced by
a back-and-forth flapping pattern in which the time course of
stroke position is a filtered triangle wave. They observed that
the time course of the forces generated at the start of a stroke
were not well matched by the same added mass model
considered here. This discrepancy held even for impulsive
starts, when wing–wake interactions are not present. A
significant difference between the two cases is that magnitude
of the peak acceleration in the back-and-forth pattern was
approximately 10 times greater than those of the revolving and
translating wing in this study. Thus, it appears the Sedov model
is reasonably accurate for the more gentle accelerations but
underestimates forces during higher accelerations.

Translational forces

The quasi-steady model of the translational force
coefficients, equations·25 and 26, is based on a blade element
derivation. In this treatment, the sectional force coefficients
vary with spanwise location, a dependence embodied by the
functions kj(r) in equations·A1 and A2. In contrast, previous
work on revolving wings under hovering conditions have
employed mean sectional force coefficients that are assumed
constant with respect to spanwise location (Sane and
Dickinson, 2001; Usherwood and Ellington, 2002a). In the
zero advance ratio limit such an assumption is not detrimental,
because for a given angle of attack the mean sectional force
coefficients are not sensitive to variations in velocity provided
that the dependence of the sectional force coefficients on span,
regardless of form, does not vary over the range of velocities
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considered. However, the simplification does not hold at finite
advance ratio. With the addition of forward velocity, the mean
force coefficients may become sensitive to variations in the
flow velocity profile experienced by the wing. Even assuming
that the functional dependence of the sectional force
coefficients upon span remains the same, the mean force
coefficients may depend upon the instantaneous velocity
profile experienced by the wing. Only in the special case where
the sectional coefficients are constant with respect to span does
the dependence of the mean force coefficients upon the
velocity profile disappear. This effect complicates the analysis
of forward flight and was the reason we adopted a more general
approach here. Theoretical considerations that take into
account the effect of tip vortices (Katz and Plotkin, 2001) as
well as recent experimental results (Birch and Dickinson,
2003) suggest that for each angle of attack the sectional force
coefficients do indeed depend upon span. The exact form of
this dependence, and whether for each angle of attack the
sectional force coefficients are dependent or independent of the
velocity profile, is not yet known.

Mean sectional force coefficients determined from zero
advance ratio data as a function of angle of attack are available
for various wing planforms and at various Reynolds numbers
(Sane and Dickinson, 2001; Usherwood and Ellington,
2002a,b; Birch et al., 2004). For this reason it is interesting to
compare the total force coefficients estimated from the
forward flight data using equations·25 and 26, with those from
hovering data. The force coefficients from hovering data agree
with the coefficients from forward flight data when the tip
velocity ratio µ=0. For angles of attack typical of insect flight
(30–90°) at tip velocity ratios <0, the lift and drag coefficients
are greater than those during hovering flight, and at tip
velocity ratios >0 the lift and drag coefficients are less than
those during hovering flight. For low advance ratios (<0.1),
this discrepancy can probably be ignored without incurring
too much error. However, as advance ratio increases
modifications are required in order to predict forces
accurately.

The quasi-steady model, with coefficients derived from
finite advance ratio data, was found to extrapolate fairly well
to steadily translating wings (Fig.·10). The model as currently
posed attributes the difference in force coefficients entirely
to the effect of the instantaneous velocity profile on the
constant spanwise distribution of sectional force coefficients.
In particular, it is assumed that the the spanwise distribution
of sectional forces coefficients for a given angle of attack
does not itself depend on the velocity profile. This is probably
not entirely true. However, it appears to be a reasonable
approximation for tip velocity ratio between –0.5 and 0.5. It
also captures the trend correctly at high advance ratios.
Validation of this assumption will require measurements
of the spanwise loading of a wing at various tip velocity
ratios.

Interest in the possible role of unsteady effects in insect
flight was stimulated in large part by the comprehensive
analysis of Ellington (1984a), in which he tested the

feasibility of quasi-steady models using a ‘proof by
contradiction’. He compared available experimental
measures of the maximum steady-state lift coefficients in the
literature with the values required to support hovering flight
based on body morphology and simplified wing kinematics.
His conclusion was that experimental values were typically
too low to account for the forces required to sustain flight,
thus justifying a search for unsteady effects that might
account for the elevated performance of insect wings under
flapping conditions. However, the conclusions of Ellington’s
thorough analysis are in conflict with recent studies
demonstrating that revolving wings create constant force in
the Reynolds number range used by insects (Dickinson et al.,
1999; Usherwood and Ellington, 2002a). More specifically,
although revolving wings separate flow and create a leading
edge vortex, this flow structure is stable over many chord
lengths. Given these recent results it is perplexing why
Ellington’s metanalysis demonstrated an insufficiency of
quasi-steady models based on previous measures of force
coefficients on real and model wings in steady translating
flow. The results of our analysis offer a possible explanation
for this discrepancy. Namely, that the maximum steady-state
lift coefficient depends upon the velocity profile experienced
by the wing, and use of lift coefficients from steadily
translating wings, with essentially infinite tip velocity ratio,
leads to an underestimate of the possible lift for a flapping or
revolving wing. From these results it is clear that unsteady
mechanisms may not be required in order to explain the force
balance for a hovering insect, but only that the appropriate
force coefficients be used.

Implications of kinematics

During steady forward flight it is likely that an insect must
adopt appropriate wing kinematics to balance lift, thrust and
body moments at each forward velocity. Several studies
(David, 1978; Willmott and Ellington, 1997) that have
examined the relationship between forward flight speed and
body angle found an inverse correlation, such that the angle
between the insects body and the horizontal plane decreases
with increasing flight speed. Further, in a study of Manduca
sexta, Willmott and Ellington (1997) demonstrated that there
is a positive correlation between stroke plane angle and
forward speed. During forward flight the angle of attack, and
thus the instantaneous forces produced, depend strongly upon
the stroke plane angle. From these studies it is clear that wing
kinematics, at least via changes in stroke plane angle, do
indeed vary in a systematic manner with forward velocity.
Without a comprehensive understanding of force production
for arbitrary wing kinematics over a suitable range of advance
ratios it is difficult to interpret how the observed changes in
wing motion effect the appropriate force and moment
balance.

In order to keep things as simple as possible the kinematics
employed in this study all had a stroke plane angle of zero,
which we know to be unrealistic. It is not yet known how
changes in stroke plane angle will further modify the measured
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lift and drag coefficients. Further studies are required to
determine the combined effect of forward velocity and nonzero
stroke plane angles.

Appendix
An appropriate functional representation of the mean

sectional lift and drag coefficients can be derived as follows.
First, each wing section is considered to be an infinitesimally
thin 2D flat plate. Second, the component of the force resulting
from pressure differences acts normal to the surface of the plate
with a magnitude proportional to the projected chord of the
plate perpendicular to the direction of flow. Third, the effect
of skin friction is represented by a constant additive drag force.
Under these three assumptions, the sectional force coefficients
may be written as:

C ′L(r) = k0(r)sin(α)cos(α) , (A1)
and
· C·′D(r) = k1(r)sin2(α) + k2(r)·, (A2)

where the functions k1(r), k2(r) and k3(r) describe the
dependence on the spanwise location of the wing section.
The sectional lift and drag forces as a function of non-
dimensional spanwise location of the wing section are then
given by:

F ′L(r) = Gρc(r)CL(r)[rR +Vfcos(φ)]2·, (A3)
and

F ′D(r) = Gρc(r)CD(r)[rR +Vfcos(φ)]2·. (A4)

Integrating the sectional lift and drag forces along the span
of the wing and substituting equations·A1 and A2 for the
sectional lift and drag coefficients yields the following
expressions for the magnitudes of the total lift and drag forces
experienced by the wing:

FL = GρSR2 2(k0,2+2k0,1µ+k0,0µ2)sin(α)cos(α) , (A5)

and

FD = GρSR2 2[(k1,2+2k1,1µ+k1,0µ2)sin2(α) + (k2,2+2k2,1µ+k2,0µ2)]·,
(A6)

where

Equating the expressions for lift and drag given by
equations·23 and 24 and by equations·A5 and A6, respectively,
and then solving for the lift and drag coefficients, yields the
desired expressions for the mean sectional lift and drag
coefficients:

and

List of symbols
AR aspect ratio
A|| parallel gravitational force amplitude constant
A⊥ normal gravitational force amplitude constant
B|| parallel gravitational force offset constant
B⊥ normal gravitational force offset constant
c(r) chord length
c(r) non-dimensional chord length
c mean chord length
CL mean sectional lift coefficient
C′L(r) sectional force coefficient
CL,norm(α) normalized lift coefficient
CD mean sectional drag coefficient
C′D(r) sectional drag coefficient
CD,norm(α) normalized drag coefficient
F instantaneous aerodynamic force
Fa added mass force
Fa magnitude of added mass force
FD total drag
F ′D(r) sectional drag
FL total lift
F ′L(r) sectional lift
Ft translational force
F(φ) force measurement normal to the wing at

stroke position φ
G||(α) gravitational force parallel to wing
G⊥(α) gravitational force parallel to wing
J advance ratio
k1(r) sectional lift amplitude function
k2(r) sectional drag amplitude function
k3(r) sectional drag offset function
ki,j lift and drag coefficient integrals/fit

coefficients
K0(µ) drag coefficient amplitude function
K1(µ) lift coefficient amplitude function
K2(µ) drag coefficient offset function
r radial position along wing
r non-dimensional radial position along wing
r1

1(S) non-dimensional first moment of wing area
r2

2(S) non-dimensional second moment of wing area
R wing length
Re Reynolds number
S wing area
Vf forward velocity
V(r) sectional flow velocity
α(t) instantaneous angle of attack

angular velocity of the wing
φ(t) instantaneous stroke position
µ tip velocity ratio
θ(t) instantaneous stroke deviation density of 

fluid
ν kinematic viscosity
τ reduced time t| |R(c)–1
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.CD =
k1,2+2k1,1µ+k1,0µ2

r2
2(S)+2r1

1(S)µ+µ2
sin2α  +

k2,2+2k2,1µ+k2,0µ2

r2
2(S)+2r1

1(S)µ+µ2
(A9)

k

CL =
k0,2+2k0,1µ+k0,0µ2

r2
2(S)+2r1

1(S)µ+µ2
sinα cosα (A8)

0

1
ki,j = r jki(r)c(r)dr·. (A7)
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