
Closing the loop between neurobiology and flight behavior
in Drosophila
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Fruit flies alter flight direction by generating rapid stereotyped

turns called saccades. Using a combination of tethered

and free-flight methods, both the aerodynamic mechanisms

and the sensory triggers for saccades have been investigated.

The results indicate that saccades are elicited by visual

expansion, and are brought about by remarkably subtle

changes in wing motion. Mechanosensory feedback from the

fly’s ‘gyroscope’ complements visual cues to terminate

saccades, as well as to stabilize forward flight. Olfactory

stimuli elicit tonic increases in wingbeat amplitude and

frequency but do not alter the time course or magnitude

of visual reflexes.
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Introduction
If seeing is believing, then, even by casual observation,

flight in insects ranks among the most complex and

demanding behaviors exhibited by animals. Flies in par-

ticular occupy the pantheon of nature’s aviators [1] —

they hover and maneuver in virtually any direction,

maintaining equilibrium within turbulent conditions,

track sparse odor plumes over vast distances, and fly so

fast that their motion appears to most animals as an

annoying blur. For example, houseflies can change course

within 30 ms after visual displacement of a pursuit object

[2]. Studying the extreme performance of fly flight offers

insight into the general neural processes by which sensory

signals are encoded, integrated and transformed into

motor commands for complex behavior. Multiple feed-

back loops reverberate between different sensory mod-
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alities and their efferent control systems [3–5]. Therefore,

when considering the neurobiology of flight behavior, it is

impossible to disentangle the properties of sensory–motor

control circuits from the aerodynamics of flapping, the

biomechanics of the wing hinge, and the physiology of

flight muscles (Figure 1). In this review, we describe a

systems analysis of the aerodynamics, musculoskeletal

mechanics and multisensory fusion that mediates a

stereotyped flight maneuver. The quantitative behavioral

analyses of this integrative approach predict specific

structure–function relationships within the nervous sys-

tem and thus pave the way for molecular-genetic and

electrophysiological studies.

Aerodynamics and musculoskeletal
mechanics
When searching for food, fruit flies explore their land-

scape using a series of straight flight paths punctuated by

rapid yaw turns called saccades. During each saccade, the

animal changes heading by 908 over a period of �50 ms,

corresponding to peak angular velocity exceeding 1000

degrees per second (Figure 2a; [6,7]). Current research

programs combining dynamically scaled flapping robots,

fluid flow visualization and computational simulations

have provided an ever-clearer picture of the aerodynamic

mechanisms by which insects stay aloft [8–10]. With this

background, it is now more fruitful to examine the neural

control of steering maneuvers such as saccades. A recent

study used high-speed videography to capture the wing

and body motions of free-flying Drosophila, then replayed

the kinematics on a dynamically scaled robotic model to

measure directly the aerodynamic forces [11�]. The wing

kinematics during a saccade are remarkably similar to

those during straight flight, showing changes only in the

amplitude and orientation of the stroke. However, force

measurements from the robot show that such subtle

changes nevertheless produce enough yaw torque to

rotate the body through a saccade (Figure 2b). These

results indicate that during saccades, the motor system

must exert very precise control over wing motions

because small kinematic changes produce large aerody-

namic results.

The flight musculature of flies is composed of two struc-

turally, functionally and physiologically segregated

groups. One group, the large power muscles, elevates

and depresses the wings bilaterally, generating the

mechanical power necessary keep the animal aloft.

The other group, the small steering muscles, differen-

tially alters the path and orientation of each wing during

the stroke (Figure 2c; [12]). The power muscles exhibit a
Current Opinion in Neurobiology 2004, 14:1–8
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Schematic representation of the major flight control systems in Drosophila in which single cells represent the hypothetical flow of information

within networks of sensory, motor, and interneurons. Visual and olfactory signals are encoded within the brain. Whereas the cellular mechanisms

within primary sensory pathways have been extensively explored (e.g. [31��,37��]), the system of descending premotor interneurons that carries

sensory feedback to the motor centers of the thorax is poorly understood. A mere dozen or so motor neurons control the complex repertoire

of wing kinematics and aerodynamics necessary to keep the animal aloft and control flight maneuvers. To understand fully the operation of

any one neural component within the cascade requires an integrative analysis of the system as a whole.
remarkable biophysical specialization that enables them

to generate elevated power at high wingbeat frequency.

Rather than being activated directly by presynaptic

motor input, as in conventional twitch fibers, they are

activated by stretch and deactivated by shortening [13].

Furthermore, because they are arranged in two antag-

onistic groups, contraction in one group results in

stretch-activated contraction of the other after a short

delay, giving rise to a mechanical resonance that oscil-

lates the wings up and down at high frequency [14].

Owing to these biophysical specializations, a single

presynaptic action potential results in a series of con-

traction cycles, and the power muscles are therefore

described as asynchronous with respect to motor input

[14]. The power muscles are not, however, entirely

uncoupled from motor neuron input. A tonic elevation

in firing frequency results in increased wingbeat ampli-

tude and frequency but the changes occur over a time-

scale of about 1 second [15], which is far too slow to

coordinate rapid flight maneuvers. This task falls to the

steering muscles that insert directly onto the wing hinge

and are activated by neural input in the conventional

one-to-one fashion [16]. Producing very little force

themselves, these tiny muscles form an elaborate trans-

mission system that regulates the means by which

mechanical energy from the power muscles is trans-
Current Opinion in Neurobiology 2004, 14:1–8
formed into wing motion. Because Drosophila wings beat

in excess of 200 Hz, a steering muscle motor neuron can

only fire a single action potential within any given wing

stroke. Thus, the most important control parameters for

this muscle group are whether a given muscle fires within

each stroke cycle [17] and the phase at which the spike

occurs [18]. Furthermore, as a rule each steering muscle

is innervated by only one motor neuron, forming a simple

motor unit. Thus, the control scheme for the steering

muscles stands in marked contrast to that of vertebrate

skeletal muscle, in which motor unit recruitment and

firing frequency regulate activation.

How can small changes in the firing phase of a small weak

muscle produce the changes in wing motion necessary for

a saccade? The conventional view of muscles as force-

producing actuators has been recently expanded by com-

parative work showing that muscles can also act as springs,

struts and even brakes [19]. Fly steering muscles behave

like tunable springs; when tonically activated or phase

shifted within the stroke cycle, changes in muscle stiff-

ness alter the transmission properties of the wing hinge

and subsequently modulate the path of the wing (Figure

2d; [20,21]). As a result of their role in coordinating

saccades, the steering motor neurons represent a crucial

bottleneck in the flight control circuit.
www.sciencedirect.com
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Figure 2
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Control of rapid body saccades. (a) Left panel: a sample free flight trajectory, viewed from above, recorded from a fly exploring a cylindrical

arena 1 meter in diameter and 0.6 meters high. The angular velocity of the fly’s flight path is depicted in the right panel. Fruit fly flight is

characterized by segments of straight flight (zero angular velocity) punctuated by rapid changes in angular velocity of the animal’s heading,

termed body saccades for their functional similarity to gaze stabilizing movements. (b) Aerodynamic forces mapped to saccade kinematics.

The average path and resultant force vector are shown for each wing. The larger force vector on the outside wing propels the animal through the

saccade. (c) The flight muscles are organized into two groups: powerful indirect muscles elevate and depress the wings, and tiny muscles

insert directly on the wing base to steer each wing stroke. (d) Changes in recruitment and firing phase of a steering muscle alter the

mechanical properties of the wing hinge to produce subtle changes in wing kinematics.
Spatial organization of visuomotor reflexes
The thoracic flight motor circuits are driven by massive

convergence of sensory inputs, a large fraction of which

descends from the visual processing centers of the brain.

By tracking animals within a fixed visual panorama (e.g.
www.sciencedirect.com
Figures 2a,3a), reconstructions of the fly’s-eye view can

be used to estimate the spatial and temporal character-

istics of visual motion experienced by freely moving

animals [6,22]. One such analysis of free flight in Droso-
phila suggests that patterns of visual expansion trigger
Current Opinion in Neurobiology 2004, 14:1–8
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Figure 3
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n=28

Multisensory control of flight behaviors. (a) Individual free-flight trajectories, viewed from above (translucent lines), are superimposed

upon average instantaneous position histograms. The histograms are indicated in pseudocolor such that red shading indicates the position

within the arena where flies are probably in transit. An attractive odor was placed under the floor at the position indicated by a black

cross. When presented with uniform visual surroundings, animals fail to localize the odor source, indicated by the mismatch between the

black cross and the maximum transit probability. (b) During tethered flight, motor responses reflect the linear superposition of multisensory inputs.

Odor stimuli elicit tonic increases in total wingbeat amplitude (L+R WBA) and wingbeat frequency (WBF), whereas bias to the closed-loop

control of visual expansion results in rapid turning responses indicated by changes in left-minus-right wingbeat amplitude (L–R WBA). The

mathematical sum of independent responses (red) closely approximates responses to both stimuli presented concurrently (black). (c) A flight

simulator mounted on a mechanical gimbal provides a means independently to track corrective steering reflexes in response to visual and

mechanical rotation about the fly’s roll axis. The sum of independent responses (red) closely approximates responses to both stimuli presented

concurrently (black). L–R WBA responses are plotted as relative gain (scale bar 1x gain).
saccades away from approaching visual features [6]. Teth-

ered fruit flies exhibit rapid fluctuations in yaw torque

thought to be roughly analogous to free-flight saccades

[23], and a rapidly expanding square reliably triggers a
Current Opinion in Neurobiology 2004, 14:1–8
saccade in the opposite direction — consistent with free-

flight observations [24]. Varying the azimuthal position of

the stimulus reveals a sinusoidal response curve that

peaks 90 degrees from the fly’s frontal field of view, in
www.sciencedirect.com
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Figure 4
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Response to visual expansion in an electronic flight simulator. (a) Response maps generated by systematically varying the horizontal

position of a rapidly expanding square. Collision avoidance maneuvers (red, left ordinate) are controlled independently from landing responses

(blue, right ordinate). (b) Rotating a panoramic pattern of vertical stripes results in decreased left-minus-right (L–R) WBA, proportional to

yaw torque, indicative of left turn (i). An expanding or contracting flow field, produced by reversing the direction of motion in the rear field of view,

elicits a stronger turning response (ii). Rotating only the frontal field of view elicits a response comparable to full-field expansion (iii). Rotating

only the rear field elicits a turning response in the direction opposite full-field rotation. The sum of half-field responses (iii+iv) approximates

full-field responses (S), and the difference (iii–iv) approximates the saturated expansion response (D). Abbreviations: V, volts.
which an expansion centered on the right always evokes a

turn to the left, and vice versa (Figure 4a, left ordinate).

However, frontal expansion does not trigger a saccade but

instead evokes a rapid extension of both front legs in a

highly stereotyped landing reflex [25]. Unlike collision-

avoidance responses, the probability of eliciting a landing

response is maximal for a focus of expansion centered

frontally [24] (Figure 4a, right ordinate). Thus, an

expanding object can elicit both collision-avoidance sac-

cades and landing responses but independent tuning

curves suggest that the two motor reflexes are probably

mediated by parallel neural pathways. In larger flies, the

landing response is mediated by a specialized group of

descending visual interneurons that have receptive fields

tuned to frontal visual expansion [26]. There is likely to

be an analogous cell group mediating collision-avoidance

saccades but they have yet to be identified.

Between saccades, Drosophila tends to fly in a straight

line. Theoretically, an animal could maintain a stable

heading by minimizing panoramic image rotation. When
www.sciencedirect.com
experimentally exposed to a rotating visual landscape,

fruit flies, as well as many other animal taxa including

primates, attempt to stabilize their gaze by turning in the

same direction as the rotating panorama [27]. This beha-

vioral response, the classic rotational optomotor equili-

brium reflex [28], has often been used to analyze and

predict structure–function relationships within the visual

system of flies [29,30,31��,32]. However, self-motion gen-

erates complex patterns of optic flow in six translational

and rotational degrees of freedom [33] and little is known

about the structure of visuomotor reflexes in response to

compound patterns of optic flow.

To examine the visuomotor reflexes explicitly initiated

by either panoramic image rotation or expansion, a pat-

tern of vertical stripes was rotated horizontally around

animals in the flight simulator [34�]. When the whole

pattern is rotated counterclockwise, flies turn left, as

predicted by a rotational equilibrium model (Figure

4bi). An expanding pattern that generates no net rotation

should elicit only a small turning response if the rotational
Current Opinion in Neurobiology 2004, 14:1–8
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optomotor control system is linear. However, an expand-

ing stimulus moving at the same contrast frequency

results in an increased turning response — contradicting

the simple rotational equilibrium model (Figure 4bii).

Furthermore, reducing the spatial extent of the motion

stimulus by moving only the front half of the display

produces more robust turning responses than does the

full-field stimulus (Figure 4biii). Most notably, motion

restricted to the rear field of view results in a complete

inversion of the turning response (Figure 4biv), with flies

now turning in the opposite direction from that predicted

by the classic optomotor model. Average full-field rota-

tion responses are closely approximated by the mathe-

matical sum of the opposite signed half-field responses

(Figure 4bi S). Within the conditions of the flight sim-

ulator, expansion responses appear to be fully saturated

because the mathematical difference between half-field

responses is slightly larger in amplitude than the full field

expansion (Figure 4bii D). Taken together, these results

are consistent with a flight control system that maintains

expansion equilibrium to both avoid collisions and mini-

mize translatory side-slip.

Multisensory fusion
Drosophila has emerged as an important model for exam-

ining the mechanisms by which visual and olfactory

signals are encoded and represented within the brain

[35,36,37��]. However, we know much less about the

mechanisms by which the nervous system integrates or

fuses input from multiple modalities and transforms it

into motor output. Recent experiments in Drosophila
suggest that visuo-olfactory integration is crucial for odor

localization. Flies flown in an arena lined with a black and

white random checkerboard pattern have little trouble

localizing a visually camouflaged vial of apple cider vine-

gar. However, if presented with a spatially uniform pano-

rama, flies fail to find the odor source and instead saccade

back and forth near the center of the arena in a manner

identical to the no-odor control (Figure 3a; [38�]). Why

does odor localization depend on visual feedback?

The detailed motor responses to multisensory input were

recently explored by equipping a visual flight simulator

with an odor delivery system. Animals were flown under

closed-loop feedback conditions, such that attempts to

turn (i.e. left-minus-right wingbeat amplitude [L–R

WBA]) produced visual motion expected during unrest-

rained flight. Under these conditions, flies steered back

and forth in an effort to suppress lateral image expansion

(stimulus illustrated in Figure 4bii). Periodically, the

animal was challenged with rightward bias added to

the closed-loop control circuit. In response, flies rapidly

compensated by steering left, away from the focus of

expansion (Figure 3b, L–R WBA; [39]). The time course

and magnitude of visual bias responses, characterized by

rapid decreases in L–R WBA, do not change during

stimulation with saturated vinegar vapor. Instead, flies
Current Opinion in Neurobiology 2004, 14:1–8
respond to odor with tonic increases in both total WBA

and wingbeat frequency (Figure 3b). The mathematical

sum of responses to the two stimuli presented in isola-

tion — the formal test for linear superposition — suggests

that there is no synergistic effect of combining visual

and olfactory stimuli during flight (Figure 3b, red).

Multimodal superposition might be a common design

feature of the fly flight-control system. Animals tethered

within a flight simulator mounted on a mechanical gimbal

exhibit robust compensatory turns in response to either

rotation of the visual arena around a stationary fly or

rotation of the fly within a stationary arena [40]. Mechan-

ical equilibrium responses in flies are mediated by sensory

organs called halteres, which independently encode body

rotation along the roll, pitch and yaw axes [41]. Tethered

animals that are free to rotate about the yaw axis exhibit

shorter-duration saccades than do animals that are rigidly

fixed, in which case haltere feedback is functionally

disabled [42]. This result suggests that, whereas visual

cues trigger saccades, haltere feedback is probably

involved in terminating them. Although the visual system

of flies ranks among the fastest ever studied [43,44], it is

slow in contrast to haltere feedback [45], which is fast

enough to entrain the firing phase of steering muscle

motor neurons on a cycle-by-cycle basis [46]. Mechanical

equilibrium responses continue to operate at rotational

velocities exceeding 800 degrees per second, whereas

visual responses are attenuated beyond 200 degrees per

second. The frequency fractionation of the two systems

effectively expands the dynamic range over which a fruit

fly can counteract body rotation to maintain a straight

heading. At intermediate speeds, the mathematical sum

of responses to visual and mechanosensory roll is virtually

identical to that evoked by presenting the two stimuli

concurrently (Figure 3c). Thus, in the same way as in

visual- and olfactory-mediated motor responses, visual

and mechanosensory motor output is characterized by

linear superposition of sensory inputs. These results

suggest that multisensory input is either processed by

separate parallel pre-motor pathways or multimodal inter-

neurons are able to keep sensory information functionally

segregated among independent channels.

Conclusions
An integrative systems approach linking aerodynamics,

musculoskeletal mechanics and neurobiology has framed

a working hypothesis for the control and dynamics of

flight maneuvers in flies. As a fly explores its sensory

landscape seeking the source of attractive odors, visual

and mechanosensory feedback counteracts rotations of

the body to maintain a straight flight path. Periodically,

centers of image expansion generated by approaching

objects or sideways body translation are relayed from

the brain along specialized descending premotor net-

works to trigger rapid all-or-none body saccades. Once

initiated, mechanosensory feedback from the halteres
www.sciencedirect.com
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probably serves to terminate the saccade, limiting the

body rotation to 90 degrees. The aerodynamic torque to

generate a saccade is produced by very rapid and subtle

changes in wing kinematics, which are in turn coordinated

by small shifts in the firing phase of steering muscles.

Encountering an odor plume results in a forward surge,

mediated by slow bilateral increases in WBA and wing-

beat frequency, and is probably controlled by increased

neural drive to the indirect power muscles. Whereas

visual feedback is required for successful odor navigation,

olfactory cues do not alter the sensitivity of visuomotor

reflexes. Instead, visual-, olfactory- and mechanosensory-

mediated motor responses are superimposed to produce

stable, robust and flexible flight behavior. These results

present sensory fusion and sensorimotor integration in a

behavioral context. The next challenge is to discover the

cellular mechanisms by which the encoded representations

of visual, olfactory and mechanosensory signals are

decoded by the motor system. One crucial bottleneck is

the network of premotor descending neurons that filter

tonic sensory signals from higher visual and olfactory

centers, integrate mechanosensory cues and somehow

translate them all into the phase code of the motor system.

Update
The focus of a recent study by Tang et al. [47] is beyond

the scope of this review. However the authors make use of

similar methods to examine the mechanisms of visual

memory during flight. They use an electronic flight

simulator to train a tethered fly to avoid actively a nega-

tively conditioned visual object by steering left and right.

After a training period the authors reposition the object

upward and test whether or not the animal continues to

avoid the object even though it appears in a novel region

of the eye. The results suggest that flies, similar to other

animals including humans, are able to discriminate a

learned visual feature regardless of where it appears in

the visual field.
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