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Summary
The flight of insects has fascinated physicists and changes in angle of attack, especially at stroke reversal,

biologists for more than a century. Yet, until recently,
researchers were unable to rigorously quantify the
complex wing motions of flapping insects or measure the
forces and flows around their wings. However, recent
developments in high-speed videography and tools for
computational and mechanical modeling have allowed
researchers to make rapid progress in advancing our
understanding of insect flight. These mechanical and
computational fluid dynamic models, combined with
modern flow visualization techniques, have revealed that
the fluid dynamic phenomena underlying flapping flight
are different from those of non-flapping, 2-D wings on
which most previous models were based. In particular,
even at high angles of attack, a prominent leading edge
vortex remains stably attached on the insect wing and does

the mutual interaction of the two wings at dorsal stroke
reversal or wing-wake interactions following stroke
reversal. This progress has enabled the development of
simple analytical and empirical models that allow us to
calculate the instantaneous forces on flapping insect wings
more accurately than was previously possible. It also
promises to foster new and exciting multi-disciplinary
collaborations between physicists who seek to explain the
phenomenology, biologists who seek to understand its
relevance to insect physiology and evolution, and
engineers who are inspired to build micro-robotic insects
using these principles. This review covers the basic
physical principles underlying flapping flight in
insects, results of recent experiments concerning the
aerodynamics of insect flight, as well as the different

not shed into an unsteady wake, as would be expected approaches used to model these phenomena.

from non-flapping 2-D wings. Its presence greatly

enhances the forces generated by the wing, thus enabling Key words: insect flight, aerodynamics, Kramer effect, delayed stall,
insects to hover or maneuver. In addition, flight forces are quasi-steady modeling, flapping flight, kinematics, forces, flows,
further enhanced by other mechanisms acting during leading edge vortex.

Introduction

Insects owe much of their extraordinary evolutionaryAs with many problems in biology, a deep understanding of
success to flight. Compared with their flightless ancestorsnsect flight depends on subtle details that might be easily
flying insects are better equipped to evade predators, searaferlooked in otherwise thorough theoretical or experimental
food sources and colonize new habitats. Because their survivahalyses. In recent years, however, investigators have benefited
and evolution depend so crucially on flight performance, it igreatly from the availability of high-speed video for capturing
hardly surprising that the flight-related sensory, physiologicalving kinematics, new methods such as digital particle image
behavioral and biomechanical traits of insects are among thwelocimetry (DPIV) to quantify flows, and powerful computers
most compelling illustrations of adaptations found in naturefor simulation and analysis. Using these and other new
As a result, insects offer biologists a range of useful examplasethods, researchers can proceed with fewer simplifying
to elucidate both structure—function relationships andissumptions to build more rigorous models of insect flight. It
evolutionary constraints in organismal design (Brodsky, 1994s this more detailed view of kinematics, forces and flows that
Dudley, 2000). has led to significant progress in our understanding of insect

Insects have also stimulated a great deal of interest amofigght aerodynamics.
physicists and engineers because, at first glance, their flight
seems improbable using standard aerodynamic theory. The
small size, high stroke frequency and peculiar reciprocal Experimental challenges
flapping motion of insects have combined to thwart simple Because of their small size and high wing beat frequencies,
‘back-of-the-envelope’ explanations of flight aerodynamicsit is often quite difficult to quantify the wing motions of free-
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flying insects. For example, an average-sized insect such as thigh the relative velocity vector of the fluid far away from the
common fruit flyDrosophila melanogasteis approximately influence of the airfoil, i.e. relative to the ‘far-field flow’ or
2-3mm in length and flaps its wings at a rate of B@0Just  ‘free-stream flow’ (Fig1lB). The restriction to far-field flow in
the mere quantification of motion for such small and fastthis definition is necessary because the presence of the airfoil
moving wings continues to pose significant challenges tinfluences the fluid field immediately around it. In all real
current technology. Early attempts to capture free-flight wingirfoils, the process of generating lift creates an induced
kinematics such as Ellington’s comprehensive and influentidownwash in the flow all around the wing. Although the
survey (Ellington, 1984c) relied primarily on single-image magnitude of this downwashJ/) is small compared with the
high-speed cine. Although quite informative, especiallyfree-stream velocity’ (=), it can significantly alter the
because film continues to offer exceptional spatial resolutiordirection of resultant velocity and thus attenuate the
single-view techniques cannot provide an accurate time courgperformance of the wing by lowering the angle of attack
of the angle of attack of the two wings. More recent methodé~ig. 1B; Munk, 1925a; Kuethe and Chow, 1998). For this
have employed high-speed videography (Willmott andeason, it is important to qualify whether the angle of attack is
Ellington, 1997b), which offers greater light sensitivity andmeasured with respect to the gross flow in the immediate
ease of use, albeit at the cost of image resolution. A furtheticinity of the wing or far away from it. The angle of attack
consideration is that insects rely extensively on visuatelative to the direction of free-stream velocity is called
feedback, and hence care must be taken to ensure that lightiggometric angle of attack'a), whereas the altered angle of
conditions do not significantly impair an insect’'s behavior. attack relative to the locally deflected free stream is called the
Even more challenging than capturing wing motion in 3-D'aerodynamic’ or ‘effective angle of attacld’, where:
is measuring the time course of aerodynamic forces during tr

stroke. At best, flight forces have been measured on the bot . 1 ou o
. . . L ep o-o' =tarrl O— 0. Q)
of the insect rather than its wings, making it very difficult YU O

to separate the inertial forces from the aerodynamic force
generated by each wing (Cloupeau et al., 1979; BuckholBecause it is difficult to physically measure the downwash-
1981; Somps and Luttges, 1985; Zanker and Gotz, 199@elated deflection of the free stream, most insect flight studies
Wilkin and Williams, 1993). In addition, tethering can alter thereport geometric rather than aerodynamic angles of attack.
wing motion, and thus forces produced, as compared with free- From one stroke to the next, insects rapidly alter many
flight conditions. Researchers have overcome these limitatiokénematic features that determine the time course of flight
using two strategies. The first method involves constructinfprces, including stroke amplitude, angle of attack, deviation
dynamically scaled models on which it is easier to directhfrom mean stroke plane, wing tip trajectory and wing beat
measure aerodynamic forces and visualize flows (Benneftequency (Ennos, 1989b; Ruppell, 1989), as well as timing
1970; Maxworthy, 1979; Spedding and Maxworthy, 1986;and duration of wing rotation during stroke reversal (Srygley
Dickinson and Go6tz, 1993; Sunada et al., 1993; Ellington eand Thomas, 2002). Moreover, they may vary these parameters
al., 1996; Dickinson et al., 1999). A second approach is ton each wing independently to carry out a desired maneuver.
construct computational fluid dynamic simulations of flappingHence, it is misleading to lump all patterns of insect wing
insect wings (Liu et al., 1998; Liu and Kawachi, 1998; Wangmotion into a single simple pattern. Mindful of this vast
2000; Ramamurti and Sandberg, 2002; Sun and Tang, 2002)versity in wing kinematics patterns, the wing motion of
The power of both these approaches, however, dependsects may be divided into two general patterns of flapping.
critically on accurate knowledge of wing motion. Most researchers have restricted their studies to hovering
because it is more convenient mathematically to calculate the
force balance by equating lift and weight in this case. While
Conventions and terminology hovering, most insects move their wings back and forth in a
Because most literature on flapping flight has adoptedbughly horizontal plane, whereas others use a more inclined
standard terminology borrowed from fixed wing aerodynamicsplunging stroke (Ellington, 1984c; Dudley, 2000). Despite
it is necessary to first develop a nomenclature that allows us tee predominance of the back-and-forth pattern, the terms
unambiguously distinguish between these two types of flightupstroke’ and ‘downstroke’ are used conventionally to
As in fixed wing aerodynamics, ‘wing span’ refers to the lengtidescribe the ventral-to-dorsal and dorsal-to-ventral motion of
between the tips of the wings when they are stretched othe wing, respectively. It is important to note that as insects fly
laterally (Fig.1A), whereas ‘wing length’ refers to the base-to-forward, their stroke plane becomes more inclined forward.
tip length of one wing. Wing span is often given as twice wingrhe term ‘wing rotation’ will generally refer to any change
length, thereby ignoring the width of the animal’s thorax. ‘Wingin angle of attack around a chordwise axis. During the
chord’ refers to the section between the leading and trailindownstroke-to-upstroke transition, the wing ‘supinates’
edge of the wing at any given position along the span {A. rapidly, a rotation that brings the ventral surface of the wing
The ratio of span to mean chord is an important nonto face upward. The wing ‘pronates’ rapidly at the end of the
dimensional morphological parameter termed ‘aspect ratioupstroke, bringing the ventral surface to face downward
‘Angle of attack’ refers to the angle that the wing chord makeg¢Fig. 1C).
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Fig.1l. Conventions and terminology.
(A) Sketch of an insect. The wing
section is depicted by a segment drawn
perpendicular to a line joining the wing
base and wing tip. This segment,
representing the wing chord, connects
the leading edge (filled circle) to the
trailing edge. (B) Sectional view of the
insect wing. The free-stream velocity is
denoted byUw, and downwash velocity
is denoted byU' (written in bold to
signify  their vector nature). The
geometric angle of attacki) is the angle
that the wing section makes witl.
The aerodynamic angle of attaak')(is
given by the angle between the wing

Supination Upstroke Pronation

section and the free-stream velocity / DANRSTORE
deflected as a result of the downwash. . .

(C) Phases of insect wing kinematics.Tra'“ng

Wing pronation occurs dorsally as the edge

wing transitions from upstroke to

downstroke, and wing supination occurs D E

ventrally at the transition from Li near Flappng
downstroke to upstroke. (D,E) Lineas trarslation trardation

flapping translation. In a linearly
translating wing (D), both wing tip and
base translate at the same velocity,
whereas in a flapping translating wing
(E), the tip rotates around an axis fixed at
the base.

In the present review, ‘linear (or non-flapping) translationunsteady’ signifies explicit temporal evolution due to
will refer to airfoils translating linearly (Figd.D), whereas inherently time-dependent phenomena within the fluid. In
‘flapping translation’ will refer to an airfoil revolving around flapping flight, steady does not necessarily imply time
a central axis (FidgLE). Since much of the theoretical literature invariant. Forces on airfoils may change with time without
addresses the aerodynamic performance of idealized 24ieing explicity dependent on time, simply because the
sections of wings, it is important to distinguish between finitainderlying motion of the airfoils varies. If the forces at each
and infinite wings. The term ‘finite wing’ refers to an actual 3-instant are modeled by the assumption of inherently time-
D wing with two tips and thus a finite span length. From théndependent fluid dynamic mechanisms, then such a model is
perspective of fluid mechanics, the importance of the wing tipsalled ‘quasi-steady’, i.e. steady at each instant but varying
is that they create component of fluid velocity that runs alongith time due to kinematic time dependence.
the span of the wing, perpendicular to the direction of far-field
flow during linear translation. By contrast, ‘infinite wings’ are
theoretical abstractions of 2-D structures that can only create Background theory for thin airfoils
chord-wise flow. Such wings are experimentally realized by Before addressing the specific theoretical challenges posed
closely flanking the tips of the wings with rigid walls that limit by insect flight aerodynamics, it is first necessary to introduce
span-wise flow, thus constraining the fluid to move in twogeneral equations and physical principles that govern forces
dimensions. It is also important to note that, by definition, a 2and flows created by moving objects submersed in fluids.
D wing cannot perform flapping motions. Nevertheless, 2-Drhese formulations borrow extensively from methods used by
formulations based on an infinite wing assumption have oftephysicists and engineers for nearly }@@rs to predict the
proved very useful in the study of animal flight and areforces created by thin flat wings moving at very low angles of
particularly relevant in cases where wings have a high aspeattack (Prandtl and Tietjens, 1957b; Milne-Thomson, 1966).
ratio. Unless otherwise mentioned, the theory in this section

Within the context of force and flow dynamics, the termapplies to 2-D airfoils moving in incompressible fluids. Also,
‘steady’ signifies explicit time independence, whereas the worith the analysis that follows, most key physical parameters
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appear as non-dimensional entities. Non-dimensional forms &quation2 also provides the mathematical justification for the
equations are scale-invariant, thereby making it possible tose of dynamically scaled physical models. The non-
compare flows across a wide range of scales. Although ammensionalized forces and flows generated by isometrically
reasonable scheme of non-dimensionalizing parameters ssaled objects are the same provided thaRéhare identical.
valid for the purpose of this review, the scheme conventionally The Navier—Stokes equation provides the fundamental
used is the one developed by Ellington (1984b—e) for théheoretical basis for simulating forces and flows from
purpose of insect flight aerodynamics. For more detailedrbitrary or measured kinematics. It is not, however, easy to
treatments of the physical concepts, the reader is referred wse in an experimental context, because it is quite difficult to
classic fluid dynamics texts written by Lamb (1945), Landaumeasure the pressure field in the space around a wing. An
and Lifshitz (1959), Milne-Thomson (1966) and Batcheloralternative and sometimes more convenient form of the
(1973) and books focusing on thin airfoil theory, such adNavier—Stokes equation may be derived by taking the curl of
Glauert (1947) and Prandtl and Tietjens (1957b). both sides in equatio?. This eliminates the pressure term

The fluid motion around an insect wing, like any otherbecause the curl of a gradient vanishes, and the equation
submersed object, is adequately described by theimplifies to:

incompressible Navier—Stokes equation, a non-dimension: P 1
®w -

form of which can be written as: 2 =0x(Ox@) + — 26, (4)
ot Re
o0 - ~n 1. ~
a—l; +(@-0)0=-0P+ Re 02, 2 The quantity®=VxQ, defined as the ‘vorticity’ of the fluid, is
e

very useful in the conceptualization and characterization of the

P . . : . flows around airfoils. For the case of steady inviscid flows,
whered,t, Pare, respectively, the velocity of the flapping wing ®»=0 and the flows are said to be ‘irrotational’. When flows are

relative to its fluid medium, time and pressure. All these . L .
o . . . o irrotational over all space, it is often convenient to express the
guantities are non-dimensionalized (denoted by ) with respec I . :
. S Y T “velocity field as a gradient of a scalar potential function
to their corresponding ‘characteristic’ measures. The choice J e ; ) . ,
o . . i.e. 0=V®). This approach, called the ‘potential theory’, has
a characteristic measure is somewhat arbitrary and often bas . o .
roven very useful in the elucidation of many basic

on the physicists intuition of which constants of the SyStengerodynamic theorems. Essentially, the technique involves

are physically meaningful. For example, when modeling theonstructing specific forms ob that best describe a given

flow around a section of a high aspect ratio wing, the ChorEuid dynamic phenomenon under its appropriate initial and

length is often used as the characteristic length measure. The " .y . N
operator: oundary conditions. Vorticity arises from a combination of

mutually orthogonal spatial derivatives of velocity at a given
0= ii + ij +ik 3) point in space. Thus, its value at any given point does not offer
ox oy o0z ' a complete picture of the related aerodynamic forces. To
i ) , . calculate aerodynamic forces, small vorticity elements must be
is a non-dimensional form of the vector ‘del’ operator, 8nd iyieqrated over a surface area around an airfoil. Using the

j and k are unit Cartesian vectors. The left-hand side olgiues theorem, which relates the area integral of normal
equatior2 represents the Lagrangian (or material) derivativeomponent of vorticity to a line integral of velocity around a
of the velocity, incorporating both the implicit and explicit -j5sed contous bounding a surfacs

dependence on time. In the Eulerian representation, the

Lagrangian derivative is simply the temporal derivative of the A && o
motion of a fluid particle as measured by an observer movin % G-dl= J] ®-hdS
with the fluid. The denominator of the last term in equakion z

is the Reynolds numbeR§, a non-dimensional parameter that The quantity on the left-hand side of this equation is defined
describes the ratio of inertia of a moving fluid mass to thas ‘circulation’ (often denoted bly). For potential flows, its
viscous dissipation of its motion. Reynolds number can bgalue around any closed contour not enclosing a wing section
calculated by the relatidRe=(pU=L)/n, wherep is the density is zero because vorticity is zero everywhere in accordance with
of the fluid mediumU- is the velocity of the fluid relative to the assumption of irrotational flow. However, if the closed
the moving objectl. is a characteristic length measure and contour encloses a wing section, then the presence of even the
is the dynamic viscosity of the fluid medium. This parameteslightest viscosity, and therefore a finite amount of shear at the
roughly characterizes the fluid dynamic regime in which amwing-fluid interface, will give rise to finite vorticity and thus
insect operates from laminar (for low values@f to turbulent  non-zero circulation.

(for high values oRe. When viscosity is largeReis small Under completely inviscid conditions, one would expect the
and the last term in equati@n becomes relatively more fluid to deflect only minimally by the presence of an airfoil,
important than the pressure term. When viscosity is negligiblehereby generating a flow field around the wing similar to the
the values oReare large and the last term can be droppedne described in Fi@A. Under such conditions, the rear
from the equation to obtain the inviscid form (i.e. zerostagnation point (where velocity is zero) would be present not
viscosity) of equatio2, usually called the ‘Euler equation’. at the tip of the trailing edge but on the upper surface of the

()
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A 5 < L'= % a-df. (6)
% + - % 3
= Z R Note that lift can also be related to vorticity using equaion
In equatiors, L' is the lift per unit span non-dimensionalized
Fig. 2. Kutta condition and circulation. The Kutta condition arisesyyith respect to the product of density of the flup, (mean
from a sum of the flow around an airfoil placed in an invisgid ﬂu,idchord length, and the square of free-stream velocity of the fluid
(A) to additional circulation arising from the presence of wscosny(uw). This quantity (conventionally multiplied by two) is called

(B) to yield a smooth, tangential flow from the trailing edge (C). - L . o
When satisfied, the Kutta condition ensures that the vorticit)}h.e lift coefficient’ and is usually denoted in literature @y.

generated at the trailing edge is zero. For the inviscid case, the r%gnllarly, the non-dimensional drag is called the ‘drag

force on the airfoil (blue arrow) acts perpendicular to the free streanﬂ?oefﬁCie.m, and is usually denoted I§p. For inviscid fluids
undergoing steady (non-accelerated) flows,

wing. However, to maintain this flow profile, the fluid must dl = -

turn sharply around the trailing edge causing a singularity o dt G-di=0, )
. . L ; 5

‘kink’ in the flow at the trailing edge. Such a flow profile

necessitates a high gradient in velocity at the trailing edgé®'

thereby causing high viscous forces due to shear. The viscol .

forces in turn will eventually eradicate this singularity. Thus, ZU -dl =constant. (8)

the presence of even the slightest viscosity in the fluic
functions to smooth out sharp gradients in flow. This When an airfoil starts from rest, the net circulation in the
phenomenon may be incorporated into an otherwise invisciffuid before the start of the motion is zero. Thus, equain
formulation by adding a circulatory component to the flow fieldsimply a mathematical expression for Kelvin's law, which
(Fig.2B). At a unique value of the additional circulation, thestates that the total circulation (and the total vorticity) in an
stagnation point is stationed exactly at the trailing edge. Wheideal fluid must remain zero at all times. In other words, if new
this condition is met, the fluid stream over the plate meets theorticity (or circulation) is introduced in an inviscid fluid (e.g.
fluid stream under the plate smoothly and tangentially at thghrough an application of the Kutta condition), then it must be
trailing edge (Fig2C). This phenomenon is called the ‘Kutta accompanied by equal and opposite vorticity.
condition’, which ensures that the slopes of the fluid streams Physically, because the presence of viscosity disallows
above and below the wing surface are equal, and thus thfinite shear, the fluid immediately abounding the airfoil is
vorticity (i.e. curl of the velocity) at the trailing edge is zero.stationary with respect to the airfoil. This condition, called the
In addition, when satisfied, the Kutta condition ensures that theo-slip condition’, is an important boundary condition in most
inclined plate imparts a downward momentum to the fluidanalytical treatments of airfoils. Due to the no-slip condition,
This, in essence, is the classic Kutta—Jukowski theory of thia continuous layer forms over the airfoil across which the
airfoils (Kuethe and Chow, 1998). For ideal fluids, the net forceelocity of the fluid goes from zero (for the stationary layer
acts perpendicular to the direction of motion with noadjoining the body) to its maximum value (corresponding to
component in the plane of motion. Thus, this theory predictthe free-stream flow). Such regions are called ‘boundary
zero resistance in the direction of motion (or ‘drag’) for airfoilslayers’ and their thickness depends on the Reynolds number of
moving through fluids at small angles of attack (callecthe flow (Schlichting, 1979). Another boundary condition
D’Alembert’s paradox). However, in the presence of even tharises from the requirement that the normal velocity of the fluid
smallest amount of shear, the net force vector is tiltedn the surface of the airfoil must be zero. This condition is
backward, i.e. normal to the wing. Even at reasonablyR&h sometimes called the ‘no penetration’ condition. These
the net aerodynamic force on the wing surface is usuallgoundary conditions apply at the interface of solids and fluids.
perpendicular to the surface of the inclined wing rather than tm free fluids, however, conditions may often arise where the
the direction of motion. The non-zero component of this forceangential, but not the normal, component of velocity is
normal to fluid motion is defined as ‘lift’, and the componentdiscontinuous across two adjacent layers. Such interfaces have
parallel to the fluid motion is defined as ‘profile drag’. Thehigh vorticity and are called ‘vortex sheets’, or ‘vortex lines’
component of drag due to viscous shear along the surface fgr the two-dimensional case.
an airfoil is called ‘viscous drag’. When a volume elemendV of the fluid has non-zero
Far from the airfoil, the behavior of the fluid is similar to vorticity w, it induces a velocitw at a distancea in the
that expected by potential flow theory. For this reasonpeighboring region. The expression to calculate this velocity is
although the fluid is not actually irrotational, potential theorygiven by (in dimensional form):
can be used to conveniently describe such situations as long =<
the Kutta condition is satisfied. For steady inviscid flows, the 1 r
Kutta—Jukowski theorem relates circulation, and therefore V= an 0x— av, 9)
vorticity, around an airfoil to forces by the equation: Ty T
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wherer is the displacement vector or distance vector. This ién the previous section to insect flight are manifold and only
called the Biot-Savart’s law (Milne-Thomson, 1966), which, likebriefly described here. Determined primarily by their variation
its electromagnetic analog, is an inverse square relationshi. size, flying insects operate over a broad range of Reynolds
This integral must be evaluated over the entire volume of theumbers from approximately 10 to 1(Dudley, 2000). For
fluid (V). Equation 9 is very useful in most vorticity-basedcomparison, the Reynolds number of a swimming sperm is
analyses of fluid dynamics, as well as in modeling the effects afpproximately 1€, a swimming human being is é@nd a
vortex dipoles on their surrounding medium. commercial jumbo jet at 0.8 Mach is”2@t the high Reynolds
The solenoidal (i.e. zero divergence) nature of vorticitynumbers characteristic of the largest insects, the importance of
fields enables vorticity-based methods to define very useftihe viscous term in equati@may be negligible and, as with
kinematic quantities called ‘moments of vorticity’. Theseaircraft, flows and forces may be governed by its inviscid form
guantities are useful because their values are independent(tife Euler equation). Such simplifications may not always be
the conditions in the interior of a boundary surrounding thgossible for most species, whose small size translates into low
region of interest since no new vorticity can be generateBeynolds numbers. This is not to say that viscous forces
within a fluid subject to conservative external forces. Insteadjominate in small insects. To the contrary, even at a Reynolds
vorticity is generated at the solid—fluid boundary and diffusesumber of 10, inertial forces are roughly an order of magnitude
into the fluid medium (Truesdell, 1954). Of particular utility greater than viscous forces. However, viscous effects become
is the first moment of vorticity because it can be related tonore important in structuring flow and thus cannot be ignored.
aerodynamic forces. This quantity is given by: Due to these viscous effects, the principles underlying
aerodynamic force production may differ in smedl large
y= & r xwdR (10) insects. For tiny insects, small perturbations in the fluid may
Ir ' be more rapidly dissipated due to viscous resistance to fluid
) i . ) . motion. However, for larger insects operating at higher
wherer is thg dlstgnce from origin of_an arb|trar.y.co—ordlnateReyn0|dS numbers, small perturbations in the flow field
system moving with the free streamjs the vorticity andR  5ccymulate with time and may ultimately result in stronger
is the area of region of interest encompassing all vorticitynsteadiness of the surrounding flows. Even with the accurate
elements. For the two-dimensional incompressible viscougy,yiedge of the smallest perturbations, such situations are
case, the sectional aerodynamic fofceay be derived from jhqssiple to predict analytically because there may be several
the first moment of vorticityy by the equation: possible solutions to the flow equations. In such cases, strict

d d static and dynamic initial and boundary conditions must be
F:—pl+p—&|]}dA, (11) identified to reduce the number of solutions to a few
dt dt Is meaningful possibilities.

wherep is fluid density,A is the cross-sectional area of the
airfoil andv is the velocity of a point within the airfoil (Wu,

1981). The first term on the right-hand side of this equation Analyncal models of.msect flight ) )
represents the temporal derivative of the first moment of The experimental and theoretical challenges mentioned in

vorticity, which is equal to the force arising from the vorticity the previous sections constrained early models of insect flight

created by the movement of the airfoil. The second term in tHQ @nalysis of far-field wakes rather than the fluid phenomena
equation represents the inertial force of the fluid displaced bj the immediate vicinity of the wing. Although such far-field
the wing section. For an infinitesimally thin wing, the sectionafMdels could not be used to calculate the instantaneous forces
area is negligible and force depends solely on the moment 8 @irfoils, they offered some hope of characterizing average

vorticity. For the simple case of any bound circulation, a stabl@rces as We"‘ as power req’uirements. Most notable among
distribution of vorticity moves with the wing, and a constantthese are the ‘vortex models’ (Ellington, 1978, 1980, 1984e;

growth of the moment of vorticity results solely from the Rayner, 1979a,b), both of which are derived by approximating

wing'’s motion. In agreement with the Kutta—Jukowski flapping wings to blades of a propeller or, more accurately, to
theorem, the sectional lift is equal to the product of thadealized actuator disks that generate uniform pressure pulses

circulation created by a wing and its translational velocity (wul© impart downward momentum to the surrounding fluid. By
js method, the mean lift required to hover may be estimated

1981). Equation 11 is more general, however, and can accouft ) >t
for forces generated when both the strength and distribution 8 €auating the rate of change of momentum flux within the
vorticity around the wing are changing, as might occur at thdownward jet with the weight of the insect and thus calculating

start of motion, during rapid changes in kinematics or whefne circulation required in the wake to maintain this force

the wing encounters vorticity created by its own wake or thapalance. A detailed description of these theories appears in
of another wing. Rayner (1979a,b) and Ellington (1984e) and is beyond the

scope of this review, which will focus instead on near-field
models.
Theoretical challenges Despite the caveats presented in the last section, a few
The challenges in adopting the traditional methods describedsearchers have been able to construct analytical near-field
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models for the aerodynamics of insect flight with some degremodel insects (Ellington et al., 1996), this study added finer
of success. Notable among these are the models of Lighthdetail to the flow structure and predicted the time course of the
(1973) for the Weis-Fogh mechanism of lift generation (als@aerodynamic forces resulting from these flow patterns. More
called clap-and-fling), first proposed to explain the high liftrecently, computational approaches have been used to model
generated in the small chalcid wdapcarsia formosgand that  Drosophila flight for which force records exist based on a
of Savage et al. (1979) based on an idealized form of Norbergdynamically scaled model (Dickinson et al., 1999). Although
kinematic measurements on the dragomflgschna juncea roughly matching experimental results, these methods have
(Norberg, 1975). Although both these models wereadded a wealth of qualitative detail to the empirical
fundamentally two dimensional and inviscid (albeit with somemeasurements (Ramamurti and Sandberg, 2002) and even
adjustments to include viscous effects), they were able tprovided alternative explanations for experimental results (Sun
capture some crucial aspects of the underlying aerodynamiénd Tang, 2002; see also section on wing—wake interactions).
mechanisms. Specifically, Lighthil’'s model of the fling Despite the importance of 3-D effects, comparisons of
(Lighthill, 1973) was qualitatively verified by the empirical experiments and simulations in 2-D have also provided
data of Maxworthy (1979) and Spedding and Maxworthyimportant insight. For example, the simulations of Hamdani
(1986). Similarly, the model of Savage et al. (1979) was abland Sun (2001) matched complex features of prior
to make specific predictions about force enhancement durirexperimental results with 2-D airfoils at low Reynolds humber
specific phases of kinematics (e.g. force peaks observed as {éckinson and Gotz, 1993). Two-dimensional CFD models
wings rotate prior to supination) that were later confirmed byave also been useful in addressing feasibility issues. For
experiments (Dickinson et al.,, 1999; Sane and Dickinsorgxample, Wang (2000) demonstrated that the force dynamics
2002). In studies on dragonflies and damselflies, the ‘localf 2-D wings, although not stabilized by 3-D effects, might still
circulation method’ was also used with some degree of succels sufficient to explain the enhanced lift coefficients measured
(Azuma et al., 1985; Azuma and Watanabe, 1988; Sato arid insects.
Azuma, 1997). This method takes into account the spatial
(along the span) and temporal changes in induced velocity and
estimates corrections in the circulation due to the wake. The Quasi-steady modeling of insect flight
more recent analytical models (e.g. Zbikowski, 2002; Minotti, In the hope of finding approximate analytical solutions to
2002) have been able to incorporate the basic phenomenolothe insect flight problem, scientists have developed simplified
of the fluid dynamics underlying flapping flight in a more models based on the quasi-steady approximations. According
rigorous fashion, as well as take advantage of a fuller databasethe quasi-steady assumption, the instantaneous aerodynamic
of forces and kinematics (Sane and Dickinson, 2001). forces on a flapping wing are equal to the forces during steady
motion of the wing at an identical instantaneous velocity and
angle of attack (Ellington, 1984a). It is therefore possible to
Computational fluid dynamics (CFD) divide any dynamic kinematic pattern into a series of static
With recent advances in computational methods, manpositions, measure or calculate the force for each and thus
researchers have begun exploring numerical methods teconstruct the time history of force generation. By this
resolve the insect flight problem, with varying degrees ofmethod, any time dependence of the aerodynamic forces arises
success (Smith et al., 1996; Liu et al., 1998; Liu and Kawachfrom time dependence of the kinematics but not that of the fluid
1998; Wang, 2000; Ramamurti and Sandberg, 2002; Sun afidw itself. If such models are accurate, then it would be
Tang, 2002). Although ultimately these techniques are morgossible to use a relatively simple set of equations to calculate
rigorous than simplified analytical solutions, they require largeerodynamic forces on insect wings based solely on knowledge
computational resources and are not as easily applied to largetheir kinematics.
comparative data sets. Furthermore, CFD simulations rely Although quasi-steady models had been used with limited
critically on empirical data both for validation and relevantsuccess in the past (Osborne, 1950; Jensen, 1956), they
kinematic input. Nevertheless, several collaborations havgenerally appeared insufficient to account for the necessary
recently emerged that have led to some exciting CFD modetsean lift in cases where the average flight force data are
of insect flight. available. In a comprehensive review of the insect flight
One such approach involved modeling the flight of thditerature, Ellington (1984a) used the logic of ‘proof-by-
hawkmoth Manduca sextausing the unsteady aerodynamic contradiction’ to argue that if even the maximum predicted lift
panel method (Smith et al., 1996), which employs the potentidtom the quasi-steady model was less than the mean lift
flow method to compute the velocities and pressure on eachquired to hover, then the model had to be insufficient.
panel of a discretized wing under the appropriate boundar@onversely, if the maximum force calculated from the model
conditions. Also usingManducaas a model, Liu and co- was greater than or equal to the mean forces required for
workers were the first to attempt a full Navier—Stokeshovering, then the quasi-steady model cannot be discounted.
simulation using a ‘finite volume method’ (Liu et al., 1998; Liu Based on a wide survey of data available at the time, he
and Kawachi, 1998). In addition to confirming the smokeconvincingly argued that in most cases the existing quasi-
streak patterns observed on both real and dynamically scalsteady theory fell short of calculating even the required average
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lift for hovering, and a substantial revision of the quasi-stead 1.0
theory was therefore necessary (Ellington, 1984a). He furthe

proposed that the quasi-steady theory must be revised

include wing rotation in addition to flapping translation, as well 08
as the many unsteady mechanisms that might operate. Sir

[}
the Ellington review, several researchers have provided mo g §
data to support the insufficiency of the quasi-steady mod¢ & .§ 06}
(Ennos, 1989a; Zanker and Gotz, 1990; Dudley, 1991). The: é g
developments have spurred the search for specific unstea £ >
mechanisms to explain the aerodynamic forces on inse "g Bﬁ 04k
wings. % o
Ze
02F

Physical modeling of insect flight

Given the difficulties in directly studying insects or making
theoretical calculations of their flight aerodynamics, many oLk
researchers have used mechanical models to study insect flig L 1 1 1 L 1 1
When constructing these models, the Reynolds number ai 0 1 2 3 4 5 6
reduced frequency parameter (body velocity/wing velocity) o. Chord lengths
the mechanical model is matched to that of an actual insect. Ttrig. 3. wagner effect. The ratio of instantaneous to steady circulation
condition, called ‘dynamic scaling’, ensures that the underlyin(y-axis) grows as the trailing edge vortex moves away from the
fluid dynamic phenomena are conserved. Because it is relativeairfoil (inset), and its influence on the circulation around the airfoil
easier to measure and visualize flow around the scaled moddiminishes with distancex{axis). Distance is non-dimensionalized
than on insect wings, such models have proved extremely useWith respect to chord lengths traveled. The graph is based @b fig.
in identification and analysis of several unsteady mechanisnin Walker (1931). The inset figures are schematic diagrams of the
such as the clap-and-fling (Bennett, 1977; Maxworthy, 197€Wa_lgner effect. Dotted Ilnes_show the vort|C|ty'shedd|ng from the
Spedding and Maxworthy, 1986), delayed stall (Dickinson an‘tram'ng gdge, evgntually rolling up into a starting vortex. As this
Gétz. 1993 Ellingt t al. 1996 - . vortlc!ty is sh_ed into the wake,_ bound_cwcu_latlon builds up around

' ' gton €t al., ), rotational lift (Bennett, h h by the increasing thickness of the line drawn

1970; Ellington, 1984d; Dickinson et al., 1999; Sane an(t € wing section, shown by g
D ! v ) 1o 1o around the wing section.

Dickinson, 2002) and wing—wake interactions (Dickinson,
1994; Dickinson et al., 1999). These various mechanisms a

discussed in the following section. forces below levels predicted by quasi-steady models.

However, more recent studies with 2-D wings (Dickinson and

) o ) Gotz, 1993) indicate that the Wagner effect might not be

Unsteady mechanisms in insect flight particularly strong at the Reynolds numbers typical of most

Wagner effect insects. For infinite wings translating at small angles of attack

When an inclined wing starts impulsively from rest, the(less than 10°), lift grows very little, if at all, after two chord
circulation around it does not immediately attain its steadylengths of travel. Similar experiments for flapping translation
state value (Walker, 1931). Instead, the circulation rises slowliyn 3-D also show little evidence for the Wagner effect
to the steady-state estimate (RY. This delay in reaching the (Dickinson et al., 1999). However, because this effect relates
steady-state values may result from a combination of twdirectly to the growth of vorticity at the onset of motion, both
phenomena. First, there is inherent latency in the viscous actidls measurement and theoretical treatment are complicated due
on the stagnation point and thus a finite time before th&o interaction with added mass effects described in a later
establishment of Kutta condition. Second, during this processgection. Nevertheless, most recent models of flapping insect
vorticity is generated and shed at the trailing edge, and the shethgs have neglected the Wagner effect (but see Walker and
vorticity eventually rolls up in the form of a starting vortex. Westneat, 2000; Walker, 2002) and focused instead on other
The velocity field induced in the vicinity of the wing by the unsteady effects.
vorticity shed at the trailing edge additionally counteracts the
growth of circulation bound to the wing. After the starting Clap-and-fling
vortex has moved sufficiently far from the trailing edge, the The clap-and-fling mechanism was first proposed by Weis-
wing attains its maximum steady circulation (Ry. This  Fogh (1973) to explain the high lift generation in the chalcid
sluggishness in the development of circulation was firstvaspEncarsia formosand is sometimes also referred to as
proposed by Wagner (1925) and studied experimentally bthe Weis-Fogh mechanism. A detailed theoretical analysis of
Walker (1931) and is often referred to as the Wagner effecthe clap-and-fling can be found in Lighthill (1973) and Sunada
Unlike the other unsteady mechanisms described below, thet al. (1993), and experimental treatments in Bennett (1977),
Wagner effect is a phenomenon that would act to attenuaMaxworthy (1979) and Spedding and Maxworthy (1986).
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Clap Fling

A D
Fig. 4. Section schematic of wings approacl Y
each other to clap (A-C) and flinging a| \\ //
(D—F). Black lines show flow lines, and d
blue arrows show induced velocity. Light b /—\\ //—\

arrows show net forces acting on the air
(A—C) Clap. As the wings approach each c
dorsally (A), their leading edges touch initic B

E
(B) and the wing rotates around the leal O O \Q¥b
edge. As the trailing edges approach each « ~a ~

vorticity shed from the trailing edge rolls ug A ' \ /

the form of stopping vortices (C), whi O O /—\\ /\
dissipate into the wake. The leading €

vortices also lose strength. The closing

between the two wings pushes fluid out, gi
an additional thrust. (D—F) Fling. The wir C

E
fling apart by rotating around the trailing e O O
(D). The leading edge translates away and
rushes in to fill the gap between the two v
sections, giving an initial boost in circulat

around the wing system (E). (F) A leading €

vortex forms anew but the trailing edge staru..y

vortices are mutually annihilated as they are of opposite circulation. As originally described by Weis-Fogh (1973), thisoanmiay allow
circulation to build more rapidly by suppressing the Wagner effect.

Other variations of this basic mechanism, such as the clap-angenerate lift, the net circulation around the two-wing system is
peel or the near-clap-and-fling, also appear in the literatuill zero and thus Kelvin's law requiring conservation of
(Ellington, 1984c). The clap-and-fling is really a combinationcirculation is satisfied (FiglF; Spedding and Maxworthy,
of two separate aerodynamic mechanisms, which should H®86). As pointed out by Lighthill (1973), this phenomenon is
treated independently. In some insects, the wings toudherefore also applicable to a fling occurring in a completely
dorsally before they pronate to start the downstroke. This phageviscid fluid. Collectively, the clap-and-fling could result in a
of wing motion is called ‘clap’. A detailed analysis of thesemodest, but significant, lift enhancement. However, in spite of
motions inEncarsia formosaeveals that, during the clap, the its potential advantage, many insects never perform the clap
leading edges of the wings touch each other before the trailifilarden, 1987). Others, such Bsosophila melanogastedo
edges, thus progressively closing the gap between theatap under tethered conditions but only rarely do so in free flight.
(Fig. 4A,B). As the wings press together closely, the opposin@ecause clap-and-fling is not ubiquitous among flying insects, it
circulations of each of the airfoils annul each other ). is unlikely to provide a general explanation for the high lift
This ensures that the trailing edge vorticity shed by each wingpefficients found in flying insects. Furthermore, when
on the following stroke is considerably attenuated or absentbserved, the importance of the clap must always be weighed
Because the shed trailing edge vorticity delays the growth @fgainst a simpler alternative (but not mutually exclusive)
circulationvia the Wagner effect, Weis-Fogh (1973; see alsdhypothesis that the animal is simply attempting to maximize
Lighthill, 1973) argued that its absence or attenuation wouldtroke amplitude, which can significantly enhance force
allow the wings to build up circulation more rapidly and thusgeneration. Several studies of peak performance suggest that
extend the benefit of lift over time in the subsequent stroke. Ipeak lift production in both birds (Chai and Dudley, 1995) and
addition to the above effects, a jet of fluid excluded from thénsects (Lehmann and Dickinson, 1997) is constrained by the
clapping wings can provide additional thrust to the insectoughly 180° anatomical limit of stroke amplitude. Animals
(Fig. 4C; Ellington, 1984d; Ellington et al., 1996). appear to increase lift by gradually expanding stroke angle until
At the end of clap, the wings continue to pronate by leavinghe wings either touch or reach some other morphological limit
the trailing edge stationary as the leading edges ‘fling’ apawtith the body. Thus, an insect exhibiting a clap may be
(Fig.4D-F). This process generates a low-pressure regicattempting to maximize stroke amplitude. Furthermore, if it is
between them, and the surrounding fluid rushes in to occupy thizdeed true that the Wagner effect only negligibly influences
region, providing an initial impetus to the build-up of circulationaerodynamic forces on insect wings, the classically described
or attached vorticity (FigdD,E). The two wings then translate benefits of clap-and-fling may be less pronounced than
away from each other with bound circulations of opposite signgreviously thought. Resolution of these issues awaits a more
Although the attached circulation around each wing allows it taletailed study of flows and forces during clap-and-fling.
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component adds to the potential force component (which acts
normal to the wing plane), causing the resultant force to be
perpendicular to the ambient flow velocity, i.e. in the direction
of lift (Fig. 5A). At low angles of attack, this small forward
rotation due to leading edge suction means that conventional
airfoils better approximate the zero drag prediction of
potential theory (Kuethe and Chow, 1998). However, for
airfoils with sharper leading edge, flow separates at the
leading edge, leading to the formation of a leading edge
vortex. In this case, an analogous suction force develops not
parallel but normal to the plane of the wing, thus adding to
the potential force and consequently enhancing the lift
component. Note that in this case, the resultant force is
perpendicular to the plane of the wing and not to ambient
velocity. Thus, drag is also increased (5B).

For 2-D motion, if the wing continues to translate at high
angles of attack, the leading edge vortex grows in size until
flow reattachment is no longer possible. The Kutta condition
breaks down as vorticity forms at the trailing edge creating a

Drag trailing edge vortex as the leading edge vortex sheds into the
wake. At this point, the wing is not as effective at imparting
a steady downward momentum to the fluid. As a result, there
is a drop in lift, and the wing is said to have stalled. For several
chord lengths prior to the stall, however, the presence of
the attached leading edge vortex produces very high lift
coefficients, a phenomenon termed ‘delayed stall’ (649.
Fig. 5. Polhamus’ leading edge suction analogy. (A) Flow around dhe first evidence for delayed stall in insect flight was by
blunt wing. The sharp diversion of flow around the leading edggrovided by Maxworthy (1979), who visualized the leading
results in a leading-edge suction force (dark blue arrow), causing tdge vortex on the model of a flinging wing. However,
resultant force vector (light blue arrow) to tilt towards the leadingdelayed stall was first identified experimentally on model
edge and perpendicular to free stream. (B) Flow around a thin airfoibjrcraft wings as an augmentation in lift at the onset of motion
The presence of a leading edge vortex causes a diversion of flayf 5415 of attack above steady-state stall (Walker, 1931). At
analogous to the flow around the blunt leading edge in A butin g e Revnolds numbers appropriate for most insects, the
direction normal to the surface of the ‘_':urfon. ThIS results in anbreakdown of the Kutta condition is manifest by the growth
enhancement of the force normal to the wing section. o . 2
of a trailing edge vortex, which then grows until it too can no
longer stay attached to the wing (Dickinson and Go6tz, 1993).
As the trailing edge vortex detaches and is shed into the wake,
Delayed stall and the leading edge vortex a new leading vortex forms. This dynamic process repeats,

As the wing increases its angle of attack, the fluid streamaventually creating a wake of regularly spaced counter-
going over the wing separates as it crosses the leading edge batating vortices known as the ‘von Karman vortex street’
reattaches before it reaches the trailing edge. In such casegFa&. 6A). The forces generated by the moving plate oscillate
leading edge vortex occupies the separation zone above timeaccordance to the alternating pattern of vortex shedding.
wing. Because the flow reattaches, the fluid continues to flolthough both lift and drag are greatest during phases when
smoothly from the trailing edge and the Kutta condition isa leading edge vortex is present, forces are never as high as
maintained. In this case, because the wing translates at a hidlring the initial cycle.
angle of attack, a greater downward momentum is imparted to The leading edge vortex may be especially important
the fluid, resulting in substantial enhancement of lift.because insects flap their wings at high angles of attack. An
Experimental evidence and computational studies over the pastperimental analysis of delayed stall in 2-D showed that flow
10years have identified the leading edge vortex as the singteparates to form a leading edge vortex at angles of attack
most important feature of the flows created by insect wings arebove 9°, a threshold well below those used by insects
thus the forces they create. (Dickinson and Go6tz, 1993). This study also directly measured

Polhamus (1971) described a simple way to account for thiéme-variant force coefficients and showed that the values
enhancement of lift by a leading edge vortex that allows focreated by the presence of the leading edge vortex were at
an easy quantitative analysis. For blunt airfoils, air movegeast sufficient to account for the ‘missing force’ in quasi-
sharply around the leading edge, thus causing a leading edgteady models. However, direct evidence that insect wings
suction force parallel to the wing chord. This extra forceactually create leading edge vortices came from Ellington et

A Fresut Fnormal

I:Sucti on

B Lift Fresut = Fsuction + FNormal
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Fig. 6. A comparison of 2-D linear translaties 3-D flapping translation. (A) 2-D linear translation. As an airfoil begins motion from rest, it
generates a leading and trailing edge vortex. During translation, the trailing edge vortex is shed, leading to the gelehdofgredge
vortex, which also sheds as the airfoil continues to translate. This motion leads to an alternate vortex shedding palteriedcbng and
trailing edges, called the von Karman vortex street. This leads to a time dependence of the net aerodynamic forces Jhiueaatn@asson

the airfoil. (B) 3-D flapping translation. As in A, when an airfoil undergoing flapping translation starts from rest, it gemdégatéing and
trailing edge vortex. However, as the motion progresses, the leading edge vortex attains a constant size and does rottgeswBatause

no new vorticity is generated at the leading edge, there is no additional vorticity generated at the trailing edge aildoteyaithe Kutta
condition. When established, the Kutta condition ensures that there is a net change in the direction of momentum res@éogven a
aerodynamic force on the airfoil (black arrows;; signifies initial momentum, msignifies final momentum aniimv signifies the difference
between initial and final momenta). After establishment of the Kutta condition, the measured net aerodynamic forces (Dla@prstatde
over a substantial period during translation and do not show time dependence. For Reynolds nubérgho force acts normally to the
wing and can be decomposed into mutually orthogonal lift and drag components (green arrows). Ultimately, however, the aet downw
momentum imparted by the airfoil to the fluid causes a downwash that slightly lowers the constant value of the net aeroymamia f
steadily revolving wing.

Lift

Netforce

my;

mv;  Amv

al. (1996), who used smoke to visualize the flow around bottletaches from the wing surface. This spanwise flow is
real and 3-D modellanduca sextat a Reynolds number in entrained by the leading edge vortex, causing it to spiral
the range of 19 In contrast to 2-D models, the leading edgetowards the tip of the wing (Fig). A similar flow was
vortex was not shed even after many chords of travel and thedserved by Maxworthy (1979) during early analysis of the
never created a pattern analogous to a von Karman stre8tD fling. Because this flow redirects momentum transfer in
Thus, the wing never stalls under these conditions @BY. the spanwise direction, it should correspondingly reduce the
These observations have been confirmed at lower Reynoldsomentum of the flow from the chordwise direction, causing
numbers in experiments on model fruit fly wings, whichthe leading edge vortex to remain smaller. A smaller leading
showed that forces, like flows, are remarkably stable duringdge vortex allows the fluid to reattach more easily and the
constant flapping (Dickinson et al., 1999). What causes thiwing can sustain this reattachment for a longer time. Thus,
prolonged attachment of the leading edge vortex on a flappiraxial flow appears to serve a useful role by maintaining stable
wing compared to the 2-D case? In their model hawkmothattachment of the leading edge vortex. As pointed out by
Ellington and co-workers observed a steady span-wise flo®llington, a similar leading edge vortex is stabilized by an
from the wing hinge to approximately three-quarters of theaxial flow generated due to the back-sweep of wings in delta
distance to the wing tip, at which point the leading edge vorteaircraft such as the Concorde, creating one of the more
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range of2100. For the existence of such stability, the creation
of vorticity at the leading edge is matched perfectly by the
convection and diffusion of vorticity into the wake, thus
creating a stable equilibrium. This situation may be analogous
to the continuous attachment of vortices behind bluff bodies at
Reynolds numbers below the threshold for von Karman
shedding (see, for example, Acheson, 1990). What maintains
the balance in creation and transport of vorticity and how does

) . o i .
Fig. 7. Stable attachment of the leading edge vortex. As the flappinthIS changg with Reynolds nL.meer. Similarly, what determines
j%e magnitude of the leading edge vortex supported by a

wing translates, a span-wise velocity gradient interacts with thI . . librium? Gi he i f th
leading edge vortex, causing the axial flow to spiral towards the tig:2PPINg Wing at equilibrium? Given the importance of the

The axial flow transports momentum out of the vortex, thus keepinlfading edge vortex, the answers to these questions are critical
it stably attached. The vortex detaches at about three-quarters of tedetermining the limits of aerodynamic performance in insect
distance to the wing tip and is shed into the wake. Thick blacilight.

arrows indicate downwash due to the vortex system generated by the

wing in its surrounding fluid. Figure adapted from VandenBerg and Kramer effect (rotational forces)

Ellington (1997). Near the end of every stroke, insect wings undergo
substantial pronation and supination about a spanwise axis,
which allows them to maintain a positive angle of attack and

remarkable analogies between the biological and mechanizegnerate lift during both forward and reverse strokes.

worlds. Furthermore, there is some evidence from both tethered

Recently, using DPIV to map the flow structure on a mode{Dickinson et al., 1993) and free (Srygley and Thomas, 2002)
fruit fly wing (Re=115), Birch and Dickinson (2001) reported flight that insects alter the timing of rotation during flight
stable attachment of the leading edge vortex in the absenceméneuvers. The aerodynamic significance of these rotations for
a prominent helical vortex. Whereas the axial flow within theflapping flight has been studied by Bennett (1970), and more
core of the vortex was nearly an order of magnitude lower tharecently in detail by Sane and Dickinson (2002), but it is well
on the Manducamodel in Re=1(® range, they observed a known in the aerodynamic literature in the context of fluttering
prominent axial flow within a broad sheet of fluid on top of theairplane wings due to the extensive theoretical work of Munk
wing behind the leading edge vortex that rolls into a prominentl925b), Glauert (1929), Theodorsen (1935), Fung (1969) and
tip vortex. These results from model hawkmoths and fruit fliesupporting experimental evidence from Kramer (1932), Reid
suggest that the 3-D flow structure may be quantitatively1927), Farren (1935), Garrick (1937), Silverstein and Joyner
different at high and low Reynolds numbers. (1939) and Halfman (1951).

Interestingly, the observed differences in the 3-D flow When a flapping wing rotates about a span-wise axis while
structures do not seem to be reflected in the measured forcas.the same time translating, flow around the wing deviates
CFD simulations in 2-D (Wang, 2000; Hamdani and Sunfrom the Kutta condition and the stagnation region moves away
2000) and 3-D (Ramamurti and Sandberg, 2002) airfoils showwom the trailing edge. This causes a sharp, dynamic gradient
a remarkable similarity in forces calculated BRE=100 at the trailing edge, leading to shear. Because fluids tend to
and those calculated using the inviscid Euler equatiomesist shear due to their viscosity, additional circulation must
corresponding to an infinitee (or Re=100000 in the case of be generated around the wing to re-establish the Kutta
Hamdani and Sun, 2000). These results suggest that althougbndition at the trailing edge. In other words, the wing
viscosity is necessary for vorticity generation, its contributiorgenerates a rotational circulation in the fluid to counteract the
to net forces is very small beyoR#=100 and the forces may effects of rotation. The re-establishment of Kutta condition is
be predominantly due to the dynamic pressure gradients acrasst instantaneous, however, but requires a finite amount of
the wing. The above conclusions from CFD models are alstime. If, in this time, the wing continues to rotate rapidly, then
supported by empirical data (Usherwood and Ellingtonthe Kutta condition may never be actually observed at any
2002b). Together, these results present a somewhgiven instant of time during the rotation but the tendency of
paradoxical conclusion that forces remain relatively unaffectethe fluid towards its establishment may nevertheless dictate the
even when flow structures vary substantially with an increasgeneration of circulation. Thus, extra circulation proportional
in Reynolds number above 100. to the angular velocity of rotation continues to be generated

Although a detailed explanation of above results awaits antil smooth, tangential flow can be established at the trailing
more rigorous quantification of simultaneous flow and forceedge. Depending on the direction of rotation, this additional
data, these differences should not obscure the more salieniculation causes rotational forces that either add to or subtract
general features of separated flow at high angles of attack. from the net force due to translation. This effect is also often
particular, the absence of periodic shedding in these rececdlled the ‘Kramer effect’, after M. Kramer who first described
experiments indicates that the 3-D flow around a flapping wing (Kramer, 1932), or alternatively as ‘rotational forces’ (Sane
may be remarkably self-stabilizing over a Reynolds numbeand Dickinson, 2002).
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Using the conceptual framework described above, Sane amatalyses and is variably called ‘added mass’ (Vogel, 1994),
Dickinson (2002) measured rotational coefficients (Kramefadded mass inertia’ (Sane and Dickinson, 2001), ‘acceleration
effect) and, following the recommendation of Ellingtonreaction’ (Daniel, 1984; Denny, 1993) or ‘virtual mass’
(1984d,f), included them with the translational coefficients in(Ellington, 1984b) within the biological literature. Because
the existing quasi-steady models. The revised quasi-steatlyese forces typically occur at the same time as the circulatory
model was able to capture the corresponding time history dérces, it is usually difficult to measure them in isolation. In
the force traces, in addition to the stroke-averaged forceagddition, they also pose some difficulty in modeling because
better than the quasi-steady models that take only translati@idded mass inertia has components arising from acceleration
into account. Similar rotational force peaks were observedf fluid relative to the wing, rotational acceleration due to wing
in CFD simulations by Sun and Tang (2002), who describetbtation and a cross-term arising from translational velocity
these peaks as arising from ‘fast pitching-up rotation of thand angular velocity (Ellington, 1984d). It is possible,
wing near the end of the stroke’, but appear essentialljowever, to estimate the magnitude of added mass relative to
complementary to the Kramer effect. Both the revised quasthe contribution of circulatory forces.
steady model and CFD models show close agreement with theMethods of calculating added mass have been outlined in
experimental measurements. various texts, most notably in Sedov (1965), Denny (1993)

It is important to note that the Kramer effect (or theand Lighthill (1975) or in research articles by Ellington
rotational force of Sane and Dickinson, 2002) is(1984d), Sunada et al. (2001), Sane and Dickinson (2002),
fundamentally different from the Magnus force, to which aZbikowski (2002) and Minotti (2002). The added mass force
loose qualitative analogy was drawn in the past literatures typically modeled in quasi-steady terms using a time-
(Bennett, 1970; Dickinson et al., 1999), leading to soménvariant added-mass coefficient, and any time dependence is
confusion. Magnus force arises from circulation generated biynplicit due to the time course of wing acceleration. In a
a blunt body such as a spinning cylinder or sphere set inmmputational study of a 2-D insect wing, Hamdani and Sun
translational motion with respect to the real fluid (see, fo(2000) simulated a series of impulsive starts at different
example, Prandtl and Tietjens, 1957a). Although the Magnusccelerations. Their force predictions, based on the time
force can be calculated from this circulation usingderivative of the moment of vorticity integral (equatidh)
Kutta—Jukowski theorem (as in airfoils), it excludes eitherver their simulated flow field, accurately matched prior
explicit or implicit application of the Kutta condition because,experimental results. The acceleratory forces at the start of
by definition, blunt bodies have no surface singularities whertranslation corresponded to a rapid rise in the moment of
such a condition can hold. On the other hand, the applicatiororticity. At this early stage of motion, the rise in the moment
of the Kutta condition is necessary and fundamental to abf vorticity is due to both the convection and growth of
calculations of aerodynamic forces on thin airfoils. As a resultyorticity. Thus, added mass forces are closely tied to the initial
the mechanism of Magnus force applies only in relation tstages of flow separation and fluid acceleration, and further
cylinders, spheres and blunt objects, and extending it texperimental investigations offer a promising area for further
complex surfaces such as thin airfoils or other surfaces wittesearch.
sharp edges is, at best, problematic (Schlichting, 1979). Not
surprisingly, therefore, the Magnus effect does not provide an
explanation of the rotational forces during pronation or Wing-wake interactions
supination (Sun and Tang, 2002), nor is it possible to apply it The reciprocating pattern of wing motion used by insects
to calculations of forces or circulation on a flapping thin airfoilsuggests that their wings might potentially interact with the
without making severe assumptions (Walker, 2002). shed vorticity of prior strokes. That such interactions can result

in significant forces was first observed during 2-D motion on
an inclined plate (Dickinson, 1994). A similar phenomenon
Added mass was also observed with both force measurements and flow

All the forces described in the previous section belong to theisualization on a 3-D mechanical model of a fruit fly
class of circulatory forces because their action can b@ickinson et al, 1999). As the wing reverses stroke
mathematically described by calculating the changes in th@ig. 8A—C), it sheds both the leading and the trailing edge
velocity potential around the wing. As previously describedyortices (Fig8C). These shed vortices induce a strong inter-
an inclined wing moving at a constant angle of attack is subjeebrtex velocity field, the magnitude and orientation of which
to aerodynamic forces that can be adequately modeled laye governed by the strength and position of the two vortices
accounting for the circulation around the wing using standar¢Fig. 8C,D). As the wing reverses direction, it encounters the
potential theory. Other effects such as leading edge separatienhanced velocity and acceleration fields, thus resulting in
may also be modeled by a variation of the same approadtigher aerodynamic forces immediately following stroke
(see, for example, Minotti, 2002). However, when the wingeversal (Fig8E). This phenomenon has been alternatively
accelerates, it encounters a reaction force due to the acceleratatled ‘wake capture’ or, more accurately, wing—wake
fluid. This reactive non-circulatory force (Sedov, 1965) fallsinteraction. The magnitude and relative strengths of the shed
outside the realm of standard circulation-based steady-statertices, and therefore wake capture, are strongly dependent



4204 S. P. Sane

A acceleration of the wing rather than due to wing—wake
interactions. To show that wing—wake interaction produces a

«— U, negligible effect on forces, they started a wing from rest (in
- still air) and compared the calculated forces with the forces on
h a wing undergoing identical motion after stroke reversal.
Interestingly, the forces were nearly identical in the two cases
and they did not observe any force peaks due to wing—wake
interactions. Second, they varied the period of acceleration of
\ — the wing immediately after stroke reversal. For higher values
\ ~ of acceleration, they calculated force peaks similar in
magnitude and dynamics to the experiments of Dickinson et
al. (1999). From these experiments, they concluded that the
forces related to the acceleration of the wing, not wing—wake
interactions, fully account for the force peaks immediately
Q following stroke reversal.

These results are puzzling for two reasons. First, to verify
their hypothesis of wing—wake interactions, Dickinson et al.
(1999) stopped the wing at stroke reversal. They argued that if
forces were augmented due to relative velocity between the
wing and the induced wake, then even a non-accelerating wing
should continue to generate forces as it encounters the wake

O
O//
\

D - \9 \ from its previous stroke. The results of these experiments
: \ (fig. 4 of Dickinson et al.,, 1999), strongly suggested that
> Q wing—wake interactions can indeed contribute significantly to

the aerodynamic forces immediately after stroke reversal.
Second, they visualized the near-field wake structure at the
instant of stroke reversal using particle image velocimetry.

E These images revealed the substantial wake induced by the

— previous stroke and also demonstrated its physical interaction
_ N with the wing in the period immediately following stroke
— RS reversal (FigBA-E). It seems unlikely that this wing—wake
- O interaction would not be reflected in the time history of the
corresponding aerodynamic forces. At present, the cause of this
F discrepancy between the CFD simulations (Sun and Tang,

— 2002) and the particle image velocimetric observations
(Dickinson et al., 1999) remains unclear. In any case, these
U, — O results strongly suggest that neither the wing acceleration nor

the wing—wake interactions should be ignored when modeling

wake capture.
Fig. 8 A hypothesis for wing—wake interactions. Parts A—F depict a

wing section as it reverses stroke. As the wing transitions from a
steady translation (A) phase and rotates around a chordwise axis in Current status of quasi-steady modeling

preparation for a stroke reversal, it generates vorticity at both the . . .
leading and trailing edges (B). These vortices induce a stron Many of the mechanisms outlined above may be described

velocity field (dark blue arrows) in the intervening region (C,D). Asgy simple algebraic equations provided —steady-state

the wing comes to a halt and then reverses stroke (D,E), it encounté%sumpf[ion holds true. B'ecause it is difficult to.solve fo.r the
this jet. As the wing interacts with its wake, a peak is registeredull Ngwer—Stokes equatlgns for flows arognd |n§ect wings,
in the aerodynamic force record (light blue arrows), which isequations based on quasi-steady assumptions still hold some

sometimes called wake capture or wing-wake interactienfree-  practical utility in a comprehensive model of insect flight. The
stream velocity. lift and drag coefficients for flapping 3-D motions were

investigated first by Jensen (1956), Vogel (1967), Rees (1975),

Dudley and Ellington (1990a,b), Willmott and Ellington
on the kinematics of the wing immediately before and afte(1997a) and Nachtigall (1977) on actual insects wings and
stroke reversal. more recently on the physical models of flapping insect wings

Recently, Sun and Tang (2002) performed CFD simulationby Dickinson et al. (1999), Sane and Dickinson (2001) and

for the kinematics similar to those in Dickinson et al. (1999)Jsherwood and Ellington (2002a,b) and in the computational
and have proposed that the initial force peak is due tfluid dynamic models by Sun and Tang (2002).
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Fig.9. Polar plot comparisons of data from different studies of insect flight. Dotted lines signify coefficients for flappingotmaastti
continuous lines for non-flapping translation. The values in parentheses signify the upper and lower limits of travekimgthendithin which
values were averaged. Values at the beginning and end of each plot signify the angle of attack in degrees. These dathflane desv
following studies:Tipula oleracea(Re=1500; orange; Nachtigall, 1977 chistocerca gregariédRe=2000; light blue; Jensen, 195@pmbus
(Re=2500; black; Dudley and Ellington, 1990bJanduca sextdRe=7300; purple; Willmott and Ellington, 1997&rosophila virilis (Re=200;
grey; Vogel, 1967), 2-D mod&rosophilawings (Re=200; dark blue; Dickinson and Gétz, 1993), model flapjingsophila (Re=150; red;
Dickinson et al., 1999), model flappitManduca(Re=8000; green; Usherwood and Ellington, 2002a). Please note that the Reynolds R@nber (
values are approximate and broadly representative of the aerodynamic f@giceefficient of dragCy, coefficient of lift.

Fig. 9 shows a comparison among the lift-drag polars duringrovide further evidence that flapping wings do not show von
steady translation in non-flapping finite and infinite wings, a¥arman shedding. In addition, following the inertial transients
well as for flapping wings. The aerodynamic coefficientsarising from the impulsive start of the airfoil, the instantaneous
measured on flapping wings are significantly higher than thiorce coefficients reach steady values that remain constant
corresponding coefficients for non-flapping finite wings. Therghrough a substantial duration of flapping translation
are several explanations for the significant differences. Firs(Dickinson et al., 1999). However, if the wing continues the
the data on non-flapping finite wings represent time-averagdthpping translation, the wings eventually show some decline
forces collected on finite wings placed at fixed angles of attadk performance. This may be explained by the fact that a wing
in a wind tunnel. If the non-flapping finite wings exhibited vonrevolving in a propeller-like fashion eventually establishes a
Karman vortex shedding, the force records would fail to reflecstrong downwash in the far-field, thus lowering the effective
the benefits of an initial temporary attachment of the leadingngles of attack (Usherwood and Ellington, 2002a). An
edge vortex, thus causing the force coefficients on flappinglternative view is that, under steady flow conditions, non-
wings to be higher than the force coefficients for non-flappindlapping finite wings with aspect ratios typical of insect wings
finite wings. Moreover, the steady coefficients measured odo not exhibit vortex shedding. Like flapping wings, they
flapping wings are similar in magnitude to the ‘early’, pre-stallrapidly attain a stable pattern of flow — although the strength
force coefficients (measured at two chord length motion andf the total circulation is substantially lower than with a
before von Karman shedding occurs) on an impulsively startefthpping motion at comparable angles of attack. In this view,
2-D plate whereas the non-flapping finite wings are similar ithere is some feature of flapping motion — such as the span-
magnitude to the ‘late’, post-stall force coefficients of the sam&ise gradient in chord-wise velocity — that allows the leading
profiles (Dickinson and Go6tz, 1993). The instantaneous force=dge vortex to attain a greater strength than in the non-flapping
measured on a flapping wing at constant angles of attadase. In the future, these issues might be resolved by
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simultaneous flow visualization and force measurement under
the two experimental conditions. Of special interest arey
differences in convective processes such as axial floy
(Ellington et al., 1996), downwash induced by tip vortices orcp
diffusion that might limit the growth of vorticity at the leading ¢
edge to different degrees in the two cases. di
When we revisit the proof-by-contradiction method using
these higher values of steady lift and drag coefficients
appearing in the recent literature on flapping wings, the
calculated average forces are proportionally higher ang
sufficient to explain hovering. This has led to a revival of thg
quasi-steady models in recent years. Indeed, when rotational
coefficients are
coefficients in the quasi-steady model, the time course of
aerodynamic force generation is also well captured (Sang
and Dickinson, 2002). However, such a model cannot yet
account for the force peaks resulting from wing—wake
interactions. r
r
) . Re
Future research and directions £
Because both the absence of stall and Kramer effect can pg,
modeled using potential flow theory, the above results suggegt
that simple analytical models can satisfactorily describe thgr
aerodynamic forces due to translation and rotation in a flapping
wing. It is also necessary to incorporate the unsteady
components due to wing—wake interactions and the nonp
circulatory forces due to added mass into such models. Finally,
it is necessary to account for wing flexibility since the aboves
models are based on rigid wings. In general, the problem @f
wing flexibility is very complex due to the various aero-elasticy’
effects on a moving wing. However, recent studies on wing
flexibility indicate that most of the wing flexion occurs notp
from the aero-elastic interactions between the wing and thg
fluid but simply from the inertial bending of the wing on ¢
account of its mass distribution (Daniel and Combesg
2002). These results promise to substantially simplify the
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included along with the translationalpds

List of symbols

del operator

cross-sectional area of wing

drag coefficient

lift coefficient

non-dimensional length element along the contour and
tangential at each point on it

unit Cartesian vector

unit Cartesian vector

unit Cartesian vector

length

non-dimensional lift per unit span

non-dimensional area surface element directed normal
to the surface

non-dimensional pressure

area of region of interest encompassing all vorticity
elements

displacement vector or distance vector

distance

Reynolds number

non-dimensional time

free-stream velocity

non-dimensional velocity of the flapping wing

downwash velocity

velocity

volume

scalar potential function

circulation

contour around the wing section

geometric angle of attack

aerodynamic or effective angle of attack

first moment of vorticity

dynamic viscosity of fluid

density of fluid

vorticity of fluid

non-dimensional vorticity of fluid

incorporation of wing flexion into current quasi-steady models. | gm deeply indebted to Michael Dickinson for his generous
These developments in the area of insect flight aerodynamigs,;put and encouragement during the writing of this
will prove critical to biologists who seek to understand hOWmanuscript; Tom Daniel and Charlie Ellington for their
flight and flight-related adaptations have enabled insects to *%%pport and critical comments; and Kathryn Phillips for
so extraordinarily successful in the course of their evolutionegmments on an early draft. Thanks to two anonymous
In addition, they also promise to be useful in breaking newevyiewers for their critical input, which greatly improved the

ground in technology. The recent interest in developing inseCFnanuscript. Support was provided by an Office of Naval
inspired micro air vehicles (MAVs; also called micro- Research MURI grant to Tom Daniel.
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