

A 19.2GOPS, 20mW Adaptive FIR Filter

Miguel Figueroa, Seth Bridges, David Hsu and Chris Diorio

Computer Science and Engineering, University of Washington
Box 352350, Seattle, WA 98195-2350, USA

Phone: +1-206-543-7119, Fax: +1-206-543-2969, Email: {miguel, seth, hsud, diorio}@cs.washington.edu

Abstract

We implemented a 48-tap, mixed-signal adaptive FIR
filter with 8-bit input and 10-bit output resolution. The
filter stores its tap weights in nonvolatile analog memory
cells and adapts using the Least-Mean-Square (LMS)
algorithm. We run the input through a digital tapped
delay line, multiply the digital words with the analog tap
weights using mixed-signal multipliers, and adapt the tap
coefficients using pulse-based feedback. The accuracy of
the weight updates exceeds 13 bits. The total die area is
2.6mm2 in a 0.35µm CMOS process. The filter delivers a
performance of 19.2GOPS at 200MHz, and consumes
20mW providing a 6mA differential output current.

1. Introduction

Many modern-day electronic systems must deal with

unknown or changing environmental variables such as
noise levels, interference, and varying input statistics.
These systems frequently use adaptive signal-processing
techniques to optimize their performance. However, in
application domains such as mobile communications or
ubiquitous computing, these systems also face severe
constraints in power dissipation and circuit die area. In
such cases, using programmable digital signal-processing
(DSP) chips becomes infeasible. Even custom digital
circuits can be prohibitively large and power-hungry,
mainly due to the need for fast adders and multipliers.
Although analog circuits can implement moderate-
resolution arithmetic at low power and area, these
circuits are limited by other problems such as charge
leakage, signal offsets, circuit mismatch, error
accumulation, and noise sensitivity.

We have built a mixed-signal, adaptive, finite-impulse-
response (FIR) filter that combines the power and area
benefits of analog with the scalability of digital. The
filter uses synapse transistors [1] to store its analog
weights, provides linear weight updates, and implements
a pulse-based version of the Least-Mean-Square (LMS)
adaptation algorithm [2]. Each of the 48 taps computes a
multiplication and an addition on every clock cycle, for
an aggregated throughput of 19.2 Giga-Operations Per
Second (GOPS) at 200MHz. The filter uses 2.6mm2 of
die area, and consumes 20mW with a 6mA differential
output current. The input resolution (delay-line width) is
8 bits, and the LMS circuitry updates the weights with
more than 13 bits of accuracy.

Our design improves on past mixed-signal adaptive
filters [3] by two orders of magnitude in power/
performance ratio and one order of magnitude in die

area. Our previous FIR filter design [4] was incapable of
on-chip adaptation and provided only 7 bits of output
resolution. The current design uses a weight-storage
cell [5] with accurate updates and introduces a novel on-
chip implementation of the LMS algorithm, thereby
enabling closed-loop operation. Our design also
introduces new mixed-signal multipliers, achieves an
output resolution of 10 bits, and extends the length of the
filter to 48 taps.

2. The Filter

An FIR filter computes a convolution between an input

data stream and a stored weight vector. Fig. 1(A) shows
the architecture of our FIR filter. It comprises a digital
delay line, analog weight cells, pulse-based digital LMS
adaptation circuitry, and mixed-signal multipliers with
differential current outputs (Io+ and Io–). We use an 8-bit

A. Filter architecture

B. Chip microphotograph

CLK-LMS

8x(n) 8x(n - 1)

CLK

X

8

Vw+

Vw-
Io+

Io-
Se+Se-

8x(n - 47) x(n - 48)

X

8

Vw+

Vw-
Io+Io-Se+Se-

It- It+

Ie-

Ie+

Spike
Generator

Se+ Se-

x: input
Vw: weight
Io: filter output
It: target output
Ie: output error
Se: error pulses

R
E
G

1

LMS
Memory
Cell

1

R
E
G

48

LMS
Memory
Cell

48

Fig. 1. The adaptive filter. Part A shows the 48-tap filter
architecture. Each tap comprises a digital tap register, a mixed-
signal multiplier, and a memory cell that stores an analog tap
weight and implements LMS adaptation. A spike generator
produces a differential frequency-modulated digital pulse train
(Se+ and Se–), representing the filter error. Part B shows a
microphotograph of the chip core in a 0.35µm CMOS process
available from MOSIS. The total die area is 2.6mm2.

200MHz digital delay line to shift the input signal across
the filter taps, because offsets and error accumulation
make long analog delay lines difficult to implement in
VLSI. The error signal is a differential current (Ie+ and
Ie–). We generate this error signal by subtracting the
filter output from the target signal (It+ and It–). A spike
generator [6] converts the error into a differential
frequency-modulated digital pulse train with fixed pulse-
width (Se+ and Se–) and the filter adapts the tap weights
by correlating this error signal with the tap inputs.

Fig. 1(B) shows a microphotograph of the chip core.
The multipliers use 50% of the total area, the memory
cells and LMS circuitry occupy 25%, and the digital
delay line uses the other 25%. The following sections
describe the main blocks of the filter in more detail.

3. Mixed-Signal Multiplier

Fig. 2(A) shows the 4-quadrant multiplier cell. We use

a circuit that resembles a current-steered digital-to-
analog converter (DAC), with an array of scaled current

sources. The scaled currents pass through differential
pairs that implement a saturating multiply. The
differential input voltage to each pair (Vw+ and Vw–)
represents the analog weight. The digital input x sets the
polarity of the weight voltage at each pair.

We use standard current-source sizing techniques to
achieve 8-bit intrinsic resolution. Fig. 2(B) shows the
measured integral nonlinearity (INL) of a typical
multiplier. Both INL and the differential nonlinearity
(DNL) are less than 0.5LSB. The current sources occupy
80% of the multiplier area. We can reduce this area in
future chips using the on-chip trimming techniques that
we demonstrated in [7]. The same techniques can also
increase the multiplier resolution.

Fig. 2(C) shows the multiplier output as a function of
the weight value, for several digital input codes. The
analysis in [8] shows that this multiplier provides
adequate linearity for LMS adaptation for a weight range
of 1V differential. This is corroborated by our
experimental results in Section 6.

4. Analog Memory Cell

Fig. 3(A) shows our analog weight cell, based on the

design we presented in [5]. We store each filter
coefficient as charge on a floating gate, and update the
charge using Fowler-Nordheim tunneling and impact-
ionized hot-electron injection [1]. Tunneling and
injection naturally produce weight updates that are
highly nonlinear and dependent on the weight value [9].

Io+
Io-

XbarVw+
Vw-

X0

I

XbarVw+
Vw-

32 x I

A. Multiplier architecture

B. Integral nonlinearity (INL)

C. Multiplier transfer function

0 50 100 150 200 250
-0.4
-0.3
-0.2
-0.1

0
0.1

0.2
0.3
0.4

IN
L

(ls
b)

codeword

0 0.6 1.2 1.8 2.4 3 3.6 4.2 4.8 5.4 6
-80
-60
-40
-20

0
20
40
60
80

x = -127.5
x = -63.5
x = 0.5
x = 64.5
x = 127.5

M
ul

tip
lie

r o
ut

pu
t (

µA
)

Weight value (V)

X5X7 X6

T1

Thermometer decoder

T7

Fig. 2. The mixed-signal multiplier. Part A shows the multiplier
cell, which comprises a segmented 8-bit DAC-like circuit with
5 binary and 3 thermometer bits, and an array of differential
pairs that multiply the digital input word (x) by the differential
output of the weight cell (Vw+ and Vw–). Part B shows the
measured integral nonlinearity of the digital input in a typical
multiplier. The INL and DNL are 0.35 and 0.4 LSBs,
respectively. Part C shows the measured linearity of the weight
in a typical multiplier. We do not have access to the differential
weight, so we measured the single-ended representation
centered at 3V.

A. Memory cell architecture

B. Memory-update linearity

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

Feedback-pulse count

U
pd

at
e

m
ag

ni
tu

de
 (m

V)

VbiasVinj

Vda Vda

Vtun

Vw Single-ended
to differential

Vw+ Vw-

charge
pump

M1

M2

M3

M4

C

floating gate

Fig. 3. Part A shows the memory-cell architecture. We store a
weight as a nonvolatile analog charge on the floating gate. We
update the charge using Fowler-Nordheim tunneling and hot-
electron injection, controlled by pulses on Vtun and Vinj,
respectively. M2 is a current source that forces a constant
current through M1, thereby pinning the floating-gate voltage.
Capacitor C integrates the charge updates, causing Vw to
change by an amount ∆Vw = ∆Q/C. Because the floating-gate
voltage is constant, feedback pulses of fixed width and
amplitude change the charge on the floating gate by constant
amounts, causing fixed updates in Vw. Part B shows the
measured linearity of the memory updates with respect to the
frequency of Vinj. We obtain similar results for pulses on Vtun.

Our weight cell provides weight-independent linear
updates as needed for LMS adaptation. We use feedback
in an amplifier-like circuit to pin the floating-gate
voltage, and integrate the floating-gate updates (i.e.,
charge) on the feedback capacitor C. The charge updates
modify the weight value Vw.

The weight updates have a linear dependency on the
frequency of the digital feedback pulses. We activate
tunneling by applying pulses to the Vtun terminal; a
simple charge pump boosts the pulse voltage to 11V and
causes electron tunneling through M4’s gate oxide.
Active-low Vinj pulses inject hot electrons from M3’s
drain onto the floating gate. The voltage at Vbias sets the
floating-gate voltage, and thereby adjusts the relative
strengths of tunneling and injection. We tune this bias to
yield symmetric weight-update rates at each tap.

Fig. 3(B) shows measured values of Vw updates as a
function of the frequency of Vinj pulses. A single-ended
to differential converter transforms Vw into the
differential voltage that drives the multiplier.

5. LMS Block

The least-mean-square (LMS) algorithm [2] uses a

gradient-descent method to update the weights of a linear
filter or neural network. At each iteration, the algorithm
updates the weights according to the equation
)()()()1(nenxnwnw iii λ+=+ (1)
where wi is the weight at tap i, λ is the learning rate, xi is
the value of the input at tap i, and e is the error.

Fig. 4(A) shows our implementation of the LMS
algorithm. We represent the error signal e as a
differential frequency-modulated train of digital pulses

(Se+ and Se–). We use these pulses to update the value
stored in the weight cell. At the beginning of each LMS
iteration, we preload a digital downcounter with the
magnitude (the lower 7 bits) of the current tap input x.
An external clock signal (CLK-LMS) drives the
downcounter. This clock is independent of the delay-line
clock and its frequency modulates the learning rate λ of
Eqn. (1). The countdown defines a time window
proportional to the magnitude of x, and the error pulses
update the weight memory for the duration of that
window. Hence, the number of update pulses that the
weight cell receives during each LMS iteration is
proportional to both the magnitude of x and the
difference between the frequencies of Se+ and Se–. The
sign bit of x determines the sign of the updates (i.e.,
tunneling or injection). We control the learning rate λ by
adjusting either the gain of the current-to-spike
frequency generators or the frequency of the LMS clock.

Fig. 4(B) shows the weight update as a function of the
error e (represented as a pulse count) for several values
of the input x. We represent Se+ as a positive count and
Se– as a negative count. Fig. 4(B) demonstrates that the
memory-update magnitude is a linear function of the
product of xi and e, as required by Eqn. (1).

6. Experimental results

For our first on-line adaptation experiment, we

enabled a single tap in the filter, set a DC-valued digital
input and target, and let the filter adapt. The purpose of
this experiment was to evaluate the resolution of the
weight updates, isolated from the effect of input
quantization errors. After 15 iterations, the error settled

not-zero
Downcounter

7

Bitwise XNOR

7

x

x7

x6 - x08 Se+Se-

Vinj

Vtun
CLK-LMS

Xbar

A. LMS block architecture

B. LMS update linearity

-100 -50 0 50 100

-60

-40

-20

0

20

40

60 x = -127.5
x = -63.5
x = 0.5
x = 64.5
x = 127.5

Differential error-pulse count

M
em

or
y

up
da

te
 (m

V)

Fig. 4. Part A shows the LMS-update architecture. The filter
preloads a downcounter with the magnitude (7 lower bits) of
the digital tap-input x. While the counter counts down, the error
pulses (Se+ and Se–) are transformed into update pulses to
drive tunneling and injection in the memory cell. The sign of x,
given by the MSB x7, determines the polarity of the weight
update. Therefore, the polarity and number of pulses updating
the weight value depends on both the present input x and the
present error (Se+ and Se–). Part B shows measured updates
versus error pulse frequency e. The update is the 4-quadrant
multiplication of the error signal e by the input value x.

0 50 100 150 200 250 300 350 400 450 500
0

100

300

200

A. LMS output for multiple taps

B. RMS error for multiple taps

C. Evolution of two weights

0 20 40 60
-300

-200

-100

0

100

200

300

420 440 460 480

output
target

Iteration

Fi
lte

r o
ut

pu
t (

µA
)

Iteration

R
M

S
er

ro
r (

µA
)

Weight 1
Weight 2

0 50 100 150 200 250 300 350 400 450 500

3

3.2

3.4

3.6

Iteration

W
ei

gh
t (

V)

Fig. 5. LMS performance with 24 taps. Part A shows the target
and the output during the first 80 and last 80 iterations. Part B
shows the RMS error. After 480 iterations, the error is 5µA,
settling at 2µA (equivalent to 10-bit output resolution) after
300 additional iterations. Part C shows the outputs of two
memory cells learning the same weight value. The LMS
algorithm compensates for mismatch across cells, so each cell
converges to a voltage that represents the same nominal weight.

to 10nA RMS (this measured accuracy is limited by our
experimental setup). For a 128µA single-tap output
range, this error corresponds to an output resolution
better than 13 bits. This result shows that, as predicted
by [8], the error performance of the filter is not limited
by the weight linearity of the multipliers.

For our second experiment, we enabled 24 taps and
trained the filter to output a triangle wave given a square-
wave input. Fig. 5(A) shows the target and output during
the first 80 and the last 80 iterations. Fig. 5(B) shows the
RMS error during adaptation. The filter performance is
limited by the input quantization, with an RMS error of
about 5µA (full output range is 24×128µA) after 480
iterations. As the filter continues to adapt, the error
settles to 2µA RMS after an additional 300 iterations
(corresponding to an output resolution of 10 bits).
Fig. 5(C) illustrates an attractive benefit of adaptation:
Two weight cells learning the same nominal value
converge to different voltages because the LMS
algorithm naturally compensates for the effects of
process mismatch (offsets in the weight representation
and variations in the multiplier gain).

As a final experiment, we enabled all 48 taps and used
the adaptive filter in a direct-sequence code-division
multiple-access (DS-CDMA) despreading application.
Fig. 6(A) shows the experiment, where four users share a
CDMA channel. We encoded each user’s bit stream Ui
with orthogonal 16-chip Walsh spreading codes, and
added the chip streams to form a composite signal. We
input this signal (oversampled by a factor of 3) to the 48-
tap adaptive filter, and provided it with U1’s bit stream
as a reference. The task of the filter is to learn the
spreading code W1 and produce U1’s original bit stream.
An adaptive matched filter like this could be used in
decision-feedback CDMA despreading with blind
multiuser detection [10]. Fig. 6(B) shows the reference
bit stream and the filter’s output, sampled after each

complete bit frame. Because the reference is a binary
sequence, a simple comparator can generate the user’s
bits stream from the filter’s analog output. The filter
learns to discriminate the bit stream after only a few
iterations. Furthermore, as the adaptation progresses, the
amplitude of the output becomes larger, improving the
matched filter’s interference- and noise-rejection
characteristics to a resolution of 10 bits.

7. Conclusion

We built a 48-tap, 19.2GOPS, 2.6mm2 adaptive FIR

filter using a digital delay line, nonvolatile analog
weights, and mixed-signal multipliers. Analog storage
and pulse-based feedback allow us to store and adapt the
tap weights with an accuracy of 13 bits and achieve an
output resolution of 10 bits with a power consumption of
only 20mW. Also, nonvolatile analog weights enable us
to stop adaptation and operate in open loop without the
charge-leakage problems associated with capacitor-based
analog storage. Because we use a digital delay line, we
can readily scale the design to add more taps.

Future work includes reducing the area and increasing
the resolution of the mixed-signal multipliers using the
on-chip trimming techniques we demonstrated in [7].
Additionally, we will accelerate the convergence of the
LMS algorithm by adding a decorrelating input stage as
shown in [11].

References

[1] C. Diorio, D. Hsu, and M. Figueroa, "Adaptive CMOS:

from Biological Inspiration to Systems-on-a-Chip,"
Proceedings of the IEEE, vol. 90, pp. 345-357, 2002.

[2] B. Widrow and S. D. Stearns, Adaptive Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1985.

[3] M. Figueroa, D. Hsu, and C. Diorio, "A Mixed-Signal
Approach to High-Performance, Low-Power Linear
Filters," IEEE Journal of Solid-State Circuits, vol. 36, pp.
816-822, 2001.

[4] M. Q. Le, P. J. Hurst, and J. P. Keane, "An Adaptive
Analog Noise-Predictive Decision-Feedback Equalizer,"
in Symposium on VLSI Circuits, Honolulu, Hawaii, 2000.

[5] C. Mead, Analog VLSI and Neural Systems. Reading, MA:
Addison-Wesley, 1989.

[6] J. Hyde, T. Humes, C. Diorio, M. Thomas, and M.
Figueroa, "A Floating-Gate Trimmed, 14-bit, 250 MS/s
Digital-to-Analog Converter in Standard 0.25µm CMOS,"
in Symposium on VLSI Circuits, Honolulu, Hawaii, 2002.

[7] B. K. Dolenko and H. C. Card, "Tolerance to Analog
Hardware of On-Chip Learning in Backpropagation
Networks," IEEE Transactions on Neural Networks, vol.
6, pp. 1045-1052, 1995.

[8] C. Diorio, S. Mahajan, P. Hasler, B. A. Minch, and C.
Mead, "A High-Resolution Nonvolatile Analog Memory
Cell," in IEEE Intl. Symp. on Circuits and Systems, 1995.

[9] P. Hasler and J. Dugger, "Correlation Learning Rule in
Floating-Gate pFET Synapses," IEEE Transactions on
Circuits and Systems II, vol. 48, pp. 65-73, 2001.

[10] M. Honig, U. Madhow, and S. Verdú, "Blind Adaptive
Multiuser Detection," IEEE Transactions on Information
Theory, vol. 41, pp. 944-960, 1995.

[11] F. Palmieri, J. Zhu, and C. Chang, "Anti-Hebbian
Learning in Topologically Constrained Linear Networks:
A Tutorial," IEEE Transactions on Neural Networks, vol.
4, pp. 748-761, 1993.

B. Filter output

-1

0

+1

Iteration

N
or

m
al

iz
ed

 o
ut

pu
t

output
target

0 150 300 450 600 750 900 1050 1200 1350 1500

U1

U2

U3

U4

W1

W2

W3

W4

Σ LMS Filter

U1

~
U1

target

output
~

W1
filter learns W1 tap coefficients

A. Adaptive CDMA despreading

Fig. 6. LMS performance on an adaptive CDMA despreading
application. Part A: We generated bit streams for 4
simultaneous CMDA users (U1–U4) and encoded them using
16-chip orthogonal Walsh codes (W1–W4). We combined the
user chip streams, oversampled the combined signal by a factor
of 3, and fed the resulting signal to the 48-tap filter. We
provided U1’s bit stream as the target and let the filter learn the
appropriate despreading code W1. Part B: The evolution of the
output normalized to the amplitude of the reference. The filter
learns to correctly discriminate the user’s bit stream after only a
few iterations.

