
Name:

CSE 505, Fall 2005, Final Examination
15 December 2005

Please do not turn the page until everyone is ready.

Rules:

• The exam is closed-book, closed-note, except for one side of one 8.5x11in piece of paper.

• Please stop promptly at 12:20.

• You can rip apart the pages, but please write your name on each page.

• There are 120 points total, distributed evenly among 6 questions (most of which have multiple parts).

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit.

• The questions are not necessarily in order of difficulty. Skip around.

• If you have questions, ask.

• Relax. You are here to learn.

1



Name:

For your reference (page 1 of 2):

e ::= λx. e | x | e e | c | {l1 = e1, . . . , ln = en} | e.li | fix e
v ::= λx. e | c | {l1 = v1, . . . , ln = vn}
τ ::= int | τ → τ | {l1 : τ1, . . . , ln : τn}

e → e′ and Γ ` e : τ and τ1 ≤ τ2

(λx. e) v → e[v/x]
e1 → e′1

e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2

e → e′

fix e → fix e′ fix λx. e → e[fix λx. e/x]

{l1 = v1, . . . , ln = vn}.li → vi

ei → e′i
{l1 = v1, . . . , li−1 = vi−1, li = ei, . . . , ln = en} → {l1 = v1, . . . , li−1 = vi−1, li = e′i, . . . , ln = en}

Γ ` c : int Γ ` x : Γ(x)
Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

Γ ` e : τ → τ

Γ ` fix e : τ

Γ ` e1 : τ1 . . . Γ ` en : τn labels distinct
Γ ` {l1 = e1, . . . , ln = en} : {l1 : τ1, . . . , ln : τn}

Γ ` e : {l1 : τ1, . . . , ln : τn} 1 ≤ i ≤ n

Γ ` e.li : τi

Γ ` e : τ τ ≤ τ ′

Γ ` e : τ ′

{l1:τ1, . . . , ln:τn, l:τ} ≤ {l1:τ1, . . . , ln:τn}

{l1:τ1, . . . , li−1:τi−1, li:τi, . . . , ln:τn} ≤ {l1:τ1, . . . , li:τi, li−1:τi−1, . . . , ln:τn}

τi ≤ τ ′i
{l1:τ1, . . . , li:τi, . . . , ln:τn} ≤ {l1:τ1, . . . , li:τ ′i , . . . , ln:τn}

τ3 ≤ τ1 τ2 ≤ τ4

τ1 → τ2 ≤ τ3 → τ4 τ ≤ τ

e ::= c | x | λx:τ . e | e e | Λα. e | e[τ ]
τ ::= int | τ → τ | α | ∀α.τ
v ::= c | λx:τ . e | Λα. e

Γ ::= · | Γ, x:τ
∆ ::= · | ∆, α

e → e′ and ∆;Γ ` e : τ

e → e′

e e2 → e′ e2

e → e′

v e → v e′
e → e′

e[τ ] → e′[τ ] (λx:τ . e)v → e[v/x] (Λα. e)[τ ] → e[τ/α]

∆; Γ ` x : Γ(x) ∆; Γ ` c : int

∆; Γ, x:τ1 ` e : τ2 ∆ ` τ1

∆; Γ ` λx:τ1. e : τ1 → τ2

∆, α; Γ ` e : τ1

∆; Γ ` Λα. e : ∀α.τ1

∆; Γ `e1 : τ2→τ1 ∆; Γ ` e2 : τ2

∆; Γ ` e1 e2 : τ1

∆; Γ `e : ∀α.τ1 ∆ ` τ2

∆; Γ ` e[τ2] : τ1[τ2/α]

2



Name:

e ::= c | λx. e | e e | (e, e) | e.1 | e.2 | letcc x. e | throw e e | continuation E
E ::= [·] | E e | v E | (E, e) | (v,E) | E.1 | E.2 | throw E e | throw v E
v ::= c | λx. e | (v, v) | continuation E

(λx. e) v
p→ e[v/x] (v1, v2).1

p→ v1 (v1, v2).2
p→ v2

e
p→ e′

E[e] → E[e′] E[letcc x. e] → E[e[continuation E/x]] E[throw (continuation E′) v] → E′[v]

e ::= . . . | inl(e) | inr(e) | (case e x.e | x.e) | rollτ e | unroll e | raise e | try e catch (c) e
τ ::= . . . | τ1 + τ2 | µα.τ
v ::= . . . | inl(v) | inr(v) | rollτ v

case inl(v) x.e1 | x.e2 → e1[v/x] case inr(v) x.e1 | x.e2 → e2[v/x]
e → e′

inl(e) → inl(e′)

e → e′

inr(e) → inr(e′)
e → e′

case e x.e1 | x.e2 → case e′ x.e1 | x.e2

e → e′

rollµα.τ e → rollµατ e′

e → e′

unroll e → unroll e′ unroll (rollµα.τ v) → v

e → e′

raise e → raise e′

e1 → e′1
try e1 catch (c) e2 → try e′1 catch (c) e2 try v catch (c) e2 → v try raise c catch (c) e2 → e2

c 6= c′

try raise c′ catch (c) e2 → raise c′
many “bubble up exception” rules omitted

∆; Γ ` e : τ1

Γ ` inl(e) : τ1 + τ2

∆; Γ ` e : τ2

Γ ` inr(e) : τ1 + τ2

∆; Γ ` e : τ1 + τ2 ∆; Γ, x:τ1 ` e1 : τ ∆; Γ, x:τ2 ` e2 : τ

∆; Γ ` case e x.e1 | x.e2 : τ

∆; Γ ` e : τ [(µα.τ)/α]
∆; Γ ` rollµα.τ e : µα.τ

∆; Γ ` e : µα.τ

∆; Γ ` unroll e : τ [(µα.τ)/α]

∆; Γ ` e : int ∆ ` τ

∆; Γ ` raise e : τ

∆; Γ ` e1 : τ ∆; Γ ` e2 : τ

∆; Γ ` try e1 catch (c) e2 : τ

e ::= . . . | ref e | !e | e1 := e2 | r τ ::= . . . | τ ref v ::= . . . | r H ::= · | H, r 7→ v

(H; e) → (H ′; e′) and ∆; Γ ` e : τ

H; (λx. e) v → (H; e[v/x])
H; e1 → H ′; e′1

H; e1 e2 → (H ′; e′1 e2)
r 6∈ Dom(H)

(H; ref v) → (H, r 7→ v; r)

(H; !r) → (H;H(r)) (H; r := v) → (H, r 7→ v; ())
many inductive rules omitted

∆; Γ ` e : τ

∆; Γ ` ref e : τ ref

∆; Γ ` e : τ ref

∆; Γ ` !e : τ

∆; Γ ` e1 : τ ref ∆; Γ ` e2 : τ

∆; Γ ` e1 := e2 : unit

3



Name:

1. Here are two type definitions for different representations of linked lists of integers:

• type t1 = µα.(unit + (int ∗ α))

• type t2 = µα.((α ∗ int) + unit)

Write a typed λ-calculus program of the form fix(λconvert : . λlst : . ) for converting a list
of type t1 to a list of type t2.

Your program should typecheck without subtyping (i.e., you should use roll and unroll along with case,
pair operations, etc.).

You may use t1 and t2 as abbreviations for their definitions if you wish.

20 points

4



Name:

2. Consider the following proposed changes to System F separately and explain why each is a bad idea.

(a) Replace the typing rule on the left with the typing rule on the right:

∆, α; Γ ` e : τ1

∆; Γ ` Λα. e : ∀α.τ1

∆; Γ ` e[τ2/α] : τ1

∆; Γ ` Λα. e : ∀α.τ1

(b) Replace the typing rule on the left with the typing rule on the right:

∆; Γ ` e : ∀α.τ1 ∆ ` τ2

∆; Γ ` e[τ2] : τ1[τ2/α]
∆; Γ ` e : ∀α.τ1 ∆ ` τ2

∆; Γ ` e[τ2] : ∀α.τ1

10 points each

5



Name:

3. In this problem, assume Caml has letcc and throw in addition to (and separate from) try and raise.

Consider the following programs separately. For each:

• What does it print?

• What is the type of f?

Partial credit will require explanation of your answers.

Part (d) is difficult.

5 points each

(a) exception Foo
let f () = (print_string "A"; raise Foo)
let x = try f() with Foo -> f()

(b) exception Foo
let f () = (print_string "A"; Foo)
let x = try f() with Foo -> f()

(c) let f () =
let rec g i k =
if i > 0
then (print_string "A"; g (i-1) k; print_string "B"; 7)
else throw k 7

in
(letcc k. g 3 k)

let x = f()

(d) let f () =
let k = ref None
let rec g i =
if i > 0
then (print_string "A"; g (i-1); print_string "B"; 7)
else (letcc k2. ((k := Some k2); 7))

in
(g 3;
match !k with None -> 7 | Some k2 -> (k := None; throw k2 7))

let x = f()

6



Name:

4. Java interfaces do not allow fields, 1 but suppose they did.

For each rule below, determine if it is sound or unsound. If it is unsound, give a short (around 10
lines, including class and interface definitions) example program that would typecheck but get stuck
at run-time. Do not worry about syntax, making a correct main method, etc.

Recall that if interface I extends interface J , then I ≤ J .
Also recall that a final field can be read but not written.

Assume interface J has a field f of type T .

(a) If f is non-final, interface I may extend interface J by changing f to have a subtype of T .

(b) If f is non-final, interface I may extend interface J by changing f to have a supertype of T .

(c) If f is final, interface I may extend interface J by changing f to have a subtype of T .

(d) If f is final, interface I may extend interface J by changing f to have a supertype of T .

20 points total, graded together

1Technically, Java allows public static final fields, but this problem considers instance fields.

7



Name:

5. Suppose we change the semantics of Java so that method-lookup uses multimethods instead of static
overloading.

True or false. Briefly explain your answers.

(a) If all methods in program P take 0 arguments (that is, all calls look like e.m()), then P definitely
behaves the same after the change.

(b) If all methods in program P take 1 argument (that is, all calls look like e.m(e′)), then P definitely
behaves the same after the change.

(c) If a program P typechecks without ever using subsumption, then P definitely behaves the same
after the change.

(d) Given an arbitrary program P , it is decidable whether P behaves the same after the change.

5 points each

8



Name:

6. In the simply-typed λ-calculus with records and without subtyping, the following is true by inspection
of the typing rules:

If · ` v : {l1 : τ1, l2 : τ2}, then there exist v1 and v2 such that v is {l1 = v1, l2 = v2}.

(a) Explain why the statement above is false in the presence of subtyping. In particular, which
subtyping rules make it false?
6 points

(b) Revise the claim so that it is true but as strong as possible. That is, complete this sentence, “If
· ` v : {l1 : τ1, l2 : τ2}, then v is ...” with a fact that requires the assumed typing derivation. You
can state the claim in English but be precise.
6 points

(c) Prove your revised claim. (Hints: Use a “helper” lemma about subtyping derivations where the
supertype is a record type containing certain fields. You will need induction and a strengthend
induction hypothesis to prove the claim in part (b); it turns out the helper lemma does not need
induction.)
8 points

9



Name:

This page is intentionally blank.

10


