
UW/CSE Hardware Design & Implementation
Course Description
Draft of May 19, 2009

Structural place in the curriculum

• 4 credits (3 weekly lectures, 1 weekly lab)

• Pre-requisites: Hardware/Software Interface, Foundations of Computing I

• Courses with this course as a pre-requisite:

– 466 Embedded Systems

– 467 Digital Design

– 471 Computer Architecture

– Hardware capstones

• Required for CE, optional for CS

• Catalog description: To be determined

Course Overview

A “bottom up” sequence from (1) circuit design to (2) CPU design to (3) embedded-systems (systems
integration) design, including a significant lab component.

Description of work, etc.

While the lab sequence would constitute the largest portion of the coursework, there would also be:

• A midterm and a final exam

• Four Aldec Active-HDL design-tool tutorials to complete

• Possibly a few additional homework exercises to reenforce lecture material

Possible Textbooks

• Computer Organization and Design by Patterson and Hennessy

• Contemporary Logic Design (2nd Edition) by Katz and Borriello

• A reference on C

Approximate Topic List

The topic list is organized by weeks and is carefully structured to account for the labs. See the next page.

1



Week Lecture Lab

1 Introduction, implementing
combinatorial logic circuits,
nomenclature

Constructing Simple Logic Circuits; Introduction to
Altera’s Terasic DE1 prototyping board and Aldec’s
Active-HDL design tool for schematic entry

2 Verilog, building blocks, larger
combinatorial logic circuits

Creating Verilog modules and test fixtures: Use
multiplexers, decoders, and FPGAs to create a full adder

3 Implementing registers and
sequential logic in hardware
designs

Introduction to Registers: Edge-trigged D-type flip-flops
and registers as sequential building blocks

4 Finite State Machines: Moore,
Mealy and other hardware
variants; FSM partitioning;
FSMs in Verilog

Implementing Finite State Machines: Using a finite state
machine to implement the controller logic for the game of
Simon

5 Introduction to CPU Design,
MIPS, Datapath, Memory /
Control

Introduction to the Datapath: Constructing a datapath
and some control components for a processor

6 Control / Strings & Pointers /
Functions, Procedures, Machine
Language

Taking Control: Adding new instructions that are essential
for subroutines; constructing a control unit that supports
normal operations. Implement a recursive program that
solves the “Towers of Hanoi” for the case of 3 discs

7 Performance, Intro to Pipelining,
Pipelined Datapath and Control

Pipelining: Breaking the datapath into multiple stages by
adding registers between stages

8 Interrupts, I/O, Buses, Storage Interrupts: Adding interrupt hardware to handle
asynchronous events. Writing C code to handle button
presses in the processor

9 Embedded systems,
Microprocessor implementations,
Microprocessor I/O

Embedded hardware output: Adding an LCD display to
the processor; implementing hardware and C code to write
data to it

10 System Performance, RTOS,
Review

I/O and sensors: Adding a sensor to the system;
implementing hardware and C code to read, process, and
display sensor data

2


