
Concurrent Revisions

Lecture 1: From Tasks to Revisions

Sebastian Burckhardt
Microsoft Research

Joint work with Alexandro Baldassin, Daan Leijen

(see also our papers in OOPSLA 2010, ESOP 2011)

Outline

• Parallel Programming With Tasks

 Task Dags and Scheduling

 Conflict Elimination

 Motivation: Game Example

• Concurrent Revisions

 Fork/Join and Revision Diagrams

• Semantics

 Syntax and Semantics

 Determinacy

Task Programming Model

• Program expresses task dag (directed acyclic graph)

• Runtime dynamically schedules task dag onto
multiprocessor

• Commonly used paradigm
(CILK, Intel TBB, java.util.concurrent, Microsoft TPL, …)

• Abstracts machine details
(sync primitives, number of processors)

• Often dynamic
(graph generation and scheduling are interwoven)

Expressing parallelism

• Example:

Can parallelize loop iterations and/or loop body.

What does it mean, exactly?

for (i = 0; i < n; i++)
{
 work1(i);
 work2(i);
}

parallel for
 (i = 0; i < n; i++)
{
 work1(i);
 work2(i);
}

for
 (i = 0; i < n; i++)
{
 parallel { work1(i), work2(i) }
}

for
 (i = 0; i < n; i++)
{
 Parallel.Invoke(
 () => { work1(i); },
 () => { work2(i); }
 });
}

Parallel.For(0, n, i =>
{
 work1(i);
 work2(i);
})

parallel for
 (i = 0; i < n; i++)
{
 work1(i);
 work2(i);
}

for
 (i = 0; i < n; i++)
{
 parallel { work1(i), work2(i) }
}

Comparison with TPL syntax

Task graphs

parallel for
 (i = 0; i < n; i++)
{
 work1(i);
 work2(i);
}

for (i = 0; i < n; i++)
{
 parallel { work1(i), work2(i) }
}

work1(0)

work2(0)

work1(n-1) work1(1)

work2(1)
…

work2(n-1)

work1(0) work2(0)

work1(n-1)

work1(1) work2(1)

work2(n-1)

…

What do we mean by task graphs?

• Vertices
 Represent tasks or

synchronization

• Directed Edges
 Represent scheduling

constraints

• No cycles
 Thus, directed acyclic graph (dag)

Task graphs (a.k.a task dags) are an excellent
visualization for understanding parallelism.

A

B

C

E D

F

The meaning of edges

• An edge v -> w means
“task v must complete before task w starts”

• Is a transitive property!
(a before b) and (b before c) implies
 (a before c)

• We omit edges that are implied by transitivity
(take the “transitive reduction”)

Examples

parallel for
 (i = 0; i < n; i++)
{
 work1(i);
 work2(i);
}

for
 (i = 0; i < n; i++)
{
 parallel { work1(i), work2(i) }
}

work1(0)

work2(0)

work1(n-1) work1(1)

work2(1)
…

work2(n-1)

work1(0) work2(0)

work1(n-1)

work1(1) work2(1)

work2(n-1)

…

Executing Task Dags

• On a single processor: serial schedules

A

B

C

E D

F

Many schedules possible:
ABCDEF, ABCEDF, ACBDEF, ACBEDF,
ACDBEF, ACEBDF, ACDEBF, ACDEBF,
ACEDBF, …, CADEB, CAEDB, … CDEABF,
CEDABF

• All schedules have same
execution time:

• T1(G) = A + B + C + D + E + F

Parallel Schedules

• Suppose we have an
idealized parallel
processor (infinite
number of processors, no
synchronization overhead)

• How long does it take to
execute this task dag?

A

B

C

E D

F

Parallel Schedules
• Each task can start as

soon as all previous tasks
complete

• Execution time = critical
path = time of longest
path through the graph

• T∞(G) = max {
 A + B, C + max {D, E}
} + F

A

B

C

E D

F

Work and Span

• We call the serial execution time T1(G) the work
of G.

T1(G) = ∑ { T(v) | v in G }

• We call the ideal parallel execution time T∞(G)
the span of G:

T ∞(G) = max { T1(p) | p maximal path of G }

Speedup

• Divide work by span:

• What does the ratio T∞(G) / T1(G) mean?

• It’s how much we can improve the execution
time by parallel execution! We call this par(G),
parallelism of G.

• It’s an upper bound on the possible speedup.

Example
• Work T1(G) is 4.

• Span T∞(G) is 3.

• Parallelism par(G) is 4/3

• Speed improvement from
parallelism is never more
than 33%

• Clear from picture: Using
more than 2 processors
has no benefits.

1

1

1

1

Special case: Amdahl’s law
• Don’t remember formula? No problem, can

derive it instantly.
• p : parallel fraction of program

• 1-p : sequential fraction of program

• n : number of processors

p/n

1-p

p/n p/n …

• Work is 1

• Span is (1-p) + p/n

• Parallelism is work/span
 1
 (1-p) + p/n

Execution time on n processors

• Define Tn(G) to be the best possible execution
time on n processors
(that is, the smallest time we can achieve for
any schedule of G on n processors)

• Clearly, we can give bounds

 T∞(G) ≤ Tn(G) ≤ T1(G)

FYI: How hard to find best schedule?

Finding the best schedule is hard

• Computing Tn(G) is NP-complete for n>2
[Gary, Johnson 1979]

Finding a reasonably good schedule is easy

• [Brent’s Theorem] for any dag G,

 Tn(G) ≤ T1(G)/n + T∞(G)

•
[Blumofe/Leiserson 1999]:
Any greedy schedule achieves this bound.

Series-Parallel Task Dags

• We can build many task dags using just parallel
and serial composition.

• These dags are called ‘series-parallel’

• If our programs express parallelism using only the
following constructs, the dags are always series-
parallel:
 parallel { }

 parallel for

Given two task dags G, H, build
serial composition (G ; H) by

 connecting all sinks of G to all

sources

 To use fewer edges, we can
construct
 (G; v; H)
where v is an extra
synchronization vertex
(with T(v) = 0)

Serial Composition of Task Dags

sink

source

sink
sink

source

sink

source

sink
sink

source

v

G

H

G

H

Given two task dags G, H, build
parallel composition (G ll H) by

 Building disjoint union of G, H

 Or, to keep dag connected, we
can construct
 (s ; (G ll H) ; e)
where s,e are extra
synchronization vertices
(with T(s) = T(e) = 0)

Parallel Composition of Task Dags

s

e

G H

G H

source source

sink
sink

source source

sink
sink

Examples

parallel for
 (i = 0; i < n; i++)
{
 work1(i);
 work2(i);
}

for
 (i = 0; i < n; i++)
{
 parallel { work1(i), work2(i) }
}

work1(0)

work2(0)

work1(n-1) work1(1)

work2(1)
…

work2(n-1)

work1(0) work2(0)

work1(n-1)

work1(1) work2(1)

work2(n-1)

…

More ways to express parallelism

• Can use fork, join primitives to explicitly
create parallel tasks

var t;

t = fork {
 A();
}

B();

join t;

C();

More ways to express parallelism

• Can use fork, join primitives to explicitly
create parallel tasks

var t;

t = fork {
 A();
}

B();

join t;

C();

Starts a task that
executes the block
in curly braces;
stores a handle to
it in t

Waits for t to finish
before continuing

A

C

B

Comparison to TPL syntax

Task t;

t = fork {
 A();
}

B();

join t;

Task t;

t = Task.Factory.StartNew(() =>
 {
 A();
 });

B();

t.Wait();

Our join is more restricted than wait…
Must be called exactly once.

Can express parallel using fork,join

• Can we do the opposite, i.e. express fork,join
using parallel?

function
myparallelinvoke(f, g)
{
 var t = fork {
 f();
 }
 g();
 join t;
}

function myparallelfor(a, b, f)
{
 var t = new Task[n];

 for (int i = a; i < b; i++)
 t[i] = fork { f(i); }

 for (int i = a; i < b; i++)
 join t[i];
}

Not all dags are series-parallel
• For example, we can use asymmetric fork and

join to create task graphs like this

var t;

parallel
{
 A(),
 {
 B();
 t = fork {
 C();
 }
 D();
 }
}
E();
join t;

A

B

C

D

E

Not all dags are series-parallel
• For example, we can use asymmetric fork and

join to create task graphs like this

var t;

parallel
{
 A(),
 {
 B();
 t = fork {
 C();
 }
 D();
 }
}
E();
join t;

A

B

C

D

E

So, what does all this
mean for how we
should write parallel
programs?

Thus, for fastest execution…

• Make everything as parallel as possible.

• Unfortunately, very few programs are fully

parallel (“embarassingly parallel” or
“pleasantly parallel”)

• Because tasks usually exhibit dependencies
and conflicts!

…
E

D

GOOD BAD

Parallelism Blockers

• Conflicts
 Two tasks A, B access the same data, and one (or

both) modify it

 (If both tasks are only reading, we don’t call it a
conflict)

 Two tasks that don’t have conflicts can run in
parallel

• Dependence (a type of conflict)
 A conflict as above, where A writes some result and

B reads that result

Terminology: Conflict vs. Data Race

• All data races are conflicts.

• Not all conflicts are data races.

parallel
{
 x = 1,
 x = 2
}

parallel
{
 lock (l) { x = 1 },
 lock (l) { x = 2 }
}

• Has conflict.

• Has data race.

• Has conflict.

• does NOT have
data race.

Hazards

• Sequential execution is not equivalent to
parallel execution if there are hazards.

RAW hazard
(read after write)

a.k.a.
data dependency

WAR hazard
(write after read)

a.k.a.
Anti-dependency

WAW hazard
(write after write)

{
 x = work1();
 work2(x);
}

{
 work1(x);
 x = work2();
}

{
 x = work1();
 x = work2();
}

Hazards

• Hazards in sequential composition correspond
to conflicts in parallel composition.

• Conflict = concurrent tasks access shared data,
and at least one of them modifies it.

parallel
{ x = work1(),
 y = work2(x) }

parallel
{ work1(x),
 x = work2() }

Write-write conflict Read-Write conflict Read-Write conflict

{
 x = work1();
 work2(x);
}

{
 work1(x);
 x = work2();
}

{
 x = work1();
 x = work2();
}

parallel
{ x = work1(),
 x = work2() }

Why are conflicts bad?

• Nondeterminism

 The order of the accesses affects the outcome

• Data Consistency

 Many typical data representations (e.g. linked list)
are not safe unless carefully crafted (see M.H.) or
protected by locks

• Performance

 Cache coherence: Conflicts cause cache misses
(shared memory is not actually shared)

Why are conflicts bad?

• Nondeterminism

• Data Consistency

• Performance

 Essential insight:

Eliminate frequent conflicts.
Make rare conflicts safe.

Some conflicts are superfluous.

• WAR and WAW can usually be eliminated.

• Because they are not true dependencies
but a matter of reading/writing correct
versions

• work2 can proceed without work1’s result if
• It does not interfere with work1’s input (RAW)

• It ensures to overwrite work1’s output (WAW)

{
 work1(x);
 x = work2();
}

{
 x = work1();
 x = work2();
}

Some conflicts are superfluous.

• For example, we can eliminate the following
WAR / WAW hazards (privatization).

• Trick: copying / renaming

 Register renaming extremely effective in
hardware: Tomasulo’s algorithm

var x;

for (i=0; i<n; i++)
{
 x = work1();
 work2(x);
}

var x;

var xx[n];
parallel for (i=0; i<n; i++)
{
 var xx[i] = work1();
 work2(xx[i]);
}
x = xx[n-1];

The Art of Task-Parallel Programming

• Identify tasks to run in parallel

 Make tasks large enough

 Make tasks small enough

 Make tasks parallel enough

• Carefully consider conflicts

 Eliminate or reduce conflicts

• Tricks of the trade

 Make remaining conflicts safe

• Concurrency control

The Art of Task-Parallel Programming

• Identify tasks to run in parallel

 Make tasks large enough

 Make tasks small enough

 Make tasks parallel enough

• Carefully consider conflicts

 Eliminate or reduce conflicts

• Tricks of the trade

 Make remaining conflicts safe

• Concurrency control

QUANTITATIVE
CRITERIA
depend on

characteristics of
workload and

machine

QUALITATIVE
CRITERIA

Do not depend on
machine or workload

Make tasks small enough

• total execution time >= time for longest task

Make tasks parallel enough

• total execution time >= time along critical path

(= path from source to sink whose sum of task
times is maximal)

Make tasks large enough

• Danger:

 Processors are very fast at sequential execution.

 Processors are slow at scheduling/starting/ending
tasks.

 Unless a task contains a significant amount of
work, it is not worth to try parallel execution!

• Usually not a problem when using parallel for
and lots of iterations

 Smart implementation of parallel for chunks
iterations automatically and dynamically

Example: Histogram Computation

• Suppose f is a function with range 0..7

• We want to count how many times each
number in 0..7 is produced when calling f on
0…n-1

• We assume n large enough to make
parallelism worthwhile (e.g. n = 1000000)

a = new int[8];
for (i = 0; i < n; i++)
{
 a[f(i)]++;
}

Simple but incorrect solution

• Does not count correctly because ++ is not
atomic

a = new int[8];
parallel for (i = 0; i < n; i++)
{
 a[f(i)]++;
}

Correct but slow solution

• Atomic increment is typically a bit faster than
lock/unlock.

• Both solutions are correct, but overall
performance is quite bad (worse than sequential)

a = new int[8];
l = new lock[8];
parallel for
 (i = 0; i < n; i++)
{
 var r = f(i);
 lock(l[r])
 { a[r]++; }
}

a = new int[8];
parallel for
 (i = 0; i < n; i++)
{
 var r = f(i);
 atomic-increment(&(a[r]));
}

A better solution

• We have eliminated the conflicts.

• Worse in theory (task dag),
but much better in practice

a = new int[N][8]; // N: number of processors

// partition by processor
parallel for (p = 0; p < N; p++)
 for (i = 0; i < n/N; i++)
 {
 var r = f(p*N + i%N);
 a[p][r]++;
 }
// combine histograms
for (p = 1; p < N; p++)
 for (j = 0; j < 8; j++)
 a[0][j] += a[p][j]

// final result at a[0]

… … … …

…

The toolbox

Make rare conflicts safe

• Architectural Patterns

 Producer-Consumer

 Pipeline

 Worklist
 ….

• Replication Patterns

 Immutability

 Double Buffering

 Concurrent Revisions

• pessimistic concurrency
control
coarse- or fine-grained
locking

• optimistic concurrency
control
speculate on absence of
conflicts, roll back if
speculation fails

 Transactional memory

Eliminate frequent conflicts

PART II:
INTRODUCTION TO
CONCURRENT REVISIONS

Targeted Application Scenario

Shared Data and Parallel Tasks

• Shared state is
read/mutated by
many tasks.

• Both inter- and
intra-task
parallelism.

• Challenge:
Tasks exhibit
frequent conflicts.

Shared Data

Mutator

Mutator
Mutator

Reader

Reader

R R R R
Reader

3 Examples of this Pattern:

Office Browser Game

World

Autosave

Net-
work

Render

Control

Parallel
Physics

R R R R
Sound

Document

Paginate

Compute
Formulas

User Edit

Display

Parallel
Spellcheck

R R R R
Save

DOM

Render

Java-
script

Animation

Save

Parallel
Layout

R R R R
User

World

Autosave

Net-
work

Render

Control

Parallel
Physics

R R R R
Sound

SpaceWars Game

Shared
State

Parallel Collision Detection Parallel Collision Detection Parallel Collision Detection

Network Connection

Play
Sounds

Render
Screen

Process
Inputs Autosave

Send

Receive

Disk
Key-
board

Simulate
Physics

Sequential Game Loop:

Can you parallelize this loop?

Reads and writes all positions

Reads all positions

Writes some positions

Conflicts on object
Coordinates:

Writes some positions

Reads all positions

Fundamental Insights

• Intra-loop RW conflicts can be eliminated:
Tasks do not need most recent version of state.
What they need is a snapshot of the state, taken
at the beginning of each iteration.

• Intra-loop WW conflicts can be eliminated:
All we need to do is get the priority right
(network task trumps conflict detection task
trumps physics task)

• How to express this intent?
Not equivalent to any sequential execution of the
tasks.

Concurrent Revisions Model

• fork and join revisions
(lines with arrow at end)

• Revisions are isolated

 fork copies all state

 join replays updates along
the arrow at the tip of the
arrow

• Use named operations
(add/set) instead of basic
assignment

fork

fork

x.Set(2)

x.Add(3)

join

join

0
1
1

1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1

2
2
2
2

2
2

2
2
2

5
5

1
1
1

1

4
4
4
4
4
4

4
4

x.Set(1)

Revision Diagrams vs. Task Dags

• Different look

 Rounded corners

 No boxes for fork, join

 Arrow tip only at end of revision

• Less general

 ONLY asymmetric fork, join

 no symmetric parallel

Side-By-Side Example

var t1,t2;

t1 = fork {
 A(),
 {
 B();
 t2 = fork {
 C();
 }
 D();
 }
}
join t1;
E();
join t2;

A

B

C

D

E

B

C

D

A

E

Understanding Concurrent Revisions

• Fork copies the
current state.

• Join replays
updates at the tip
of arrow.

•

A equals 0
A = 1

A = 2
B = 2

A equals 1
B equals 2

var A : integer

• State determined
by sequence of
updates along
path from root

A equals 0
A = 1

A = 2
B = 2

A equals 1
B equals 2

No updates along
path
-> sees initial
state

• State determined
by sequence of
updates along
path from root

• Join replays
updates at the tip
of arrow.

A equals 0
A = 1

A = 2
B = 2

A equals 1
B equals 2

A = 2
B = 2

A = 1

• State determined
by sequence of
updates along
path from root

• Updates are now
collection
operations

• Join replays
updates at the tip
of arrow.

S equals {}
S.insert(2)

S.insert(1)

S equals {1,2}

S.insert(1)

S.insert(2)

Can Support Collection Types
var S :
set<integer>

• State determined by
result of user-
defined merge
function

• For example

• merge(cur, join, orig)

• = cur + (join - orig)

• Performs additive
accumulation

x equals 0
x = 2

x = 1

S equals 3

merge(0, 1, 0)-> 1

merge(1, 2, 0)-> 3

Can Support Custom Merge Functions

var x : integer

Applying this idea

• So now, can we express the intended
parallelization of the SpaceWars Loop?

 Intra-loop RW conflicts can be eliminated:
Tasks do not need most recent version of state.
What they need is a snapshot of the state, taken
at the beginning of each iteration.

 Intra-loop WW conflicts can be eliminated:
All we need to do is get the priority right (network
task trumps conflict detection task trumps physics
task)

Revision Diagram of Parallelized Game Loop

R
e

n
d

e
r

P
h

ys
ic

s

n
et

w
o

rk

au
to

sa
ve

(l

o
n

g
ru

n
n

in
g)

C
o

lli
si

o
n

 D
et

e
ct

io
n

p
ar

t
4

p
ar

t
3

p
ar

t
2

p
ar

t
1

Eliminated Read-Write Conflicts

R
e

n
d

e
r

P
h

ys
ic

s

n
et

w
o

rk

au
to

sa
ve

(l

o
n

g
ru

n
n

in
g)

C
o

lli
si

o
n

 D
et

e
ct

io
n

p
ar

t
4

p
ar

t
3

p
ar

t
2

p
ar

t
1

All tasks see stable snapshot

Eliminated Write-Write Conflicts

R
e

n
d

e
r

P
h

ys
ic

s

n
et

w
o

rk

au
to

sa
ve

(l

o
n

g
ru

n
n

in
g)

C
o

lli
si

o
n

 D
et

e
ct

io
n

p
ar

t
4

p
ar

t
3

p
ar

t
2

p
ar

t
1

Network after CD after Physics

 Autosave now perfectly unnoticeable in background

 Overall Speed-Up: 3.03x on four-core
(almost completely limited by graphics card)

Results Physics task Render

Collision detection

Overhead:
How much does all the copying and the indirection cost?

Only a 5% slowdown in
the sequential case Some individual tasks

slow down much more
(i.e. physics simulation)

PART III: A LOOK AT CODE

The C# library & IL rewriter

• We have seen the programming model

 versioned data

 fork/join of revisions

• But what does it concretely look like?

 Let’s see some code.

Or do it yourself: visit http://rise4fun.com and play

Version Data

[Versioned] int z;
[Versioned] string s = "abc";

[Versioned, MergeWith(“AdditiveMerge”)]
int i = 0;

static int AdditiveMerge(int current,
 int join,
 int original) {
 // add the values of the current and joined revision,
 // and subtract the original (or we would count it twice)
 return current + join - original;
}

Using Simple Fork/Join

[Versioned] int x = 0;

RevisionTask t = CurrentRevision.Fork(() =>
 {
 x = 2;
 });

X = 1;

CurrentRevision.Join(t);

Console.WriteLine(“x = " + x); // writes 2

x = 0

x = 1

x = 2

t

CurrentRevision

Ordering Joins

 RevisionTask a = CurrentRevision.Fork(() =>
 {
 x = 1;
 });
 RevisionTask b = CurrentRevision.Fork(() =>
 {
 x = 2;
 });

 CurrentRevision.Join(b);
 CurrentRevision.Join(a);

 Console.WriteLine(“x = " + x); // writes 1

Abandoning Revisions

 RevisionTask t = CurrentRevision.Fork(() =>
 {
 x = 2;
 });

 x = 1;

 CurrentRevision.Abandon(t);

 Console.WriteLine(“x = " + x); // writes 1

x = 1

x = 2

t

• We can abandon a revision (instead of join)
 Discards the version once task completes
 Is not a cancellation: task still runs to completion

Example: Background Save

• If a task does only read from shared state, we
can abandon it to avoid blocking on a join

• Example: background save operation

 never blocks application

 snapshot survives as long as it needs to

RevisionTask backgroundsave =
 CurrentRevision.Fork(() => { SaveStateToFile(); });

// don’t wait for task… let it finish on its own time
CurrentRevision.Abandon(backgroundsave);

PART IV: FORMALIZATION &
DETERMINACY

ADVANCED SECTION – BONUS MATERIAL

Formal Semantics

• See paper in [ESOP 2011]

• Similar to the AME calculus by Abadi et al.

• Proof of determinism

• Formal correspondence to the Revision
Diagrams

• Proof of the semi-lattice property

• Can be shown to generalize ‘snapshot isolation’

Syntax

State

State
Map from revision identifiers to revision state

(no global shared state!)

“current program”
(expression for func. lang.,

pc+stack for imp. lang)

Snapshot of store
Contains original value of all

locations

Writes performed
Contains current value of all
locations that were modified

State CumulativeInt x = 0;

x+=3

x+=1
x+=2

{ m->({}, {}, m0) }
{ m->({}, {x->0}, m1) }
{ m->({}, {x->0}, m2), a->({x->0}, {}, a0) }
{ m->({}, {x->0}, m2), a->({x->0}, {x->3}, a1) }
{ m->({}, {x->0}, m2), a->({x->0}, {x->3}, a2), b->({x->3}, {}, b0) }
{ m->({}, {x->0}, m2), a->({x->0}, {x->4}, a3), b->({x->3}, {}, b0) }
{ m->({}, {x->0}, m2), a->({x->0}, {x->4}, a3), b->({x->3}, {x->5}, b1) }
{ m->({}, {x->4}, m3), b->({x->3}, {x->5}, b1) }
{ m->({}, {x->6}, m4) }

m0

m1

m2

m4

m3

a0

a1

a2

a3
b0

b1

Execution Contexts • An expression
matches at most one
redex

Expressions
Redexes

Operational Semantics

Local Operations w/o side effects

For some revision r, with

snapshot σ and local

modifications τ

Local Operations w/ side effects

Read current
state σ :: τ

meaning the
changes τ
applied

snapshot σ

Pick a fresh
location

identifier

Update
changeset τ

Fork and Join On a fork, the
snapshot of the new

revision r’ is the

current state: σ :: τ

On a join, the writes of the
joinee r’ take priority over
the writes of the current

revision: σ :: τ’

Trying to join a unknown revision
identifier (i.e. revision has already
been joined) transitions the whole

system into a special error state

Determinacy

• Execution is determinate! That is, the final
state of program execution does not depend
on any scheduling decisions.

• With two caveats:
 States could differ in identifiers used for revisions

and locations. We say s ≈ s’ if states s, s’ are
equivalent in this sense.

 It is possible for some executions to diverge while
others don’t.

Proving Determinacy (1/3)

• First: if we fix a particular revision r to take a
step, the outcome is determinate

• Because the expression representing the
program can evaluate in at most one way

 An expression matches at most one redex

 Each redex matches a unique operational rule

Proving Determinacy (2/3)

• Local Confluence: if two different revisions take a
step, they both can take (zero or one) additional
step to get to an equivalent state

• Reason: steps by different revisions do commute
because they either
 Do not influence each other

 Are mutually exclusive (two revisions trying to join the
same revision) thus triggering a transition to the error
state.

