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Task Programming Model 

• Program expresses task dag (directed acyclic graph) 

• Runtime dynamically schedules task dag onto 
multiprocessor 

• Commonly used paradigm 
(CILK, Intel TBB, java.util.concurrent, Microsoft TPL, …) 

• Abstracts machine details 
(sync primitives, number of processors) 

• Often dynamic 
(graph generation and scheduling are interwoven) 

 



Expressing parallelism 

• Example: 

 

 

Can parallelize loop iterations and/or loop body. 

 

 

 

 

What does it mean, exactly?  

for (i = 0; i < n; i++) 
{ 
   work1(i); 
   work2(i); 
} 

parallel for  
 (i = 0; i < n; i++) 
{ 
   work1(i); 
   work2(i); 
} 

for  
 (i = 0; i < n; i++) 
{ 
   parallel { work1(i), work2(i) } 
} 



for  
 (i = 0; i < n; i++) 
{ 
  Parallel.Invoke(  
     () => { work1(i); }, 
     () => { work2(i); } 
  }); 
} 

Parallel.For(0, n, i =>  
{ 
   work1(i); 
   work2(i); 
}) 

parallel for  
 (i = 0; i < n; i++) 
{ 
   work1(i); 
   work2(i); 
} 

for  
 (i = 0; i < n; i++) 
{ 
   parallel { work1(i), work2(i) } 
} 

Comparison with TPL syntax 



Task graphs 

parallel for  
 (i = 0; i < n; i++) 
{ 
   work1(i); 
   work2(i); 
} 

for (i = 0; i < n; i++) 
{ 
   parallel { work1(i), work2(i) } 
} 

work1(0) 

work2(0) 

work1(n-1) work1(1) 

work2(1) 
… 

work2(n-1) 

work1(0) work2(0) 

work1(n-1) 

work1(1) work2(1) 

work2(n-1) 

… 



What do we mean by task graphs? 

• Vertices 
 Represent tasks or  

synchronization 

• Directed Edges 
 Represent scheduling  

constraints 

• No cycles 
 Thus, directed acyclic graph (dag) 

 

Task graphs (a.k.a task dags) are an excellent 
visualization for understanding parallelism. 

 

A 

B 

C 
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The meaning of edges 

• An edge  v -> w means 
“task v must complete before task w starts” 

 

• Is a transitive property! 
(a before b) and (b before c) implies 
 (a  before c) 

 

• We omit edges that are implied by transitivity 
(take the “transitive reduction”) 



Examples 

parallel for  
 (i = 0; i < n; i++) 
{ 
   work1(i); 
   work2(i); 
} 

for  
 (i = 0; i < n; i++) 
{ 
   parallel { work1(i), work2(i) } 
} 

work1(0) 

work2(0) 

work1(n-1) work1(1) 

work2(1) 
… 

work2(n-1) 

work1(0) work2(0) 

work1(n-1) 

work1(1) work2(1) 

work2(n-1) 

… 



Executing Task Dags 

• On a  single processor: serial schedules 

A 

B 

C 

E D 

F 

Many schedules possible: 
ABCDEF, ABCEDF, ACBDEF, ACBEDF, 
ACDBEF, ACEBDF, ACDEBF, ACDEBF, 
ACEDBF, …, CADEB, CAEDB, … CDEABF, 
CEDABF 
 
 

• All schedules have same 
execution time: 

• T1(G) = A + B + C + D + E + F 



Parallel Schedules 

• Suppose we have an 
idealized parallel 
processor (infinite 
number of processors, no 
synchronization overhead) 

• How long does it take to 
execute this task dag? 

A 

B 

C 

E D 

F 



Parallel Schedules 
• Each task can start as 

soon as all previous tasks 
complete 

• Execution time = critical 
path = time of longest 
path through the graph 

 

• T∞(G) = max { 
 A + B, C + max {D, E} 
} + F 

 

 

A 

B 

C 

E D 

F 



Work and Span 

• We call the serial execution time T1(G) the work 
of G. 
 
T1(G) = ∑ { T(v) | v in G }  

 

• We call the ideal parallel execution time T∞(G) 
the span of G: 
 
T ∞(G) = max { T1(p) | p maximal path of G }  

 

 



Speedup 

• Divide work by span: 

 

• What does the ratio   T∞(G) / T1(G)   mean? 

 

• It’s how much we can improve the execution 
time by parallel execution! We call this par(G), 
parallelism of G. 

 

• It’s an upper bound on the possible speedup. 



Example 
• Work T1(G) is 4. 

• Span T∞(G) is 3. 

• Parallelism par(G) is 4/3 

 

• Speed improvement from 
parallelism is never more 
than 33% 

 

• Clear from picture: Using 
more than 2 processors 
has no benefits. 

1 

1 

1 

1 



Special case: Amdahl’s law 
• Don’t remember formula? No problem, can 

derive it instantly. 
• p : parallel fraction of program 

• 1-p : sequential fraction of program 

• n : number of processors 

p/n 

1-p 

p/n p/n … 

• Work is 1 

• Span is (1-p) + p/n 

• Parallelism is work/span 
  1 
  (1-p) + p/n 



Execution time on n processors 

• Define Tn(G) to be the best possible execution 
time on n processors  
(that is, the smallest time we can achieve for 
any schedule of G on n processors) 

 

• Clearly, we can give bounds 

 T∞(G)   ≤  Tn(G)  ≤  T1(G) 

 

 

 



FYI: How hard to find best schedule? 

Finding the best schedule is hard 

• Computing Tn(G) is NP-complete for n>2 
[Gary, Johnson 1979] 

 

Finding a reasonably good schedule is easy 

• [Brent’s Theorem] for any dag G, 

 Tn(G)   ≤   T1(G)/n  +  T∞(G)  

•  
[Blumofe/Leiserson 1999]: 
Any greedy schedule achieves this bound. 
 

 



Series-Parallel Task Dags 

• We can build many task dags using just parallel 
and serial composition. 

 

• These dags are called ‘series-parallel’ 

 

• If our programs express parallelism using only the 
following constructs, the dags are always series-
parallel: 
 parallel { }   

 parallel for  

 



Given two task dags G, H, build 
serial composition (G ; H) by 

 
 connecting all sinks of G to all 

sources 

 

 To use fewer edges, we can 
construct 
 (G; v; H)  
where v is an extra 
synchronization vertex 
(with T(v) = 0)  

 

 
 

Serial Composition of Task Dags 

sink 

source 

sink 
sink 

source 

sink 

source 

sink 
sink 

source 

v 

G 

H 

G 

H 



Given two task dags G, H, build 
parallel composition (G ll H) by 

 

 Building disjoint union of G, H 

 

 Or, to keep dag connected, we 
can construct 
 (s ; ( G ll H ) ; e)  
where s,e are extra 
synchronization vertices  
(with T(s) = T(e) = 0)  

 

 
 

Parallel Composition of Task Dags 

s 

e 

G H 

G H 

source source 

sink 
sink 

source source 

sink 
sink 



Examples 

parallel for  
 (i = 0; i < n; i++) 
{ 
   work1(i); 
   work2(i); 
} 

for  
 (i = 0; i < n; i++) 
{ 
   parallel { work1(i), work2(i) } 
} 

work1(0) 

work2(0) 

work1(n-1) work1(1) 

work2(1) 
… 

work2(n-1) 

work1(0) work2(0) 

work1(n-1) 

work1(1) work2(1) 

work2(n-1) 

… 



More ways to express parallelism 

• Can use fork, join primitives to explicitly 
create parallel tasks 

var t; 
 
t = fork { 
   A(); 
} 
 
B(); 
 
join t; 
 
C(); 



More ways to express parallelism 

• Can use fork, join primitives to explicitly 
create parallel tasks 

var t; 
 
t = fork { 
   A(); 
} 
 
B(); 
 
join t; 
 
C(); 

Starts a task that 
executes the block 
in curly braces; 
stores a handle to 
it in t 

Waits for t to finish 
before continuing 

A 

C 

B 



Comparison to TPL syntax 

 
Task t; 
 
t = fork { 
   A(); 
} 
 
B(); 
 
join t; 
 

 
Task t; 
 
t = Task.Factory.StartNew(() =>  
    { 
       A(); 
    }); 
 
B(); 
 
t.Wait(); 
 

Our join is more restricted than wait…  
Must be called exactly once. 



Can express parallel using fork,join 

 

 

 

 

 

 

 

 

• Can we do the opposite, i.e. express fork,join 
using parallel? 

 
function 
myparallelinvoke(f, g) 
{ 
   var t = fork { 
      f(); 
   } 
   g(); 
   join t; 
} 

 
function myparallelfor(a, b, f) 
{ 
   var t = new Task[n]; 
 
   for (int i = a; i < b; i++) 
      t[i] = fork { f(i); } 
 
   for (int i = a; i < b; i++) 
      join t[i]; 
} 



Not all dags are series-parallel 
• For example, we can use asymmetric fork and 

join to create task graphs like this 

var t; 
 
parallel 
{ 
   A(), 
   { 
     B(); 
     t = fork { 
      C(); 
     } 
     D(); 
   } 
} 
E(); 
join t; 

A 

B 

C 

D 

E 



Not all dags are series-parallel 
• For example, we can use asymmetric fork and 

join to create task graphs like this 

var t; 
 
parallel 
{ 
   A(), 
   { 
     B(); 
     t = fork { 
      C(); 
     } 
     D(); 
   } 
} 
E(); 
join t; 

A 

B 

C 

D 

E 



So, what does all this 
mean for how we 
should write parallel 
programs? 



Thus, for fastest execution… 

• Make everything as parallel as possible. 

 

 

 

 

 
• Unfortunately, very few programs are fully 

parallel (“embarassingly parallel” or 
“pleasantly parallel”) 

• Because tasks usually exhibit dependencies 
and conflicts! 

… 
E 

D 

GOOD BAD 



Parallelism Blockers 

• Conflicts 
 Two tasks A, B access the same data, and one (or 

both) modify it 

 (If both tasks are only reading, we don’t call it a 
conflict) 

 Two tasks that don’t have conflicts can run in 
parallel 

• Dependence (a type of conflict) 
 A conflict as above, where A writes some result and 

B reads that result 

 



Terminology: Conflict vs. Data Race 

• All data races are conflicts. 

• Not all conflicts are data races. 

parallel 
{  
  x = 1,  
  x = 2 
} 

parallel 
{  
  lock (l) { x = 1 }, 
  lock (l) { x = 2 } 
}   

• Has conflict. 

• Has data race. 

• Has conflict. 

• does NOT have 
data race. 



Hazards 

• Sequential execution is not equivalent to 
parallel execution if there are hazards. 

RAW hazard 
(read after write) 
 
a.k.a. 
data dependency 

WAR hazard 
(write after read) 
 
a.k.a. 
Anti-dependency 

WAW hazard 
(write after write) 
 

{ 
    x = work1(); 
    work2(x); 
} 

{ 
    work1(x); 
    x = work2(); 
} 

{ 
    x = work1(); 
    x = work2(); 
} 



Hazards 

• Hazards in sequential composition correspond 
to conflicts in parallel composition. 

• Conflict = concurrent tasks access shared data, 
and at least one of them modifies it. 

parallel 
{ x = work1(), 
    y = work2(x) } 

parallel 
{ work1(x), 
    x = work2() } 

Write-write conflict Read-Write conflict Read-Write conflict 

{ 
    x = work1(); 
    work2(x); 
} 

{ 
    work1(x); 
    x = work2(); 
} 

{ 
    x = work1(); 
    x = work2(); 
} 

parallel 
{ x = work1(), 
    x = work2() } 



Why are conflicts bad? 

• Nondeterminism 

 The order of the accesses affects the outcome 

• Data Consistency 

 Many typical data representations (e.g. linked list) 
are not safe unless carefully crafted (see M.H.) or 
protected by locks 

• Performance 

 Cache coherence: Conflicts cause cache misses 
(shared memory is not actually shared) 

 

 



Why are conflicts bad? 

• Nondeterminism 

• Data Consistency 

• Performance 

 

 Essential insight:  
 
Eliminate frequent conflicts. 
Make rare conflicts safe. 



Some conflicts are superfluous. 

• WAR and WAW can usually be eliminated. 

 

 

 

• Because they are not true dependencies 
but a matter of reading/writing correct 
versions 

• work2 can proceed without work1’s result if 
• It does not interfere with work1’s input (RAW) 

• It ensures to overwrite work1’s output (WAW) 

{ 
    work1(x); 
    x = work2(); 
} 

{ 
    x = work1(); 
    x = work2(); 
} 



Some conflicts are superfluous. 

• For example, we can eliminate the following 
WAR / WAW hazards (privatization). 

 

 

 

 

 

• Trick: copying / renaming 

 Register renaming extremely effective in 
hardware: Tomasulo’s algorithm 

var x; 
 
for (i=0; i<n; i++) 
{ 
    x = work1(); 
    work2(x); 
} 

var x; 
 
var xx[n]; 
parallel for (i=0; i<n; i++) 
{  
   var xx[i] = work1(); 
   work2(xx[i]); 
} 
x = xx[n-1]; 



The Art of Task-Parallel Programming 

• Identify tasks to run in parallel 

 Make tasks large enough 

 Make tasks small enough 

 Make tasks parallel enough 
 

• Carefully consider conflicts 

 Eliminate or reduce conflicts 

• Tricks of the trade 

 Make remaining conflicts safe 

• Concurrency control 

 



The Art of Task-Parallel Programming 

• Identify tasks to run in parallel 

 Make tasks large enough 

 Make tasks small enough 

 Make tasks parallel enough 
 

• Carefully consider conflicts 

 Eliminate or reduce conflicts 

• Tricks of the trade 

 Make remaining conflicts safe 

• Concurrency control 

 

QUANTITATIVE 
CRITERIA 
depend on 

characteristics of 
workload and 

machine 

QUALITATIVE 
CRITERIA 

Do not depend on 
machine or workload 

 



Make tasks small enough 

• total execution time >= time for longest task 

Make tasks parallel enough 

• total execution time >= time along critical path 
 
(= path from source to sink whose sum of task 
times is maximal) 



Make tasks large enough 

• Danger: 

 Processors are very fast at sequential execution. 

 Processors are slow at scheduling/starting/ending 
tasks. 

 Unless a task contains a significant amount of 
work, it is not worth to try parallel execution! 

• Usually not a problem when using parallel for  
and lots of iterations 

 Smart implementation of parallel for chunks 
iterations automatically and dynamically 

 



Example: Histogram Computation 

• Suppose f is a function with range 0..7 

• We want to count how many times each 
number in 0..7 is produced when calling f on 
0…n-1  

• We assume n large enough to make 
parallelism worthwhile  (e.g. n = 1000000) 

a = new int[8]; 
for (i = 0; i < n; i++) 
{ 
   a[f(i)]++; 
} 



Simple but incorrect solution 

• Does not count correctly because ++ is not 
atomic 

a = new int[8]; 
parallel for (i = 0; i < n; i++) 
{ 
   a[f(i)]++; 
} 



Correct but slow solution 

• Atomic increment is typically a bit faster than 
lock/unlock. 

• Both solutions are correct, but overall 
performance is quite bad (worse than sequential) 

a = new int[8]; 
l = new lock[8]; 
parallel for  
   (i = 0; i < n; i++) 
{ 
   var r = f(i); 
   lock( l[r] ) 
      { a[r]++; } 
} 

a = new int[8]; 
parallel for  
   (i = 0; i < n; i++) 
{ 
   var r = f(i); 
   atomic-increment(&(a[r])); 
} 



A better solution 

• We have eliminated the conflicts. 

• Worse in theory (task dag),  
but much better in practice 

a = new int[N][8]; // N: number of processors 
 
// partition by processor 
parallel for (p = 0; p < N; p++) 
   for (i = 0; i < n/N; i++) 
   { 
       var r = f(p*N + i%N); 
       a[p][r]++;  
   } 
// combine histograms 
for (p = 1; p < N; p++) 
   for (j = 0; j < 8; j++)    
      a[0][j] += a[p][j] 
 
// final result at a[0] 

… … … … 

… 



The toolbox 

Make rare conflicts safe 

• Architectural Patterns 

 Producer-Consumer 

 Pipeline 

 Worklist 
 …. 

• Replication Patterns 

 Immutability 

 Double Buffering 

 Concurrent Revisions 

• pessimistic concurrency 
control 
coarse- or fine-grained 
locking 

• optimistic concurrency 
control 
speculate on absence of 
conflicts, roll back if 
speculation fails 

 Transactional memory 

Eliminate frequent conflicts 



PART II:  
INTRODUCTION TO 
CONCURRENT REVISIONS 



Targeted Application Scenario 

Shared Data and Parallel Tasks 

• Shared state is 
read/mutated by 
many tasks. 

• Both inter- and 
intra-task 
parallelism. 

• Challenge: 
Tasks exhibit 
frequent conflicts. 

 

 

 

Shared Data 

Mutator 

Mutator 
Mutator 

Reader 

Reader 

R R R R 
Reader 



3 Examples of this Pattern: 

Office             Browser          Game 

World 

Autosave 

Net- 
work 

Render 

Control 

Parallel 
Physics 

R R R R 
Sound 

Document 

Paginate 

Compute 
Formulas 

User Edit 

Display 

Parallel 
Spellcheck 

R R R R 
Save 

DOM 

Render 

Java- 
script 

Animation 

Save 

Parallel 
Layout 

R R R R 
User 



World 

Autosave 

Net- 
work 

Render 

Control 

Parallel 
Physics 

R R R R 
Sound 



SpaceWars Game 

Shared 
State 

Parallel Collision Detection Parallel Collision Detection Parallel Collision Detection 

Network Connection  

Play 
Sounds 

Render 
Screen 

Process 
Inputs Autosave 

Send 

Receive 

Disk 
Key- 
board 

Simulate 
Physics 

Sequential Game Loop: 



Can you parallelize this loop? 

Reads and writes all positions 

Reads all positions 

Writes some positions 

Conflicts on object 
Coordinates: 

Writes some positions 

Reads all positions 



Fundamental Insights 

• Intra-loop RW conflicts can be eliminated: 
Tasks do not need most recent version of state. 
What they need is a snapshot of the state, taken 
at the beginning of each iteration. 

• Intra-loop WW conflicts can be eliminated: 
All we need to do is get the priority right 
(network task trumps conflict detection task 
trumps physics task) 

• How to express this intent? 
Not equivalent to any sequential execution of the 
tasks. 



Concurrent Revisions Model 

• fork and join revisions 
(lines with arrow at end) 

• Revisions are isolated 

 fork copies all state 

 join replays updates along 
the arrow at the tip of the 
arrow 

• Use named operations 
(add/set) instead of basic 
assignment 

 

fork 

fork 

x.Set(2) 

x.Add(3) 

join 

join 

0 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 

2 
2 
2 
2 

2 
2 

2 
2 
2 

5 
5 

1 
1 
1 

1 

4 
4 
4 
4 
4 
4 

4 
4 

x.Set(1) 



Revision Diagrams vs. Task Dags 

• Different look 

 Rounded corners 

 No boxes for fork, join  

 Arrow tip only at end of revision 

• Less general 

 ONLY asymmetric fork, join  

 no symmetric parallel 

 



Side-By-Side Example 

var t1,t2; 
 
t1 = fork { 
   A(), 
   { 
     B(); 
     t2 = fork { 
      C(); 
     } 
     D(); 
   } 
} 
join t1; 
E(); 
join t2; 

A 

B 

C 

D 

E 

B 

C 

D 

A 

E 



Understanding Concurrent Revisions 

• Fork copies the 
current state. 

 

• Join replays 
updates at the tip 
of arrow. 

•  
 

 

A equals 0 
A = 1 

A = 2 
B = 2 

A equals 1 
B equals 2 

var A : integer 



• State determined 
by sequence of 
updates along 
path from root 

 
 

 

A equals 0 
A = 1 

A = 2 
B = 2 

A equals 1 
B equals 2 

No updates along 
path 
-> sees initial 
state 



• State determined 
by sequence of 
updates along 
path from root 

• Join replays 
updates at the tip 
of arrow. 

A equals 0 
A = 1 

A = 2 
B = 2 

A equals 1 
B equals 2 

A = 2 
B = 2 
 

A = 1 



• State determined 
by sequence of 
updates along 
path from root 

• Updates are now 
collection 
operations 

• Join replays 
updates at the tip 
of arrow. 

S equals {} 
S.insert(2) 

S.insert(1) 

S equals {1,2} 

S.insert(1) 
 
 

S.insert(2) 

Can Support Collection Types 
var S :  
set<integer> 



• State determined by 
result of user-
defined merge 
function 

 

• For example 

• merge(cur, join, orig) 

•  = cur + (join - orig) 

• Performs additive 
accumulation 

x equals 0 
x = 2 

x = 1 

S equals 3 

merge(0, 1, 0)-> 1 
 
merge(1, 2, 0)-> 3 

Can Support Custom Merge Functions 

var x : integer 



Applying this idea 

• So now, can we express the intended 
parallelization of the SpaceWars Loop? 

 

 Intra-loop RW conflicts can be eliminated: 
Tasks do not need most recent version of state. 
What they need is a snapshot of the state, taken 
at the beginning of each iteration. 

 Intra-loop WW conflicts can be eliminated: 
All we need to do is get the priority right (network 
task trumps conflict detection task trumps physics 
task) 

 



Revision Diagram of Parallelized Game Loop 
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Eliminated Read-Write Conflicts 
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All tasks see stable snapshot 



Eliminated Write-Write Conflicts 
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Network after CD after Physics 



 Autosave now perfectly unnoticeable in background 

 Overall Speed-Up: 3.03x on four-core  
(almost completely limited by graphics card) 

 

Results Physics task Render 

Collision detection 



Overhead: 
How much does all the copying and the indirection cost? 

Only a 5% slowdown in 
the sequential case Some individual tasks 

slow down much more 
(i.e. physics simulation) 



PART III: A LOOK AT CODE 



The C# library & IL rewriter 

• We have seen the programming model 

 versioned data 

 fork/join of revisions 
 

• But what does it concretely look like? 

 Let’s see some code. 
 

Or do it yourself: visit http://rise4fun.com and play  



Version Data 

[Versioned] int z; 
[Versioned] string s = "abc"; 
 
[Versioned, MergeWith(“AdditiveMerge”)] 
int i = 0;   
 
static int AdditiveMerge(int current,  
                         int join,  
                         int original)  {   
  // add the values of the current and joined revision,  
  // and subtract the original (or we would count it twice) 
  return current + join - original;   
} 



Using Simple Fork/Join 
 
[Versioned] int x = 0; 

 

 

RevisionTask t = CurrentRevision.Fork(() => 
                 {  
                    x = 2;  
                 }); 

X = 1; 

 

CurrentRevision.Join(t); 

 

Console.WriteLine(“x = " + x ); // writes 2 

x = 0 

x = 1 

x = 2 

t 

CurrentRevision 



Ordering Joins 

  RevisionTask a = CurrentRevision.Fork(() => 
                   { 
                       x = 1; 
                   }); 
  RevisionTask b = CurrentRevision.Fork(() => 
                   { 
                       x = 2; 
                   }); 
 
  CurrentRevision.Join(b); 
  CurrentRevision.Join(a); 
 

  Console.WriteLine(“x = " + x ); // writes 1 



Abandoning Revisions 

 

  RevisionTask t = CurrentRevision.Fork(() => 
                   {  
                      x = 2;  
                   }); 

  x = 1; 

 

  CurrentRevision.Abandon(t); 

 

  Console.WriteLine(“x = " + x ); // writes 1 

 

x = 1 

x = 2 

t 

• We can abandon a revision (instead of join) 
 Discards the version once task completes 
 Is not a cancellation: task still runs to completion 



Example: Background Save 

• If a task does only read from shared state, we 
can abandon it to avoid blocking on a join 

• Example: background save operation 

 never blocks application 

 snapshot survives as long as it needs to 

RevisionTask backgroundsave = 
    CurrentRevision.Fork(() => { SaveStateToFile(); }); 
 
// don’t wait for task… let it finish on its own time 
CurrentRevision.Abandon(backgroundsave); 

 



PART IV: FORMALIZATION & 
DETERMINACY 

ADVANCED SECTION – BONUS MATERIAL 



Formal Semantics  
 

• See paper in [ESOP 2011] 

• Similar to the AME calculus by Abadi et al. 

• Proof of determinism 

• Formal correspondence to the Revision 
Diagrams 

• Proof of the semi-lattice property 

• Can be shown to generalize ‘snapshot isolation’ 



Syntax 



State 



State 
Map from revision identifiers to revision state 

(no global shared state!) 

“current program” 
(expression for func. lang., 

pc+stack for imp. lang) 

Snapshot of store 
Contains original value of all 

locations 

Writes performed 
Contains current value of all 
locations that were modified 



State CumulativeInt x = 0; 

x+=3 

x+=1 
x+=2 

{ m->({}, {}, m0) } 
{ m->({}, {x->0}, m1) } 
{ m->({}, {x->0}, m2),    a->({x->0}, {}, a0)  } 
{ m->({}, {x->0}, m2),    a->({x->0}, {x->3}, a1)  } 
{ m->({}, {x->0}, m2),    a->({x->0}, {x->3}, a2),    b->({x->3}, {}, b0)  } 
{ m->({}, {x->0}, m2),    a->({x->0}, {x->4}, a3),    b->({x->3}, {}, b0)  } 
{ m->({}, {x->0}, m2),    a->({x->0}, {x->4}, a3),    b->({x->3}, {x->5}, b1)  } 
{ m->({}, {x->4}, m3),                                                b->({x->3}, {x->5}, b1)  } 
{ m->({}, {x->6}, m4)  } 
 
 
 

m0 

m1 

m2 

m4 

m3 

a0 

a1 

a2 

a3 
b0 

b1 



Execution Contexts • An expression 
matches at most one 
redex 

Expressions 
Redexes 



Operational Semantics 



Local Operations w/o side effects 

For some revision r, with 

snapshot σ and local 

modifications τ 



Local Operations w/ side effects 

Read current 
state σ :: τ  

meaning the 
changes τ 
applied 

snapshot σ 

Pick a fresh 
location 

identifier 

Update 
changeset τ  



Fork and Join On a fork, the 
snapshot of the new 

revision r’ is the 

current state: σ :: τ 

On a join, the writes of the 
joinee r’ take priority over 
the writes of  the current 

revision: σ :: τ’ 

Trying to join a unknown revision 
identifier (i.e. revision has already 
been joined) transitions the whole 

system into a special error state 



Determinacy 

• Execution is determinate! That is, the final 
state of program execution does not depend 
on any scheduling decisions. 

 

 

• With two caveats: 
 States could differ in identifiers used for revisions 

and locations. We say s ≈ s’ if states s, s’ are 
equivalent in this sense. 

 It is possible for some executions to diverge while 
others don’t. 



Proving Determinacy (1/3) 

• First: if we fix a particular revision r to take a 
step, the outcome is determinate 

 

 

• Because the expression representing the 
program can evaluate in at most one way 

 An expression matches at most one redex 

 Each redex matches a unique operational rule 



Proving Determinacy (2/3) 

• Local Confluence: if two different revisions take a 
step, they both can take (zero or one) additional 
step to get to an equivalent state 

 

 

 

• Reason: steps by different revisions do commute 
because they either 
 Do not influence each other 

 Are mutually exclusive (two revisions trying to join the 
same revision) thus triggering a transition to the error 
state. 


