Concurrent Revisions

Lecture 1: From Tasks to Revisions

Sebastian Burckhardt

Microsoft Research

Joint work with Alexandro Baldassin, Daan Leijen
(see also our papers in OOPSLA 2010, ESOP 2011)

A\

X
A
A

%\/\ A\

X
X

%

Outline

* Parallel Programming With Tasks
= Task Dags and Scheduling
= Conflict Elimination
= Motivation: Game Example

e Concurrent Revisions

= Fork/Join and Revision Diagrams

* Semantics
= Syntax and Semantics
= Determinacy

Task Programming Model

* Program expresses task dag (directed acyclic graph)

* Runtime dynamically schedules task dag onto
multiprocessor

* Commonly used paradigm
(CILK, Intel TBB, java.util.concurrent, Microsoft TPL,)

* Abstracts machine details
(sync primitives, number of processors)

Often dynamic
(graph generation and scheduling are interwoven)

* Example:

Can parallelize

Expressing parallelism

for (1 = 0; i < n; i++)

workl(i);
work2(i);

parallel for
(1 =0; i< n; i++)
{
workl(i);
work2(i);

}

oop iterations and/or loop body.

for
(1 =0; 1< n; i++)

{
parallel { workl(i), work2(i) }
}

What does it mean, exactly?

Comparison with TPL syntax

Parallel.For(®, n, i =>

{
workl(i);

work2(i);
})

parallel for
(1 =0; i< n; i++)
{
workl(i);
work2(i);

}

for
(1 =0; i< n; i++)
{
Parallel.Invoke(
() => { work1(i); },
() => { work2(i); }
})s
}

for
(1 =0; 1< n; i++)

{
parallel { workl(i), work2(i) }
}

Task graphs

for (1 = 0; 1 < n; i++)
parallel for {
(1 =0; i< n; i++) parallel { workl(i), work2(i) }

{ }

workl(i);

work2(i);
}

T

workl1(0) work2(0)

work1(@) | | work1(1) workl(n-1)
W W o0 0 W
work2(@) | | work2(1) work2(n-1)

/\
workl(n-1) work2(n-1)

work1l(1) | | work2(1)
\ /

What do we mean by task graphs?

* Vertices
\
= Represent tasks or /

synchronization

* Directed Edges B /\

= Represent scheduling D || E

constraints

* No cycles
= Thus, directed acyclic graph (dag)

F

Task graphs (a.k.a task dags) are an excellent
visualization for understanding parallelism.

The meaning of edges

* An edge v ->w means
“task v must complete before task w starts”

* |s a transitive property!
(a before b) and (b before c) implies
(a before c)

* We omit edges that are implied by transitivity
(take the “transitive reduction”)

Examples

for

parallel for {(i = 0; i < n; i++)
{(1 =05 1 <ny i) parallel { workl(i), work2(i) }
workl(i); }
work2(i);
}
e
workl1(0) work2(0)
Z///////;/\:::::\\\\\\\S work1l(1) | | work2(1)
work1(@) | | work1(1) workl(n-1)
v v v e -
work2(@) | | work2(1) work2(n-1) '

/\
workl(n-1) work2(n-1)

Executing Task Dags

* On a single processor: serial schedules

Many schedules possible:

ABCDEF, ABCEDF, ACBDEF, ACBEDF,
ACDBEF, ACEBDF, ACDEBF, ACDEBF,
ACEDBEF, ..., CADEB, CAEDB, ... CDEABF,

CEDABF

* All schedules have same
execution time:

* T,(G)=A+B+C+D+E+F

Parallel Schedules

* Suppose we have an
idealized parallel
processor (infinite
number of processors, no
synchronization overhead)

* How long does it take to
execute this task dag?

Parallel Schedules

* Each task can start as
soon as all previous tasks

complete

* Execution time = critical
path = time of longest
path through the graph

* T.(G) =max{
A + B, C+ max {D, E}
}+F

Work and Span

* We call the serial execution time T,(G) the work
of G.

T(G)=21{T(v) | vinG }

* We call the ideal parallel execution time T__(G)
the span of G:

T ..(G) =max{T,(p) | p maximal path of G }

Speedup

* Divide work by span:

- What does the ratio T.(G) / T,(G) mean?

* |t’s how much we can improve the execution
time by parallel execution! We call this par(G),
parallelism of G.

It’s an upper bound on the possible speedup.

Example

* Work T,(G) is 4.
! e Span T_(G) is 3.
* Parallelism par(G) is 4/3

* Speed improvement from

parallelism is never more
than 33%

* Clear from picture: Using
more than 2 processors
has no benefits.

Special case: Amdahl’s law

* Don’t remember formula? No problem, can

derive it instantly.
* p: parallel fraction of program
* 1-p : sequential fraction of program
* n:number of processors

= * Workis 1
* Spanis (1-p) + p/n
* Parallelism is work/span
p/n || p/n | ... | p/n 1

(1-p) + p/n

Execution time on n processors

* Define T_(G) to be the best possible execution

time on n processors
(that is, the smallest time we can achieve for

any schedule of G on n processors)

Clearly, we can give bounds
T.(G) = T,(G) = T,(G)

FYI: How hard to find best schedule?

Finding the best schedule is hard

* Computing T (G) is NP-complete for n>2
[Gary, Johnson 1979]

Finding a reasonably good schedule is easy
* [Brent’s Theorem] for any dag G,
T.(G) < Ty(G)/n + T_(G)

[Blumofe/Leiserson 1999]:
ny greedy schedule achieves this bound.

Series-Parallel Task Dags

* We can build many task dags using just parallel
and serial composition.

* These dags are called ‘series-parallel’

* |f our programs express parallelism using only the
following constructs, the dags are always series-
parallel:

= parallel { }

= parallel for

Serial Composition of Task Dags

Given two task dags G, H, build
serial composition (G ; H) by

= connecting all sinks of G to all
sources

= To use fewer edges, we can

construct ik ke 10 G
(G; v; H)

where v is an extra v
synchronization vertex H

(with T(v) = 0) source source

Parallel Composition of Task Dags

Given two task dags G, H, build
parallel composition (G Il H) by

= Building disjoint union of G, H O Q
G H

= Or, to keep dag connected, we

can construct 5
(s;(GIIH); e)

where s,e are extra Sateesource) (11 L o
synchronization vertices sink L sin

G

(with T(s) = T(e) = 0)

Examples

for

parallel for {(i = 0; i < n; i++)
{(1 =05 1 <ny i) parallel { workl(i), work2(i) }
workl(i); }
work2(i);
}
e
workl1(0) work2(0)
Z///////;/\:::::\\\\\\\S work1l(1) | | work2(1)
work1(@) | | work1(1) workl(n-1)
v v v e -
work2(@) | | work2(1) work2(n-1) '

/\
workl(n-1) work2(n-1)

More ways to express parallelism

* Can use fork, join primitives to explicitly
create parallel tasks

var t;

t = fork {
AQ);

BO);
join t;

C();

More ways to express parallelism

* Can use fork, join primitives to explicitly
create parallel tasks

Starts a task that
executes the block
in curly braces;
stores a handle to
itint B

B();

— Waits for t to finish
< join t;) ..
before continuing

C();

Comparison to TPL syntax

Task t;

t = fork {
AQ);

join t;

Task t;
t = Task.Factory.StartNew(() =>

{
AC);
})s

B();

t.Wait();

Our join is more restricted than wait...
Must be called exactly once.

Can express parallel using fork,join

function

myparallelinvoke(f, g)

{ function myparallelfor(a, b, f)
var t = fork { {
\ ()5 var t = new Task[n];
g(); for (int i = a; i < b; i++)

join t; t[i] = fork { f(i); }

for (int 1 = a; i < b; i++)
join t[i];

* Can we do the opposite, i.e. express fork,join
using parallel?

Not all dags are series-parallel

* For example, we can use asymmetric fork and
join to create task graphs like this

var t; \\\\\\\ﬁ
parallel B
{ \

AC), A
B(); D\

t = fork {
CO);

}
D();

Not all dags are series-parallel

* For example, we can use asymmetric fork and
join to create task graphs like this

var t; \\\\\\\ﬁ
parallel B
{ \

AC), A
B(); D\

t = fork {
CO);

}
D();

So, what does all this
mean for how we
should write parallel
programs?

Thus, for fastest execution...

* Make everything as parallel as possible.

EE
\%GOOD BAD \E\C

* Unfortunately, very few programs are fully
parallel (“embarassingly parallel” or
“pleasantly parallel”)

Because tasks usually exhibit dependencies
and conflicts!

Parallelism Blockers

* Conflicts

= Two tasks A, B access the same data, and one (or
both) modify it

= (If both tasks are only reading, we don’t call it a
conflict)

= Two tasks that don’t have conflicts can run in
parallel

* Dependence (a type of conflict)

= A conflict as above, where A writes some result and
B reads that result

* All data races are conflicts.

Terminology: Conflict vs. Data Race

 Not all conflicts are data races.

parallel * Has conflict.
~ * Has data race.
parallel * Has conflict.
lock (1) { x = 1} e does NOT have
lock (1) { x =2} data race.

Hazards

* Sequential execution is not equivalent to
parallel execution if there are hazards.

(read after write)

a.k.a.
data dependency

(write after read)

a.k.a.
Anti-dependency

{ { {
x = workl(); workl(x); X = workl();
work2(x); x = work2(); x = work2();
} } }
RAW hazard WAR hazard WAW hazard

(write after write)

Hazards

* Hazards in sequential composition correspond
to conflicts in parallel composition.

* Conflict = concurrent tasks access shared data,
and at least one of them modifies it.

{ { {
X = workl(); workl(x); X = workl();
work2(x); x = work2(); x = work2();
} } }
parallel parallel parallel
{ x = workl(), { workl(x), { x = workl(),
y = work2(x) } x = work2() } x = work2() }

Read-Write conflict

Read-Write conflict

Write-write conflict

Why are conflicts bad?

* Nondeterminism
= The order of the accesses affects the outcome

* Data Consistency

= Many typical data representations (e.g. linked list)
are not safe unless carefully crafted (see M.H.) or
protected by locks

* Performance

= Cache coherence: Conflicts cause cache misses
(shared memory is not actually shared)

Why are conflicts bad?

* Nondeterminism
* Data Consistency
* Performance

Essential insight:

Eliminate frequent conflicts.
Make rare conflicts safe.

Some conflicts are superfluous.

* WAR and WAW can usually be eliminated.

{ {
workl(x); x = workl1();
x = work2(); x = work2();

} }

* Because they are not true dependencies
but a matter of reading/writing correct

versions

e work?2 can proceed without work1’s result if

* |t does not interfere with work1’s input (RAW)
* |t ensures to overwrite work1’s output (WAW)

Some conflicts are superfluous.

* For example, we can eliminate the following
WAR / WAW hazards (privatization).

var X; var X,
for (1=0; i<n; i++) var xx[n];)) i
{ parallel for (i=0; i<n; i++)
X = workl(); { ,
work2(x) ; var xx[1].= workl();
work2(xx[i]);
})
X = xx[n-1]7;

* Trick: copying / renaming

= Register renaming extremely effective in
hardware: Tomasulo’s algorithm

The Art of Task-Parallel Programming

* |dentify tasks to run in parallel
= Make tasks large enough
= Make tasks small enough

= Make tasks parallel enough

* Carefully consider conflicts

= Eliminate or reduce conflicts
e Tricks of the trade

= Make remaining conflicts safe

* Concurrency control

The Art of Task-Parallel Programming

* |dentify tasks to run in parallel

= Ma
= Ma
= Ma

Ke tas
Ke tas

Ke tas

* Carefully consider conflicts

= Eliminate or reduce conflicts
e Tricks of the trade

= Make remaining conflicts safe

* Concurrency control

ks large enough

s small enough

ks parallel enough

QUANTITATIVE
CRITERIA
depend on

characteristics of
workload and
machine

QUALITATIVE
CRITERIA
Do not depend on
machine or workload

Make tasks small enough

 total execution time >= time for longest task

Make tasks parallel enough

 total execution time >= time along critical path

(= path from source to sink whose sum of task
times is maximal)

Make tasks large enough

* Danger:
" Processors are very fast at sequential execution.

= Processors are slow at scheduling/starting/ending
tasks.

= Unless a task contains a significant amount of
work, it is not worth to try parallel execution!
e Usually not a problem when using parallel for
and lots of iterations

= Smart implementation of parallel for chunks
iterations automatically and dynamically

Example: Histogram Computation

a = new int[8];
for (1 = 0; 1 < n; i++)

{
a[f(1)]++;
}

* Suppose fis a function with range 0..7

* We want to count how many times each

number in 0..7 is produced when calling f on
0...n-1

* We assume n large enough to make
parallelism worthwhile (e.g. n =1000000)

Simple but incorrect solution

a = new int[8];
parallel for (i = @; i < n; i++)
{
a[f(1)]++;
}

* Does not count correctly because ++ is not
atomic

Correct but slow solution

a = new int[8];
1 = new lock[8]; a = new int[8];
parallel for parallel for
(1 =0; i< n; i++) (1 =0; i< n; i++)
{ {
var r = f(i); var r = f(i);
lock(1[r]) atomic-increment(&(al[r]));
\ { alr]++; } }

* Atomic increment is typically a bit faster than
lock/unlock.

* Both solutions are correct, but overall
performance is quite bad (worse than sequential)

A better solution

a = new int[N][8]; // N: number of processors

// partition by processor
parallel for (p = @; p < N; p++)
for (1 = 0; 1 < n/N; i++)
{
var r = f(p*N + i%N);
a[pllr]++;
}
// combine histograms
for (p = 1; p < N; p++)
for (j = 0; j < 8; j++)
a[@][j] += a[pll]]

// final result at a[@]

* Worse in theory (task dag),
but much better in practice

* We have eliminated the conflicts.

D004

The toolbox

Eliminate frequent conflicts

Make rare conflicts safe

* Architectural Patterns
= Producer-Consumer
= Pipeline
= Worklist

* Replication Patterns
" Immutability

= Double Buffering

= Concurrent Revisions

pessimistic concurrency
control

coarse- or fine-grained
locking
optimistic concurrency
control

speculate on absence of
conflicts, roll back if
speculation fails

" Transactional memory

PART II:
INTRODUCTION TO
CONCURRENT REVISIONS

Targeted Application Scenario

Shared Data and Parallel Tasks

 Shared state is

Reader read/mutated by
many tasks.

Reader

 Both inter- and

intra-task
Shared Data .
parallelism.

* Challenge:

Reader

Tasks exhibit
Mutator

frequent conflicts.

3 Examples of this Pattern:

Office

Parallel .
Spellcheck
N -

Save

Document

Compute

User Edit
Formulas

Browser
Parallel

Layout Render
RiRIR{R

User

DOM

Save

Animation Java-
script

Parallel
Physics

Autosave

Control

FPS:-16 - ast: 1190

VECTOR TO DF’F’DNENT'

o

Parallel
) Autosave
Physics -

Sound

World

Render W

SpaceWars Game

Parallel Collision Detection Render

Screen

Play
Sounds

Process
Inputs

Key-
board

Receive Autosave

|

twork Connection Disk

Sequential Game Loop:

while (!done)

{

input. GetInput();
input.Processinput();
physics.UpdateWorld();

for (int i = 0; i (physics.numsplits; i++)

physics. CollisionCheck(i);
network.SendNetworkUpdates()
network HandleQueuedPackets(
if (frame % 100 = 0)
SaveGame();
ProcessGuiEvents();
screen. RenderFrameToScreen();
audio.PlaySounds();
frame++;

)

L]

i

Can you parallelize this loop?

while (!done)

{

input.Getlnput();
input.Processinput();

Conflicts on object
Coordinates:

physics.UpdateWorld();
for (int i = 0; i (physics.numsplits; i++)

- Reads and writes all positions

physics. CollisionCheck(i);
network.SendNetworkUpdates();

- Writes some positions

network.HandleQueuedPackets();
if (frame % 100 = 0)
SaveGame();

- Writes some positions

ProcessGuiEvents();

~ Reads all positions

screen.RenderFrameToScreen();
audio.PlaySounds();
frame++;

- Reads all positions

Fundamental Insights

* Intra-loop RW conflicts can be eliminated:

Tasks do not need most recent version of state.
What they need is a snapshot of the state, taken
at the beginning of each iteration.

Intra-loop WW conflicts can be eliminated:
All we need to do is get the priority right
(network task trumps conflict detection task
trumps physics task)

How to express this intent?

Not equivalent to any sequential execution of the
tasks.

Concurrent Revisions Model

x.Set(1)
* fork and join revisions

(lines with arrow at end)

ja’* —
S

A

H

1
. el : | * Revisions are isolated
11/% % Set(2) = fork copies all state
X.Set
X Aldd(3) % % = join replays updates along
4 % 2 the arrow at the tip of the
4 1 : arrow
al L A7
4 IR b * Use named operations
4, : (add/set) instead of basic
4 =31 Join assignment

a0y

Revision Diagrams vs. Task Dags

* Different look
= Rounded corners
= No boxes for fork, join

= Arrow tip only at end of revision

* Less general
= ONLY asymmetric fork, join
" no symmetric parallel

Side-By-Side Example

var tl1,t2;

\\\\\\\‘ tl = fork {
AC),

B {

B();

t2 = fork {

C()s

D }

D();
C }
Hﬁ/)

join t1;
EC);
join t2;

"o/

* Fork copies the
current state.

* Join replays
updates at the tip
of arrow.

var A : integer

~

A equals ©
A=1

Understanding Concurrent Revisions

W >
mn
NN

A equals 1
B equals 2

* State determined
by sequence of
updates along

path from root

No updates along
path

-> sees initial
state

~

A equals 1
J B equals 2

* State determined
by sequence of
updates along
path from root

* Join replays
updates at the tip
of arrow.

A equals ©
A=1

» State determined
by sequence of
updates along
path from root

Updates are now
collection
operations

Join replays
updates at the tip
f arrow.

var S :

set<integer>

S equals {}
S.insert(2)

Can Support Collection Types

S.insert(1)

.insert(1)

S.insert(2)

\
S equals @
/|

Can Support Custom Merge fFunctions

var x : integer

* State determined by
result of user-
defined merge
function

X equals ©
X = 2

For example
merge(0, 1, 0)-> 1

merge(cur, join, orig) a1, 2.) 4

= cur + (join - orig)

erforms additive
. S equa
ccumulation |

Applying this idea

* So now, can we express the intended
parallelization of the SpaceWars Loop?

" [ntra-loop RW conflicts can be eliminated:
Tasks do not need most recent version of state.
What they need is a snapshot of the state, taken
at the beginning of each iteration.

" |[ntra-loop WW conflicts can be eliminated:
All we need to do is get the priority right (network
task trumps conflict detection task trumps physics

task)

Revision Diagram of Parallelized Game Loop

\ hw_o:mm '

uoiadla(g :o_m___ou

(8uiuunu 3uoj)

oAesojlne

JjiOoMlau

Eliminated Read-Write Conflicts

FENPZENPZENPZEN

autosave

(long running)

T & T
\

All tasks see stable snapshot

Eliminated Write-Write Conflicts

FENPZENPZENPZEN

\ c
) k=
)
(@]
-
= a
[=
0
@
3 —
O LY
=
[=
0>)C
32
o11]
S c
5 o
) T —

Network after CD after Physics

ReS U ItS LPhysics task]

/

Task Schedule
Input
Lipwr
Col Dt [O)
Rerder=
CalDe=t[1]

Col Dt [Z)

Col Dt [3]

HdIP =kt =

LipWWid (DIM)
ColDet [O1 (O
ColDet[1] {JSIMNY
ColDet [Z] (JOIMN)
ColDet [3] (JOIMN)

HdlPckts (JOIN) Collision detection

PlaySnds

|
= Autosave now perfectly unnoticeable in background

= Overall Speed-Up: 3.03x on four-core
(almost completely limited by graphics card)

Only a 5% slowdown in
Overh(=Y @ 27 >wEowh |
the sequential case

How muc

and !

-

Some individual tasks
slow down much more

7/

~N

i.e. physics simulation))

z

1.B

1.6

1.4

1.2

Normalized execution time

0.2 -

(

M original tasks M versioned tasks

-

1 4

0.B

0.4

UpWri

ColDet

Input HdlPckts PlaySnds

T

68/835

30986/0

02 2/18 3/3

20
18
= 16
E
E 1
2
o
2 n
i +]
g
o
o 10
£
o 8
E
£ &
w
7]
o 4
S
< 2
o . -~
Sequential Revisions (seq)
B Join 0 0.239477711
B Others 0.023597575 0.030098449
B ColDet 15.48415 15.76237
H UpWrl 0.2467515 0.4880668
[Renderer 3.022258 3.214011

PART Ill: A LOOK AT CODE

The C# library & IL rewriter

* We have seen the programming model

= versioned data
= fork/join of revisions

* But what does it concretely look like?

" |et’s see some code.

Or do it yourself: visit http://rise4fun.com and play

Version Data

[Versioned] int z;
Versioned] string s = "abc";

[Versioned, MergeWith(“AdditiveMerge”)]
int 1 = 9;

static int AdditiveMerge(int current,
int join,
int original) {
// add the values of the current and joined revision,
// and subtract the original (or we would count it twice)
return current + join - original,;

¥

[Versioned] int x = 0;

X =1;

CurrentRevision.Join(t);

Console.WriteLine(“x = " + x); //

Using Simple Fork/Join

E

RevisionTask t = CurrentRevision.Fork(() =>

writes 2

= 0

|

J/CurrentRevision

Ordering Joins

RevisionTask a = CurrentRevision.Fork(() =>

{
X = 1;
});
RevisionTask b = CurrentRevision.Fork(() =>
{
X = 2;
});

CurrentRevision.Join(b);
CurrentRevision.Join(a);

Console.WritelLine(“x = " + x); // writes 1

Abandoning Revisions

* We can abandon a revision (instead of join)
= Discards the version once task completes
= |s not a cancellation: task still runs to completion

RevisionTask t = CurrentRevision.Fork(() => C5—~\\\\$
{

Console.WriteLine(“x = " + x); // writes 1

Example: Background Save

* |f a task does only read from shared state, we
can abandon it to avoid blocking on a join

* Example: background save operation
= never blocks application
= snapshot survives as long as it needs to

RevisionTask backgroundsave
CurrentRevision.Fork(()

> { SaveStateToFile(); });

// don’t wait for task.. let it finish on its own time
CurrentRevision.Abandon(backgroundsave);

ADVANCED SECTION — BONUS MATERIAL

PART IV: FORMALIZATION &
DETERMINACY

Formal Semantics

See paper in [ESOP 2011]
Similar to the AME calculus by Abadi et al.
Proof of determinism

~ormal correspondence to the Revision
Diagrams

Proof of the semi-lattice property
Can be shown to generalize ‘snapshot isolation’

Syntax

Syntactic Symbols

v € Val =cl|lxz|l]|r]|Ax.e
c € Const ::= unit | false | true
[€ Loc

r € Rid

x € Var

e € Expr =

ee|(e?e:e)
refe|le|e:=e
rfork e | rjoin e

State

LocalStore = Loc — Val

State

Map from revision identifiers to revision state
(no global shared state!)

/

GlobalState = Rid A LocalState
LocalState = Snapshot X LocalStore X Expr

\

“current program”

Snapshot = Loc — Val (expression for func. lang.,
pc+stack for imp. lang)

/\

/

Writes performed
Contains current value of all
locations that were modified

/ LocalStore = Loc — Val

Snapshot of store
Contains original value of all
locations

Sta te nr:i) Cumulativelnt x = 0;

s € GlobalState = Rid — LocalState AN y4=3
LocalState = Snapshot X LocalStore X Expr 2
o € Snapshot = Loc — Val &
T € LocalStore = Loc — Val a3 X+=2
m2 b1}

{m->({}, {}, m0) } m3

{ m'>({}r {X->0}, ml) } m4

{ m->({}, {x->0}, m2), a->({x->0}, {}, a0) }

{ m->({}, {x->0}, m2), a->({x->0}, {x->3}, al) }

{ m->({}, {x->0}, m2), a->({x->0}, {x->3}, a2), b->({x->3}, {}, b0) }

{ m->({}, {x->0}, m2), a->({x->0}, {x->4}, a3), b->({x->3}, {}, b0) }

{ m->({}, {x->0}, m2), a->({x->0}, {x->4}, a3), b->({x->3}, {x->5}, b1) }
{ m->({}, {x->4}, m3), b->({x->3}, {x->5}, b1) }
{ m->({}, {x->6}, m4) }

Execution Contexts

E=0

EelvE|(E7e:e)
refE|1€|E=e|l:=E
rjoin £

Expressions

* An expression
matches at most one

redex

Redexes

veVal u=clx|l|r|Are
c € Const = unit | false | true
l € Loc

r € Rid

x € Var

e € Expr =

eel(e?e:e)
refe|le|e:=e
rfork e | rjoin e

th (n On th tn On

tn On

;(Am.e) V]
(true 7 ey : e2)]
(false 7 e1 : e2)]

ref |
i
:l = U]

rfork e]

rjoin ']

s(r— (o,71,&
s(r— (o,71,&
s(r— (o,71,&

s(r— (o, 1,&
s(r— (o, 1,&
s(r— (o, 1,&

s(r— (o, 1,&
s(r— (o, 1,&
s(r— (o,1,E

;()\:B.e) v]))
(true 7 e; : e2)]))
(false ? e : e2)]))

ref v]))

1]))
1:=v]))

rfork e]))

o € Snapshot
7 € LocalStore = Loc — Val

rjoin ")) (r" — L)

rjoin r')(r" = (o', 7', v))

1 4)

-..3

S
S
S

r S
r S

| 1

T

s € GlobalState = Rid — LocalState
LocalState —= Snapshot < LocalStore <X Expr
= Loc — Val

Operational Semantics

T
r — (o,1,Ee1])]
[+ (0,7, E[e2])]

s (o, 7[> o], E[1])]
r > (0,7, E[(0:) (D))
r o (o, 7]l s], E[unit])]

r = (o, 7, E[r')][r' — (o:7, €, €)]

7 +— (o, 77, E[unit])][r’ — L]

Local Operations w/o side effects

s(r — (o, 7,E[(Ax.€) v])) —y 8[r— (o, 7,E[[v/z]e])]
s(r— (o,1,E[(true?e; : e2)])) —y 8[r — (o, 7,€[e1])]
s(r— (o,7,€|(false? e : e2)])) —, 8[r — (o, 7,E[e2])]

\
For some revision r, with
snapshot 0 and local
modifications T
)

s € GlobalState = Rid — LocalState

LocalState = Snapshot x LocalStore X Expr
o € Snapshot = Loc — Val
T € LocalStore = Loc — Val

Local Operations w/ side effects

Pick a fresh
location

identifier

Read current D
s(r— (o, 7, E[refv])) —. s[r— (o, 7]l — v], E[I])] stateo T
s(r={o,7,EMl])) —r s[r(o,7,E[(a7)(D)])] meaning the
s(r— (o, 7,€[l:=v])) —, s[r— {(o,7[l — v], E[unit])]

changest
applied

Update] \ snapshot o Y,

changeset t

s € GlobalState = Rid — LocalState

LocalState = Snapshot x LocalStore X Expr
o € Snapshot = Loc — Val
T € LocalStore = Loc — Val

Fork and Join " onafork the

snapshot of the new
revision r’is the

currentstate: 0 :: T

_
s(r — (o, T, €[rf0rk e])) —, s[r — (o, T,ﬁ'[f"'])][r:' — (o7, €, €)]
s(r — (o, T, E[r!o!n r'MN (' — (o', 7", v)) =, s[r— (o, 71", E[unit])][r’ — L]
s(r — (o, 7, E[rjoin ') (r" — L) — - €

—="

Trying to join a unknown revision
identifier (i.e. revision has already
been joined) transitions the whole
system into a special error state _ revision: g :: T’ Y,

J

s € GlobalState = Rid — LocalState

LocalState = Snapshot < LocalStore X Expr
o € Snapshot = Loc — Val
7 € LocalStore = Loc — Val

On a join, the writes of the
joinee r’ take priority over
the writes of the current

Determinacy

* Execution is determinate! That is, the final
state of program execution does not depend
on any scheduling decisions.

Theorem 1 (Determinacy). Let € be a program expression, and let ¢ | s and e | &
Then s =2 &,

 With two caveats:

= States could differ in identifiers used for revisions
and locations. We say s = s’ if states s, s’ are
equivalent in this sense.

" |t is possible for some executions to diverge while
others don’t.

Proving Determinacy (1/3)

* First: if we fix a particular revision r to take a
step, the outcome is determinate

Lemima 1 (Local Determinism). If s, = s and s, —, s and 8| —, 55, then 55 =
i

Sa.

Because the expression representing the
program can evaluate in at most one way

= An expression matches at most one redex
= Each redex matches a unique operational rule

Proving Determinacy (2/3)

* Local Confluence: if two different revisions take a
step, they both can take (zero or one) additional
step to get to an equivalent state

Lemma 2 (Strong Local Confluence). Let s, and s be reachable states that satisfy
sy = sy. Then, if '*1 82 and 51 - 8o, then there exist equivalent states s; == s

"

such that both s; —_, 83 and s5 — . 85,

Reason: steps by different revisions do commute
because they either
= Do not influence each other

= Are mutually exclusive (two revisions trying to join the
same revision) thus triggering a transition to the error
state.

