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Outline 

 

• Parallel & Incremental Computation 

 Two for the price of one 

 

• Eventual Consistency 

 Concurrent Revisions as a Consistency Model 

 

• Cloud Types 

 How to work with eventually consistent state 



PART I: TWO FOR THE PRICE OF ONE 



Motivation: Compute-Mutate Loops 

• Common pattern in applications 
(e.g. browser, games, compilers, 
spreadsheets, editors, forms, simulations) 

• Goal: perform better (faster, less power) 

• Nondeterministic 
• I/O 

• Deterministic 
• No I/O 
• Potentially Parallel 



Compute-Mutate Loop Examples 

Compute 
- Deterministic 
- May be parallel 
- No I/O 

Mutate 
- Nondeterministic 
- I/O 

Browser CSS Layout DOM changes 

Ray-Tracer Render Picture Change objects 

Morph Compute Blend Change blended 
pictures 

Compiler Compile project Edit source files 

Spellcheck Check words Change document 



Incremental 
Computation 

• Which one would you choose? 

• Do we have to choose? 
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Two for the Price of One 

• Wanted: Programming Model for  
Parallel & Incremental Computation 

input 

output 

? Small set of primitives to 
express computation ? 



Our Primitives: fork, join, record, repeat 

• Start with Deterministic Parallel Programming 

 Concurrent Revisions Model 

 fork and join Revisions (= Isolated Tasks) 

 Declare shared data and operations on it 

 

• Add Primitives for record and repeat 

 c = record { f(); } for some computation f() 

 repeat c is equivalent to calling f() again, but faster 

 the compute-mutate loop does 
record – mutate – repeat – mutate – repeat … 



Concurrent Revisions Model 

• Deterministic Parallelism  
by fork and join 
(creates concurrent tasks 
called revisions) 

• Revisions are isolated 

 fork copies all state 

 join replays updates 

• Use optimized types 
(copy on write, merge 
functions) 
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Example: Parallel Sum 

int ParallelSum(Versioned<int>[] a, int from, int to) { 
   if (to-from <= threshold) 
      return SequentialSum(a, from, to); 
   else { 
      Versioned<int> sum := 0; 
      Revision r1 := fork { 
         sum.Add(ParallelSum(a, from, (from + to)/2)); 
      } 
      Revision r2 := fork { 
         sum.Add(ParallelSum(a, (from + to)/2, to)); 
      } 
      join r2; 
      join r1; 
      return sum; 
   } 
} 



Example 
 
Step 1: Record  
 



Example 
(Cont’d) 
 
Step 2: Mutate 
 
 
Step 3: Repeat 



How does it work? 
• On Record 

 Create ordered tree of 
summaries 
(summary=revision) 

 Revisions-Library already 
stores effects of revisions 

• Can keep them around to 
“reexecute” = join again 

 Can track dependencies 

• Record dependencies 

• Invalidate summaries 

• At time of fork, know if valid 

 

r 

r1 r2 

r1.1 r1.2 r2.1 r2.2 



c = record { 
  pass1(); 
  pass2(); 
  pass3(); 
} 
 
 
 
 

Illustration Example 

• Consider computation shaped like this 
(e.g. our CSS layout alg. with 3 passes) 
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Illustration Example 

• Consider computation shaped like this 
(e.g. our CSS layout alg. with 3 passes) 

c = record { 
  pass1(); 
  pass2(); 
  pass3(); 
} 
 
x = 100; 
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Illustration Example 

• Consider computation shaped like this 
(e.g. our CSS layout alg. with 3 passes) 

c = record { 
  pass1(); 
  pass2(); 
  pass3(); 
} 
 
x = 100; 
 
repeat c; 
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Illustration Example 

• Consider computation shaped like this 
(e.g. our CSS layout alg. with 3 passes) 
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Invalidating Summaries is Tricky 

• May depend on external input 

 Invalidate between compute and repeat 

• May depend on write by some other summary 

 Invalidate if write changes 

 Invalidate if write disappears 

• Dependencies can change 

 Invalidate if new write appears between old write 
and read 

• And all of this is concurrent 

 



Who has to think about what 

Our runtime 

• Detects nature of 
dependencies 
 Dynamic tracking of reads 

and writes 

• Records and replays effects 
of revisions 

• Schedules revisions in 
parallel on multiprocessor 
(based on TPL, a work-
stealing scheduler) 

The programmer  

• Explicitly structures the 
computation (fork, join) 

• Declares data that 
participates in  
 Concurrent accesses 

 Dependencies 

• Thinks about performance 
 Revision granularity 

 Applies Marker Optimization 
 

 



Optimizations by Programmer 

• Granularity Control 

 Problem: too much overhead if revisions contain 
not enough work 

 Solution: Use typical techniques (e.g. recursion 
threshold) to keep revisions large enough 

• Markers 

 Problem: too much overhead if tracking individual 
memory locations (e.g. bytes of a picture) 

 Solution: Use marker object to represent a group 
of locations (e.g. a tile in picture) 

 



Results on 5 Benchmarks 

• On 8 cores,  

 recording is still faster than baseline  (1.8x – 6.4x) 

 Repeat after small change is significantly faster 
than baseline (12x – 37x) 

 Repeat after large change is same as record 

 



What part does parallelism play? 

• Without parallelism, record is up to 31% slower 
than baseline 

• Without parallelism, repeat after small change is 
still 4.9x – 24x faster than baseline 
 



Controlling Task Granularity is Important 



PART II : EVENTUAL CONSISTENCY 



Overview 

• Motivation 
Why eventual consistency 

• How we can understand and build it 
Operational consistency model 

• Formal Foundation 
Axiomatic consistency model 

 



Post-PC World: Apps  & Cloud 
 

Household 
DBs 

Comments Grocery List 

Ratings 

Docs 

Chat 

Team DBs Playlists 

Games 

Favorites 



The CAP theorem   [Brewer’00,Lynch&Gilbert’02] 

• A distributed system cannot have: 

 Consistency 

• all nodes see the same data at the same time 

  Availability 

• Every request receives a response about whether it was 
successful or failed 

 Partition Tolerance 

• the system continues to operate despite arbitrary 
message loss 



Where to compromise? 

• Strong Consistency, Brittle Availability 

 Maintain illusion of single master copy 

 Cannot commit updates without server roundtrip 

 Changes are globally visible at time of commit 

 

• Strong Availability, Eventual Consistency 

 Keep replicas on each client 

 Can commit updates locally without server connection 

 Changes are immediately visible locally, and 
eventually propagated to all other replicas 

 



How Much Consistency do we Need? 

• Strong Consistency 

 Updates are conditional on very latest state 

 Examples: bank accounts, seat reservations, … 

 See: classic OLTP (online transaction processing) 

 

• Eventual Consistency 

 Updates are not conditional on very latest state 

 Examples: Ratings, Shopping Cart, Comments, Settings, 
Chat, Grocery List, Playlist, Calendar, Mailbox, Contacts … 

 But: how to program this? 
 



Eventual Consistency 

• What does it really mean? 

 

• Need a consistency model! 

 

• At intersection of various communities 

 Databases (relational storage, queries, …) 

 Multiprocessors (memory models, consistency…) 

 Distributed Systems (fault tolerance, availability) 

 Web programming (client apps, web services) 



Consistency Models 

• Fall mostly into 2 categories 
 Operational 

define valid executions as runs of an abstract machine 

 Axiomatic 
define executions valid iff there exist certain relations, 
subject to certain conditions 

• We do both in paper 

 First, we define an abstract axiomatic model 

• Generalization of sequential consistency 

 Then, we define an operational model  

• More specific and intuitive than the abstract model 

• We prove that it implements the abstract model 

We will focus 
almost exclusively 
on the operational 

model in this 
talk. 



Abstract System Model 

• Clients emit 
streams of 
transactions 

• Each transaction 
contains a 
sequence of 
operations 

• Operations are 
queries/updates 
of some data  

query 
update 
query 

update 

query 
query 
query 
query 
query 
update 

query 
query 

query 
query 

query 

update 
update 

update 
update 
update 
update 
update 
update 
update 

query 
update 

query 

query 
query 
query 
query 
query 
update 

Client 1 Client 2 Client 3 



A familiar example of data: memory 

• A random access memory interface (64 bits) 

 Queries =  {load(a) | a  Addresses}  

 Updates = {store(a,v) | a  Addresses, v  Values}  

store(A, 1) 
load(A) 
load(B) 

store(A, 2) 
store(B, 8) 
load(A) 

load(A) 

Client 1 Client 2 



• History = collection of transaction sequences 
(one per client) including query results 
Example: 

 

 

 

 

 

• Consistency model = set of valid histories 

Terminology 

store(17, 1) 
load(17) → 1 
load(19) → 0 

store(17, 2) 
store(19, 8) 
load(17) → 2 

load(17) → 2 
 

Client 1 Client 2 



Example 

• Consider two clients performing a transaction 
to increment location A (initially 0) 

• Under strong consistency, we would expect 
one of the following two histories 

 

 

 load(A) → 0 
store(A, 1) 

load(A) → 1 
store(A, 2) 

Client 1 Client 2 

load(A) → 1 
store(A, 2) 

load(A) → 0 
store(A, 1) 

Client 1 Client 2 



Example 

• Now suppose clients are disconnected, yet still 
want to commit transactions. 

 Transactions cannot be serializable (CAP theorem). 

 Code does not work as intended. 

 

 

 

 

• How can we understand such histories? 

• How can we write correct programs? 

load(A) → 0 
store(A, 1) 

load(A) → 0 
store(A, 1) 

Client 1 Client 2 



Concurrent Revisions 
[OOPSLA’10] [WoDet’11] [ESOP’11] [OOSPLA’11] 
[ESOP’12] [ECOOP’12] 

 

1. Model state as a revision diagram 
 Fork: creates revision (snapshot) 

 Queries/Updates target specific revision 

 Join: apply updates to joining revision 

 

2. Raise data abstraction level 
 Record operations, not just states 

 At join, replay all updates 

 Use specially designed data types 
 

 

 

 



REVISION DIAGRAMS 
Main Ingredient #1: 



Revision Diagrams 

• Directed Graphs 

 One root 

 One or more terminals 

• Operational construction rules 

 Fork  

• One terminal -> two terminals 

 Update/Query 

• Append to terminal 

 Join 

• Two terminals -> one terminal 

• Subject to join condition 
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Example Diagrams 



Semantics 

• State determined 
by sequence of 
updates along 
path from root 

• Operations are 
replayed at tip of 
arrow. 
 

 

load(A) → 0 
store(A, 1) 

store(A, 1) 
store(B, 1) 

load(A) → 1 
load(B) → 1 



Semantics 

• State determined 
by sequence of 
updates along 
path from root 

• Updates are 
replayed at tip of 
arrow. 
 

 

load(A) → 0 
store(A, 1) 

store(A, 1) 
store(B, 1) 

load(A) → 1 
load(B) → 1 

No updates along 
path 
-> sees initial 
state 



Semantics 

• State determined 
by sequence of 
updates along 
path from root 

• Updates are 
replayed at tip of 
arrow. 
 

 

load(A) → 0 
store(A, 1) 

store(A, 1) 
store(B, 1) 

load(A) → 1 
load(B) → 1 

store(A,1) 
store(B,1) 
 

store(A,1) 



Revision Consistency 
• A history is revision consistent if we can place 

the transactions on a revision diagram s.t. 
 Query results are consistent with revision state 

 There is a path between successive transactions 

 Committed transactions have a path to all but finitely 
many vertices 

load(A) → 0 
store(A,1) 

store(A, 1) 
store(B, 1) 

load(A) → 1 
load(B) → 1 

Client 1 Client 2 

load(A) → 0 
store(A, 1) 

store(A, 1) 
store(B, 1) 

load(A) → 1 
load(B) → 1 



Revision Consistency Guarantees… 
• Transactions don’t fail 

• Atomicity 
 Other clients see either all or none of the updates of a transactions 

• Isolation 
 Updates by incomplete transactions are not visible to other clients 

• See own Updates 
 Client sees effect of all updates it has performed up to this point 

• Eventual Consistency 
 Completed Transactions eventually settle at a certain position within a 

common history prefix. 

• Causality 
 If B sees updates of A, and C sees updates of B, then C sees updates of A 

This one required work to prove.  



The join condition 
Revision diagrams are subject to the join 
condition: 
A revision can only be joined into vertices that 
are reachable from the fork. 

 

Invalid join, no 
path from fork. 



Without join condition, causality is 
violated. 

A 

B 

C 

 

• B sees updates of A 

• C sees updates of B 

• But C does not see updates of A 

 

 

• Visibility is not transitive. 

 

• We prove in paper: enforcing 
join condition is sufficient to 
guarantee transitive visibility. 

 



RAISE DATA ABSTRACTION 
Main Ingredient #2: 



Raise Data Abstraction 

• Richer data types 
enable updates 
that behave 
better 

• Integer example: 

 Queries =  
{load(a)}  

 Updates =  
{store(a,v)} 

 {add(a,v)} 

load(A) → 0 
add(A, 1) 

load(A) → 0 
add(A, 1) 

load(A) → 2 



Query-Update Automata (QUA) 
 

• A query-update interface tuple (Q, V, U) 

 Q – Query operations 

 V – Values returned by query 

 U – Update operations  

• A query update automaton  (S, s0, #) over (Q, V, U) 

 A set of states S 

 An initial state s0  S 

 For each q in Q, an interpretation  q♯: S  V 

 For each u in U, an interpretation  u♯: S  S 

 



Why QUAs ? 

• QUAs keep the conversation general 
 QUAs can represent simple shared memory 

 QUAs can represent abstract data types 

 QUAs can represent entire databases 

• QUAs provide what we need to define EC 
 Clean separation of queries (no side effects) and 

updates (only side effects, no return value) 

 Updates contain information about intent, and are 
total functions (can apply to different state) 

• QUAs can enable optimized implementations 
 Bounded metadata, not unbounded logs 

 



A fork-join QUA 

• Rather than maintaining update logs or 
walking graphs, we can use an FJ-QUA to 
represent the state of a revisions 

• A fork-join QUA is a tuple (, 0, f, j, #)  

 An initial state 0   

 For each q in Q, an interpretation  q♯: S  V 

 For each u in U, an interpretation  u♯: S  S 

 A fork operation f:      

 A join operation j:     

 

 

 



Programming with FJ-QUAs 
[ECOOP’12, to appear] 

• No need to develop custom FJ-QUAs for each 
application: programmer can compose them 

• Support FJ-QUAs for basic types 

 Cloud Integers 

 Cloud Strings 

• Support FJ-QUAs for certain collection types 

 Cloud Entities 

 Cloud Arrays 



System Models 

• Revision diagrams are a visualization tool; 
actual system can use a variety of 
implementations 

 Paper gives several system models. 

 Since revisions can be nested, we can use 
server pools to scale to large numbers of 
clients. 



THE AXIOMATIC MODEL 



Sequential Consistency 
• Histories are sequentially consistent if the 

query results are consistent with a single 
order of the transactions 

store(17, 1) 
load(17) → 1 
load(19) → 0 

store(17, 2) 
store(19, 8) 
load(17) → 2 

load(17) → 2 

Client 1 Client 2 

Is this history sequentially 
consistent? 



Sequential Consistency 
• Histories are sequentially consistent if the 

query results are consistent with a single 
order of the transactions 

store(17, 1) 
load(17) → 1 
load(19) → 0 

store(17, 2) 
store(19, 8) 
load(17) → 2 

load(17) → 2  

Client 1 Client 2 

History is sequentially 
consistent. 



Sequential Consistency, Formally 

• A history H is sequentially consistent if there exists 
a partial order < on EH such that 
 

 < extends program order <p 

 (atomicity) < factors over transactions 
 < is a total order on past events 

• (e1 < e)  (e2 < e)  (e1 < e2)  (e2 < e1)  (e2 = e1) 

 All query results (q, v) EH are consistent with < 
• v = q ♯ (uk

 ♯ (uk-1
 ♯ … ♯ (u1

 ♯(s0)))   
• u1 < u2 < … < uk < (q, v) 

 (isolation) if e1 < e2 and e1 is not committed then e1 <p e2  
 (eventual delivery) For all committed transactions t 

there exists only finitely many transactions t’ such that 
not t < t’ 
 

 



Eventual Consistency 

• Histories are eventually consistent if the 
query results are consistent with two 
orders: 
 A visibility order (partial order) that 

determines what updates a query can see 

 An arbitration order that orders all updates 

 

• The value returned by a query is 
determined by those two orders 
(apply all visible updates in arbitration 
order to the initial state) 



Eventual Consistency, Formally 

• A history H is eventually consistent if there exist partial 
orders <v (visibility order)  <a (arbitration order) on EH 
such that 
 <v extends program order <p 

 <a extends <v 

 (atomicity) Both <v and <a factor over transactions 
 (total order on past events) 

• (e1 <v e)  (e2 <v e)  (e1 <a e2)  (e2 <a e1)  (e2 = e1) 

 All visible query results (q, v) EH are consistent with <a 
• v = q ♯ (uk

 ♯ uk-1
 ♯ … u1

 ♯(s0))    
• u1 <a u2 <a … <a uk  

• ui <v (q, v) 

 (isolation) if e1 <v e2 and e1 is not committed then e1 <p e2  
 (eventual delivery) For all committed transactions t there 

exists only finitely many transactions t’ such that not t <v t’ 
 

 



Proved in Paper 

• Sequentially consistent histories are eventually 
consistent. 
(easy, direct from definition) 

• Revision-consistent histories are eventually 
consistent. 
(some nontrivial parts, related to join condition) 

• There exist some eventually consistent histories 
that are not revision-consistent.  
(give counterexample) 



See Visibility & Arbitration Order 
in Revision Diagrams 

• Visibility = 
Reachability 

 

• Arbitration 
= Cactus 
Walk 

1 

2 

3 4 

5 

6 

7 

8 

9 



Related Work 

• Marc Shapiro et al. 
 Same motivation and similar techniques 

 CRDTs (Conflict-Free Replicated Data Types) require 
operations to commute, unlike QUAs which support non-
commuting updates. 

• Transactional Memory Research 
 Provided many of the insights used in this work 

• Relaxed Memory Model Research 
 Provided insights on axiomatic & operational 

memory models 



PART III: CLOUD TYPES 



Sharing Data Across Mobile Devices 

• Sharing data in the cloud makes apps more 
social, fun, and convenient. 

• Examples: Games, Settings, Chat, Favorites, 
Ratings, Comments, Grocery List… 

• But implementation is challenging. 



Sharing Data Across Mobile Devices 

• Standard Solution: 
Clients call web 
service to query and 
update shared data 

• Problem: 
if connection is slow 
or absent, program is 
unresponsive 

Cloud Storage & Cloud Servers 

Mobile App  Mobile App  

Updates 
Queries 

 

Updates 
Queries 

 



Sharing Data w/ Offline Support 

• Local Replica 
always available 

• But: 
Complexity? 
Consistency? 
 

Cloud Storage & Cloud Servers 

Mobile App  

sync 
when 

connected 

Mobile App  

Updates 
Queries 

 

sync 
when 

connected 

Updates 
Queries 

 



Mobile App  Mobile App  

Updates 
Queries 

 

Updates 
Queries 

 

Abstract the Cloud! 

• We propose: 
A language 
memory model 
for eventual 
consistency. 

sync 
when 

connected 

sync 
when 

connected 

Cloud state 



Abstract the Cloud! 

• We propose: 
A language 
memory model 
for eventual 
consistency. 

Strong models, i.e. 
 

- Sequential consistency 
- Serializable Transactions 

 
can’t handle 

disconnected clients. 
(CAP theorem) 

 
Neither do existing weak 
models (TSO, Power, Java…) 



How do we define this memory model? 

• Informal operational model 

 

 

• Formal operational model 

• 2 Example Implementations 
(single server, server pool) 

• Formal axiomatic model 

We will give you a quick intro on the next couple slides 

Beyond the scope of this talk, see papers [ESOP2012, ECOOP2012] 



Powered By Concurrent Revisions 
[OOPSLA’10] [WoDet’11] [ESOP’11] [OOSPLA’11] 
[ESOP’12] [ECOOP’12] 

- reminiscent of source control systems 
- but: about application state, not source code 

 

1. Models state as a revision diagram 

 Fork: creates revision (snapshot) 

 Queries/Updates target specific revision 

 Join: apply updates to joining revision 

2. Raises data abstraction level 

 Record operations, not just states 

 

 

 



Semantics of Concurrent Revisions 

• State determined 
by sequence of 
updates along 
path from root 

• Inserts updates at 
tip of arrow. 

•  
 

 

A.get → 0 
A.set(1) 

A.set(2) 
B.set(2) 

A.get → 1 
B.get → 2 

var A : integer 



Semantics 

• State determined 
by sequence of 
updates along 
path from root 

• Inserts updates at 
tip of arrow. 

•  
 

 

A.get → 0 
A.set(1) 

A.set(2) 
B.set(2) 

A.get → 1 
B.get → 2 

No updates along 
path 
-> sees initial 
state 



Semantics 

• State determined 
by sequence of 
updates along 
path from root 

• Inserts updates at 
tip of arrow. 

A.get → 0 
A.set(1) 

A.set(2) 
B.set(2) 

A.get → 1 
B.get → 2 

A.set(2) 
B.set(2) 
 

A.set(1) 



• State determined 
by sequence of 
updates along 
path from root 

• Updates are 
replayed at tip of 
arrow. 

Semantics 

A.get → 0 
A.set(1) 

A.set(2) 
B.set(2) 

A.set(2) 
B.set(2) 
 

A.set(1) 

Traditional transactions 
(serializable, snapshot isolation) 
would detect a conflict here and 

fail. 
We just keep going. 



Revision Diagrams 

• Less general than DAGs, more general than SP-graphs 

• See [ESOP11], [ESOP10] for formal definitions 

These are revision diagrams These are not 
revision diagrams 



Cloud State = Revision Diagram 

device 1 device 2 cloud 
 

• Client code: 

 reads/modifies data 

 yields 

• Runtime: 

 Applies operations to 
local revision 

 Asynchronous 
sends/receive at yield 
points 



device 1 device 2 cloud 
 

Yield marks transaction boundaries 

• At yield 
Runtime has 
permission to send 
or receive updates 

• In between yields 
Runtime is not 
allowed to send or 
receive updates 

yield
… 
yield 
… 
.. 
yield 
… 
yield 

yield
… 
yield 
… 
yield 
.. 
yield 

    … 

    … 

    … 

    … 

    … 

    … 

    … 



var x : CInt; 
var y : CInt; 

yield; 
x.set(1); 
y.set(1); 
yield; 

yield; 
int a = x.get(); 
int b = y.get(); 
yield; 

always a == b  

Litmus Test for Atomicity 

• This litmus test always passes. 

Declare cloud 
variables (2 cloud 

integers). 

transaction 
boundaries given by 

yield statements. 

Read and write cloud 
variables using get() and 

set(). 

Give code snippets 
that execute on 
different clients. 

Assertion about 
possible final states. 



Another simple Litmus Test 

• This litmus test fails! 
Final value x == 1 possible. 

• Because devices operate 
on local snapshots which 
may be stale. 

var x : CInt; 

yield; 
x.set(x.get() + 1)); 
yield; 

yield; 
x.set(x.get() + 1));  
yield; 

always x == 2  

device 1 device 2 cloud 
 

 
 
x.get  -> 0 
 

A.get → 0 
A.set(1) 

A.get → 0 
A.set(1) 

A.set(1) 

A.set(1) 



Another simple Litmus Test 

• This litmus test fails! 
Final value x == 1 possible. 

• Because devices operate 
on local snapshots which 
may be stale. 

var x : CInt; 

yield; 
x.set(x.get() + 1)); 
yield; 

yield; 
x.set(x.get() + 1));  
yield; 

always x == 2  

device 1 device 2 cloud 
 

 
 
x.get  -> 0 
 

A.get → 0 
A.set(1) 

A.get → 0 
A.set(1) 

How can we write sensible programs 
under these conditions? 

 
Idea: Raise Abstraction Level of Data 

 
Use Cloud Types to capture more 

semantic information about updates. 



It works if we add instead of set 

• Final value is determined 
by serialization of updates 
in main revision. 

• Effect of adds is 
cumulative! 

• Final value is always 2. 

 

var x : CInt; 

yield; 
x.add(1); 
yield; 

yield; 
x.add(1);  
yield; 

always x == 2  

device 1 device 2 cloud 
 

 
 
x.get  -> 0 
 
A.add(1) A.add(1) 

A.add(1) 

A.add(1) 



• An abstract data type with 
 

 Initial value   e.g. { 0 } 

 Query operations  e.g. { get } 

• No side effects 

 Update operations  e.g. { set(x), add(x) } 

• Total (no preconditions) 

 

• Good cloud types minimize programmer 
surprises. 

What is a cloud type? 



Our goals for finding cloud types… 

• to select only a few 

 But ensure many others can be derived 

 

• to choose types with minimal anomalies 

 Updates should make sense even if state changes 

 

Forces us to rethink basic data structuring. 

 objects&pointers fail the second criterion 

 entities&relations do better 



Our Collection of Cloud Types 

Primitive cloud types 

• Cloud Integers 
{ get }    { set(x), add(x) } 

• Cloud Strings 
{ get }    { set(s), set-if-empty(s) } 

 

Structured cloud types 

• Cloud Tables 
(cf. entities, tables with implicit primary key) 

• Cloud Arrays 
(cf. key-value stores, relations) 

 



Cloud Tables 

• Declares 
 Fixed columns 

 Regular columns 

• Initial value: empty  

• Operations:  
 new E(f1,f2) add new row (at end) 

 all E  return all rows (top to bottom) 

 delete e delete row 

 e.f1 

 e.coli.op perform operation on cell 
• If e deleted: queries return initial value, updates 

have no effect 

 

 

 

 

 

 

 

 

cloud table E 
( 
   f1: index_type1; 
   f2: index_type1; 
) 
{ 
   col1: cloud_type1; 
   col2: cloud_type2; 
} 



Cloud Arrays 

• Example: 

 

 

 

• Initial value:  
for all keys, fields have initial value 

• Operations:  

 A[i1,i2].vali.op  perform operation on value 

 entries A.vali  return entries for which vali 
    is not initial value 

 

 

 

 

 

 

 

cloud array A 
[ 
   idx1: index_type1; 
   idx2: index_type2; 
] 
{ 
   val1: cloud_type1; 
   val2: cloud_type2; 
} 



Index types 

• Used for keys in arrays 

• Used for fixed columns in tables 

 

• Can be 

 Integer 

 String 

 Table entry 

 Array entry 



Example App: Birdwatching 

• An app for a birdwatching family. 

 

• Start simple:  
let’s count the number of eagles seen. 

 

 

 

 

var eagles : cloud integer; 



device 1 device 2 cloud 
 

var eagles : cloud integer; 

Eventually consistent counting 

eagles.add(1) 

 

eagles.Set(1) 

 

 

 

eagles.Get()     -> 1 

eagles.add(1) 

eagles.get() → 3 

eagles.add(1) 

eagles.get() → 2 



device 1 device 2 cloud 
 

Counting by bird 
var birds: cloud array 
           [name: string]  
           {count : cloud integer} 

birds[“jay”].count.Add(1) 
birds[“gull”].count.Add(2) 

birds[“jay”].count.Get() 
                  -> 6 

birds[“jay”].count.Add(5) 

Important: all entries 
are already there, no 
need to insert key-value 
pairs. 



Standard Map Semantics  
Would not Work! 

device 1 device 2 cloud 
 

if birds.contains (“jay”) 
   birds[jay].Add(5) 
else 
   birds.insert(“jay”, 5) 

? 

if birds.contains (“jay”) 
   birds[jay].Add(3) 
else 
   birds.insert(“jay”, 3) 



Arrays + Tables = Relational Data 

• Tables 

 Define entities 

 Row identity = Invisible primary key 

• Arrays 

 Define relations 

 

• Code can access data using queries 

 For example, LINQ queries 

 

 

 

 

 

 



Arrays + Tables = Relational Data 

• Example: shopping cart 
 
 
 

 

 

 

 

 

cloud table Customer 
{ 
   name: cloud string; 
} 
 
cloud table Product 
{ 
   description: cloud string; 
} 

cloud array ShoppingCart 
[ 
   customer: Customer; 
   product: Product; 
] 
{ 
   quantity: cloud integer; 
} 



Arrays + Tables = Relational Data 

• Example: binary relation 
 
 
 
 

 

 

 

 

 

cloud table User 
{ 
   name: cloud string; 
} 
 
cloud array friends 
( 
   user1 : User; 
   user2 : User; 
) 
{ 
   value: cloud boolean; 
} 

Standard math: { relations AxBxC  }  = { functions AxBxC -> bool } 



Arrays + Tables = Relational Data 

• Example: linked tables 

 

 

 

 

 

 

 
 Cascading delete: Order is deleted 

automatically when owning customer is 
deleted 

 

 

 

 

 

cloud table Customer 
{ 
   name: cloud string; 
} 
 
cloud table Order 
[ 
   owner: Customer 
] 
{ 
   description: cloud string; 
} 



Linked tables solve following problem: 

device 1 device 2 cloud 
 

delete customer; 
foreach o in Orders 
  if (o.owner = customer) 
    delete o; 

? 

new Order(customer); 



Recovering stronger consistency 

• While connected 
to server, we may 
want more 
certainty 

• flush primitive 
blocks until local 
state has reached 
main revision and 
result has come 
back to device 

• Sufficient to 
implement strong 
consistency 

 

flush 
(blocks) 

 

 

 

 
(continue) 



• Claim: this is not too hard. Developers can 
write correct programs using these primitives. 

 

• Future work: evidence? 



Implementation for TouchDevelop 

• Currently working on 
integration into 
TouchDevelop Phone-
Scripting IDE. 

 

• TouchDevelop: Free app for 
Windows Phone, with a  
complete IDE, scripting 
language, and bazaar. 

 

 

 

 

 



 



• Declare cloud types in graphical editor 

• Automatic yield 
 Before and after each script execution 

 Between iterations of the event loop 



Related Work 

• CRDTs (Conflict-Free Replicated Data Types) 

 [Shapiro, Preguica, Baquero, Zawirski] 

 Similar motivation and similar techniques 

 use commutative operations only 

 not clear how to do composition 

• Bayou 

 user-defined conflict resolution (merge fcts.) 

• Transactional Memory  

• Relaxed Memory Models 



Conclusion 

• eventually consistent shared state is 

difficult to implement and reason about on traditional 
platforms. 

 

• revision diagrams [ESOP11],[ESOP12] 

provide a natural and formally grounded intuition. 

 

• cloud types [ECOOP12] provide a general way 

to declare eventually consistent storage. 


