
Concurrent Revisions

Lecture 2:
Incremental Computation

Eventual Consistency

Sebastian Burckhardt
Microsoft Research

Joint work with Manuel Faehndrich, Daan Leijen, Tom Ball
Caitlin Sadowski, Jaeheon Yi, Mooly Sagiv, Benjamin Wood

(see papers in OOPSLA 2011, ESOP 2012, ECOOP 2012)

Outline

• Parallel & Incremental Computation

 Two for the price of one

• Eventual Consistency

 Concurrent Revisions as a Consistency Model

• Cloud Types

 How to work with eventually consistent state

PART I: TWO FOR THE PRICE OF ONE

Motivation: Compute-Mutate Loops

• Common pattern in applications
(e.g. browser, games, compilers,
spreadsheets, editors, forms, simulations)

• Goal: perform better (faster, less power)

• Nondeterministic
• I/O

• Deterministic
• No I/O
• Potentially Parallel

Compute-Mutate Loop Examples

Compute
- Deterministic
- May be parallel
- No I/O

Mutate
- Nondeterministic
- I/O

Browser CSS Layout DOM changes

Ray-Tracer Render Picture Change objects

Morph Compute Blend Change blended
pictures

Compiler Compile project Edit source files

Spellcheck Check words Change document

Incremental
Computation

• Which one would you choose?

• Do we have to choose?

Parallel
Computation

input

output

input’

output’

input

Computation Computation’
Comp
utat
ion

Comp
utat
ion

Comp
utat
ion

output

Incremental + Parallel
Computation

input

Comp
utat
ion

Comp
utat
ion

Comp
utat
ion

Comp
utat
ion

Comp
utat
ion

Comp
utat
ion

output

Work Stealing:
Dynamic Task
Graph

Self-Adjusting
Computation:
Dynamic
Dependence
Graph

Two for the Price of One

• Wanted: Programming Model for
Parallel & Incremental Computation

input

output

? Small set of primitives to
express computation ?

Our Primitives: fork, join, record, repeat

• Start with Deterministic Parallel Programming

 Concurrent Revisions Model

 fork and join Revisions (= Isolated Tasks)

 Declare shared data and operations on it

• Add Primitives for record and repeat

 c = record { f(); } for some computation f()

 repeat c is equivalent to calling f() again, but faster

 the compute-mutate loop does
record – mutate – repeat – mutate – repeat …

Concurrent Revisions Model

• Deterministic Parallelism
by fork and join
(creates concurrent tasks
called revisions)

• Revisions are isolated

 fork copies all state

 join replays updates

• Use optimized types
(copy on write, merge
functions)

fork

fork

x.Set(2)

x.Add(3)

join

join

[OOPSLA ‘10]
[ESOP ‘11]
[WoDet ‘11] 0

1
1

1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1

2
2
2
2

2
2

2
2
2

5
5

1
1
1

1

4
4
4
4
4
4

4
4

x.Set(1)

Example: Parallel Sum

int ParallelSum(Versioned<int>[] a, int from, int to) {
 if (to-from <= threshold)
 return SequentialSum(a, from, to);
 else {
 Versioned<int> sum := 0;
 Revision r1 := fork {
 sum.Add(ParallelSum(a, from, (from + to)/2));
 }
 Revision r2 := fork {
 sum.Add(ParallelSum(a, (from + to)/2, to));
 }
 join r2;
 join r1;
 return sum;
 }
}

Example

Step 1: Record

Example
(Cont’d)

Step 2: Mutate

Step 3: Repeat

How does it work?
• On Record

 Create ordered tree of
summaries
(summary=revision)

 Revisions-Library already
stores effects of revisions

• Can keep them around to
“reexecute” = join again

 Can track dependencies

• Record dependencies

• Invalidate summaries

• At time of fork, know if valid

r

r1 r2

r1.1 r1.2 r2.1 r2.2

c = record {
 pass1();
 pass2();
 pass3();
}

Illustration Example

• Consider computation shaped like this
(e.g. our CSS layout alg. with 3 passes)

r

r1

r2

r1.1

r1.2

r2.1

r2.2

r1

r2

r1.1

r1.2

r2.1

r2.2

r1

r2

r1.1

r1.2

r2.1

r2.2

reads x

Illustration Example

• Consider computation shaped like this
(e.g. our CSS layout alg. with 3 passes)

c = record {
 pass1();
 pass2();
 pass3();
}

x = 100;

r

r1

r2

r1.1

r1.2

r2.1

r2.2

r1

r2

r1.1

r1.2

r2.1

r2.2

r1

r2

r1.1

r1.2

r2.1

r2.2

Dep. on x

Illustration Example

• Consider computation shaped like this
(e.g. our CSS layout alg. with 3 passes)

c = record {
 pass1();
 pass2();
 pass3();
}

x = 100;

repeat c;

r

r1

r2

r1.1

r1.2

r2.1

r2.2

r1

r2

r1.1

r1.2

r2.1

r2.2

r1

r2

r1.1

r1.2

r2.1

r2.2

record repeat

Illustration Example

• Consider computation shaped like this
(e.g. our CSS layout alg. with 3 passes)

c = record {
 pass1();
 pass2();
 pass3();
}

x = 100;

repeat c;

r

r1

r2

r1.1

r1.2

r2.1

r2.2

r1

r2

r1.1

r1.2

r2.1

r2.2

r1

r2

r1.1

r1.2

r2.1

r2.2

record repeat

Illustration Example

• Consider computation shaped like this
(e.g. our CSS layout alg. with 3 passes)

c = record {
 pass1();
 pass2();
 pass3();
}

x = 100;

repeat c;

r

r1

r2

r1.1

r1.2

r2.1

r2.2

r1

r2

r1.1

r1.2

r2.1

r2.2

r1

r2

r1.1

r1.2

r2.1

r2.2

record repeat

Illustration Example

• Consider computation shaped like this
(e.g. our CSS layout alg. with 3 passes)

c = record {
 pass1();
 pass2();
 pass3();
}

x = 100;

repeat c;

r

r1

r2

r1.1

r1.2

r2.1

r2.2

r1

r2

r1.1

r1.2

r2.1

r2.2

r1

r2

r1.1

r1.2

r2.1

r2.2

record repeat

Invalidating Summaries is Tricky

• May depend on external input

 Invalidate between compute and repeat

• May depend on write by some other summary

 Invalidate if write changes

 Invalidate if write disappears

• Dependencies can change

 Invalidate if new write appears between old write
and read

• And all of this is concurrent

Who has to think about what

Our runtime

• Detects nature of
dependencies
 Dynamic tracking of reads

and writes

• Records and replays effects
of revisions

• Schedules revisions in
parallel on multiprocessor
(based on TPL, a work-
stealing scheduler)

The programmer

• Explicitly structures the
computation (fork, join)

• Declares data that
participates in
 Concurrent accesses

 Dependencies

• Thinks about performance
 Revision granularity

 Applies Marker Optimization

Optimizations by Programmer

• Granularity Control

 Problem: too much overhead if revisions contain
not enough work

 Solution: Use typical techniques (e.g. recursion
threshold) to keep revisions large enough

• Markers

 Problem: too much overhead if tracking individual
memory locations (e.g. bytes of a picture)

 Solution: Use marker object to represent a group
of locations (e.g. a tile in picture)

Results on 5 Benchmarks

• On 8 cores,

 recording is still faster than baseline (1.8x – 6.4x)

 Repeat after small change is significantly faster
than baseline (12x – 37x)

 Repeat after large change is same as record

What part does parallelism play?

• Without parallelism, record is up to 31% slower
than baseline

• Without parallelism, repeat after small change is
still 4.9x – 24x faster than baseline

Controlling Task Granularity is Important

PART II : EVENTUAL CONSISTENCY

Overview

• Motivation
Why eventual consistency

• How we can understand and build it
Operational consistency model

• Formal Foundation
Axiomatic consistency model

Post-PC World: Apps & Cloud

Household
DBs

Comments Grocery List

Ratings

Docs

Chat

Team DBs Playlists

Games

Favorites

The CAP theorem [Brewer’00,Lynch&Gilbert’02]

• A distributed system cannot have:

 Consistency

• all nodes see the same data at the same time

 Availability

• Every request receives a response about whether it was
successful or failed

 Partition Tolerance

• the system continues to operate despite arbitrary
message loss

Where to compromise?

• Strong Consistency, Brittle Availability

 Maintain illusion of single master copy

 Cannot commit updates without server roundtrip

 Changes are globally visible at time of commit

• Strong Availability, Eventual Consistency

 Keep replicas on each client

 Can commit updates locally without server connection

 Changes are immediately visible locally, and
eventually propagated to all other replicas

How Much Consistency do we Need?

• Strong Consistency

 Updates are conditional on very latest state

 Examples: bank accounts, seat reservations, …

 See: classic OLTP (online transaction processing)

• Eventual Consistency

 Updates are not conditional on very latest state

 Examples: Ratings, Shopping Cart, Comments, Settings,
Chat, Grocery List, Playlist, Calendar, Mailbox, Contacts …

 But: how to program this?

Eventual Consistency

• What does it really mean?

• Need a consistency model!

• At intersection of various communities

 Databases (relational storage, queries, …)

 Multiprocessors (memory models, consistency…)

 Distributed Systems (fault tolerance, availability)

 Web programming (client apps, web services)

Consistency Models

• Fall mostly into 2 categories
 Operational

define valid executions as runs of an abstract machine

 Axiomatic
define executions valid iff there exist certain relations,
subject to certain conditions

• We do both in paper

 First, we define an abstract axiomatic model

• Generalization of sequential consistency

 Then, we define an operational model

• More specific and intuitive than the abstract model

• We prove that it implements the abstract model

We will focus
almost exclusively
on the operational

model in this
talk.

Abstract System Model

• Clients emit
streams of
transactions

• Each transaction
contains a
sequence of
operations

• Operations are
queries/updates
of some data

query
update
query

update

query
query
query
query
query
update

query
query

query
query

query

update
update

update
update
update
update
update
update
update

query
update

query

query
query
query
query
query
update

Client 1 Client 2 Client 3

A familiar example of data: memory

• A random access memory interface (64 bits)

 Queries = {load(a) | a  Addresses}

 Updates = {store(a,v) | a  Addresses, v  Values}

store(A, 1)
load(A)
load(B)

store(A, 2)
store(B, 8)
load(A)

load(A)

Client 1 Client 2

• History = collection of transaction sequences
(one per client) including query results
Example:

• Consistency model = set of valid histories

Terminology

store(17, 1)
load(17) → 1
load(19) → 0

store(17, 2)
store(19, 8)
load(17) → 2

load(17) → 2

Client 1 Client 2

Example

• Consider two clients performing a transaction
to increment location A (initially 0)

• Under strong consistency, we would expect
one of the following two histories

 load(A) → 0
store(A, 1)

load(A) → 1
store(A, 2)

Client 1 Client 2

load(A) → 1
store(A, 2)

load(A) → 0
store(A, 1)

Client 1 Client 2

Example

• Now suppose clients are disconnected, yet still
want to commit transactions.

 Transactions cannot be serializable (CAP theorem).

 Code does not work as intended.

• How can we understand such histories?

• How can we write correct programs?

load(A) → 0
store(A, 1)

load(A) → 0
store(A, 1)

Client 1 Client 2

Concurrent Revisions
[OOPSLA’10] [WoDet’11] [ESOP’11] [OOSPLA’11]
[ESOP’12] [ECOOP’12]

1. Model state as a revision diagram
 Fork: creates revision (snapshot)

 Queries/Updates target specific revision

 Join: apply updates to joining revision

2. Raise data abstraction level
 Record operations, not just states

 At join, replay all updates

 Use specially designed data types

REVISION DIAGRAMS
Main Ingredient #1:

Revision Diagrams

• Directed Graphs

 One root

 One or more terminals

• Operational construction rules

 Fork

• One terminal -> two terminals

 Update/Query

• Append to terminal

 Join

• Two terminals -> one terminal

• Subject to join condition

Revision Diagrams

• Directed Graphs

 One root

 One or more terminals

• Operational construction rules

 Fork

• One terminal -> two terminals

 Update/Query

• Append to terminal

 Join

• Two terminals -> one terminal

• Subject to join condition

Revision Diagrams

• Directed Graphs

 One root

 One or more terminals

• Operational construction rules

 Fork

• One terminal -> two terminals

 Update/Query

• Append to terminal

 Join

• Two terminals -> one terminal

• Subject to join condition

Revision Diagrams

• Directed Graphs

 One root

 One or more terminals

• Operational construction rules

 Fork

• One terminal -> two terminals

 Update/Query

• Append to terminal

 Join

• Two terminals -> one terminal

• Subject to join condition

Revision Diagrams

• Directed Graphs

 One root

 One or more terminals

• Operational construction rules

 Fork

• One terminal -> two terminals

 Update/Query

• Append to terminal

 Join

• Two terminals -> one terminal

• Subject to join condition

Revision Diagrams

• Directed Graphs

 One root

 One or more terminals

• Operational construction rules

 Fork

• One terminal -> two terminals

 Update/Query

• Append to terminal

 Join

• Two terminals -> one terminal

• Subject to join condition

Revision Diagrams

• Directed Graphs

 One root

 One or more terminals

• Operational construction rules

 Fork

• One terminal -> two terminals

 Update/Query

• Append to terminal

 Join

• Two terminals -> one terminal

• Subject to join condition

Revision Diagrams

• Directed Graphs

 One root

 One or more terminals

• Operational construction rules

 Fork

• One terminal -> two terminals

 Update/Query

• Append to terminal

 Join

• Two terminals -> one terminal

• Subject to join condition

Revision Diagrams

• Directed Graphs

 One root

 One or more terminals

• Operational construction rules

 Fork

• One terminal -> two terminals

 Update/Query

• Append to terminal

 Join

• Two terminals -> one terminal

• Subject to join condition

Revision Diagrams

• Directed Graphs

 One root

 One or more terminals

• Operational construction rules

 Fork

• One terminal -> two terminals

 Update/Query

• Append to terminal

 Join

• Two terminals -> one terminal

• Subject to join condition

Revision Diagrams

• Directed Graphs

 One root

 One or more terminals

• Operational construction rules

 Fork

• One terminal -> two terminals

 Update/Query

• Append to terminal

 Join

• Two terminals -> one terminal

• Subject to join condition

Revision Diagrams

• Directed Graphs

 One root

 One or more terminals

• Operational construction rules

 Fork

• One terminal -> two terminals

 Update/Query

• Append to terminal

 Join

• Two terminals -> one terminal

• Subject to join condition

Revision Diagrams

• Directed Graphs

 One root

 One or more terminals

• Operational construction rules

 Fork

• One terminal -> two terminals

 Update/Query

• Append to terminal

 Join

• Two terminals -> one terminal

• Subject to join condition

Revision Diagrams

• Directed Graphs

 One root

 One or more terminals

• Operational construction rules

 Fork

• One terminal -> two terminals

 Update/Query

• Append to terminal

 Join

• Two terminals -> one terminal

• Subject to join condition

Revision Diagrams

• Directed Graphs

 One root

 One or more terminals

• Operational construction rules

 Fork

• One terminal -> two terminals

 Update/Query

• Append to terminal

 Join

• Two terminals -> one terminal

• Subject to join condition

Revision Diagrams

• Directed Graphs

 One root

 One or more terminals

• Operational construction rules

 Fork

• One terminal -> two terminals

 Update/Query

• Append to terminal

 Join

• Two terminals -> one terminal

• Subject to join condition

Revision Diagrams

• Directed Graphs

 One root

 One or more terminals

• Operational construction rules

 Fork

• One terminal -> two terminals

 Update/Query

• Append to terminal

 Join

• Two terminals -> one terminal

• Subject to join condition

Revision Diagrams

• Directed Graphs

 One root

 One or more terminals

• Operational construction rules

 Fork

• One terminal -> two terminals

 Update/Query

• Append to terminal

 Join

• Two terminals -> one terminal

• Subject to join condition

Example Diagrams

Semantics

• State determined
by sequence of
updates along
path from root

• Operations are
replayed at tip of
arrow.

load(A) → 0
store(A, 1)

store(A, 1)
store(B, 1)

load(A) → 1
load(B) → 1

Semantics

• State determined
by sequence of
updates along
path from root

• Updates are
replayed at tip of
arrow.

load(A) → 0
store(A, 1)

store(A, 1)
store(B, 1)

load(A) → 1
load(B) → 1

No updates along
path
-> sees initial
state

Semantics

• State determined
by sequence of
updates along
path from root

• Updates are
replayed at tip of
arrow.

load(A) → 0
store(A, 1)

store(A, 1)
store(B, 1)

load(A) → 1
load(B) → 1

store(A,1)
store(B,1)

store(A,1)

Revision Consistency
• A history is revision consistent if we can place

the transactions on a revision diagram s.t.
 Query results are consistent with revision state

 There is a path between successive transactions

 Committed transactions have a path to all but finitely
many vertices

load(A) → 0
store(A,1)

store(A, 1)
store(B, 1)

load(A) → 1
load(B) → 1

Client 1 Client 2

load(A) → 0
store(A, 1)

store(A, 1)
store(B, 1)

load(A) → 1
load(B) → 1

Revision Consistency Guarantees…
• Transactions don’t fail

• Atomicity
 Other clients see either all or none of the updates of a transactions

• Isolation
 Updates by incomplete transactions are not visible to other clients

• See own Updates
 Client sees effect of all updates it has performed up to this point

• Eventual Consistency
 Completed Transactions eventually settle at a certain position within a

common history prefix.

• Causality
 If B sees updates of A, and C sees updates of B, then C sees updates of A

This one required work to prove.

The join condition
Revision diagrams are subject to the join
condition:
A revision can only be joined into vertices that
are reachable from the fork.

Invalid join, no
path from fork.

Without join condition, causality is
violated.

A

B

C

• B sees updates of A

• C sees updates of B

• But C does not see updates of A

• Visibility is not transitive.

• We prove in paper: enforcing
join condition is sufficient to
guarantee transitive visibility.

RAISE DATA ABSTRACTION
Main Ingredient #2:

Raise Data Abstraction

• Richer data types
enable updates
that behave
better

• Integer example:

 Queries =
{load(a)}

 Updates =
{store(a,v)}

 {add(a,v)}

load(A) → 0
add(A, 1)

load(A) → 0
add(A, 1)

load(A) → 2

Query-Update Automata (QUA)

• A query-update interface tuple (Q, V, U)

 Q – Query operations

 V – Values returned by query

 U – Update operations

• A query update automaton (S, s0, #) over (Q, V, U)

 A set of states S

 An initial state s0  S

 For each q in Q, an interpretation q♯: S  V

 For each u in U, an interpretation u♯: S  S

Why QUAs ?

• QUAs keep the conversation general
 QUAs can represent simple shared memory

 QUAs can represent abstract data types

 QUAs can represent entire databases

• QUAs provide what we need to define EC
 Clean separation of queries (no side effects) and

updates (only side effects, no return value)

 Updates contain information about intent, and are
total functions (can apply to different state)

• QUAs can enable optimized implementations
 Bounded metadata, not unbounded logs

A fork-join QUA

• Rather than maintaining update logs or
walking graphs, we can use an FJ-QUA to
represent the state of a revisions

• A fork-join QUA is a tuple (, 0, f, j, #)

 An initial state 0  

 For each q in Q, an interpretation q♯: S  V

 For each u in U, an interpretation u♯: S  S

 A fork operation f:     

 A join operation j:    

Programming with FJ-QUAs
[ECOOP’12, to appear]

• No need to develop custom FJ-QUAs for each
application: programmer can compose them

• Support FJ-QUAs for basic types

 Cloud Integers

 Cloud Strings

• Support FJ-QUAs for certain collection types

 Cloud Entities

 Cloud Arrays

System Models

• Revision diagrams are a visualization tool;
actual system can use a variety of
implementations

 Paper gives several system models.

 Since revisions can be nested, we can use
server pools to scale to large numbers of
clients.

THE AXIOMATIC MODEL

Sequential Consistency
• Histories are sequentially consistent if the

query results are consistent with a single
order of the transactions

store(17, 1)
load(17) → 1
load(19) → 0

store(17, 2)
store(19, 8)
load(17) → 2

load(17) → 2

Client 1 Client 2

Is this history sequentially
consistent?

Sequential Consistency
• Histories are sequentially consistent if the

query results are consistent with a single
order of the transactions

store(17, 1)
load(17) → 1
load(19) → 0

store(17, 2)
store(19, 8)
load(17) → 2

load(17) → 2

Client 1 Client 2

History is sequentially
consistent.

Sequential Consistency, Formally

• A history H is sequentially consistent if there exists
a partial order < on EH such that

 < extends program order <p

 (atomicity) < factors over transactions
 < is a total order on past events

• (e1 < e)  (e2 < e)  (e1 < e2)  (e2 < e1)  (e2 = e1)

 All query results (q, v) EH are consistent with <
• v = q ♯ (uk

 ♯ (uk-1
 ♯ … ♯ (u1

 ♯(s0)))
• u1 < u2 < … < uk < (q, v)

 (isolation) if e1 < e2 and e1 is not committed then e1 <p e2
 (eventual delivery) For all committed transactions t

there exists only finitely many transactions t’ such that
not t < t’

Eventual Consistency

• Histories are eventually consistent if the
query results are consistent with two
orders:
 A visibility order (partial order) that

determines what updates a query can see

 An arbitration order that orders all updates

• The value returned by a query is
determined by those two orders
(apply all visible updates in arbitration
order to the initial state)

Eventual Consistency, Formally

• A history H is eventually consistent if there exist partial
orders <v (visibility order) <a (arbitration order) on EH
such that
 <v extends program order <p

 <a extends <v

 (atomicity) Both <v and <a factor over transactions
 (total order on past events)

• (e1 <v e)  (e2 <v e)  (e1 <a e2)  (e2 <a e1)  (e2 = e1)

 All visible query results (q, v) EH are consistent with <a
• v = q ♯ (uk

 ♯ uk-1
 ♯ … u1

 ♯(s0))
• u1 <a u2 <a … <a uk

• ui <v (q, v)

 (isolation) if e1 <v e2 and e1 is not committed then e1 <p e2
 (eventual delivery) For all committed transactions t there

exists only finitely many transactions t’ such that not t <v t’

Proved in Paper

• Sequentially consistent histories are eventually
consistent.
(easy, direct from definition)

• Revision-consistent histories are eventually
consistent.
(some nontrivial parts, related to join condition)

• There exist some eventually consistent histories
that are not revision-consistent.
(give counterexample)

See Visibility & Arbitration Order
in Revision Diagrams

• Visibility =
Reachability

• Arbitration
= Cactus
Walk

1

2

3 4

5

6

7

8

9

Related Work

• Marc Shapiro et al.
 Same motivation and similar techniques

 CRDTs (Conflict-Free Replicated Data Types) require
operations to commute, unlike QUAs which support non-
commuting updates.

• Transactional Memory Research
 Provided many of the insights used in this work

• Relaxed Memory Model Research
 Provided insights on axiomatic & operational

memory models

PART III: CLOUD TYPES

Sharing Data Across Mobile Devices

• Sharing data in the cloud makes apps more
social, fun, and convenient.

• Examples: Games, Settings, Chat, Favorites,
Ratings, Comments, Grocery List…

• But implementation is challenging.

Sharing Data Across Mobile Devices

• Standard Solution:
Clients call web
service to query and
update shared data

• Problem:
if connection is slow
or absent, program is
unresponsive

Cloud Storage & Cloud Servers

Mobile App Mobile App

Updates
Queries

Updates
Queries

Sharing Data w/ Offline Support

• Local Replica
always available

• But:
Complexity?
Consistency?

Cloud Storage & Cloud Servers

Mobile App

sync
when

connected

Mobile App

Updates
Queries

sync
when

connected

Updates
Queries

Mobile App Mobile App

Updates
Queries

Updates
Queries

Abstract the Cloud!

• We propose:
A language
memory model
for eventual
consistency.

sync
when

connected

sync
when

connected

Cloud state

Abstract the Cloud!

• We propose:
A language
memory model
for eventual
consistency.

Strong models, i.e.

- Sequential consistency
- Serializable Transactions

can’t handle

disconnected clients.
(CAP theorem)

Neither do existing weak
models (TSO, Power, Java…)

How do we define this memory model?

• Informal operational model

• Formal operational model

• 2 Example Implementations
(single server, server pool)

• Formal axiomatic model

We will give you a quick intro on the next couple slides

Beyond the scope of this talk, see papers [ESOP2012, ECOOP2012]

Powered By Concurrent Revisions
[OOPSLA’10] [WoDet’11] [ESOP’11] [OOSPLA’11]
[ESOP’12] [ECOOP’12]

- reminiscent of source control systems
- but: about application state, not source code

1. Models state as a revision diagram

 Fork: creates revision (snapshot)

 Queries/Updates target specific revision

 Join: apply updates to joining revision

2. Raises data abstraction level

 Record operations, not just states

Semantics of Concurrent Revisions

• State determined
by sequence of
updates along
path from root

• Inserts updates at
tip of arrow.

•

A.get → 0
A.set(1)

A.set(2)
B.set(2)

A.get → 1
B.get → 2

var A : integer

Semantics

• State determined
by sequence of
updates along
path from root

• Inserts updates at
tip of arrow.

•

A.get → 0
A.set(1)

A.set(2)
B.set(2)

A.get → 1
B.get → 2

No updates along
path
-> sees initial
state

Semantics

• State determined
by sequence of
updates along
path from root

• Inserts updates at
tip of arrow.

A.get → 0
A.set(1)

A.set(2)
B.set(2)

A.get → 1
B.get → 2

A.set(2)
B.set(2)

A.set(1)

• State determined
by sequence of
updates along
path from root

• Updates are
replayed at tip of
arrow.

Semantics

A.get → 0
A.set(1)

A.set(2)
B.set(2)

A.set(2)
B.set(2)

A.set(1)

Traditional transactions
(serializable, snapshot isolation)
would detect a conflict here and

fail.
We just keep going.

Revision Diagrams

• Less general than DAGs, more general than SP-graphs

• See [ESOP11], [ESOP10] for formal definitions

These are revision diagrams These are not
revision diagrams

Cloud State = Revision Diagram

device 1 device 2 cloud

• Client code:

 reads/modifies data

 yields

• Runtime:

 Applies operations to
local revision

 Asynchronous
sends/receive at yield
points

device 1 device 2 cloud

Yield marks transaction boundaries

• At yield
Runtime has
permission to send
or receive updates

• In between yields
Runtime is not
allowed to send or
receive updates

yield
…
yield
…
..
yield
…
yield

yield
…
yield
…
yield
..
yield

 …

 …

 …

 …

 …

 …

 …

var x : CInt;
var y : CInt;

yield;
x.set(1);
y.set(1);
yield;

yield;
int a = x.get();
int b = y.get();
yield;

always a == b

Litmus Test for Atomicity

• This litmus test always passes.

Declare cloud
variables (2 cloud

integers).

transaction
boundaries given by

yield statements.

Read and write cloud
variables using get() and

set().

Give code snippets
that execute on
different clients.

Assertion about
possible final states.

Another simple Litmus Test

• This litmus test fails!
Final value x == 1 possible.

• Because devices operate
on local snapshots which
may be stale.

var x : CInt;

yield;
x.set(x.get() + 1));
yield;

yield;
x.set(x.get() + 1));
yield;

always x == 2

device 1 device 2 cloud

x.get -> 0

A.get → 0
A.set(1)

A.get → 0
A.set(1)

A.set(1)

A.set(1)

Another simple Litmus Test

• This litmus test fails!
Final value x == 1 possible.

• Because devices operate
on local snapshots which
may be stale.

var x : CInt;

yield;
x.set(x.get() + 1));
yield;

yield;
x.set(x.get() + 1));
yield;

always x == 2

device 1 device 2 cloud

x.get -> 0

A.get → 0
A.set(1)

A.get → 0
A.set(1)

How can we write sensible programs
under these conditions?

Idea: Raise Abstraction Level of Data

Use Cloud Types to capture more

semantic information about updates.

It works if we add instead of set

• Final value is determined
by serialization of updates
in main revision.

• Effect of adds is
cumulative!

• Final value is always 2.

var x : CInt;

yield;
x.add(1);
yield;

yield;
x.add(1);
yield;

always x == 2

device 1 device 2 cloud

x.get -> 0

A.add(1) A.add(1)

A.add(1)

A.add(1)

• An abstract data type with

 Initial value e.g. { 0 }

 Query operations e.g. { get }

• No side effects

 Update operations e.g. { set(x), add(x) }

• Total (no preconditions)

• Good cloud types minimize programmer
surprises.

What is a cloud type?

Our goals for finding cloud types…

• to select only a few

 But ensure many others can be derived

• to choose types with minimal anomalies

 Updates should make sense even if state changes

Forces us to rethink basic data structuring.

 objects&pointers fail the second criterion

 entities&relations do better

Our Collection of Cloud Types

Primitive cloud types

• Cloud Integers
{ get } { set(x), add(x) }

• Cloud Strings
{ get } { set(s), set-if-empty(s) }

Structured cloud types

• Cloud Tables
(cf. entities, tables with implicit primary key)

• Cloud Arrays
(cf. key-value stores, relations)

Cloud Tables

• Declares
 Fixed columns

 Regular columns

• Initial value: empty

• Operations:
 new E(f1,f2) add new row (at end)

 all E return all rows (top to bottom)

 delete e delete row

 e.f1

 e.coli.op perform operation on cell
• If e deleted: queries return initial value, updates

have no effect

cloud table E
(
 f1: index_type1;
 f2: index_type1;
)
{
 col1: cloud_type1;
 col2: cloud_type2;
}

Cloud Arrays

• Example:

• Initial value:
for all keys, fields have initial value

• Operations:

 A[i1,i2].vali.op perform operation on value

 entries A.vali return entries for which vali
 is not initial value

cloud array A
[
 idx1: index_type1;
 idx2: index_type2;
]
{
 val1: cloud_type1;
 val2: cloud_type2;
}

Index types

• Used for keys in arrays

• Used for fixed columns in tables

• Can be

 Integer

 String

 Table entry

 Array entry

Example App: Birdwatching

• An app for a birdwatching family.

• Start simple:
let’s count the number of eagles seen.

var eagles : cloud integer;

device 1 device 2 cloud

var eagles : cloud integer;

Eventually consistent counting

eagles.add(1)

eagles.Set(1)

eagles.Get() -> 1

eagles.add(1)

eagles.get() → 3

eagles.add(1)

eagles.get() → 2

device 1 device 2 cloud

Counting by bird
var birds: cloud array
 [name: string]
 {count : cloud integer}

birds[“jay”].count.Add(1)
birds[“gull”].count.Add(2)

birds[“jay”].count.Get()
 -> 6

birds[“jay”].count.Add(5)

Important: all entries
are already there, no
need to insert key-value
pairs.

Standard Map Semantics
Would not Work!

device 1 device 2 cloud

if birds.contains (“jay”)
 birds[jay].Add(5)
else
 birds.insert(“jay”, 5)

?

if birds.contains (“jay”)
 birds[jay].Add(3)
else
 birds.insert(“jay”, 3)

Arrays + Tables = Relational Data

• Tables

 Define entities

 Row identity = Invisible primary key

• Arrays

 Define relations

• Code can access data using queries

 For example, LINQ queries

Arrays + Tables = Relational Data

• Example: shopping cart

cloud table Customer
{
 name: cloud string;
}

cloud table Product
{
 description: cloud string;
}

cloud array ShoppingCart
[
 customer: Customer;
 product: Product;
]
{
 quantity: cloud integer;
}

Arrays + Tables = Relational Data

• Example: binary relation

cloud table User
{
 name: cloud string;
}

cloud array friends
(
 user1 : User;
 user2 : User;
)
{
 value: cloud boolean;
}

Standard math: { relations AxBxC } = { functions AxBxC -> bool }

Arrays + Tables = Relational Data

• Example: linked tables

 Cascading delete: Order is deleted

automatically when owning customer is
deleted

cloud table Customer
{
 name: cloud string;
}

cloud table Order
[
 owner: Customer
]
{
 description: cloud string;
}

Linked tables solve following problem:

device 1 device 2 cloud

delete customer;
foreach o in Orders
 if (o.owner = customer)
 delete o;

?

new Order(customer);

Recovering stronger consistency

• While connected
to server, we may
want more
certainty

• flush primitive
blocks until local
state has reached
main revision and
result has come
back to device

• Sufficient to
implement strong
consistency

flush
(blocks)

(continue)

• Claim: this is not too hard. Developers can
write correct programs using these primitives.

• Future work: evidence?

Implementation for TouchDevelop

• Currently working on
integration into
TouchDevelop Phone-
Scripting IDE.

• TouchDevelop: Free app for
Windows Phone, with a
complete IDE, scripting
language, and bazaar.

• Declare cloud types in graphical editor

• Automatic yield
 Before and after each script execution

 Between iterations of the event loop

Related Work

• CRDTs (Conflict-Free Replicated Data Types)

 [Shapiro, Preguica, Baquero, Zawirski]

 Similar motivation and similar techniques

 use commutative operations only

 not clear how to do composition

• Bayou

 user-defined conflict resolution (merge fcts.)

• Transactional Memory

• Relaxed Memory Models

Conclusion

• eventually consistent shared state is

difficult to implement and reason about on traditional
platforms.

• revision diagrams [ESOP11],[ESOP12]

provide a natural and formally grounded intuition.

• cloud types [ECOOP12] provide a general way

to declare eventually consistent storage.

