
2012 Summer School on Concurrency

August 22–29, 2012 | St. Petersburg, Russia

Section 4.

 Parallel programming language Chapel

Introduction to Parallel Programming

Victor Gergel, Professor, D.Sc.

Lobachevsky State University of

Nizhni Novgorod (UNN)

http://research.microsoft.com/c/1040

Contents

 Parallel programming language Chapel

– Distributed memory systems – MPI technology

– Shared memory systems – OpenMP technology

– The model of partitioned global address space (PGAS)

– Chapel language

• Language elements

• Task parallelism

• Extended capabilities for data processing

• The concept of executor (locale)

• Data distribution management

• Examples

St. Petersburg, Russia,2012 Parallel programming language Chapel 2 of 60

Approaches to parallel programs development

 Usage of libraries for existing programming languages – MPI

for C and Fortran for distributed memory systems

 Usage of “above-language” means (directives, comments) -

OpenMP for C and Fortran for shared memory systems

 Extensions of existing programming languages – e.g. CAF,

UPC

 Creation of new – parallel – programming languages – e.g.

Chapel, X10, Fortress,…

St. Petersburg, Russia,2012 Parallel programming language Chapel 3 of 60

Development of parallel programs for distributed

memory systems: MPI…

– Distribute computational load,

– Organize informational interaction (data passing) between

processors

Data
passing
paths

Operating

memory

Processor

Cache

Processor

Cache

Operating

memory

St. Petersburg, Russia,2012 Parallel programming language Chapel

Solution for all the above items is provided by MPI (message

passing interface)

In computing systems with distributed

memory processors work independently

from each other.

For parallel computing organization one

needs to:

4 of 60

Development of parallel programs for distributed

memory systems: MPI…

 Within MPI a single program is developed for a problem

solution and is run simultaneously on all available processors

 The following capabilities are available for arrangement of

different computations on different processors:

– Possibility to use different data for a program on different

processor,

– Ways to identify the processor on which the program is being

executed

 Such way of parallel computations organization is usually

called “single program multiple processes” (SPMP)

St. Petersburg, Russia,2012 Parallel programming language Chapel 5 of 60

Development of parallel programs for distributed

memory systems: MPI…

 MPI offers plenty of data transfer operations:

– Provides different ways of sending data,

– Implements practically all main communication operations.

These capabilities are the strongest advantage of MPI

(the name of the technology – Message Passing

Interface – speaks for itself)

St. Petersburg, Russia,2012 Parallel programming language Chapel 6 of 60

Development of parallel programs for distributed

memory systems: MPI…

What is MPI?

 MPI is the standard which must be met by message transfer

set-ups.

 MPI is the software which provides message transfer

capability and meets all the requirements of the MPI standard:

– The software must be arranged as programming modules

libraries (MPI library),

– The software must be available for the most widely used

algorithmic languages C and Fortran.

St. Petersburg, Russia,2012 Parallel programming language Chapel 7 of 60

Development of parallel programs for distributed

memory systems: MPI…

MPI advantages
 MPI allows to significantly mitigate the problem of parallel

programs portability

 MPI helps increase parallel computations efficiency – there are
MPI library implementations for nearly all types of computing
system

 MPI decreases complexity of parallel programs development:

– Bigger part of main data transfer operations are provided by MPI
standard,

– There are many libraries of parallel methods which use MPI.

St. Petersburg, Russia,2012 Parallel programming language Chapel 8 of 60

MPI: main concepts and definitions…

Parallel program notion
 A parallel program in MPI is a set of simultaneously executed

processes:

– Each process of a parallel program is created based on a copy of same
source code (SPMP model),

– Processes can run on different processors ; at the same time one
processor can host several processes.

 Original source code is developed using algorithmic languages C or
Fortran and MPI library.

 The number of processes and the number of processors to be used are
defined by MPI programs execution environment at the program start.
All processes of a program are enumerated. Process number is called
process rank.

St. Petersburg, Russia,2012 Parallel programming language Chapel 9 of 60

MPI: main concepts and definitions…

Four main concepts underlie the MPI technology:

 Message transfer operations

 Types of data in messages

 Communicator concept (group of processes)

 Virtual topology concept

St. Petersburg, Russia,2012 Parallel programming language Chapel 10 of 60

MPI: main concepts and definitions…

Data transfer operations

 Message transfer operations are the MPI

fundamentals.

 MPI provides different types of functions:

– Pared (point-to-point) operations between two processes,

– Collective communication actions for simultaneous

cooperation of several processes.

St. Petersburg, Russia,2012 Parallel programming language Chapel 11 of 60

MPI: main concepts and definitions…

Communicators concept…

 A communicator in MPI is a specially created service object which

joins a group of processes and a set of additional parameters

(context):

– Paired operations of data transfer are executed for processes

belonging to same communicator,

– Collective operations are applied simultaneously for all processes of

a communicator.

 Specifying the communicator in use is mandatory for data transfer

operations in MPI.

St. Petersburg, Russia,2012 Parallel programming language Chapel 12 of 60

MPI: main concepts and definitions…

Communicators concept

 New communicators can be created and existing can be

destroyed during computations.

 Same process can belong to different communicators.

 All processes of a parallel program are included in a default

communicator with MPI_COMM_WORLD identifier.

 To arrange data transfer between processes from different

groups one needs to create a global communicator (inter-

communicator).

St. Petersburg, Russia,2012 Parallel programming language Chapel 13 of 60

MPI: main concepts and definitions…

Data types

 It is required to indicate type of transferred data when specifying

sent or received data in MPI functions.

 MPI contains a big set of base data types very similar to data

types in algorithmic languages C and Fortran.

 MPI offers ways to create new derived data types for more exact

and laconic specification of transferred messages contents.

St. Petersburg, Russia,2012 Parallel programming language Chapel 14 of 60

MPI: main concepts and definitions…

Virtual topology

 Logical topology of connection lines between processes has the

structure of a complete graph (regardless of existence of actual

physical communication links between processors).

 MPI offers a capability of describing a set of processes as a grid

of arbitrary dimension. Boundary processes of grids can be

claimed adjacent therefore torus-type structures can be defined

based on grids.

 MPI also has means of forming logical (virtual) topologies of any

desired type.

St. Petersburg, Russia,2012 Parallel programming language Chapel 15 of 60

MPI: Sample program

#include " mpi.h "

int main(int argc, char* argv[]) {

 int ProcNum, ProcRank, RecvRank;

 MPI_Status Status;

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &ProcNum);

 MPI_Comm_rank(MPI_COMM_WORLD, &ProcRank);

 if (ProcRank != 0)

 // Actions for all processes except for process 0

 MPI_Send(&ProcRank,1,MPI_INT,0,0,MPI_COMM_WORLD);

 else { // Actions for process 0

 printf ("\n Hello from process %3d", ProcRank);

 for (int i=1; i < ProcNum; i++) {

 MPI_Recv(&RecvRank, 1, MPI_INT, MPI_ANY_SOURCE,

 MPI_ANY_TAG, MPI_COMM_WORLD, &Status);

 printf("\n Hello from process %3d", RecvRank);
 }

 }

 // Job finishing

 MPI_Finalize();

 return 0;

 }

St. Petersburg, Russia,2012 Parallel programming language Chapel 16 of 60

MPI: additional information

1. Gergel, V.P. Theory and practice of parallel computing.

– M.: Binom. The Knowledge Laboratory,

Internet University of Information Technologies, 2007.–

424 pp. (In Russian)

2. Antonov, A.S. Parallel programming using MPI

technology: Tutorial. –M.: MSU publishing house,

2004.- 71 pp. (In Russian)

3. Nemnyugin, S.A., Stesik, O.L. Parallel programming

for multi-processor computer systems.- BHV –

Petersburg, 2002, 400 pp.

St. Petersburg, Russia,2012 Parallel programming language Chapel 17 of 60

St. Petersburg, Russia,2012 Parallel programming language Chapel

OpenMP interface is intended to be a parallel programming
standard for multi-processor systems with shared memory (SMP,

ccNUMA,…)

Operating

memory

Processor

Cache

Processor

Cache

In general case shared
memory systems are described
as a model of a parallel
computer with random access
to memory (parallel random-
access machine – PRAM)

Parallel programs development for shared memory

systems: OpenMP…

18 of 60

St. Petersburg, Russia,2012 Parallel programming language Chapel

Fundamentals of the approach
 To indicate the possibility of parallelization developer inserts
directives or comments in the source code.

 Program’s source code remains unchanged – the compiler can
ignore added indications and thus build a regular serial program

 The compiler which supports OpenMP replaces the parallelism
directives with some additional code (usually in a form of some
parallel library functions calls)

Parallel programs development for shared memory

systems: OpenMP…

19 of 60

St. Petersburg, Russia,2012 Parallel programming language Chapel

Reasons for reaching the effect – shared by
parallel processes data reside in shared memory, no
message passing operations are needed to arrange
the communication.

Parallel programs development for shared memory

systems: OpenMP…

20 of 60

St. Petersburg, Russia,2012 Parallel programming language Chapel

Parallelism arrangement principle…

 Usage of threads (common address space)

 Pulse (fork-join) parallelism

Parallel regions

Main thread

Parallel programs development for shared memory

systems: OpenMP…

21 of 60

St. Petersburg, Russia,2012 Parallel programming language Chapel

 Parallelism arrangement principle…

 When executing the normal code (outside of parallel regions)

the program is executed by one thread (master thread)

 When directive #parallel appears the thread team is created for

parallel execution of computations

 When leaving the region of #parallel directive effect

synchronization is done, all threads except for the master

thread are destroyed

 Serial execution of code continues (until the next occurrence of

directive #parallel)

Parallel programs development for shared memory

systems: OpenMP…

22 of 60

St. Petersburg, Russia,2012 Parallel programming language Chapel

Advantages:

 Step-by-step (incremental) parallelization

– Possible to parallelize serial programs step-by-step, not changing their

structure

 Single source code

– No need to support serial and parallel variants of a program as directives

are ignored by regular compilers (in general case)

 Efficiency

– Taking into account and making use of shared memory systems

resources

 Portability, support in most widespread languages (C, Fortran)

and platforms (Windows, Unix)

Parallel programs development for shared memory

systems: OpenMP…

23 of 60

St. Petersburg, Russia,2012 Parallel programming language Chapel

Example – Sum of vector elements
#include <omp.h>

#define NMAX 1000

main () {

 int i, sum;

 float a[NMAX];

 <data initialization>

 #pragma omp parallel for shared(a) private(i,j,sum)

 {

 sum = 0;

 for (i=0; i<NMAX; i++)

 sum += a[i];

 printf (“Sum of vector elements is equal %f\n«,sum);

 } /* End of parallel region */

}

Parallel programs development for shared memory

systems: OpenMP…

24 of 60

St. Petersburg, Russia,2012 Parallel programming language Chapel

Additional information:

1. Gergel, V.P. High performance computing for multiprocessor

multicore systems. – M.: MSU publishing house, 2010. (In

Russian)

2. Antonov, A.S. Parallel programming using OpenMP technology:

Tutorial. – M.: MSU publishing house, 2009.- 77 pp. (In Russian)

3. Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J.,

and Melon, R.. Parallel Programming in OpenMP. San-

Francisco, CA: Morgan Kaufmann Publishers., 2000.

Parallel programs development for shared memory

systems: OpenMP…

25 of 60

St. Petersburg, Russia,2012 Parallel programming language Chapel

HPCS Program: High Productivity Computing Systems (DARPA)

Goal: 10x productivity increase by 2010
(Efficiency = Performance + Programmability + Portability + Reliability)

 Phase II: Cray, IBM, Sun (July 2003 – June 2006)

– Existing architectures analysis

– Three new programming languages (Chapel, X10, Fortress)

 Phase III: Cray, IBM (July 2006 – 2010)

– Implementation

– Work continued for all proposed languages

Parallel programs development based on PGAS

model…

26 of 60

St. Petersburg, Russia,2012 Parallel programming language Chapel

General overview of the HPCS program languages:…

 New object-oriented languages which support a wide set of

programming means, parallelism and safety.

 Global name space, multithreading and explicit mechanisms to

work with locality are supported.

 Existing means for arrays distribution among computational nodes.

Existing means for linking execution threads with data processed by

those threads.

 Both data parallelism and task parallelism are supported.

Parallel programs development based on PGAS

model…

27 of 60

St. Petersburg, Russia,2012 Parallel programming language Chapel

General overview of the HPCS program languages:…

Locality management

 All three languages provide user access to virtual units of locality called

locales in Chapel, regions in Fortress and places in X10.

 Each execution of a program is bundled to a set of such locality units

which are mapped by operating system to physical entities like

computational nodes.

 This provides users with a mechanism for

 (1) data collections distribution among locality units,

 (2) balancing different data collections and

 (3) linking threads with data they are processing.

Parallel programs development based on PGAS

model…

28 of 60

St. Petersburg, Russia,2012 Parallel programming language Chapel

General overview of the HPCS program languages:…

 Fortress and X10 provide extensive libraries of built-in

distributions. These languages also provide a possibility to create

user-defined data distributions via index space decomposition or

combining distributions in different dimensions.

 Chapel doesn’t provide built-in distributions but provides an

extensive infrastructure which supports arbitrary user-defined data

distributions capable of sparse data management.

Parallel programs development based on PGAS

model…

29 of 60

St. Petersburg, Russia,2012 Parallel programming language Chapel

General overview of the HPCS program languages:…

Multithreading (loop parallelization).

 Chapel distinguishes serial loops “for” and parallel loops “forall” in which

iterations on index region elements are performed without limitations. Users

are responsible for avoidance of dependencies which can lead to data

races.

 In Fortress the “for” loop is parallel by default thus if loop iterations are

performed on a distributed dimension of an array these iterations will be

grouped by processors according to data distributions.

 X10 has two types of parallel loops: “foreach” which is limited to a single

locality unit and “ateach” which allows to perform iterations on several

locality units.

Parallel programs development based on PGAS

model…

30 of 60

St. Petersburg, Russia,2012 Parallel programming language Chapel

General overview of the HPCS program languages:

 Chapel - http://chapel.cray.com/

 Fortress - http://fortress.sunsource.net/

 X10 - http://x10-lang.org/

Parallel programs development based on PGAS

model

31 of 60

http://chapel.cray.com/
http://fortress.sunsource.net/
http://x10-lang.org/
http://x10-lang.org/
http://x10-lang.org/

St. Petersburg, Russia,2012 Parallel programming language Chapel

Preview – «Hello, world» program

 Fast prototyping
writeln(“Hello, world”);

 Structured programming
def main() {

 writeln(“Hello, world”);

}

 Application
module HelloWorld {

 def main() {

 writeln(“Hello, world”);

 }

}

Parallel programs development based on PGAS

model: Chapel…

32 of 60

St. Petersburg, Russia,2012 Parallel programming language Chapel

Language Overview:

 Syntax

– Uses some features of C, C#, C++, Java, Ada, Perl, ...

 Semantics

– Imperative, block-structured, arrays

– Object-oriented programming (optional)

– Static typing

Parallel programs development based on PGAS

model: Chapel…

33 of 60

St. Petersburg, Russia,2012 Parallel programming language Chapel

Language elements - ranges:

 Syntax

range-expr:

 [low] .. [high] [by stride]

 Semantics

Regular sequence of integer values

– stride > 0: low, low+stride, low+2*stride, ... ≤ high

– stride < 0: high, high+stride, high+2*stride, ... ≥ low

 Examples

– 1..6 by 2 // 1, 3, 5

– 1..6 by -1 // 6, 5, 4, 3, 2, 1

– 3.. by 3 // 3, 6, 9, 12, ...

Parallel programs development based on PGAS

model: Chapel…

34 of 60

St. Petersburg, Russia,2012 Parallel programming language Chapel

Language elements - Arrays:

 Syntax

array-type:

 [index-set-expr] type

 Semantics

Array of elements, size is defined by a set of indexes

 Examples
– var A: [1..3] int, // Array of 3 elements

 B: [1..3, 1..5] real, // 2D array

 C: [1..3][1..5] real; // Array of arrays

Parallel programs development based on PGAS

model: Chapel…

35 of 60

St. Petersburg, Russia,2012 Parallel programming language Chapel

Language elements - Loop:

 Syntax

for-loop:

 for index-expr in iterator-expr { stmt-list }

 Semantics

Body expression evaluation on each iteration of the loop

 Example
– var A: [1..3] string = (“DO“, “RE“, “MI“);

– for i in 1..3 do write(A(i)); // DOREMI

– for a in A { a += “LA“; write(a); } // DOLARELAMILA

Parallel programs development based on PGAS

model: Chapel…

36 of 60

St. Petersburg, Russia,2012 Parallel programming language Chapel

Language elements – Conditional Expressions:

 Conditional Expression

if cond then computeA() else computeB();

 while loop

while cond {

 compute();

}

 Select expression

select key {

 when value1 do compute1();

 when value2 do compute2();

 otherwise compute3();

}

Parallel programs development based on PGAS

model: Chapel…

37 of 60

St. Petersburg, Russia,2012 Parallel programming language Chapel

Language elements - Functions:

 Example
def area(radius: real)

 return 3.14 * radius**2;

writeln(area(2.0)); // 12.56

 Example of a function with default values of arguments
def writeCoord(x: real = 0.0, y: real = 0.0) {

 writeln(“(“, x, “, “, y, “)“);

}

writeCoord(2.0); // (2.0, 0.0)

writeCoord(y=2.0); // (0.0, 2.0)

Parallel programs development based on PGAS

model: Chapel…

38 of 60

St. Petersburg, Russia,2012 Parallel programming language Chapel

Task parallelism: begin operator

 Syntax
begin-stmt:

 begin stmt

 Semantics

– Creates a parallel task for stmt execution

– Execution of the parent program is not suspended

 Example
begin writeln(“hello world”);

writeln(“good bye”);

Possible outputs
(1) hello world (2) good bye

 good bye hello world

Parallel programs development based on PGAS

model: Chapel…

39 of 60

St. Petersburg, Russia,2012 Parallel programming language Chapel

Task parallelism: sync type

 Syntax
sync-type:

 sync type

 Semantics

– Variables of the sync type have two states – «full», «empty»

– Writing to a sync variable changes its state to «full»

– Reading from a sync variable changes its state to «empty»

 Examples
(1) var lock$: sync bool; (2) var future$: sync real;

 lock$ = true; begin future$ = compute();

 critical(); computeSomethingElse();

 lock$; useComputeResults(future$);

Parallel programs development based on PGAS

model: Chapel…

40 of 60

St. Petersburg, Russia,2012 Parallel programming language Chapel

Task parallelism: cobegin operator

 Syntax
cobegin-stmt:

 cobegin { stmt-list }

 Semantics

– Spawns a parallel task for each operator from the stmt-list

– Synchronization at the end of block

 Example
cobegin {

 consumer(1);

 consumer(2);

 producer();

}

Parallel programs development based on PGAS

model: Chapel…

41 of 60

St. Petersburg, Russia,2012 Parallel programming language Chapel

Task parallelism: coforall operator

 Syntax
coforall-loop:

 coforall index-expr in iterator-expr { stmt }

 Semantics

– Spawns parallel tasks for every loop iteration

– Synchronization at the end of the loop

 Example (“Producer-consumer” task)
begin producer();

coforall i in 1..numConsumers {

 consumer(i);

}

Parallel programs development based on PGAS

model: Chapel…

42 of 60

St. Petersburg, Russia,2012 Parallel programming language Chapel

Task parallelism: atomic operator

 Syntax
atomic-statement:

 atomic stmt

 Semantics

stmt is executed as an atomic operation

 Example
atomic A(i) = A(i) + 1;

Parallel programs development based on PGAS

model: Chapel…

43 of 60

St. Petersburg, Russia,2012 Parallel programming language Chapel

Domains: advanced ways to set ranges
var Dense: domain(2) = [1..10, 1..20],

 Strided: domain(2) = Dense by (2, 4),

 Sparse: subdomain(Dense) = genIndices(),

 Associative: domain(string) = readNames(),

 Opaque: domain(opaque);

Parallel programs development based on PGAS

model: Chapel…

44 of 60

St. Petersburg, Russia,2012 Parallel programming language Chapel

Domain operations
forall (i,j) in Sparse {

 DenseArr(i,j) += SparseArr(i,j);

}

Parallel programs development based on PGAS

model: Chapel…

=

45 of 60

Parallel programs development based on PGAS

model: Chapel…

Data reduction: reduce operation

 Syntax
reduce-expr:

 reduce-op reduce iterator-expr

 Semantics

Applies reduce-op operation for every data element

 Example
total = + reduce A;

bigDiff = max reduce [i in InnerD] abs(A(i)-B(i);

St. Petersburg, Russia,2012 Parallel programming language Chapel 46 of 60

Parallel programs development based on PGAS

model: Chapel…

Data reduction: scan operation

 Syntax
scan-expr:

 scan-op scan iterator-expr

 Semantics

Applies scan-op operation for every data element

(with return of all partial results)

 Example
var A, B, C: [1..5] int;

A = 1; // A: 1 1 1 1 1

B = + scan A; // B: 1 2 3 4 5

B(3) = -B(3); // B: 1 2 -3 4 5

C = min scan B; // C: 1 1 -3 -3 -3

St. Petersburg, Russia,2012 Parallel programming language Chapel 47 of 60

Parallel programs development based on PGAS

model: Chapel…

Computing System Model: locale

 Definition

– Is an abstraction of computing element

– Contains a processing unit and memory (storage)

 Properties

– Tasks running within a locale have uniform access to local memory

– Longer latency for accessing the memory of other locales

 Example
locale – SMP, multicore processor

St. Petersburg, Russia,2012 Parallel programming language Chapel 48 of 60

Parallel programs development based on PGAS

model: Chapel…

Computing System Model

 Declaration of all locales set
config const numLocales: int;

const LocaleSpace: domain(1) = [0..numLocales-1];

const Locales: [LocaleSpace] locale;

 Definition of the locales set at execution start
prompt> a.out --numLocales=8

 Definition of locales set topology
var TaskALocs = Locales[0..1];

var TaskBLocs = Locales[2..numLocales-1];

var Grid2D = Locales.reshape([1..2,1..4]);

St. Petersburg, Russia,2012 Parallel programming language Chapel 49 of 60

Parallel programs development based on PGAS

model: Chapel…

Computing System Model: Operations

 Get locale index
def locale.id: int { ... }

 Get locale name
def locale.name: string { ... }

 Get the number of cores on a locale
def locale.numCores: int { ... }

 Get the size of available memory on a locale
def locale.physicalMemory(...) { ... }

 Example – calculating the size of all available memory
const totalSystemMemory =

 + reduce Locales.physicalMemory();

St. Petersburg, Russia,2012 Parallel programming language Chapel 50 of 60

Parallel programs development based on PGAS

model: Chapel…

Computing System Model: Linking tasks and locales

 Running tasks on a locale – on operation
on-stmt:

 on expr { stmt }

 Semantics

stmt executed on the locale, defined by expr

 Example
var A: [LocaleSpace] int;

coforall loc in Locales do on loc do

 A(loc.id) = compute(loc.id);

St. Petersburg, Russia,2012 Parallel programming language Chapel 51 of 60

Parallel programs development based on PGAS

model: Chapel…

Computing System Model: Example

var x, y: real; // x and y on the locale 0

on Locales(1) { // migrate task to locale 1

 var z: real; // z on locale 1

 z = x + y; // remote access to x and y

 on Locales(0) do // return to the locale 0

 z = x + y; // remote access to z

 // return to the locale 1

 on x do // transition to the locale 0

 z = x + y; // remote access to z

 // transition to the locale 1

} // return to the locale 0

St. Petersburg, Russia,2012 Parallel programming language Chapel 52 of 60

Parallel programs development based on PGAS

model: Chapel…

Computing System Model: Data distribution

 (Data) Ranges distribution among over a set of locales

Example
const Dist = new dmap(new Cyclic(startIdx=(1,1)));

varDom: domain(2) dmapped Dist = [1..4, 1..8];

Data is distributed on a grid of locales



 There is a library of standard distributions

 Possible to define new (own) distributions

St. Petersburg, Russia,2012 Parallel programming language Chapel 53 of 60

Parallel programs development based on PGAS

model: Chapel…

Computing System Model: Data distribution

 Ranges distribution is performed in the same way for every
range type

St. Petersburg, Russia,2012 Parallel programming language Chapel 54 of 60

Parallel programs development based on PGAS

model: Chapel…

NAG MG Stencil in Fortran+MPI

St. Petersburg, Russia,2012 Parallel programming language Chapel 55 of 60

Parallel programs development based on PGAS

model: Chapel…

NAG MG Stencil in Chapel

def rprj3(S, R) {

 const Stencil = [-1..1, -1..1, -1..1],

 W: [0..3] real = (0.5, 0.25, 0.125, 0.0625),

 W3D = [(i,j,k) in Stencil] W((i!=0)+(j!=0)+(k!=0));

 forall inds in S.domain do

 S(inds) =

 + reduce [offset in Stencil] (W3D(offset) *

 R(inds + offset*R.stride));

St. Petersburg, Russia,2012 Parallel programming language Chapel 56 of 60

Parallel programs development based on PGAS

model: Chapel

Algorithm for Banded Matrix Multiplication
Intel ®Core™2 DUO T5250 @ 1.5GHz 1.5GHz 2.00 Gb RAM

St. Petersburg, Russia,2012 Parallel programming language Chapel 57 of 60

Conclusion

St. Petersburg, Russia,2012 Parallel programming language Chapel

 Major approaches to develop parallel programs:

– Usage of libraries for existing programming languages,

– Usage of preprocessor (directives, comments),

– Extension of existing programming languages,

– Creation of new parallel programming languages

 Major technologies:

– OpenMP for systems with shared memory,

– MPI for systems with distributed memory

 A direction based on the model of a distributed globally-

addressed space (PGAS) is actively developed

58 of 60

Contacts:

Nizhny Novgorod State University

Department of Computational
Mathematics and Cybernetics

Victor P. Gergel

gergel@unn.ru

St. Petersburg, Russia,2012 Parallel programming language Chapel 59 of 60

Thank you for attention!

Any questions?

St. Petersburg, Russia,2012 Parallel programming language Chapel 60 of 60

