
Section 5.

 Parallel programming language Co-Array Fortran

Introduction to Parallel Programming

Victor Gergel, Professor, D.Sc.

Lobachevsky State University of

Nizhni Novgorod (UNN)

http://research.microsoft.com/c/1040

 Parallel programming language Co-Array Fortran

(CAF)

– Approaches to parallel programs development

– Parallel programming model CAF

– Images (program images, executors)

– Co-arrays (distributed arrays)

– Synchronization of parallel computations

– Examples

– CAF programs performance measurement

– Evolution: from CAF 1.0 to CAF 2.0

Contents

St. Petersburg, Russia,2012
Parallel programming language Co-Array Fortran

2 of 52

 Usage of libraries for existing programming languages – MPI

for C and Fortran for distributed memory systems

 Usage of “above-language” means (directives, comments) -

OpenMP for C and Fortran for shared memory systems

 Extensions of existing programming languages – e.g. UPC,

CAF

 Creation of new – parallel – programming languages – e.g.

Chapel, X10, Fortress,…

Approaches to parallel programs development

St. Petersburg, Russia,2012
Parallel programming language Co-Array Fortran

3 of 52

 Arrangement of computations according to PGAS model

(partitioned global address space)

– Two-level memory model for locality management (local/remote memory),

– Management of data placement in local memory,

– Control over data transfer from remote memory.

 CAF (Co-Array Fortran) was proposed by Numrich and Reid

(Minnesota University, USA) in the mid 90s. The original name of

the language – Fˉˉ.

 Language development supported by Cray company. One of the

most active CAF development centers – Rice University.

Approach fundamentals – minimal (but productive) extension of the

Fortran language to make it an efficient parallel programming language

CAF: Introduction…

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
4 of 52

 Sample program
program Hello_World
 implicit none
 integer :: i ! Local variable
 character(len=20) :: name[*]! сo-array variable
 if (this_image() == 1) then
 print *,'Enter your name: '
 read (*,'(a)') name

 ! send the data
 do i = 2, num_images()
 name[i] = name
 end do
 end if

 sync all ! wait for all images

 print *, 'Hello ' , name, 'from image ', this_image()
end program Hello_world

CAF: Introduction

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
5 of 52

 Basis – Single-Program-Multiple-Data (SPMD) model:

– A single CAF-program is developed and further copied

required number of times. CAF-program copies may run in

parallel,

– Each program copy has its own local data,

– Data which has to be accessed from different copies of

a CAF-program must be declared specifically (co-arrays).

Data transfer between program copies is done only via

explicit syntax.

CAF: Programming model…

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
6 of 52

 A copy of a CAF-program is called image in CAF terminology:

– An image can be considered an abstraction of a computational

node,

– The number of created images can be determined using the
num_images() function,

– The number of images usually matches the number of

available processors. In general case the two numbers can be

different,

– Each image is described by its unique index (this_image()

function).

Indexes can be used to separate computations in images

(in analogy with MPI programming)

CAF: Programming model

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
7 of 52

 To work with data shared by images CAF introduces

co-arrays model.

 Syntax

co-array: <type> :: <data_declaration> [*]

 Semantics

Copying defined data object (array) to all images of CAF-program:

– Number of co-array copy (image index) is specified using

square brackets (index of a regular array is specified via round

brackets). I.e. “()” brackets provide access to local memory and

“[]” brackets – to remote memory,

– Number of copy local for the image can be omitted.
 Example

– real :: x(n)[*] ! Creation of array x copies on all images of a program

CAF: Co-arrays…

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
8 of 52

 Example

– real :: x(n)[*] ! Creation of array x copies on all images of a program

CAF: Co-arrays…

CAF-program

Images

. . . X(n) X(n) X(n)

Co-array x components

 Operations on co-array components are performed

according to ordinary Fortran rules

– x(1)[p] = x(n)[q] ! Read the element n of image q and

 ! write to an element 1 of image p

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
9 of 52

 Co-array declaration can be done in full accordance with
Fortran rules:

real :: a(n)[∗]
complex :: z[0:∗]
integer :: index(n)[∗]
real :: b(n)[p, ∗]
real :: c(n,m)[0:p, -7:q, +11:*]

real, allocatable :: w(:)[:]

type(field) :: maxwell[p,∗]

CAF: Co-arrays…

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
10 of 52

1 2 3 4

 Example

int :: x[4,*]

num_image() = 16

this_image() = 15

this_image(x) = (/3,4/)

CAF: Co-arrays…

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

1

2

3

4

 Maximum index value along the second dimension is determined as

= num_image()/4

 The first index can be interpreted as a number of a core in a processor

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
11 of 52

0 1 2 3

 Example

int :: x[0:3,0:*]

num_image() = 16

this_image() = 15

this_image(x) = (/2,3/)

CAF: Co-arrays…

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

0

1

2

3

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
12 of 52

0 1 2 3

 Example

int :: x[-5:-2,0:*]

num_image() = 16

this_image() = 15

this_image(x) = (/-3,3/)

CAF: Co-arrays…

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

-5

-4

-3

-2

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
13 of 52

0 1 2 3

 Example

int :: x[-5:-2,0:*]

num_image() = 14

CAF: Co-arrays…

1 5 9 13

2 6 10 14

3 7 11 -

4 8 12 -

-5

-4

-3

-2

 Images with indexes /-3,3/ and /-2,3/ are not defined

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
14 of 52

 Example

 int :: x[p,q,*]

CAF: Co-arrays…

 Images arrangement in a form of a three-dimensional grid

 Maximum index value along the third dimension is defined as

= num_image()/(p*q)

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
15 of 52

 Operations on co-array components are also performed in

full accordance with Fortran rules:

 y(:) = x(:)[p]

 x(index(k)) = y[index(p)]

 x(:)[q] = x(:) + x(:)[p]

 u(2:n-1)[p] = u(1:n-2)[q] + u(3:n)[r]

CAF: Co-arrays

 Omitted index of co-array component indicates access to

component which is local for the image

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
16 of 52

CAF: Syncronization…

Barrier synchronization…

 Syntax

sync all

 Semantics

 Barrier synchronization – each image at the barrier is suspended

until all images are at the barrier. I.e. segments which execute on

an image before the sync all statement precede segments which

execute after the sync all statement on any another image.

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
17 of 52

CAF: Synchronization…

Barrier synchronization

 Example – reading in image 1 and broadcasting to all others

real :: z[*]

 ...

sync all

if (this_image()==1) then

 read(*,*) z

 do image = 2, num_images()

 z[image] = z

 end do

end if

sync all

...

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
18 of 52

CAF: Synchronization…

Synchronization of image groups…

 Syntax

sync images (<image-set>)

 Semantics

- Synchronization of images, specified as function argument;

<image-set> parameter is an array of images’ indexes for

which the synchronization must be performed (“*” symbol can

be used to specify all images).

- sync images (*) is not equivalent to sync all – for sync

images it is not required to use the same parameter value for

all images which are synchronized (see example)

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
19 of 52

CAF: Synchronization…

Synchronization of image groups

 Example – Synchronization of the image 1 with all other images

(but not each with each)

if (this_image() == 1) then

 ! Setting data for all images

 sync images(*)

else

 sync images(1)

 ! Working with data

end if

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
20 of 52

CAF: Synchronization …

Synchronization of critical sections

 Syntax

critical

 ! Code executed by only one image

 ! at each moment of time

end critical

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
21 of 52

CAF: Synchronization

Memory synchronization

 Syntax

sync memory

 Semantics

Synchronization of temporary and main memory

(saving data which reside in temporary memory)

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
22 of 52

CAF: Example 1 – Finite Difference Method…

 The Dirichlet problem with periodic boundary conditions

 Finite Difference Method – 5-point kernel

 Structure of data – u(1:nrow)[1:ncol]

Gauss-Seidel method

(i,j)

(i+1,j) (i-1,j)

(i,j+1)

(i,j-1)

        

        

        

        

        

        

        

        

        

ij

kkkkk

ij fhuuuuu
jijijiji

211 4
1,1,,1,1
 



St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
23 of 52

CAF: Example 1 – Finite Difference Method…

subroutine laplace (nrow,ncol,u)

 integer, intent(in) :: nrow, ncol

 real, intent(inout) :: u(nrow)[*]

 real :: new_u(nrow)

 integer :: i, me, left, right

 new_u(1) = u(nrow) + u(2) (1)

 new_u(nrow) = u(1) + u(nrow-1) (2)

 new_u(2:nrow-1) = u(1:nrow-2) + u(3:nrow)

 me = this_image(u) ! Returns the co-subscript within u

 ! that refers to the current image

 left = me-1; if (me == 1) left = ncol

 right = me + 1; if (me == ncol) right = 1

 sync all((/left,right/)) ! Wait if left and right (3)

 ! have not already reached here

 new_u(1:nrow)=new_u(1:nrow)+u(1:nrow)[left]+u(1:nrow)[right] (4)

 sync all((/left,right/))

 u(1:nrow) = new_u(1:nrow) - 4.0*u(1:nrow)

end subroutine laplace

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
24 of 52

CAF: Example 1 – Finite Difference Method

 Explanation of the program:

- (1) – taking into account the periodic boundary conditions

- (2) – adding values of horizontally adjacent cells

- (3) – synchronization on readiness of previous computations

- (4) – adding values of vertically adjacent cells

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
25 of 52

CAF: Example 2 – Search for Maximum in a Distributed Array…

subroutine greatest(a,great) ! Find maximum value of a(:)[*]

 real, intent(in) :: a(:)[*]

 real, intent(out) :: great[*]

 real :: work(num_images()) ! Local work array

 great = maxval(a(:)) (1)

 sync all ! Wait for all other images to reach here

 if(this_image(great)==1)then

 work(:) = great[:] ! Gather local maxima (2)

 great[:]=maxval(work) ! Broadcast the global maximum (3)

 end if

 sync all

end subroutine greatest

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
26 of 52

CAF: Example 2 – Search for Maximum in a Distributed array…

 Explanation of the program:

- (1) – searching for local maximum by every image

- (2) – getting all local maximums on the image 1

- (3) – finding the global maximum and its broadcasting for all

 images

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
27 of 52

CAF: Example 3 – Matrix Multiplication…

 Data distribution – Block partitioning

 Base subtask – procedure of calculation of all

elements for one of the matrix C blocks

A B C

X =

,

...

...

...

...

...

...

111110

100100

111110

100100

111110

100100































































qqqq

q

qqqq

q

qqqq

q

CCc

CCC

BBB

BBB

AAA

AAA

 




q

s

sjisij BAC

1

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
28 of 52

CAF: Example 3 – Matrix Multiplication…

Version 1

real,dimension(n,n)[p,*] :: a,b,c

! Calculating the matrix C block (myP,myQ)

! Block size nxn

! Images – pxp grid

do k = 1, n

 do q = 1, p

 c(i,j)[myP,myQ] = c(i,j)[myP,myQ]

 + a(i,k)[myP,q]*b(k,j)[q,myQ]

 enddo

enddo

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
29 of 52

CAF: Example 3 – Matrix Multiplication

Version 2

real,dimension(n,n)[p,*] :: a,b,c

do k=1,n

 do q=1,p

 c(i,j) = c(i,j) + a(i,k)[myP, q]*b(k,j)[q,myQ]

 enddo

enddo

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
30 of 52

CAF: Performance Measurement…

Performance measurement with NASA Parallel Benchmark

(NPB)…

 Developed in the early 90s

 Was developed as a universal tool for supercomputers

performance measurement

 Includes kernels of hydro- and aerodynamic modeling problems

 Officially is just a set of rules and recommendations

 Reference implementation is available on the NASA server

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
31 of 52

CAF: Performance Measurement …

 EP — Embarrassing Parallel. Numerical integration with

Monte-Carlo method.

 MG — simple 3D MultiGrid benchmark. Approximate the

solution to a three-dimensional discrete Poisson equation

(«3D grid") on a NxNxN grid with periodic boundary

conditions.

 CG — solving an unstructured sparse linear system by the

Conjugate Gradient method. Estimate the smallest eigenvalue

of a large sparse symmetric positive-definite matrix using the

inverse iteration with the conjugate gradient method.

 FT —3-D Fast-Fourier Transform partial differential equation

benchmark. Solve a three-dimensional partial differential

equation (PDE) using the fast Fourier transform (FFT).

 IS — Parallel Sort of small Integers. Parallel sort of N integer

numbers.

 LU — LU Solver. Solve a synthetic system of nonlinear PDEs

using symmetric successive over-relaxation (SSOR) solver

kernel.

 SP — Scalar Pentadiagonal. Solve a synthetic system of

nonlinear PDEs using scalar pentadiagonal algorithm .

 BT — Block Tridiagonal. Solve a synthetic system of nonlinear

PDEs using block tridiagonal algorithm.

Test Class A Class B Class C Class D Class E

EP 228 230 232 236 240

MG 2563 2563 5123 10243 20483

CG 14000 75000 1.5x105 1.5x106 9x106

FT 2562x128 2562x512 5123 10242x204

8

4096x2048
2

IS 223 225 227 229

LU 643 1023 1623 4083 10203

SP 643 1023 1623 4083 10203

BT 643 1023 1623 4083 10203

DT

Performance measurement with NASA Parallel Benchmark

(NPB)…

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
32 of 52

CAF: Performance Measurement…

Performance measurement with NASA Parallel Benchmark

(NPB)…
 NAS versions:

 - NPB2.3b2 : MPI implementation

 - NPB2.3-serial : Sequential code on the base of MPI version

 CAF version

 - NPB2.3-CAF: CAF implementation on the base of MPI version

 Hardware platforms

 - SGI Altix 3000 (Itanium2 1.5GHz)

 - Itanium2+Quadrics QSNet II (Elan4, Itanium2 1.5GHz)

Results of numerical experiments are taken from:

Coarfa C., Dotsenko Yu. and Mellor-Crummey J. Co-Array Fortran:

Compilation, Performance, Language Issues. SGI User Group

Technical Conference (SGIUG 2004), Orlando, Florida, May 2004.

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
33 of 52

CAF: Performance Measurement…

NPB BT Efficiency (Class C, size 1623)

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
34 of 52

CAF: Performance Measurement…

NPB SP Efficiency (Class C, size 1623)

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
35 of 52

CAF: Performance Measurement…

NPB MG Efficiency (Class C, size 5123)

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
36 of 52

CAF: Performance Measurement

NPB CG Efficiency (Class C, size 150000)

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
37 of 52

CAF 1.0  CAF 2.0: Directions of Development…

 ISO Fortran Committee decided to include CAF elements in the new

standard of the Fortran language

 At the same time a new version of CAF language is actively developed

(mostly by Rice University researchers). Major goals of the CAF 2.0 are

the following:

 Expand the set of features for development of parallel programs and

libraries of parallel methods

 Provide better efficiency of parallel computations

 Provide the possibility of efficient execution of CAF-programs on a

wide spectrum of parallel computing systems (from multicore

processors to massively multiprocessor systems of the PetaFLOP

level)

etc.

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
38 of 52

CAF 1.0  CAF 2.0: Directions of Development…

Teams of images…
 Team of images – ordered set of

images

 Image can belong to several teams

 Image has its individual index in a
team

 Teams can be used for creation of
distributed arrays

 Teams are the base for defining
collective data transfer operations

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
39 of 52

CAF 1.0  CAF 2.0: Directions of Development…

Teams of images – creation via splitting an existing
team…

 team_split (team, color, key, team_out)

 - team – existing team of images,

 - color – index showing belonging to a team (images with the

same color value belong to the same newly created team),

 - key – index of an image in the new team,

 - team_out – descriptor of the new team.

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
40 of 52

CAF 1.0  CAF 2.0: Directions of Development…

Teams of images – creation via splitting an existing
team…

 Example:

 • Assume p images form a q х q grid

 • We create separate teams for every row and column

 IMAGE_TEAM team

 integer rank, row

 rank = this_image(TEAM_WORLD)

 row = rank/q

 call team_split(TEAM_WORLD, row, rank, team)

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
41 of 52

CAF 1.0  CAF 2.0: Directions of Development…

Teams of images – creation via splitting an existing team…

 Accessing co-arrays using a team image

 x(i,j)[p@ocean] ! p is a rank in the ocean team

 Accessing using the “with team” default rule

 with team atmosphere ! atmosphere as a default team

 x(:,0)[p] = y(:)[q@ocean] ! p – image from the atmosphere team,

 ! q – image from the ocean team

 end with team

 Teams can be also created via union and intersection of existing

teams.

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
42 of 52

CAF 1.0  CAF 2.0: Directions of Development…

Topologies of images…
 Provides consistency of images’ communications structure with

informational network structure

 Topology creation

 - topology_cartesian(/e1,e2,.../) – Cartesian topology (grid)

 - topology_graph(n,e) – General graph topology

 Changing the structure of topology

 - graph_neighbor_add(g,e,n,nv)

 - graph_neighbor_delete(g,e,n,nv)

 Binding a team of images with a topology

 - topology_bind(team,topology)

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
43 of 52

CAF 1.0  CAF 2.0: Directions of Development…

Topologies of images…

 Accessing co-arrays using a topology

 • Cartesian topology

 - array(:) [(i1, i2, ..., in)@ocean] ! Access from the ocean team

 - array(:) [i1, i2, ..., in] ! Access from the default team

 • General graph topology: Accessing the k-th neighbor of an

image i in the edge class e

 - array(:) [(e,i,k)@ ocean] ! Access from the ocean team

 - array(:) [e,i,k] ! Access from the default team

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
44 of 52

CAF 1.0  CAF 2.0: Directions of Development…

Topologies of images…
 Example: Cartesian topology
Integer, Allocatable :: X(:)[*], Y(100)[*]

Team :: Ocean, SeaSurface

! create a cartesian topology 2 (cyclic) by 3

Cart = Topology_cartesian(/-2, 3/)

! bind teams Ocean and SeaSurface to Cart

Topology_bind(Ocean, Cart)

Topology_bind(SeaSurface, Cart)

! Ocean is the default team in this scope

With Team Ocean

 Allocate(X(100))

 ! Y on node 3 gets X on node 5

 Y(:) [1, 1] = X(:)[(-1, 2)@SeaSurface]

End With Team

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
45 of 52

CAF 1.0  CAF 2.0: Directions of Development…

Topologies of images
 Example: General graph topology

graph = topology_graph(6, 2)

integer :: red, blue, myrank

myrank = team_rank(team_world)

read *, blue_neighbors, red_neighbors

! blue edges

graph_neighbor_add(graph,blu46e,myrank,blue_neighbors)

! red edges

graph_neighbor_add(graph,red,myrank,red_neighbors)

! bind team with the topology

call topology_bind(ocean, graph)

allocate(x(100)@ocean)

! y receives x(20:80) from image 4

y(:) = x(20:80) [(myrank, blue, 3)@ocean]
St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran

46 of 52

CAF 1.0  CAF 2.0: Directions of Development

Collective operations
 Set of collective operations includes:
 - co_bcast - broadcasting,

 - co_gather - gathering,

 - co_allgather – gathering and broadcasting,

 - co_permute - permutation,

 - co_reduce - reduction,

 - co_allreduce – reduction and broadcasting,

 - co_scan – generalized reduction,

 - co_scatter – generalized gathering,

 - co_segmented_scan – generalized reduction with segmentation,

 - co_shift – shift.

 The 2-stage execution possibility for interleaving calculations and data

transfer operations.

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
47 of 52

CAF: Conclusions…

 CAF parallel programming language is formed as a small

Fortran extension sufficient for development of efficient parallel

programs.

 CAF is based on the following concepts:

– image as an abstraction of a computing element of the

computer system in use,

– co-array (distributed array) with components distributed

between images; distributed components are accessed

according to the rules of regular array operations.

 Parallel CAF-program is executed by copying the same source

code (SPMD model).

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
48 of 52

CAF: Conclusions…

 ISO Fortran Committee is going to include elements of CAF in

the new prepared standard of the Fortran language

 Computational experiments show sufficient efficiency of CAF-

programs

 Influence of MPI standard can be traced in CAF improvement

proposals. Major proposals:

 introducing teams of images,

 the possibility to declare a topology,

 presence of collective data transfer operations

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
49 of 52

CAF: References

1. http://www.co-array.org

2. http://caf.rice.edu

3. Numrich, R. W. and Reid, J. K. (1998). Co-Array Fortran for

parallel programming. ACM Fortran Forum (1998), 17, 2

(Special Report) and Rutherford Appleton Laboratory report

RAL-TR-1998-060 available as

ftp://ftp.numerical.rl.ac.uk/pub/reports/nrRAL98060.pdf

4. Numrich, R. W. and Reid, J. K. (2005). Co-arrays in the next

 Fortran Standard. ACM Fortran Forum (2005), 24, 2, 2-24

and

 WG5 paper

 ftp://ftp.nag.co.uk/sc22wg5/N1601-N1650/N1642.pdf

5. Numrich, R. W. and Reid, J. K. (2007). Co-arrays in the next

 Fortran Standard. Scientific Programming (2006), 14, 1-18.

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran

50 of 52

http://www.co-array.org/
http://www.co-array.org/
http://www.co-array.org/
http://caf.rice.edu/

Contacts:

Nizhny Novgorod State University

Department of Computational
Mathematics and Cybernetics

Victor P. Gergel

gergel@unn.ru

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
51 of 52

Thank you for attention!

Any questions?

St. Petersburg, Russia,2012 Parallel programming language Co-Array Fortran
52 of 52

