

Introduction to Parallel Programming

<u>Section 5</u>. Parallel programming language Co-Array Fortran

Victor Gergel, Professor, D.Sc. Lobachevsky State University of Nizhni Novgorod (UNN)

Contents

- Parallel programming language Co-Array Fortran (CAF)
 - Approaches to parallel programs development
 - Parallel programming model CAF
 - Images (program images, executors)
 - Co-arrays (distributed arrays)
 - Synchronization of parallel computations
 - Examples
 - CAF programs performance measurement
 - Evolution: from CAF 1.0 to CAF 2.0

Approaches to parallel programs development

- Usage of libraries for existing programming languages MPI for C and Fortran for distributed memory systems
- Usage of "above-language" means (directives, comments) -OpenMP for C and Fortran for shared memory systems
- Extensions of existing programming languages e.g. UPC, CAF
- Creation of new parallel programming languages e.g. Chapel, X10, Fortress,...

CAF: Introduction...

- Arrangement of computations according to PGAS model (partitioned global address space)
 - Two-level memory model for locality management (local/remote memory),
 - Management of data placement in local memory,
 - Control over data transfer from remote memory.
- CAF (Co-Array Fortran) was proposed by Numrich and Reid (Minnesota University, USA) in the mid 90s. The original name of the language – F⁻⁻.
- Language development supported by Cray company. One of the most active CAF development centers Rice University.

Approach fundamentals – minimal (but productive) extension of the Fortran language to make it an efficient parallel programming language

CAF: Introduction

□ Sample program

```
program Hello World
  implicit none
  integer :: i ! Local variable
  character(len=20) :: name[*]! co-array variable
  if (this image() == 1) then
    print *, 'Enter your name: '
    read (*, '(a) ') name
    ! send the data
    do i = 2, num images()
      name[i] = name
    end do
  end if
  sync all ! wait for all images
  print *, 'Hello ', name, 'from image ', this image()
end program Hello world
```


CAF: Programming model...

□ Basis – Single-Program-Multiple-Data (SPMD) model:

- A single CAF-program is developed and further copied required number of times. CAF-program copies may run in parallel,
- Each program copy has its own local data,
- Data which has to be accessed from different copies of a CAF-program must be declared specifically *(co-arrays)*.
 Data transfer between program copies is done only via explicit syntax.

CAF: Programming model

□ A copy of a CAF-program is called *image* in CAF terminology:

- An image can be considered an abstraction of a computational node,
- The number of created images can be determined using the num_images() function,
- The number of images usually matches the number of available processors. In general case the two numbers can be different,
- Each image is described by its unique *index* (this_image() function).

Indexes can be used to separate computations in images (in analogy with MPI programming)

CAF: Co-arrays...

To work with data shared by images CAF introduces co-arrays model.

□ Syntax

co-array: <type> :: <data_declaration> [*]

□ Semantics

Copying defined data object (array) to all images of CAF-program:

- Number of co-array copy (image index) is specified using square brackets (index of a regular array is specified via round brackets). I.e. "()" brackets provide access to local memory and "[]" brackets – to remote memory,
- Number of copy local for the image can be omitted.

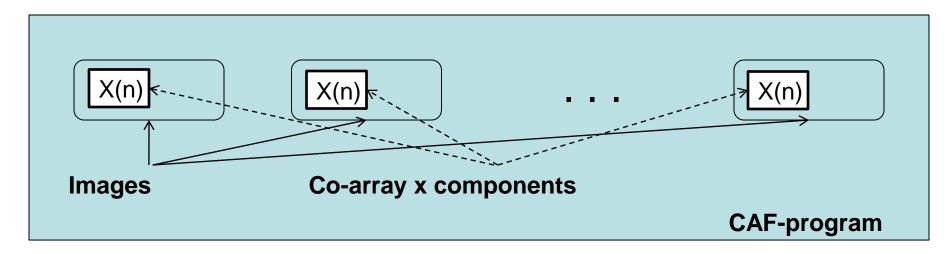
□ Example

real :: x(n)[*] ! Creation of array x copies on all images of a program

CAF: Co-arrays...

□ Example

-real :: x(n)[*] ! Creation of array x copies on all images of a program



Operations on co-array components are performed according to ordinary Fortran rules

-x(1)[p] = x(n)[q] ! Read the element n of image q and

! write to an element 1 of image p

Co-array declaration can be done in full accordance with Fortran rules:

```
real :: a(n) [*]
complex :: z[0:*]
integer :: index(n) [*]
real :: b(n) [p, *]
real :: c(n,m) [0:p, -7:q, +11:*]
real, allocatable :: w(:)[:]
type(field) :: maxwell[p,*]
```


CAF: Co-arrays...

```
int :: x[4,*]
num_image() = 16
this_image() = 15
this_image(x) = (/3,4/)
```

	1	2	3	4
1	1	5	9	13
2	2	6	10	14
3	3	7	11	15
4	4	8	12	16

□ Maximum index value along the second dimension is determined as

= num image()/4

□ The first index can be interpreted as a number of a core in a processor

CAF: Co-arrays...

int :: x[0:3,0:*]
num_image() = 16
this_image() = 15
this image(x) = (/2,3/)

	0	1	2	3
0	1	5	9	13
1	2	6	10	14
2	3	7	11	15
3	4	8	12	16

CAF: Co-arrays...

```
int :: x[-5:-2,0:*]
num_image() = 16
this_image() = 15
this image(x) = (/-3,3/)
```

	0	1	2	3
-5	1	5	9	13
-4	2	6	10	14
-3	3	7	11	15
-2	4	8	12	16

CAF: Co-arrays...

```
int :: x[-5:-2,0:*]
num_image() = 14
```

	0	1	2	3
-5	1	5	9	13
-4	2	6	10	14
-3	3	7	11	-
-2	4	8	12	-

□ Images with indexes /-3,3/ and /-2,3/ are not defined

CAF: Co-arrays...

int :: x[p,q,*]

- Images arrangement in a form of a three-dimensional grid
- Maximum index value along the third dimension is defined as = num image()/(p*q)

CAF: Co-arrays

 Operations on co-array components are also performed in full accordance with Fortran rules:

Omitted index of co-array component indicates access to component which is local for the image

Barrier synchronization...

□ Syntax

sync all

□ Semantics

Barrier synchronization – each image at the barrier is suspended until all images are at the barrier. I.e. segments which execute on an image before the **sync all** statement precede segments which execute after the **sync all** statement on any another image.

CAF: Synchronization...

Barrier synchronization

□ **Example** – reading in image 1 and broadcasting to all others

```
real :: z[*]
sync all
if (this image()==1) then
    read(*,*) z
    do image = 2, num images()
      z[image] = z
    end do
end if
sync all
```

^{• • •}

Synchronization of image groups...

□ Syntax

```
sync images ( <image-set> )
```

- □ Semantics
 - Synchronization of images, specified as function argument;
 <image-set> parameter is an array of images' indexes for
 which the synchronization must be performed ("*" symbol can be used to specify all images).
 - sync images (*) is not equivalent to sync all for sync images it is not required to use the same parameter value for all images which are synchronized (see example)

CAF: Synchronization...

Synchronization of image groups

Example – Synchronization of the image 1 with all other images (but not each with each)

```
if (this_image() == 1) then
  ! Setting data for all images
  sync images(*)
else
  sync images(1)
  ! Working with data
end if
```


Synchronization of critical sections

Syntax

critical

- ! Code executed by only one image
- ! at each moment of time
- end critical

CAF: Synchronization

Memory synchronization

□ Syntax

sync memory

□ Semantics

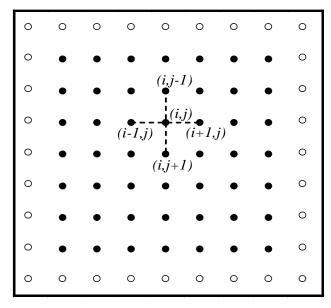
Synchronization of temporary and main memory (saving data which reside in temporary memory)

CAF: Example 1 – Finite Difference Method...

- □ The Dirichlet problem with periodic boundary conditions
- Finite Difference Method 5-point kernel
- □ Structure of data u(1:nrow)[1:ncol]

Gauss-Seidel method

$$u_{ij}^{k} = u_{i-1,j}^{k} + u_{i+1,j}^{k-1} + u_{i,j-1}^{k} + u_{i,j+1}^{k-1} - 4h^{2}f_{ij}$$



CAF: Example 1 – Finite Difference Method...

```
subroutine laplace (nrow, ncol, u)
  integer, intent(in) :: nrow, ncol
  real, intent(inout) :: u(nrow)[*]
                     :: new u(nrow)
  real
                       :: i, me, left, right
  integer
  new u(1) = u(nrow) + u(2)
                                                                 (1)
  new u(nrow) = u(1) + u(nrow-1)
                                                                 (2)
  new u(2:nrow-1) = u(1:nrow-2) + u(3:nrow)
  me = this image(u) ! Returns the co-subscript within u
                     ! that refers to the current image
  left = me-1; if (me == 1) left = ncol
  right = me + 1; if (me == ncol) right = 1
  sync all( (/left, right/) ) ! Wait if left and right
                                                                 (3)
                               ! have not already reached here
  new u(1:nrow) = new u(1:nrow) + u(1:nrow) [left] + u(1:nrow) [right] (4)
  sync all( (/left,right/) )
  u(1:nrow) = new u(1:nrow) - 4.0*u(1:nrow)
end subroutine laplace
```


CAF: Example 1 – Finite Difference Method

□ Explanation of the program:

- (1) taking into account the periodic boundary conditions
- (2) adding values of horizontally adjacent cells
- (3) synchronization on readiness of previous computations
- (4) adding values of vertically adjacent cells

CAF: Example 2 – Search for Maximum in a Distributed Array...

```
subroutine greatest(a,great) ! Find maximum value of a(:)[*]
  real, intent(in) :: a(:)[*]
  real, intent(out) :: great[*]
  real :: work(num images()) ! Local work array
  great = maxval(a(:))
                                                           (1)
  sync all ! Wait for all other images to reach here
  if (this image (great) == 1) then
    work(:) = great[:] ! Gather local maxima
                                                           (2)
    great[:]=maxval(work) ! Broadcast the global maximum (3)
  end if
  sync all
end subroutine greatest
```

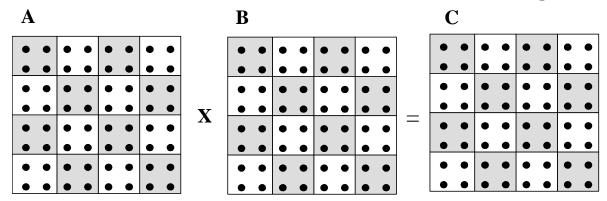

CAF: Example 2 – Search for Maximum in a Distributed array...

□ Explanation of the program:

- (1) searching for local maximum by every image
- (2) getting all local maximums on the image 1
- (3) finding the global maximum and its broadcasting for all images

CAF: Example 3 – Matrix Multiplication...

□ Data distribution – Block partitioning



Base subtask – procedure of calculation of all elements for one of the matrix C blocks

$$\begin{pmatrix} A_{00}A_{01}\dots A_{0q-1} \\ \dots \\ A_{q-10}A_{q-11}\dots A_{q-1q-1} \end{pmatrix} \times \begin{pmatrix} B_{00}B_{01}\dots B_{0q-1} \\ \dots \\ B_{q-10}B_{q-11}\dots B_{q-1q-1} \end{pmatrix} = \begin{pmatrix} C_{00}C_{01}\dots C_{0q-1} \\ \dots \\ C_{q-10}C_{q-11}\dots C_{q-1q-1} \end{pmatrix}, \quad C_{ij} = \sum_{s=1}^{q} A_{is}B_{sj}$$

CAF: Example 3 – Matrix Multiplication...

Version 1

```
real,dimension(n,n)[p,*] :: a,b,c
```


CAF: Example 3 – Matrix Multiplication

Version 2 real,dimension(n,n)[p,*] :: a,b,c do k=1,n do q=1,p c(i,j) = c(i,j) + a(i,k)[myP, q]*b(k,j)[q,myQ] enddo enddo

Performance measurement with NASA Parallel Benchmark (NPB)...

- Developed in the early 90s
- Was developed as a universal tool for supercomputers performance measurement
- Includes kernels of hydro- and aerodynamic modeling problems
- Officially is just a set of rules and recommendations
- Reference implementation is available on the NASA server

Performance measurement with NASA Parallel Benchmark (NPB)...

- EP Embarrassing Parallel. Numerical integration with Monte-Carlo method.
- MG simple 3D MultiGrid benchmark. Approximate the solution to a three-dimensional discrete Poisson equation («3D grid") on a NxNxN grid with periodic boundary conditions.
- CG solving an unstructured sparse linear system by the Conjugate Gradient method. Estimate the smallest eigenvalue of a large sparse symmetric positive-definite matrix using the inverse iteration with the conjugate gradient method.
- □ FT —3-D Fast-Fourier Transform partial differential equation benchmark. Solve a three-dimensional partial differential equation (PDE) using the fast Fourier transform (FFT).
- IS Parallel Sort of small Integers. Parallel sort of N integer numbers.
- LU LU Solver. Solve a synthetic system of nonlinear PDEs using symmetric successive over-relaxation (SSOR) solver kernel.
- □ SP Scalar Pentadiagonal. Solve a synthetic system of nonlinear PDEs using scalar pentadiagonal algorithm .
- BT Block Tridiagonal. Solve a synthetic system of nonlinear PDEs using block tridiagonal algorithm.

Test	Class A	Class B	Class C	Class D	Class E
EP	2 ²⁸	2 ³⁰	2 ³²	2 ³⁶	2 ⁴⁰
MG	256 ³	256 ³	512 ³	1024 ³	2048 ³
CG	14000	75000	1.5x10 ⁵	1.5x10 ⁶	9x10 ⁶
FT	256 ² x128	256 ² x512	512 ³	1024 ² x204 8	4096x2048 2
IS	2 ²³	2 ²⁵	2 ²⁷	2 ²⁹	
LU	64 ³	102 ³	162 ³	408 ³	1020 ³
SP	64 ³	102 ³	162 ³	408 ³	1020 ³
BT	64 ³	102 ³	162 ³	408 ³	1020 ³
DT					

Performance measurement with NASA Parallel Benchmark (NPB)...

□ NAS versions:

- NPB2.3b2 : MPI implementation
- NPB2.3-serial : Sequential code on the base of MPI version

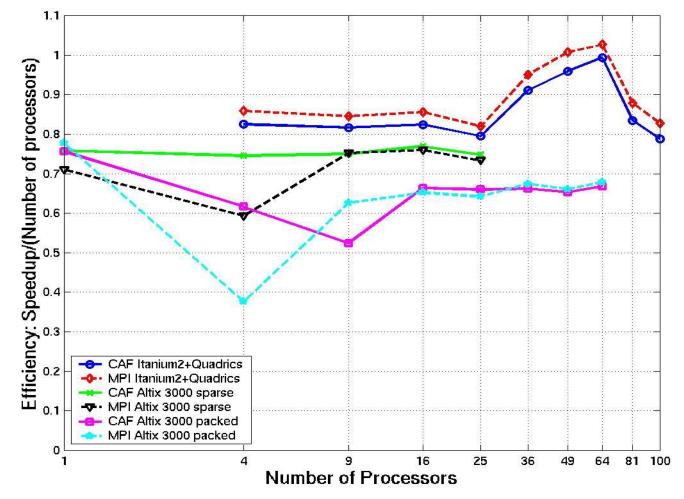
□ CAF version

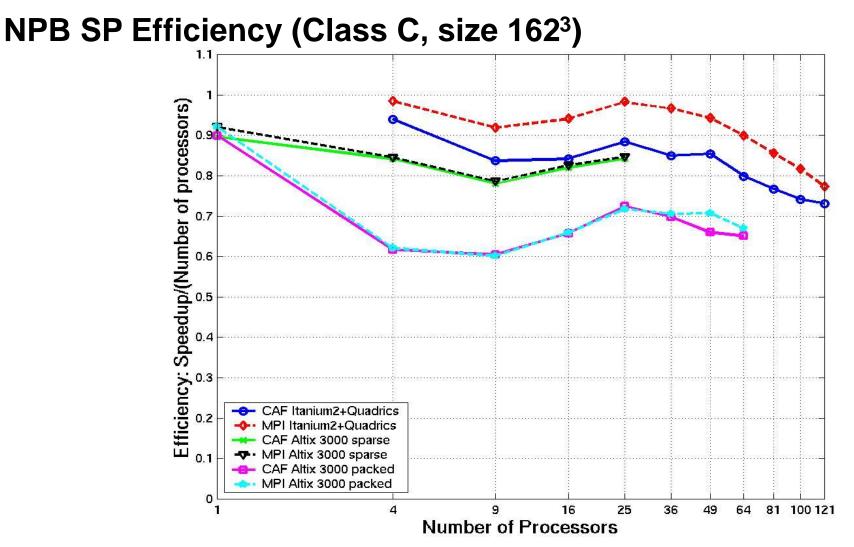
- NPB2.3-CAF: CAF implementation on the base of MPI version
- □ Hardware platforms
 - SGI Altix 3000 (Itanium2 1.5GHz)
 - Itanium2+Quadrics QSNet II (Elan4, Itanium2 1.5GHz)

Results of numerical experiments are taken from:

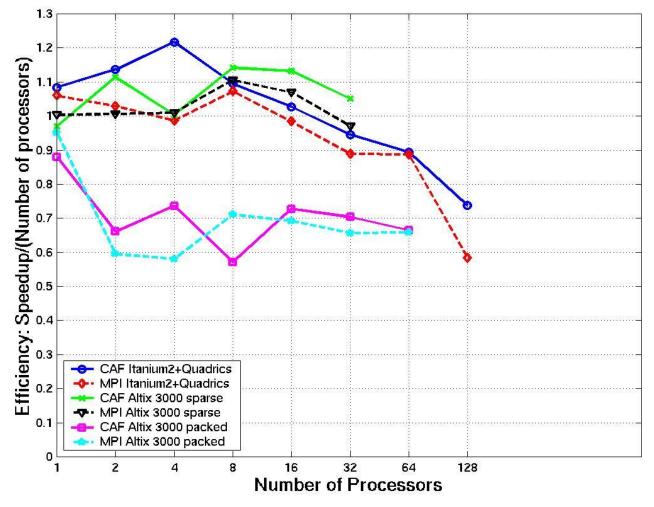
Coarfa C., Dotsenko Yu. and Mellor-Crummey J. **Co-Array Fortran: Compilation, Performance, Language Issues.** SGI User Group Technical Conference (SGIUG 2004), Orlando, Florida, May 2004.

NPB BT Efficiency (Class C, size 162³)





NPB MG Efficiency (Class C, size 512³)



CAF: Performance Measurement

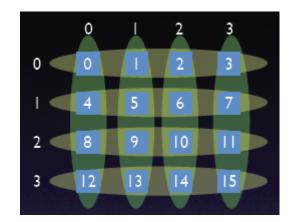
NPB CG Efficiency (Class C, size 150000) 1.2 1.1 Efficiency: Speedup/(Number of processors) CAF Itanium2+Quadrics MPI Itanium2+Quadrics CAF Altix 3000 sparse - MPI Altix 3000 sparse 0.1 CAF Altix 3000 packed MPI Altix 3000 packed 0 1 2 4 8 16 32 64 Number of Processors

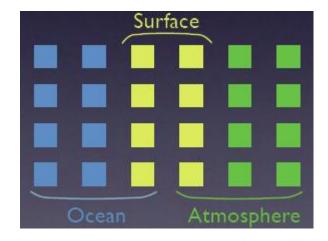
- ISO Fortran Committee decided to include CAF elements in the new standard of the Fortran language
- At the same time a new version of CAF language is actively developed (mostly by Rice University researchers). Major goals of the CAF 2.0 are the following:
 - Expand the set of features for development of parallel programs and libraries of parallel methods
 - Provide better efficiency of parallel computations
 - Provide the possibility of efficient execution of CAF-programs on a wide spectrum of parallel computing systems (from multicore processors to massively multiprocessor systems of the PetaFLOP level)

etc.

Teams of images...

- Team of images ordered set of images
- □ Image can belong to several teams
- Image has its individual index in a team
- Teams can be used for creation of distributed arrays
- Teams are the base for defining collective data transfer operations





Teams of images – creation via splitting an existing team...

team_split (team, color, key, team_out)

- team existing team of images,
- color index showing belonging to a team (images with the same color value belong to the same newly created team),
- key index of an image in the new team,
- team_out descriptor of the new team.

Teams of images – creation via splitting an existing team...

Example:

- Assume p images form a $q \times q$ grid
- We create separate teams for every row and column

```
IMAGE_TEAM team
integer rank, row
rank = this_image(TEAM_WORLD)
row = rank/q
call team split(TEAM WORLD, row, rank, team)
```


Teams of images – creation via splitting an existing team...

Accessing co-arrays using a team image x(i,j)[p@ocean] ! p is a rank in the ocean team

□ Accessing using the "with team" default rule

with team atmosphere ! atmosphere as a default team

x(:,0)[p] = y(:)[q@ocean] ! p - image from the*atmosphere*team,! q - image from the*ocean*team

end with team

Teams can be also created via union and intersection of existing teams.

Topologies of images...

Provides consistency of images' communications structure with informational network structure

Topology creation

- topology_cartesian(/e1,e2,.../) Cartesian topology (grid)
- topology_graph(n,e) General graph topology

□ Changing the structure of topology

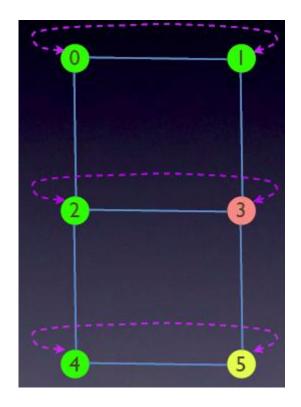
- graph_neighbor_add(g,e,n,nv)
- graph_neighbor_delete(g,e,n,nv)
- □ Binding a team of images with a topology
 - topology_bind(team,topology)

Topologies of images...

Accessing co-arrays using a topology

- Cartesian topology
 - array(:) [(i1, i2, ..., in)@ocean] ! Access from the ocean team
 - array(:) [i1, i2, ..., in] ! Access from the default team
- General graph topology: Accessing the k-th neighbor of an image i in the edge class e
 - array(:) [(e,i,k)@ ocean] ! Access from the ocean team
 - array(:) [e,i,k] ! Access from the default team

Topologies of images... Example: Cartesian topology Integer, Allocatable :: X(:)[*], Y(100)[*] Team :: Ocean, SeaSurface ! create a cartesian topology 2 (cyclic) by 3 Cart = **Topology_cartesian**(/-2, 3/) ! bind teams Ocean and SeaSurface to Cart **Topology_bind**(Ocean, Cart) **Topology_bind**(SeaSurface, Cart) ! Ocean is the default team in this scope With Team Ocean Allocate(X(100)) ! Y on node 3 gets X on node 5 Y(:) [1, 1] = X(:) [(-1, 2) @ SeaSurface]End With Team



Parallel programming language Co-Array Fortran

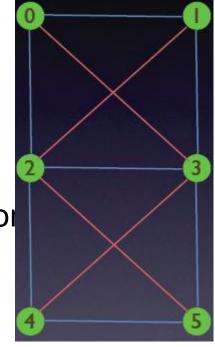
CAF 1.0 \rightarrow CAF 2.0: Directions of Development...

Topologies of images□ Example: General graph topology

- graph = topology_graph(6, 2)
- integer :: red, blue, myrank
- myrank = team_rank(team_world)
- read *, blue_neighbors, red_neighbors
- ! blue edges
- graph_neighbor_add(graph,blu46e,myrank,blue_neighboi ! red edges
- graph_neighbor_add(graph,red,myrank,red_neighbors) ! bind team with the topology
- call topology_bind(ocean, graph)
- allocate(x(100)@ocean)

St. Petersburg, Russia, 2012

- *! y receives x(20:80) from image 4*
 - (;) = x(20:80) [(myrank, blue, 3)@ocean]



Collective operations

- □ Set of collective operations includes:
 - co_bcast broadcasting,
 - co_gather gathering,
 - co_allgather gathering and broadcasting,
 - co_permute permutation,
 - co_reduce reduction,
 - co_allreduce reduction and broadcasting,
 - co_scan generalized reduction,
 - co_scatter generalized gathering,
 - co_segmented_scan generalized reduction with segmentation,
 - co_shift shift.
- The 2-stage execution possibility for interleaving calculations and data transfer operations.

CAF: Conclusions...

- CAF parallel programming language is formed as a small Fortran extension sufficient for development of efficient parallel programs.
- □ CAF is based on the following concepts:
 - *image* as an abstraction of a computing element of the computer system in use,
 - *co-array* (distributed array) with components distributed between images; distributed components are accessed according to the rules of regular array operations.
- Parallel CAF-program is executed by copying the same source code (SPMD model).

CAF: Conclusions...

- ISO Fortran Committee is going to include elements of CAF in the new prepared standard of the Fortran language
- Computational experiments show sufficient efficiency of CAFprograms
- Influence of MPI standard can be traced in CAF improvement proposals. Major proposals:
 - introducing teams of images,
 - the possibility to declare a topology,
 - presence of collective data transfer operations

CAF: References

- 1. <u>http://www.co-array.org</u>
- 2. http://caf.rice.edu
- Numrich, R. W. and Reid, J. K. (1998). Co-Array Fortran for parallel programming. ACM Fortran Forum (1998), 17, 2 (Special Report) and Rutherford Appleton Laboratory report RAL-TR-1998-060 available as
 - ftp://ftp.numerical.rl.ac.uk/pub/reports/nrRAL98060.pdf
- 4. Numrich, R. W. and Reid, J. K. (2005). Co-arrays in the next Fortran Standard. ACM Fortran Forum (2005), 24, 2, 2-24 and

WG5 paper

ftp://ftp.nag.co.uk/sc22wg5/N1601-N1650/N1642.pdf

5. Numrich, R. W. and Reid, J. K. (2007). Co-arrays in the next Fortran Standard. Scientific Programming (2006), 14, 1-18.

Contacts:

Nizhny Novgorod State University Department of Computational Mathematics and Cybernetics

Victor P. Gergel

gergel@unn.ru

Thank you for attention!

Any questions?

