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Goals 

 

• Broad overview of data races 

– What they are [not] 

– Why they complicate language semantics 

– Data-race detection, especially dynamic detection 

 

• Difference between low-level and high-level data races 

– How to use low-level data races to detect high-level data races  

– [Recent work with Benjamin Wood, Luis Ceze: MSPC2010 + 

under submission] 
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Meta 

• Much of presentation is background 

– Prepared for a summer school 

– Much not my work 

– Will not carefully cite references: better to omit most than 

cite most  

– There are surely > 100 good papers on data races, which 

should be accessible after this material 

 

• Some most-important-references listed at end 

 

• Some materials generously adapted from Joseph Devietti, 

Stephen Freund, Vijay Menon, Hal Perkins, Benjamin Wood 
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Outline 

• What are data races 
 

• Memory-consistency models: why data races muddy semantics 
 

• Approaches to data-race detection 

– Static vs. dynamic 

– Sound vs. complete vs. both vs. neither 

– Locksets 

– Vector clocks and FastTrack 

– Other recent approaches 
 

• Low-level vs. high-level data races 

– Low-level detection is wrong for detecting high-level data races 

– Abstracting low-level data races to remove this gap 
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Shared memory 

Assume programming model with shared memory and explicit threads 

– Technical definition of data races assumes shared memory 

– Not claiming shared memory is the best model, but a prevalent 

model that needs support and understanding 
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… 

…
 

…
 

…
 

Unshared: 

locals and 

control flow 

Shared: 

objects and 

static fields 

pc 

pc pc 



Digression: Why Use Threads? 

First distinguish parallelism  from concurrency 

– Terms may not yet be standard, but distinction is essential 
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Parallelism:  

   Use extra resources to  

   solve a problem faster 

resources 

Concurrency: 

  Correctly and efficiently manage  

  access to shared resources 

requests work 

resource 



An analogy 
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CS1 idea: A program is like a recipe for a cook 

– One cook who does one thing at a time! (Sequential) 

 

Parallelism: 

– Have lots of potatoes to slice?  

– Hire helpers, hand out potatoes and knives 

– But too many chefs and you spend all your time coordinating 

 

Concurrency: 

– Lots of cooks making different things, but only 4 stove burners 

– Want to allow access to all 4 burners, but not cause spills or 

incorrect burner settings 



Back to shared memory… 

Natural to confuse parallelism and concurrency: 

 

• Common to use threads to divide work (parallelism) and to 

provide responsiveness to external events (concurrency) 

 

• If parallel computations need access to shared resources, then 

the concurrency needs managing 

– Library client thinks parallelism  

– Library implementor thinks concurrency 

 

• Shared memory (which leads to data races) relevant to both: 

– Parallelism: Communicate arguments/results to/from workers 

– Concurrency: Shared resource often resides in memory 
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Data races, informally 

[More formal definition to follow] 

 

“race condition” means two different things 
 

• Data race:  Two threads read/write, write/read, or write/write the 

same location without intervening synchronization 

– So two conflicting accesses could happen “at the same time” 

– Better name not used: simultaneous access error 

 

• Bad interleaving:  Application error due to thread scheduling 

– Different order would not produce error 

– A data-race free program can have bad interleavings 
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Bad interleaving example 
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class Stack<E> { 
  … // state used by isEmpty, push, pop 
  synchronized boolean isEmpty() { … } 
  synchronized void push(E val) { … } 
  synchronized E pop() { … }  
  E peek() { // this is wrong 
     E ans = pop(); 
     push(ans); 
     return ans; 
  } 
} 
 

E ans = pop(); 

 

push(ans); 

 

return ans; 

push(x) 

boolean b = isEmpty() 

T
im

e
 

Thread 2 Thread 1 (peek) 



Consistent locking 

If all mutable, thread-shared memory is consistently guarded by 

some lock, then data races are impossible 
 

 

 

 

 

But: 
 

– Bad interleavings can remain: programmer must make 

critical sections  large enough 
 

– Consistent locking is sufficient  but not necessary 

• A tool detecting consistent-locking violations might report 

“problems” even if no data races are possible 
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Data races, more formally 

Let threads T1, …, Tn perform actions: 

– Read shared location x 

– Write shared location x 

– [Successfully] Acquire lock m 

– Release lock m  

– Thread-local actions (local 

variables, control flow, arithmetic) 

• Will ignore these 

 

Order in one thread is program order  

– Legal orders given by language’s 

single-threaded semantics + reads 
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wr(x) 

rel(m) 

rd(z) 

rd(x) 

T1 T2 

rd(y) 

wr(y) 

acq(m) 

wr(x) 



Data races, more formally 

Execution [trace]  is a partial order over 

actions a1 < a2 

– Program order:  If Ti performs a1 

before a2, then a1 < a2 

– Sync order:  If a2=(Ti acquires m) 

occurs after a1=(Tj releases m), then 

a1 < a2   

– Transitivity:  If a1 < a2 and a2 < a3, 

then a1 < a3 

 

Called the happens-before relation 
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wr(x) 

rel(m) 

rd(z) 

rd(x) 

T1 T2 

rd(y) 

wr(y) 

acq(m) 

wr(x) 



Data races, more formally 

• Two actions conflict if they read/write, 

write/read, or write/write the same location 

– Different locations not a conflict 

– Read/read not a conflict 
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wr(x) 

rel(m) 

rd(z) 

rd(x) 

T1 T2 

rd(y) 

wr(y) 

acq(m) 

wr(x) 



Data races, more formally 

• Finally, a data race is two conflicting 

actions a1 and a2 unordered by the 

happens-before relation  

– a1 < a2 and a2 < a1 

– By definition of happens-before, actions 

will be in different threads 

– By definition of conflicting, will be 

read/write, write/read, or write/write 

 

• A program is data-race free if no trace on 

any input has a data race 
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wr(x) 

rel(m) 

rd(z) 

rd(x) 

T1 T2 

rd(y) 

wr(y) 

acq(m) 

wr(x) 

/ / 



Beyond locks 

Notion of data race extends to synchronization other than locks 

– Just define happens-before appropriately 

 

Examples: 

– Thread fork 

– Thread join 

– Volatile variables 
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Outline 

• What are data races 
 

• Memory-consistency models: why data races muddy semantics 
 

• Approaches to data-race detection 

– Static vs. dynamic 

– Sound vs. complete vs. both vs. neither 

– Locksets 

– Vector clocks and FastTrack 

– Other recent approaches 
 

• Low-level vs. high-level data races 

– Low-level detection is wrong for detecting high-level data races 

– Abstracting low-level data races to remove this gap 
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Why care about data races? 

Recall not all race conditions are data races… 

So why focus on data races? 

 

• One answer: Find some bugs without application-specific knowledge 

 

• More interesting: Semantics for modern languages very relaxed for 

programs with data races 

– Else optimizing compilers and hardware too difficult in practice 

• Our focus: compiler issues 

– Increases importance of writing data-race-free programs  
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An example 

Can the assertion fail? 
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// shared memory 

a = 0; b = 0;  

 
// Thread 1 

x = a + b; 

y = a; 

z = a + b; 

assert(z>=y); 

// Thread 2 

b = 1; 

a = 1; 

 



An example 

Can the assertion fail? 
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// shared memory 

a = 0; b = 0;  

 
// Thread 1 

x = a + b; 

y = a; 

z = a + b; 

assert(z>=y); 

// Thread 2 

b = 1; 

a = 1; 

 

– Argue assertion cannot fail: 

 a never decreases and b is never negative, so z>=y 

– But argument makes implicit assumptions you cannot  make 

in Java, C#, C++, etc. (!) 



Common-subexpression elimination 

Compilers simplify/optimize code in many ways, e.g.: 
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// shared memory 

a = 0; b = 0;  

 
// Thread 1 

x = a + b; 

y = a; 

z = a + b; x; 

assert(z>=y); 

// Thread 2 

b = 1; 

a = 1; 

 

Now assertion can fail 

– As though third read of a precedes second read of a  

– Almost every compiler optimization has the effect of 

reordering/removing/adding memory operations like this 



A decision… 
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// shared memory 

a = 0; b = 0;  

 
// Thread 1 

x = a + b; 

y = a; 

z = a + b; x; 

assert(z>=y); 

// Thread 2 

b = 1; 

a = 1; 

 

Language semantics must  resolve this tension: 

– If assertion can fail, the program is wrong 

– If assertion cannot fail, the compiler is wrong 



Memory-consistency model 

• A memory-consistency model (or memory model) for a shared-

memory language specifies which write a read can see 

– Essential part of language definition 

– Widely under-appreciated until last several years 

 

• Natural, strong model is sequential consistency (SC) [Lamport] 

– Intuitive “interleaving semantics” with a  global memory 
      

 

      “the results of any execution is the same as if the operations of  

       all the processors were executed in some sequential order,  

       and the operations of each individual processor appear in this  

       sequence in the order specified by its program” 
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Considered too strong 

• Under SC, compiler is wrong in our example 

– Must disable any optimization that has effect of reordering 

memory operations [on mutable, thread-shared memory] 

 

• So modern languages do not  guarantee SC 

– Another reason: Disabling optimization insufficient because      

the hardware also reorders memory operations unless you      

use very expensive (10x-100x) instructions 

 

• But still need some language semantics to reason about programs… 
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the grand compromise 

великий компромисс 

вялікі кампраміс 

le grand compromis 

die große Kompromiss 

il compromesso grande 

die groot kompromie 
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The “grand compromise” 

• Basic idea: 

– Guarantee SC only for “correctly synchronized” programs [Adve] 

– Rely on programmer to synchronize correctly 

– Correctly synchronized == data-race free (DRF)! 

 

• More precisely: 

If every SC execution of a program P has no data races,              

then every execution of P is equivalent to an SC execution 

– Notice we use SC to decide if P has data races 
 

• Known as “DRF implies SC” 
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Roles under the compromise 

• Programmer: write a DRF program 

• Language implementor: provide SC assuming program is DRF 

 

But what if there is a data race: 

– C++: anything can happen 

• “catch-fire semantics” 

• Just like array-bounds errors, uninitialized data, etc. 

– Java/C#: very complicated story 

• Preserve safety/security despite reorderings 

• “DRF implies SC” a theorem about the very-complicated 

definition 
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Back to the example 

Code has a data race, so program is wrong and compiler is justified 
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// shared memory 

a = 0; b = 0;  

 
// Thread 1 

x = a + b; 

y = a; 

z = a + b; x; 

assert(z>=y); 

// Thread 2 

b = 1; 

a = 1; 

 



Back to the example 

This version is DRF, so the “optimization” is illegal 

– Compiler would be wrong: assertion must not fail 
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// shared memory 

a = 0; b = 0; 

m a lock  

 

// Thread 1 

sync(m){x = a + b;} 

sync(m){y = a;} 

sync(m){z = a + b;} 

assert(z>=y); 

// Thread 2 

sync(m){b = 1;} 

sync(m){a = 1;} 

 



Back to the example 

This version is DRF, but the optimization is legal  because it does 

not affect observable behavior:  the assertion will not fail 
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// shared memory 

a = 0; b = 0; 

m a lock  

 

// Thread 1 

sync(m){ 

 x = a + b; 

 y = a; 

 z = a + b; x; 

} 

assert(z>=y); 

// Thread 2 

sync(m){ 

  b = 1; 

  a = 1; 

} 

 



Back to the example 

This version is also DRF and the optimization is illegal 

– Volatile fields (cf. C++ atomics) exist precisely for writing 

“clever” code like this (e.g., lock-free data structures) 
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// shared memory 

volatile int a, b; 

a = 0; 

b = 0; 

// Thread 1 

x = a + b; 

y = a; 

z = a + b; 

assert(z>=y); 

// Thread 2 

b = 1; 

a = 1; 

 



So what is allowed? 

How can language implementors know if an optimization obeys  “DRF 

implies SC”?  Must be aware of threads! [Boehm] 
 

Basically 2.5 rules suffice, without needing inter-thread analysis: 
 

0.    Optimization must be legal for single-threaded programs 
 

1. Do not move shared-memory accesses across lock acquires/releases 

– Careful: A callee might do synchronization 

– Can relax this slightly: next slide 
 

2. Never add a memory operation not in the program [Boehm] 

– Seems like it would be strange to do this, but there are some non-

strange examples: upcoming slides 
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Across synchronization operations 

• Usual guideline: Do not have effect of moving memory 

operations across synchronization operations 

– Suffices to understand our example 

 

• In fact, some simple extensions are sound 

– Okay to move memory operations forward  past acquires 

– Okay to move memory operations backward  past releases 

– See work on “interference-free regions”  

• [Effinger-Dean et al, MSPC2010, OOPSLA2012] 

• And older subsumed idea of  

   “roach-motel reordering” 
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New memory values? 

 

 

 

 

 

 

What if this code ran concurrently: 

 

 
 

 

Transformation is legal in a single-threaded program, but is illegal* 
because it adds a new write (2 into x) that cannot occur: 
 

* Legal in C++ because there is a data race, but illegal in Java 
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// x and y are globals, initially 0 

void foo() {  optimized?    void foo() {    

  ++x;        ========>      x += 2; 

  if(y==1)                   if(y!=1)  

   ++x;                       --x; 

}                          } 

if(x==2)                  

  do_evil_things();                        



Trouble with loops 

A more subtle example of an illegal* transformation: 

– x is global memory, reg is a (fast) register 

 

 

 

 

 

 

Problematic case: n==0 and another thread writes to x while for-

loop executes 

– Optimization okay if check n>0 
 

*Illegal even in C++ because if n==0 there are no data races 
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                 optimized?    

for(i=0;i<n;i++) ========>  reg = x; 

  x += a[i];                for(i=0;i<n;i++) 

                              reg += a[i]; 

                            x = reg;  



Outline 

• What are data races 
 

• Memory-consistency models: why data races muddy semantics 
 

• Approaches to data-race detection 

– Static vs. dynamic 

– Sound vs. complete vs. both vs. neither 

– Locksets 

– Vector clocks and FastTrack 

– Other recent approaches 
 

• Low-level vs. high-level data races 

– Low-level detection is wrong for detecting high-level data races 

– Abstracting low-level data races to remove this gap 
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Where we are… 

• Done: Technical definition of a data race 

• Done: Why programmers must avoid data races 

 

• Now: Trusting programmers to avoid data races is unsatisfying, 

so would like to detect them 

–  20 years of research, still ongoing 

– Analogous to research on other programming errors  

• type-checking, array-bounds, … 

– Key design-space dimensions not unique to data-race 

detection … 
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Static vs. dynamic 

Static data-race detectors analyze a program 

– Typically expected to terminate, like type-checking 

– Typically do not tune analysis to program inputs: Analyze 

program for all inputs 

– Report pairs of “program points” that can execute data races 

• Line numbers? Plus calling contexts?  

– Can purely infer results or require programmer annotations 

such as richer types 
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Static vs. Dynamic 

Dynamic data-race detectors observe program executions 

– Report data races observed as program runs 

– Maintain metadata to do detection (time, space) 

– Observe only inputs on which detector is run 

• But some detectors attempt trace generalization 

– When data race occurs, can report as much about program 

state as desired 
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Static, considered 

• Advantages of static: 

– Results for all inputs, not just inputs tested 

– No run-time overhead 

– Easier to present results in terms of source-code 

– Can adapt well-understood static-analysis techniques 

– Annotations help document (subtle) concurrency invariants 
 

• Disadvantages of static: 

– “Will a data race occur?” is undecidable:  no terminating 

procedure can accept any program (in a Turing-complete 

language) and always correctly identify whether or not there are 

inputs for which a data race will happen 

– In practice, “false positives” or “false negatives” 

– May be slow and/or require programmer annotations 
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Dynamic, considered 

• Advantages of dynamic: 

– Easier to avoid “false positives” 

– No language extensions or sophisticated static analysis 

 

• Disadvantages of dynamic: 

– Need good test coverage:  especially hard with threads 

because problematic interleavings can be rare 

– Performance overhead:  state-of-the-art often 5x-20x 

• Reasonable at most for debugging 

– Harder to interpret results 
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Design Dimension: Precision 

• Sound data-race detector: 

– Every data race is reported (“no false negatives”) 
 

• Complete data-race detector: 

– Every reported data race is a data race (“no false positives”) 
 

• Precise data-race detector is sound and complete 
 

• Some effective detectors are neither sound nor complete 

– For example, use sampling to improve performance 

– Can be precise up to the first data race (if one occurs) 
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Static vs. dynamic reconsidered 

Soundness/completeness mean different things for static and 

dynamic data-race detectors 

 

• Static: A precise detector would identify all data races possible 

for any input 

– As noted, this is impossible 

– But sound xor complete is possible: trivial but to be useful try 

to reduce the number of false positives or negatives 

 

• Dynamic: A precise detector identifies all data races that occur 

on this execution 

– Could miss data races for other inputs or thread schedules 

– Can do some trace generalization 
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Design dimension: Granularity 

• Does the detector distinguish accessing different fields (or array 

elements) of the same object? 

– If not, then another source of false positives 

 

• For hardware-level detectors, can mean tracking every byte of 

memory separately 

– Even though most memory not accessed at such fine-grain 
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Outline 

• What are data races 
 

• Memory-consistency models: why data races muddy semantics 
 

• Approaches to data-race detection 

– Static vs. dynamic 

– Sound vs. complete vs. both vs. neither 

– Locksets 

– Vector clocks and FastTrack 

– Other recent approaches 
 

• Low-level vs. high-level data races 

– Low-level detection is wrong for detecting high-level data races 

– Abstracting low-level data races to remove this gap 
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Locksets in brief 

• A simple approach to data-race detection: Report any violation 

of consistent locking as a potential data-race source 

– Reports one memory access not two, but still useful 

 

• Recall consistent locking: For all thread-shared mutable 

memory, there exists a lock that is always held when accessing 

that memory 

– Partitions shared memory among the locks 
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Dynamic Lockset detector [Savage et al] 

• For each shared memory location x (e.g., object field), maintain 

a lockset: LS(x) 

 

• For each thread T, maintain current locks T  holds: LS(T) 

 

• For each x, when memory for x is allocated, initialize LS(x) to 

special value “ALL” 

 

• When thread T accesses shared memory location x: 

– Set LS(x) = LS(x)  LS(T) 

• Where “ALL”  S = S 

– If LS(x) = , report error 
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Sound, incomplete 

• Dynamic lockset is sound: 

– If no error reported, then no data race occurred  

• With this schedule on this input 

• Because consistent locking suffices to avoid data races 

 

• Dynamic lockset is incomplete: 

– Because consistent locking is not necessary to avoid data races 

– Example: 
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data  = 0; 

ready = false; 

 data = 42; 

sync(m){ 

 ready = true; 

} 

sync(m){ 

 tmp = ready; 

} 

if(tmp) 

  print(data); 



Issues and extensions 

Many projects improve dynamic lockset approach: 
 

• May not know which memory is thread-local 

– Too many false positives if assume all might be shared 

– Standard shortcut: leave LS(x) = “ALL” until second thread 

accesses x, but can introduce (unlikely) false negatives to 

improve performance 
 

• Recognize immutable data to avoid false positives 

– Recall read/read not a conflict 
 

• Performance (clever set representations) 
 

• Scale to real systems (like OS kernels) 
 

• … 
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Static lockset [Abadi, Flanagan, Freund] 

Can analyze source to verify consistent locking 
 

– Most code verifies because complicated concurrency 

protocols are too difficult to get right 
 

– Forcing type annotations to describe the locking protocol 

may be “a good thing” for code quality 
 

– Or can try to infer the locking protocol (no annotations) 
 

– Can catch many errors and be “mostly sound,” but scaling to 

full languages (finalizers, reflection, class loading, …) is hard 
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Pseudocode 
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class SyncedList<T> { // callee locks 

  private locked_by<this> Node<T,this> n = null; 

  synchronized addToFront(T x) { 

    n = new Node<T,this>(x,n); 

  } 

  synchronized contains(T x) { 

    Node<T,this> t = n; 

    for(; t!=null; t=t.next) 

      if(t.elt.equals(x)) 

        return true; 

    return false; 

  } 

} 

class Node<T,L> { // client locks 

  private locked_by<L> T         elt; 

  private locked_by<L> Node<T,L> next; 

} 

    



Key details 

• Indicating “content of location A is the lock for location B” is 

sound only if content of A is not mutated 

– Else can violate consistent locking: 

 

 

 

 

 
 

– Fix: require fields used in lock-types are final or this 

 

• Methods can indicate locks that must be held by caller 
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locked_by<this> Object foo = new Object(); 

locked_by<foo>  Bar    x   = new Bar(); 

… 

synchronized(foo) { x.m(); } 

foo = new Object(); 

synchronized(foo) { x.m(); } 

 



Outline 

• What are data races 
 

• Memory-consistency models: why data races muddy semantics 
 

• Approaches to data-race detection 

– Static vs. dynamic 

– Sound vs. complete vs. both vs. neither 

– Locksets 

– Vector clocks and FastTrack 

– Other recent approaches 
 

• Low-level vs. high-level data races 

– Low-level detection is wrong for detecting high-level data races  

– Abstracting low-level data races to remove this gap 
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Dynamic happens-before 

• For precise (sound and complete) 

dynamic data-race detection, we could 

build the full happens-before DAG of a 

trace and check for data races 

– Program order 

– Sync order 

– Transitivity 

 

• Intractable for long-running programs, 

but we can use vector clocks to detect 

all data-race second accesses 

– Won’t prove correctness, but will 

give intuition 
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Vector clocks (as used for data race detection) 

• A thread’s “logical time” is measured in “epochs” where an epoch 

starts and ends with a lock release 

– Thread X’s ith epoch starts with its (i-1)th lock-release and ends 

with its ith lock-release 
 

• A vector clock records a “logical time” for each thread 

– If there are N threads, then each vector clock has N entries 

– If the vector-clock entry for thread X is i, this represents a “time” 

known to be after or during thread X’s ith epoch 
 

• For conciseness, our examples will use just two threads A and B 
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 4  1 

A     B 



Lots of vector clocks 

During execution, store a vector clock for: 
 

• Each thread: For thread X’s vector clock, if entry Y is i, then Y’s 

ith epoch happens-before X’s next instruction 

– Entry X is in X’s vector clock is X’s number of releases – 1 

(in odd English, a thread’s epoch “happens-before” itself) 
 

• Each lock: Lock M’s vector clock holds the logical time when M 

was most recently released 
 

• Each heap location (read clock): For f’s read vector clock, if 

entry Y is i, then Y’s most recent read of f was in Y’s ith epoch 
 

• Each heap location (write clock): For f’s write vector clock, if 

entry Y is i, then Y’s most recent write of f was in Y’s ith epoch 

 

 

 

 

 

 

 

 

 

 

Total space: O(|heap|*|numThreads|)  

– (FastTrack optimizes this in common cases) 
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In total 

• Total vector-clock space is O(|heap size| * |thread count|) 

– FastTrack will optimize this for common cases later 

 

 

 

 

Now: As program executes, at each step we need to: 

1. Check for data races 

2. Update vector clocks to avoid future false positives /  negatives 

Cases for writes, reads, acquires, releases 
 

Extra time per program step will be O(|thread count|),   

– Again to be optimized 
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Writes 

On write by thread X to location f: 

1. Check: most-recent writes and reads to location “happen-

before” this write 

– vc1      vc2 if for all i, vc1[i]  vc2[i] 

– If so, all previous writes and reads happen-before, else there 

is at least one data race 

2. Update ith entry of f’s write-clock to X’s current epoch 
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Reads 

Reads are like writes except: 

– Check only against the location’s write-clock  

• No read/read conflicts 

– Update the read-clock instead of the write-clock 
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Acquires 

• On acquire of M by X, update X’s vector clock to account for 

what must “happen before” the lock-acquire 

– Set thread X’s ith entry to max(X[i],M[i]) 
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Releases 

• On release of M by X, update vector clock of the lock to account 

for “X’s knowledge” and [then] increment X’s epoch 

– Copying all entries captures transitivity of happens-before 

– Subtle invariant: copying X’s clock onto M’s clock will not 

decrease any entry because we updated X’s clock when it 

acquired M 
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Example: Put it all together 
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It works! 

• Complete: If execution is data-race free, every check passes 

 

• Sound: If execution has a data race, a check fails 

– May not report all first-accesses that race with second access 

 

• In theory, slows program by a factor of O(thread count) 

– In practice 100x or more 

 

• In theory, extra space of O(thread count * heap size) 

– Large in practice too 
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FastTrack [Flanagan, Freund, PLDI2010] 

• FastTrack  lowers time and space overhead by exploiting 

common cases… 

– Replace most read/write vector clocks with O(1) space and  

most updates/checks in O(1) time 

– O(1) improvement happens naturally for all thread-local and 

consistently locked data 

– Use full vector clocks only as needed 

 

• Same guarantees as full vector clocks up to first data race on 

each memory location 

– More than adequate for testing/debugging 

August 2012 64 A Programming-Languages View of Data Races, Dan Grossman 



Key idea 

• For read/write clocks, if all previous reads/writes happen-before the 

most recent read/write, then store just thread-id and epoch of most 

recent read/write 

– Number of fields: 2, not |threads| 

 

• For write clocks, we can always do this 

– If there is a previous write that does not happen-before most 

recent write, report a data race for that location 

– Else latest write comes after all previous: if it does not race with 

a later access, then neither can any previous one 
 

• For read clocks, we can usually do this 

– For thread-local data, all reads in program-order of thread 

– For consistently locked data, all reads in happens-before order 
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Revised algorithm 

• Acquires and releases unchanged 

– Still maintain full vector clocks for each thread and lock 

– Very few of these compared to size of heap 

 

• For writes, check and update using just thread-and-epoch of last 

write and the read clock 

 

• For reads, a few cases to switch between compact 

representation and full vector clock 
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Writes 

On a write by thread X to location f: 

1. Check: most-recent writes and reads to location “happen-

before” this write 

– vc1      vc2 if for all i, vc1[i] <= vc2[i] 

– For compact representation j@T, just check j <= vc1[j]  

2. Update of f’s write-clock to X’s current epoch 
 

Case 1: Rf is a full vector clock 
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Writes 

On a write by thread X to location f: 

1. Check: most-recent writes and reads to location “happen-

before” this write 

– vc1      vc2 if for all i, vc1[i] <= vc2[i] 

– For compact representation j@T, just check j <= vc1[j]  

2. Update of f’s write-clock to X’s current epoch 
 

Case 2: Rf is compact 
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Reads 

• As with write case, compare thread’s vector clock with last-write: 

 

 

• Now update last-read information (4 cases): 

– Before update, could be compact or full vector clock 

– After update, could be compact or full vector clock 
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Reads 

• As with write case, compare thread’s vector clock with last-write: 

 

 

• Now update last-read information (4 cases): 

– Before update, could be compact or full vector clock 

– After update, could be compact or full vector clock 
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Reads 

• As with write case, compare thread’s vector clock with last-write: 

 

 

• Now update last-read information (4 cases): 

– Before update, could be compact or full vector clock 

– After update, could be compact or full vector clock 
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Reads 

• As with write case, compare thread’s vector clock with last-write: 

 

 

• Now update last-read information (4 cases): 

– Before update, could be compact or full vector clock 

– After update, could be compact or full vector clock 

 

 

      Common case covers all uses     

      of consistent locking and  

      thread-local data 
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Summary 

• Vector clocks keep enough “recent information” to do precise 

dynamic data-race detection as the program executes 

 

• FastTrack removes some unnecessary vector-clock elements, 

getting O(1) time and space except when there are reads from 

multiple threads unordered by happens-before 

– Fundamental improvement in theory and practice 

 

• Much faster but still too slow for deployed software 

– Recent work investigates using hardware support [Devietti et 

al, ISCA2012] or hypervisor techniques [Olszewski et al, 

ASPLOS2012] to get within 2x performance in some cases 
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Outline 

• What are data races 
 

• Memory-consistency models: why data races muddy semantics 
 

• Approaches to data-race detection 

– Static vs. dynamic 

– Sound vs. complete vs. both vs. neither 

– Locksets 

– Vector clocks and FastTrack 

– Other recent approaches 
 

• Low-level vs. high-level data races 

– Low-level detection is wrong for detecting high-level data races 

– Abstracting low-level data races to remove this gap 
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A few other projects 

• PACER: proportional sampling: 

– Proportionality: detect any race at rate equal to sampling 

– Inside sampling interval, FastTrack 

– Outside sampling interval, still check “second” accesses, but 

discard outdated metadata and do not update vector clocks 

 

• LiteRace: more heuristic sampling: neither sound nor complete, 

but effectively samples “cold” code regions 

 

• More scalable static detectors with fewer false positives: 

– Infer “what locks what” via conditional must-not aliasing 

– RELAY: modularize unsoundness and various filters 
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Outline 

• What are data races 
 

• Memory-consistency models: why data races muddy semantics 
 

• Approaches to data-race detection 

– Static vs. dynamic 

– Sound vs. complete vs. both vs. neither 

– Locksets 

– Vector clocks and FastTrack 

– Other recent approaches 
 

• Low-level vs. high-level data races 

– Low-level detection is wrong for detecting high-level data races  

– Abstracting low-level data races to remove this gap 
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What is memory? 

Definition of data race relies on: 

– What is a memory location 

– What does it mean to read/write a memory location 

 

Definition of memory in Java, C#, etc. is fundamentally different 

than memory provided to an OS process 

– Language-level memory is implemented on top of     

machine-level memory by the language run-time system 

 

Phenomenon extends to any number of memory levels 

– Example: OS has a lower-level view of memory than a 

running process 

– But we will focus on the language-level (“high”) and  

machine-level (“low”) 
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Language-level 

Memory in a garbage-collected high-level language: 

– Logically infinite size (but allocation may fail) 

– Memory never observably reused 

– Reads/writes are field or array accesses 

– Synchronization provided by language primitives 

August 2012 78 A Programming-Languages View of Data Races, Dan Grossman 

… 

…
 

…
 

…
 

pc 

pc pc 



Machine-level 

Memory at the binary level of an OS process: 

– Logically fixed address space (e.g., 264 bytes) 

– No “objects” that get reclaimed, just addresses used for data 

– Reads/writes are to elements of “the one global array” 

– Synchronization via special instructions like CAS 

– Do have notion of distinct thread contexts 
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The Run-Time System 

Language run-time system (garbage collector, systems libraries, 

etc.), implement the high-level memory on the low-level memory 

• Allocate objects 

• Reclaim unreachable objects 

• Move objects to avoid fragmentation 

• Implement synchronization primitives 

 

Compiled code is also relevant 

• High-level memory accesses compiled down to low-level ones 

– May include extra memory operations or run-time checks 
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Connection to data races 

• Suppose our goal is a precise dynamic data-race detector for 

[only] high-level memory (e.g., Java/C# programs) 

 

• Suppose we use a precise dynamic data-race detector for low-

level memory 

– Performance advantages 

– Reuse advantages (available for any high-level language) 

 

• Unfortunately, it is wrong 

– Will report false positives, in theory and practice 

– Will report false negatives, in theory and practice 

Four fundamental causes of imprecision… 

 

August 2012 81 A Programming-Languages View of Data Races, Dan Grossman 



Problem #1: False positives 

Data races [by design] in the run-time system or between run-time 

system and the program are not high-level data races 

– Example: Implementation of a lock using spinning 

– Example: Clever allocator or parallel garbage collector 

– Example: Concurrent garbage collector 

 

 

 

 

 

 

 

Expert run-time system implementors understand and use low-level 

memory-consistency model 
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Problem #2: False negatives 

Run-time systems have their own synchronization that should not 

induce happens-before edges for high-level race detection 

– Example: Allocation from a central memory pool 

– Example: “Stop the world” garbage collection 
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Problem #3: False positives 

Memory reuse could make accesses to distinct high-level objects 

appear as unsynchronized races on low-level memory 

– Especially after ignoring run-time system internal 

synchronization to avoid Problem #2 

August 2012 84 A Programming-Languages View of Data Races, Dan Grossman 



Problem #4: False negatives 

Memory movement (for compacting garbage collection) can make 

high-level conflicting memory accesses go to different low-level 

addresses 
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Fixing the problems 

Our solution: Extend low-level data-race detector so the run-time 

system can control it to perform high-level data-race detection 

– But keep low-level performance 
 

Extension points: 

1. Versions of load/store that “don’t count” as memory 

accesses for data-race detection 

2. Versions of CAS that “don’t count” as happens-before 

edges for data-race detection 

3. Instructions to “clear the history” of a memory location (for 

when object is newly allocated) 

4. Instructions to “copy the history” of a memory location to a 

different location (for moving garbage collectors) 
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Prototype 
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Reuse / performance 

• Changes to JikesRVM to use the low-level race detector: 

– < 1% of lines of code 

– < 0.3% of files 

 

• Prototype data-race detector is slow (simulating hardware), but 

the overhead from extra JikesRVM work is usually < 50% 

– So if  we can implement fast low-level data-race detectors, 

then we can transfer that performance to high-level data-

race detectors 
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But does it work? 

Solving the “four problems” sufficient and necessary in practice! 
 

Totals across four DaCapo benchmarks and copying collector: 
 

0.   Identifies data races involving 69 program points 
 

1. If don’t treat run-time memory accesses as “not counting”, false 

positives involving 1314 program points 
 

2. If don’t treat run-time synchronization as “not counting”, false 

negatives involving 67 program points 
 

3. If don’t “clear the history” when allocating an object, false 

positives involving 11 program points 
 

4. If don’t “move the history” when moving an object, false 

negatives involving 12 program points 
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Outline 

• What are data races 
 

• Memory-consistency models: why data races muddy semantics 
 

• Approaches to data-race detection 

– Static vs. dynamic 

– Sound vs. complete vs. both vs. neither 

– Locksets 

– Vector clocks and FastTrack 

– Other recent approaches 
 

• Low-level vs. high-level data races 

– Low-level detection is wrong for detecting high-level data races 

– Abstracting low-level data races to remove this gap 
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Perspective 

I consider the semantics of shared memory in the presence of data 

races to be “the great failure” of language design and semantics 
 

Options: 

– Abandon shared memory (ignore the problem) 

– Slow compilers and architectures by 10-100x while providing 

no benefit to programs that are data-race free 

– Detect data races when they occur 

– Make data races impossible via static disciplines 

– Continue to “trust programmers” 

– Other?? 
 

On the plus side, much progress in last 20 years, still accelerating 
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“Advertisement” 

I have written a “from the beginning” introduction to parallelism and 

concurrency for second-year undergraduates 

– Good background reading for your younger friends 

 

http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/ 

 

More basic than this presentation 

– Much less on data races 

– More on parallel algorithms 

– More on synchronization mechanisms 

 

Has been used at roughly 10 universities 
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