
A Programming-Languages View of Data Races

Dan Grossman

University of Washington

Prepared for the

2012 Microsoft Research Summer School on Concurrency

St. Petersburg, Russia

Goals

• Broad overview of data races

– What they are [not]

– Why they complicate language semantics

– Data-race detection, especially dynamic detection

• Difference between low-level and high-level data races

– How to use low-level data races to detect high-level data races

– [Recent work with Benjamin Wood, Luis Ceze: MSPC2010 +

under submission]

August 2012 2 A Programming-Languages View of Data Races, Dan Grossman

Meta

• Much of presentation is background

– Prepared for a summer school

– Much not my work

– Will not carefully cite references: better to omit most than

cite most

– There are surely > 100 good papers on data races, which

should be accessible after this material

• Some most-important-references listed at end

• Some materials generously adapted from Joseph Devietti,

Stephen Freund, Vijay Menon, Hal Perkins, Benjamin Wood

August 2012 3 A Programming-Languages View of Data Races, Dan Grossman

Outline

• What are data races

• Memory-consistency models: why data races muddy semantics

• Approaches to data-race detection

– Static vs. dynamic

– Sound vs. complete vs. both vs. neither

– Locksets

– Vector clocks and FastTrack

– Other recent approaches

• Low-level vs. high-level data races

– Low-level detection is wrong for detecting high-level data races

– Abstracting low-level data races to remove this gap

August 2012 4 A Programming-Languages View of Data Races, Dan Grossman

Shared memory

Assume programming model with shared memory and explicit threads

– Technical definition of data races assumes shared memory

– Not claiming shared memory is the best model, but a prevalent

model that needs support and understanding

August 2012 5 A Programming-Languages View of Data Races, Dan Grossman

…

…

…

…

Unshared:

locals and

control flow

Shared:

objects and

static fields

pc

pc pc

Digression: Why Use Threads?

First distinguish parallelism from concurrency

– Terms may not yet be standard, but distinction is essential

August 2012 6 A Programming-Languages View of Data Races, Dan Grossman

Parallelism:

 Use extra resources to

 solve a problem faster

resources

Concurrency:

 Correctly and efficiently manage

 access to shared resources

requests work

resource

An analogy

August 2012 7 A Programming-Languages View of Data Races, Dan Grossman

CS1 idea: A program is like a recipe for a cook

– One cook who does one thing at a time! (Sequential)

Parallelism:

– Have lots of potatoes to slice?

– Hire helpers, hand out potatoes and knives

– But too many chefs and you spend all your time coordinating

Concurrency:

– Lots of cooks making different things, but only 4 stove burners

– Want to allow access to all 4 burners, but not cause spills or

incorrect burner settings

Back to shared memory…

Natural to confuse parallelism and concurrency:

• Common to use threads to divide work (parallelism) and to

provide responsiveness to external events (concurrency)

• If parallel computations need access to shared resources, then

the concurrency needs managing

– Library client thinks parallelism

– Library implementor thinks concurrency

• Shared memory (which leads to data races) relevant to both:

– Parallelism: Communicate arguments/results to/from workers

– Concurrency: Shared resource often resides in memory

August 2012 8 A Programming-Languages View of Data Races, Dan Grossman

Data races, informally

[More formal definition to follow]

“race condition” means two different things

• Data race: Two threads read/write, write/read, or write/write the

same location without intervening synchronization

– So two conflicting accesses could happen “at the same time”

– Better name not used: simultaneous access error

• Bad interleaving: Application error due to thread scheduling

– Different order would not produce error

– A data-race free program can have bad interleavings

August 2012 9 A Programming-Languages View of Data Races, Dan Grossman

Bad interleaving example

August 2012 10 A Programming-Languages View of Data Races, Dan Grossman

class Stack<E> {
 … // state used by isEmpty, push, pop
 synchronized boolean isEmpty() { … }
 synchronized void push(E val) { … }
 synchronized E pop() { … }
 E peek() { // this is wrong
 E ans = pop();
 push(ans);
 return ans;
 }
}

E ans = pop();

push(ans);

return ans;

push(x)

boolean b = isEmpty()

T
im

e

Thread 2 Thread 1 (peek)

Consistent locking

If all mutable, thread-shared memory is consistently guarded by

some lock, then data races are impossible

But:

– Bad interleavings can remain: programmer must make

critical sections large enough

– Consistent locking is sufficient but not necessary

• A tool detecting consistent-locking violations might report

“problems” even if no data races are possible

August 2012 11 A Programming-Languages View of Data Races, Dan Grossman

Data races, more formally

Let threads T1, …, Tn perform actions:

– Read shared location x

– Write shared location x

– [Successfully] Acquire lock m

– Release lock m

– Thread-local actions (local

variables, control flow, arithmetic)

• Will ignore these

Order in one thread is program order

– Legal orders given by language’s

single-threaded semantics + reads

August 2012 12 A Programming-Languages View of Data Races, Dan Grossman

wr(x)

rel(m)

rd(z)

rd(x)

T1 T2

rd(y)

wr(y)

acq(m)

wr(x)

Data races, more formally

Execution [trace] is a partial order over

actions a1 < a2

– Program order: If Ti performs a1

before a2, then a1 < a2

– Sync order: If a2=(Ti acquires m)

occurs after a1=(Tj releases m), then

a1 < a2

– Transitivity: If a1 < a2 and a2 < a3,

then a1 < a3

Called the happens-before relation

August 2012 13 A Programming-Languages View of Data Races, Dan Grossman

wr(x)

rel(m)

rd(z)

rd(x)

T1 T2

rd(y)

wr(y)

acq(m)

wr(x)

Data races, more formally

• Two actions conflict if they read/write,

write/read, or write/write the same location

– Different locations not a conflict

– Read/read not a conflict

August 2012 14 A Programming-Languages View of Data Races, Dan Grossman

wr(x)

rel(m)

rd(z)

rd(x)

T1 T2

rd(y)

wr(y)

acq(m)

wr(x)

Data races, more formally

• Finally, a data race is two conflicting

actions a1 and a2 unordered by the

happens-before relation

– a1 < a2 and a2 < a1

– By definition of happens-before, actions

will be in different threads

– By definition of conflicting, will be

read/write, write/read, or write/write

• A program is data-race free if no trace on

any input has a data race

August 2012 15 A Programming-Languages View of Data Races, Dan Grossman

wr(x)

rel(m)

rd(z)

rd(x)

T1 T2

rd(y)

wr(y)

acq(m)

wr(x)

/ /

Beyond locks

Notion of data race extends to synchronization other than locks

– Just define happens-before appropriately

Examples:

– Thread fork

– Thread join

– Volatile variables

August 2012 16 A Programming-Languages View of Data Races, Dan Grossman

Outline

• What are data races

• Memory-consistency models: why data races muddy semantics

• Approaches to data-race detection

– Static vs. dynamic

– Sound vs. complete vs. both vs. neither

– Locksets

– Vector clocks and FastTrack

– Other recent approaches

• Low-level vs. high-level data races

– Low-level detection is wrong for detecting high-level data races

– Abstracting low-level data races to remove this gap

August 2012 17 A Programming-Languages View of Data Races, Dan Grossman

Why care about data races?

Recall not all race conditions are data races…

So why focus on data races?

• One answer: Find some bugs without application-specific knowledge

• More interesting: Semantics for modern languages very relaxed for

programs with data races

– Else optimizing compilers and hardware too difficult in practice

• Our focus: compiler issues

– Increases importance of writing data-race-free programs

August 2012 18 A Programming-Languages View of Data Races, Dan Grossman

An example

Can the assertion fail?

August 2012 19 A Programming-Languages View of Data Races, Dan Grossman

// shared memory

a = 0; b = 0;

// Thread 1

x = a + b;

y = a;

z = a + b;

assert(z>=y);

// Thread 2

b = 1;

a = 1;

An example

Can the assertion fail?

August 2012 20 A Programming-Languages View of Data Races, Dan Grossman

// shared memory

a = 0; b = 0;

// Thread 1

x = a + b;

y = a;

z = a + b;

assert(z>=y);

// Thread 2

b = 1;

a = 1;

– Argue assertion cannot fail:

 a never decreases and b is never negative, so z>=y

– But argument makes implicit assumptions you cannot make

in Java, C#, C++, etc. (!)

Common-subexpression elimination

Compilers simplify/optimize code in many ways, e.g.:

August 2012 21 A Programming-Languages View of Data Races, Dan Grossman

// shared memory

a = 0; b = 0;

// Thread 1

x = a + b;

y = a;

z = a + b; x;

assert(z>=y);

// Thread 2

b = 1;

a = 1;

Now assertion can fail

– As though third read of a precedes second read of a

– Almost every compiler optimization has the effect of

reordering/removing/adding memory operations like this

A decision…

August 2012 22 A Programming-Languages View of Data Races, Dan Grossman

// shared memory

a = 0; b = 0;

// Thread 1

x = a + b;

y = a;

z = a + b; x;

assert(z>=y);

// Thread 2

b = 1;

a = 1;

Language semantics must resolve this tension:

– If assertion can fail, the program is wrong

– If assertion cannot fail, the compiler is wrong

Memory-consistency model

• A memory-consistency model (or memory model) for a shared-

memory language specifies which write a read can see

– Essential part of language definition

– Widely under-appreciated until last several years

• Natural, strong model is sequential consistency (SC) [Lamport]

– Intuitive “interleaving semantics” with a global memory

 “the results of any execution is the same as if the operations of

 all the processors were executed in some sequential order,

 and the operations of each individual processor appear in this

 sequence in the order specified by its program”

August 2012 23 A Programming-Languages View of Data Races, Dan Grossman

Considered too strong

• Under SC, compiler is wrong in our example

– Must disable any optimization that has effect of reordering

memory operations [on mutable, thread-shared memory]

• So modern languages do not guarantee SC

– Another reason: Disabling optimization insufficient because

the hardware also reorders memory operations unless you

use very expensive (10x-100x) instructions

• But still need some language semantics to reason about programs…

August 2012 24 A Programming-Languages View of Data Races, Dan Grossman

the grand compromise

великий компромисс

вялікі кампраміс

le grand compromis

die große Kompromiss

il compromesso grande

die groot kompromie

August 2012 25 A Programming-Languages View of Data Races, Dan Grossman

The “grand compromise”

• Basic idea:

– Guarantee SC only for “correctly synchronized” programs [Adve]

– Rely on programmer to synchronize correctly

– Correctly synchronized == data-race free (DRF)!

• More precisely:

If every SC execution of a program P has no data races,

then every execution of P is equivalent to an SC execution

– Notice we use SC to decide if P has data races

• Known as “DRF implies SC”

August 2012 26 A Programming-Languages View of Data Races, Dan Grossman

Roles under the compromise

• Programmer: write a DRF program

• Language implementor: provide SC assuming program is DRF

But what if there is a data race:

– C++: anything can happen

• “catch-fire semantics”

• Just like array-bounds errors, uninitialized data, etc.

– Java/C#: very complicated story

• Preserve safety/security despite reorderings

• “DRF implies SC” a theorem about the very-complicated

definition

August 2012 27 A Programming-Languages View of Data Races, Dan Grossman

Back to the example

Code has a data race, so program is wrong and compiler is justified

August 2012 28 A Programming-Languages View of Data Races, Dan Grossman

// shared memory

a = 0; b = 0;

// Thread 1

x = a + b;

y = a;

z = a + b; x;

assert(z>=y);

// Thread 2

b = 1;

a = 1;

Back to the example

This version is DRF, so the “optimization” is illegal

– Compiler would be wrong: assertion must not fail

August 2012 29 A Programming-Languages View of Data Races, Dan Grossman

// shared memory

a = 0; b = 0;

m a lock

// Thread 1

sync(m){x = a + b;}

sync(m){y = a;}

sync(m){z = a + b;}

assert(z>=y);

// Thread 2

sync(m){b = 1;}

sync(m){a = 1;}

Back to the example

This version is DRF, but the optimization is legal because it does

not affect observable behavior: the assertion will not fail

August 2012 30 A Programming-Languages View of Data Races, Dan Grossman

// shared memory

a = 0; b = 0;

m a lock

// Thread 1

sync(m){

 x = a + b;

 y = a;

 z = a + b; x;

}

assert(z>=y);

// Thread 2

sync(m){

 b = 1;

 a = 1;

}

Back to the example

This version is also DRF and the optimization is illegal

– Volatile fields (cf. C++ atomics) exist precisely for writing

“clever” code like this (e.g., lock-free data structures)

August 2012 31 A Programming-Languages View of Data Races, Dan Grossman

// shared memory

volatile int a, b;

a = 0;

b = 0;

// Thread 1

x = a + b;

y = a;

z = a + b;

assert(z>=y);

// Thread 2

b = 1;

a = 1;

So what is allowed?

How can language implementors know if an optimization obeys “DRF

implies SC”? Must be aware of threads! [Boehm]

Basically 2.5 rules suffice, without needing inter-thread analysis:

0. Optimization must be legal for single-threaded programs

1. Do not move shared-memory accesses across lock acquires/releases

– Careful: A callee might do synchronization

– Can relax this slightly: next slide

2. Never add a memory operation not in the program [Boehm]

– Seems like it would be strange to do this, but there are some non-

strange examples: upcoming slides

August 2012 32 A Programming-Languages View of Data Races, Dan Grossman

Across synchronization operations

• Usual guideline: Do not have effect of moving memory

operations across synchronization operations

– Suffices to understand our example

• In fact, some simple extensions are sound

– Okay to move memory operations forward past acquires

– Okay to move memory operations backward past releases

– See work on “interference-free regions”

• [Effinger-Dean et al, MSPC2010, OOPSLA2012]

• And older subsumed idea of

 “roach-motel reordering”

August 2012 33 A Programming-Languages View of Data Races, Dan Grossman

New memory values?

What if this code ran concurrently:

Transformation is legal in a single-threaded program, but is illegal*
because it adds a new write (2 into x) that cannot occur:

* Legal in C++ because there is a data race, but illegal in Java

August 2012 34 A Programming-Languages View of Data Races, Dan Grossman

// x and y are globals, initially 0

void foo() { optimized? void foo() {

 ++x; ========> x += 2;

 if(y==1) if(y!=1)

 ++x; --x;

} }

if(x==2)

 do_evil_things();

Trouble with loops

A more subtle example of an illegal* transformation:

– x is global memory, reg is a (fast) register

Problematic case: n==0 and another thread writes to x while for-

loop executes

– Optimization okay if check n>0

*Illegal even in C++ because if n==0 there are no data races

August 2012 35 A Programming-Languages View of Data Races, Dan Grossman

 optimized?

for(i=0;i<n;i++) ========> reg = x;

 x += a[i]; for(i=0;i<n;i++)

 reg += a[i];

 x = reg;

Outline

• What are data races

• Memory-consistency models: why data races muddy semantics

• Approaches to data-race detection

– Static vs. dynamic

– Sound vs. complete vs. both vs. neither

– Locksets

– Vector clocks and FastTrack

– Other recent approaches

• Low-level vs. high-level data races

– Low-level detection is wrong for detecting high-level data races

– Abstracting low-level data races to remove this gap

August 2012 36 A Programming-Languages View of Data Races, Dan Grossman

Where we are…

• Done: Technical definition of a data race

• Done: Why programmers must avoid data races

• Now: Trusting programmers to avoid data races is unsatisfying,

so would like to detect them

– 20 years of research, still ongoing

– Analogous to research on other programming errors

• type-checking, array-bounds, …

– Key design-space dimensions not unique to data-race

detection …

August 2012 37 A Programming-Languages View of Data Races, Dan Grossman

Static vs. dynamic

Static data-race detectors analyze a program

– Typically expected to terminate, like type-checking

– Typically do not tune analysis to program inputs: Analyze

program for all inputs

– Report pairs of “program points” that can execute data races

• Line numbers? Plus calling contexts?

– Can purely infer results or require programmer annotations

such as richer types

August 2012 38 A Programming-Languages View of Data Races, Dan Grossman

Static vs. Dynamic

Dynamic data-race detectors observe program executions

– Report data races observed as program runs

– Maintain metadata to do detection (time, space)

– Observe only inputs on which detector is run

• But some detectors attempt trace generalization

– When data race occurs, can report as much about program

state as desired

August 2012 39 A Programming-Languages View of Data Races, Dan Grossman

Static, considered

• Advantages of static:

– Results for all inputs, not just inputs tested

– No run-time overhead

– Easier to present results in terms of source-code

– Can adapt well-understood static-analysis techniques

– Annotations help document (subtle) concurrency invariants

• Disadvantages of static:

– “Will a data race occur?” is undecidable: no terminating

procedure can accept any program (in a Turing-complete

language) and always correctly identify whether or not there are

inputs for which a data race will happen

– In practice, “false positives” or “false negatives”

– May be slow and/or require programmer annotations

August 2012 40 A Programming-Languages View of Data Races, Dan Grossman

Dynamic, considered

• Advantages of dynamic:

– Easier to avoid “false positives”

– No language extensions or sophisticated static analysis

• Disadvantages of dynamic:

– Need good test coverage: especially hard with threads

because problematic interleavings can be rare

– Performance overhead: state-of-the-art often 5x-20x

• Reasonable at most for debugging

– Harder to interpret results

August 2012 41 A Programming-Languages View of Data Races, Dan Grossman

Design Dimension: Precision

• Sound data-race detector:

– Every data race is reported (“no false negatives”)

• Complete data-race detector:

– Every reported data race is a data race (“no false positives”)

• Precise data-race detector is sound and complete

• Some effective detectors are neither sound nor complete

– For example, use sampling to improve performance

– Can be precise up to the first data race (if one occurs)

August 2012 42 A Programming-Languages View of Data Races, Dan Grossman

Static vs. dynamic reconsidered

Soundness/completeness mean different things for static and

dynamic data-race detectors

• Static: A precise detector would identify all data races possible

for any input

– As noted, this is impossible

– But sound xor complete is possible: trivial but to be useful try

to reduce the number of false positives or negatives

• Dynamic: A precise detector identifies all data races that occur

on this execution

– Could miss data races for other inputs or thread schedules

– Can do some trace generalization

August 2012 43 A Programming-Languages View of Data Races, Dan Grossman

Design dimension: Granularity

• Does the detector distinguish accessing different fields (or array

elements) of the same object?

– If not, then another source of false positives

• For hardware-level detectors, can mean tracking every byte of

memory separately

– Even though most memory not accessed at such fine-grain

August 2012 44 A Programming-Languages View of Data Races, Dan Grossman

Outline

• What are data races

• Memory-consistency models: why data races muddy semantics

• Approaches to data-race detection

– Static vs. dynamic

– Sound vs. complete vs. both vs. neither

– Locksets

– Vector clocks and FastTrack

– Other recent approaches

• Low-level vs. high-level data races

– Low-level detection is wrong for detecting high-level data races

– Abstracting low-level data races to remove this gap

August 2012 45 A Programming-Languages View of Data Races, Dan Grossman

Locksets in brief

• A simple approach to data-race detection: Report any violation

of consistent locking as a potential data-race source

– Reports one memory access not two, but still useful

• Recall consistent locking: For all thread-shared mutable

memory, there exists a lock that is always held when accessing

that memory

– Partitions shared memory among the locks

August 2012 46 A Programming-Languages View of Data Races, Dan Grossman

Dynamic Lockset detector [Savage et al]

• For each shared memory location x (e.g., object field), maintain

a lockset: LS(x)

• For each thread T, maintain current locks T holds: LS(T)

• For each x, when memory for x is allocated, initialize LS(x) to

special value “ALL”

• When thread T accesses shared memory location x:

– Set LS(x) = LS(x) LS(T)

• Where “ALL” S = S

– If LS(x) = , report error

August 2012 47 A Programming-Languages View of Data Races, Dan Grossman

Sound, incomplete

• Dynamic lockset is sound:

– If no error reported, then no data race occurred

• With this schedule on this input

• Because consistent locking suffices to avoid data races

• Dynamic lockset is incomplete:

– Because consistent locking is not necessary to avoid data races

– Example:

August 2012 48 A Programming-Languages View of Data Races, Dan Grossman

data = 0;

ready = false;

 data = 42;

sync(m){

 ready = true;

}

sync(m){

 tmp = ready;

}

if(tmp)

 print(data);

Issues and extensions

Many projects improve dynamic lockset approach:

• May not know which memory is thread-local

– Too many false positives if assume all might be shared

– Standard shortcut: leave LS(x) = “ALL” until second thread

accesses x, but can introduce (unlikely) false negatives to

improve performance

• Recognize immutable data to avoid false positives

– Recall read/read not a conflict

• Performance (clever set representations)

• Scale to real systems (like OS kernels)

• …

August 2012 49 A Programming-Languages View of Data Races, Dan Grossman

Static lockset [Abadi, Flanagan, Freund]

Can analyze source to verify consistent locking

– Most code verifies because complicated concurrency

protocols are too difficult to get right

– Forcing type annotations to describe the locking protocol

may be “a good thing” for code quality

– Or can try to infer the locking protocol (no annotations)

– Can catch many errors and be “mostly sound,” but scaling to

full languages (finalizers, reflection, class loading, …) is hard

August 2012 50 A Programming-Languages View of Data Races, Dan Grossman

Pseudocode

August 2012 51 A Programming-Languages View of Data Races, Dan Grossman

class SyncedList<T> { // callee locks

 private locked_by<this> Node<T,this> n = null;

 synchronized addToFront(T x) {

 n = new Node<T,this>(x,n);

 }

 synchronized contains(T x) {

 Node<T,this> t = n;

 for(; t!=null; t=t.next)

 if(t.elt.equals(x))

 return true;

 return false;

 }

}

class Node<T,L> { // client locks

 private locked_by<L> T elt;

 private locked_by<L> Node<T,L> next;

}

Key details

• Indicating “content of location A is the lock for location B” is

sound only if content of A is not mutated

– Else can violate consistent locking:

– Fix: require fields used in lock-types are final or this

• Methods can indicate locks that must be held by caller

August 2012 52 A Programming-Languages View of Data Races, Dan Grossman

locked_by<this> Object foo = new Object();

locked_by<foo> Bar x = new Bar();

…

synchronized(foo) { x.m(); }

foo = new Object();

synchronized(foo) { x.m(); }

Outline

• What are data races

• Memory-consistency models: why data races muddy semantics

• Approaches to data-race detection

– Static vs. dynamic

– Sound vs. complete vs. both vs. neither

– Locksets

– Vector clocks and FastTrack

– Other recent approaches

• Low-level vs. high-level data races

– Low-level detection is wrong for detecting high-level data races

– Abstracting low-level data races to remove this gap

August 2012 53 A Programming-Languages View of Data Races, Dan Grossman

Dynamic happens-before

• For precise (sound and complete)

dynamic data-race detection, we could

build the full happens-before DAG of a

trace and check for data races

– Program order

– Sync order

– Transitivity

• Intractable for long-running programs,

but we can use vector clocks to detect

all data-race second accesses

– Won’t prove correctness, but will

give intuition

August 2012 54 A Programming-Languages View of Data Races, Dan Grossman

wr(x)

rel(m)

rd(z)

rd(x)

A B

rd(y)

wr(y)

acq(m)

wr(x)

Vector clocks (as used for data race detection)

• A thread’s “logical time” is measured in “epochs” where an epoch

starts and ends with a lock release

– Thread X’s ith epoch starts with its (i-1)th lock-release and ends

with its ith lock-release

• A vector clock records a “logical time” for each thread

– If there are N threads, then each vector clock has N entries

– If the vector-clock entry for thread X is i, this represents a “time”

known to be after or during thread X’s ith epoch

• For conciseness, our examples will use just two threads A and B

August 2012 55 A Programming-Languages View of Data Races, Dan Grossman

 4 1

A B

Lots of vector clocks

During execution, store a vector clock for:

• Each thread: For thread X’s vector clock, if entry Y is i, then Y’s

ith epoch happens-before X’s next instruction

– Entry X is in X’s vector clock is X’s number of releases – 1

(in odd English, a thread’s epoch “happens-before” itself)

• Each lock: Lock M’s vector clock holds the logical time when M

was most recently released

• Each heap location (read clock): For f’s read vector clock, if

entry Y is i, then Y’s most recent read of f was in Y’s ith epoch

• Each heap location (write clock): For f’s write vector clock, if

entry Y is i, then Y’s most recent write of f was in Y’s ith epoch

Total space: O(|heap|*|numThreads|)

– (FastTrack optimizes this in common cases)

August 2012 56 A Programming-Languages View of Data Races, Dan Grossman

4 1 2 8 2 1 3 0

A B M Wf

0 1

Rf

In total

• Total vector-clock space is O(|heap size| * |thread count|)

– FastTrack will optimize this for common cases later

Now: As program executes, at each step we need to:

1. Check for data races

2. Update vector clocks to avoid future false positives / negatives

Cases for writes, reads, acquires, releases

Extra time per program step will be O(|thread count|),

– Again to be optimized

August 2012 57 A Programming-Languages View of Data Races, Dan Grossman

4 1 2 8 2 1 3 0

A B M Wf

0 1

Rf

Writes

On write by thread X to location f:

1. Check: most-recent writes and reads to location “happen-

before” this write

– vc1 vc2 if for all i, vc1[i] vc2[i]

– If so, all previous writes and reads happen-before, else there

is at least one data race

2. Update ith entry of f’s write-clock to X’s current epoch

August 2012 58 A Programming-Languages View of Data Races, Dan Grossman

4 1 2 8 2 1 3 0

A B M Wf

0 1

Rf

f = 42

4 1 3 0

4 1 0 1

4 0

Reads

Reads are like writes except:

– Check only against the location’s write-clock

• No read/read conflicts

– Update the read-clock instead of the write-clock

August 2012 59 A Programming-Languages View of Data Races, Dan Grossman

4 1 2 8 2 4 3 0

A B M Wf

0 1

Rf

tmp = f

4 1 3 0
4 1

Acquires

• On acquire of M by X, update X’s vector clock to account for

what must “happen before” the lock-acquire

– Set thread X’s ith entry to max(X[i],M[i])

August 2012 60 A Programming-Languages View of Data Races, Dan Grossman

4 1 2 8 2 5 3 0

A B M Wf

0 1

Rf

acq(M)

4 5

Releases

• On release of M by X, update vector clock of the lock to account

for “X’s knowledge” and [then] increment X’s epoch

– Copying all entries captures transitivity of happens-before

– Subtle invariant: copying X’s clock onto M’s clock will not

decrease any entry because we updated X’s clock when it

acquired M

August 2012 61 A Programming-Languages View of Data Races, Dan Grossman

4 5 2 8 2 5 3 0

A B M Wf

0 1

Rf

rel(M)

5 5
4 5

Example: Put it all together

August 2012 62 A Programming-Languages View of Data Races, Dan Grossman

4 1 0 8 0 0 0 0

A B M Wf

2 0

Rf

f=42

4 1 0 8 0 0 4 0 2 0

rel(M)

acq(M)

5 1 0 8 4 1 4 0 2 0

acq(M)

5 1 4 8 4 1 4 0 2 0

f=1

5 1 4 8 4 1 4 8 2 0

tmp=f
5 1 4 8 /

It works!

• Complete: If execution is data-race free, every check passes

• Sound: If execution has a data race, a check fails

– May not report all first-accesses that race with second access

• In theory, slows program by a factor of O(thread count)

– In practice 100x or more

• In theory, extra space of O(thread count * heap size)

– Large in practice too

August 2012 63 A Programming-Languages View of Data Races, Dan Grossman

FastTrack [Flanagan, Freund, PLDI2010]

• FastTrack lowers time and space overhead by exploiting

common cases…

– Replace most read/write vector clocks with O(1) space and

most updates/checks in O(1) time

– O(1) improvement happens naturally for all thread-local and

consistently locked data

– Use full vector clocks only as needed

• Same guarantees as full vector clocks up to first data race on

each memory location

– More than adequate for testing/debugging

August 2012 64 A Programming-Languages View of Data Races, Dan Grossman

Key idea

• For read/write clocks, if all previous reads/writes happen-before the

most recent read/write, then store just thread-id and epoch of most

recent read/write

– Number of fields: 2, not |threads|

• For write clocks, we can always do this

– If there is a previous write that does not happen-before most

recent write, report a data race for that location

– Else latest write comes after all previous: if it does not race with

a later access, then neither can any previous one

• For read clocks, we can usually do this

– For thread-local data, all reads in program-order of thread

– For consistently locked data, all reads in happens-before order

August 2012 65 A Programming-Languages View of Data Races, Dan Grossman

4@A

Revised algorithm

• Acquires and releases unchanged

– Still maintain full vector clocks for each thread and lock

– Very few of these compared to size of heap

• For writes, check and update using just thread-and-epoch of last

write and the read clock

• For reads, a few cases to switch between compact

representation and full vector clock

August 2012 66 A Programming-Languages View of Data Races, Dan Grossman

Writes

On a write by thread X to location f:

1. Check: most-recent writes and reads to location “happen-

before” this write

– vc1 vc2 if for all i, vc1[i] <= vc2[i]

– For compact representation j@T, just check j <= vc1[j]

2. Update of f’s write-clock to X’s current epoch

Case 1: Rf is a full vector clock

August 2012 67 A Programming-Languages View of Data Races, Dan Grossman

4 1 2 8 2 1 3@A

A B M Wf

0 1

Rf

f = 42

4 1

4 1 0 1

4@A

3@A

Writes

On a write by thread X to location f:

1. Check: most-recent writes and reads to location “happen-

before” this write

– vc1 vc2 if for all i, vc1[i] <= vc2[i]

– For compact representation j@T, just check j <= vc1[j]

2. Update of f’s write-clock to X’s current epoch

Case 2: Rf is compact

August 2012 68 A Programming-Languages View of Data Races, Dan Grossman

4 1 2 8 2 1 3@A

A B M Wf Rf

f = 42

4 1

4 1

4@A

3@A

1@B

1@B

Reads

• As with write case, compare thread’s vector clock with last-write:

• Now update last-read information (4 cases):

– Before update, could be compact or full vector clock

– After update, could be compact or full vector clock

August 2012 69 A Programming-Languages View of Data Races, Dan Grossman

4 1 3@A

4 1

A

tmp = f

Rf

3 2

4 2

Reads

• As with write case, compare thread’s vector clock with last-write:

• Now update last-read information (4 cases):

– Before update, could be compact or full vector clock

– After update, could be compact or full vector clock

August 2012 70 A Programming-Languages View of Data Races, Dan Grossman

4 1 3@A

4 5

A

tmp = f

Rf

4@A

3 1

Reads

• As with write case, compare thread’s vector clock with last-write:

• Now update last-read information (4 cases):

– Before update, could be compact or full vector clock

– After update, could be compact or full vector clock

August 2012 71 A Programming-Languages View of Data Races, Dan Grossman

4 1 3@A

4 1

A

tmp = f

Rf

2@B

4 2

Reads

• As with write case, compare thread’s vector clock with last-write:

• Now update last-read information (4 cases):

– Before update, could be compact or full vector clock

– After update, could be compact or full vector clock

 Common case covers all uses

 of consistent locking and

 thread-local data

August 2012 72 A Programming-Languages View of Data Races, Dan Grossman

4 1 3@A

4 2

A

tmp = f

Rf

1@B

4@A

Summary

• Vector clocks keep enough “recent information” to do precise

dynamic data-race detection as the program executes

• FastTrack removes some unnecessary vector-clock elements,

getting O(1) time and space except when there are reads from

multiple threads unordered by happens-before

– Fundamental improvement in theory and practice

• Much faster but still too slow for deployed software

– Recent work investigates using hardware support [Devietti et

al, ISCA2012] or hypervisor techniques [Olszewski et al,

ASPLOS2012] to get within 2x performance in some cases

August 2012 73 A Programming-Languages View of Data Races, Dan Grossman

Outline

• What are data races

• Memory-consistency models: why data races muddy semantics

• Approaches to data-race detection

– Static vs. dynamic

– Sound vs. complete vs. both vs. neither

– Locksets

– Vector clocks and FastTrack

– Other recent approaches

• Low-level vs. high-level data races

– Low-level detection is wrong for detecting high-level data races

– Abstracting low-level data races to remove this gap

August 2012 74 A Programming-Languages View of Data Races, Dan Grossman

A few other projects

• PACER: proportional sampling:

– Proportionality: detect any race at rate equal to sampling

– Inside sampling interval, FastTrack

– Outside sampling interval, still check “second” accesses, but

discard outdated metadata and do not update vector clocks

• LiteRace: more heuristic sampling: neither sound nor complete,

but effectively samples “cold” code regions

• More scalable static detectors with fewer false positives:

– Infer “what locks what” via conditional must-not aliasing

– RELAY: modularize unsoundness and various filters

August 2012 75 A Programming-Languages View of Data Races, Dan Grossman

Outline

• What are data races

• Memory-consistency models: why data races muddy semantics

• Approaches to data-race detection

– Static vs. dynamic

– Sound vs. complete vs. both vs. neither

– Locksets

– Vector clocks and FastTrack

– Other recent approaches

• Low-level vs. high-level data races

– Low-level detection is wrong for detecting high-level data races

– Abstracting low-level data races to remove this gap

August 2012 76 A Programming-Languages View of Data Races, Dan Grossman

What is memory?

Definition of data race relies on:

– What is a memory location

– What does it mean to read/write a memory location

Definition of memory in Java, C#, etc. is fundamentally different

than memory provided to an OS process

– Language-level memory is implemented on top of

machine-level memory by the language run-time system

Phenomenon extends to any number of memory levels

– Example: OS has a lower-level view of memory than a

running process

– But we will focus on the language-level (“high”) and

machine-level (“low”)

August 2012 77 A Programming-Languages View of Data Races, Dan Grossman

Language-level

Memory in a garbage-collected high-level language:

– Logically infinite size (but allocation may fail)

– Memory never observably reused

– Reads/writes are field or array accesses

– Synchronization provided by language primitives

August 2012 78 A Programming-Languages View of Data Races, Dan Grossman

…

…

…

…

pc

pc pc

Machine-level

Memory at the binary level of an OS process:

– Logically fixed address space (e.g., 264 bytes)

– No “objects” that get reclaimed, just addresses used for data

– Reads/writes are to elements of “the one global array”

– Synchronization via special instructions like CAS

– Do have notion of distinct thread contexts

August 2012 79 A Programming-Languages View of Data Races, Dan Grossman

pc, …

pc, … pc, …

…

The Run-Time System

Language run-time system (garbage collector, systems libraries,

etc.), implement the high-level memory on the low-level memory

• Allocate objects

• Reclaim unreachable objects

• Move objects to avoid fragmentation

• Implement synchronization primitives

Compiled code is also relevant

• High-level memory accesses compiled down to low-level ones

– May include extra memory operations or run-time checks

August 2012 80 A Programming-Languages View of Data Races, Dan Grossman

Connection to data races

• Suppose our goal is a precise dynamic data-race detector for

[only] high-level memory (e.g., Java/C# programs)

• Suppose we use a precise dynamic data-race detector for low-

level memory

– Performance advantages

– Reuse advantages (available for any high-level language)

• Unfortunately, it is wrong

– Will report false positives, in theory and practice

– Will report false negatives, in theory and practice

Four fundamental causes of imprecision…

August 2012 81 A Programming-Languages View of Data Races, Dan Grossman

Problem #1: False positives

Data races [by design] in the run-time system or between run-time

system and the program are not high-level data races

– Example: Implementation of a lock using spinning

– Example: Clever allocator or parallel garbage collector

– Example: Concurrent garbage collector

Expert run-time system implementors understand and use low-level

memory-consistency model

August 2012 82 A Programming-Languages View of Data Races, Dan Grossman

Problem #2: False negatives

Run-time systems have their own synchronization that should not

induce happens-before edges for high-level race detection

– Example: Allocation from a central memory pool

– Example: “Stop the world” garbage collection

August 2012 83 A Programming-Languages View of Data Races, Dan Grossman

Problem #3: False positives

Memory reuse could make accesses to distinct high-level objects

appear as unsynchronized races on low-level memory

– Especially after ignoring run-time system internal

synchronization to avoid Problem #2

August 2012 84 A Programming-Languages View of Data Races, Dan Grossman

Problem #4: False negatives

Memory movement (for compacting garbage collection) can make

high-level conflicting memory accesses go to different low-level

addresses

August 2012 85 A Programming-Languages View of Data Races, Dan Grossman

Fixing the problems

Our solution: Extend low-level data-race detector so the run-time

system can control it to perform high-level data-race detection

– But keep low-level performance

Extension points:

1. Versions of load/store that “don’t count” as memory

accesses for data-race detection

2. Versions of CAS that “don’t count” as happens-before

edges for data-race detection

3. Instructions to “clear the history” of a memory location (for

when object is newly allocated)

4. Instructions to “copy the history” of a memory location to a

different location (for moving garbage collectors)

August 2012 86 A Programming-Languages View of Data Races, Dan Grossman

Prototype

August 2012 87 A Programming-Languages View of Data Races, Dan Grossman

Makes it look like chip has

extended ISA and precise

data-race detection

Reuse / performance

• Changes to JikesRVM to use the low-level race detector:

– < 1% of lines of code

– < 0.3% of files

• Prototype data-race detector is slow (simulating hardware), but

the overhead from extra JikesRVM work is usually < 50%

– So if we can implement fast low-level data-race detectors,

then we can transfer that performance to high-level data-

race detectors

August 2012 88 A Programming-Languages View of Data Races, Dan Grossman

But does it work?

Solving the “four problems” sufficient and necessary in practice!

Totals across four DaCapo benchmarks and copying collector:

0. Identifies data races involving 69 program points

1. If don’t treat run-time memory accesses as “not counting”, false

positives involving 1314 program points

2. If don’t treat run-time synchronization as “not counting”, false

negatives involving 67 program points

3. If don’t “clear the history” when allocating an object, false

positives involving 11 program points

4. If don’t “move the history” when moving an object, false

negatives involving 12 program points

August 2012 89 A Programming-Languages View of Data Races, Dan Grossman

Outline

• What are data races

• Memory-consistency models: why data races muddy semantics

• Approaches to data-race detection

– Static vs. dynamic

– Sound vs. complete vs. both vs. neither

– Locksets

– Vector clocks and FastTrack

– Other recent approaches

• Low-level vs. high-level data races

– Low-level detection is wrong for detecting high-level data races

– Abstracting low-level data races to remove this gap

August 2012 90 A Programming-Languages View of Data Races, Dan Grossman

Perspective

I consider the semantics of shared memory in the presence of data

races to be “the great failure” of language design and semantics

Options:

– Abandon shared memory (ignore the problem)

– Slow compilers and architectures by 10-100x while providing

no benefit to programs that are data-race free

– Detect data races when they occur

– Make data races impossible via static disciplines

– Continue to “trust programmers”

– Other??

On the plus side, much progress in last 20 years, still accelerating

August 2012 91 A Programming-Languages View of Data Races, Dan Grossman

Key References (1/2)

There are > 100 papers – these are just ones I find seminal, excellent

background, or especially related to topics focused on in this

presentation. Apologies for omissions.

• You Don't Know Jack About Shared Variables or Memory Models, Hans-J. Boehm, Sarita V.

Adve, Communications of the ACM, February 2012.

• S. Adve and H. Boehm. Memory Models: A Case for Rethinking Parallel Languages and

Hardware. Communication of the ACM, Aug 2010.

• Threads Cannot Be Implemented as a Library, Hans-J. Boehm. PLDI, June 2005.

• FastTrack: efficient and precise dynamic race detection Cormac Flanagan, Stephen N. Freund

PLDI, June 2009.

• Types for Safe Locking: Static Race Detection for Java. Martin Abadi, Cormac Flanagan, and

Stephen N. Freund. ACM Transactions on Programming Languages and Systems, 2006.

• Data-Race Exceptions Have Benefits Beyond the Memory Model Benjamin P. Wood, Luis

Ceze, Dan Grossman. ACM SIGPLAN Workshop on Memory Systems Performance and

Correctness, San Jose, CA, June, 2011. [Better more recent paper under submission as of

August 2012]

• IFRit: Interference-Free Regions for Dynamic Data-Race Detection. Laura Effinger-Dean,

Brandon Lucia, Luis Ceze, Dan Grossman, Hans-J. Boehm. OOPSLA, October, 2012.

August 2012 92 A Programming-Languages View of Data Races, Dan Grossman

Key References (2/2)

There are > 100 papers – these are just ones I find seminal, excellent

background, or especially related to topics focused on in this

presentation. Apologies for omissions.

• RADISH: Always-On Sound and Complete Race Detection in Software and Hardware

Joseph Devietti, Benjamin P. Wood, Karin Strauss, Luis Ceze, Dan Grossman, Shaz Qadeer.

ISCA, June, 2012.

• M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer: Proportional detection of data races.

PLDI, June 2010.

• T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A race and transaction-aware Java runtime.

PLDI, June 2007.

• D. R. Engler and K. Ashcraft. RacerX: Effective, static detection of race conditions and

deadlocks. SOSP, 2003.

• M. Naik, A. Aiken, and J. Whaley. Effective static race detection for Java. PLDI, June 2006.

• R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detection. In PPoPP, 2003.

• S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson. Eraser: A dynamic data

race detector for multi-threaded programs. Transactions on Computer Systems, 1997.

• J. W. Voung, R. Jhala, and S. Lerner. Relay: static race detection on millions of lines of code.

FSE, 2007.

August 2012 93 A Programming-Languages View of Data Races, Dan Grossman

“Advertisement”

I have written a “from the beginning” introduction to parallelism and

concurrency for second-year undergraduates

– Good background reading for your younger friends

http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/

More basic than this presentation

– Much less on data races

– More on parallel algorithms

– More on synchronization mechanisms

Has been used at roughly 10 universities

August 2012 94 A Programming-Languages View of Data Races, Dan Grossman

