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Concurrent Objects

* Adding threads should not lower
throughput

— Contention effects
— Mostly fixed by scalable locks
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Concurrent Objects

* Adding threads should not lower
throughput

— Contention effects
— Mostly fixed by scalable locks
« Should increase throughput
— Not possible if inherently sequential
— Surprising things are parallelizable
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Coarse-Grained Synchronization

 Each method locks the object
— Avoid contention using scalable locks
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Coarse-Grained Synchronization

 Each method locks the object
— Avoid contention using scalable locks

— Easy to reason about
 In simple cases
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Coarse-Grained Synchronization

 Each method locks the object
— Avoid contention using scalable locks

— Easy to reason about
 In simple cases

S0, are we done?
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Coarse-Grained Synchronization

« Seqguential bottleneck
— Threads “stand in line”
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Coarse-Grained Synchronization

 Sequential bottleneck
— Threads “stand in line”

» Adding more threads
— Does not improve throughput
— Struggle to keep it from getting worse

Art of Multiprocessor Programming




Coarse-Grained Synchronization

 Sequential bottleneck
— Threads “stand in line”

» Adding more threads
— Does not improve throughput
— Struggle to keep it from getting worse

* S0 why even use a multiprocessor?
— Well, some apps inherently parallel ...

E Art of Multiprocessor Programming
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This Lecture

* Introduce four “patterns”
— Bag of tricks ...
— Methods that work more than once ...
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This Lecture

* Introduce four “patterns”
— Bag of tricks ...
— Methods that work more than once ...

* For highly-concurrent objects
— Concurrent access
— More threads, more throughput

E Art of Multiprocessor Programming
T

11



First:
Fine-Grained Synchronization

* Instead of using a single lock ...
» Split object into
— Independently-synchronized components

* Methods conflict when they access
— The same component ...
— At the same time
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Second;
Optimistic Synchronization

» Search without locking ...
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Second;
Optimistic Synchronization

» Search without locking ...

* If you find it, lock and check ...
— OK: we are done
— Oops: start over
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Second;
Optimistic Synchronization

» Search without locking ...

* If you find it, lock and check ...
— OK: we are done
— Oops: start over

» Evaluation
— Usually cheaper than locking, but
— Mistakes are expensive
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Third:
Lazy Synchronization

* Postpone hard work

 Removing components is tricky

— Logical removal
« Mark component to be deleted

— Physical removal
Do what needs to be done
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Fourth:
Lock-Free Synchronization

* Don't use locks at all
— Use compareAndSet() & relatives ...
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Fourth:
Lock-Free Synchronization

* Don't use locks at all
— Use compareAndSet() & relatives ...

* Advantages
— No Scheduler Assumptions/Support
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Fourth:
Lock-Free Synchronization

* Don't use locks at all
— Use compareAndSet() & relatives ...

* Advantages
— No Scheduler Assumptions/Support

* Disadvantages
— Complex
— Sometimes high overhead
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Linked List

* |llustrate these patterns ...

* Using a list-based Set
— Common application
— Building block for other apps
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Set Interface

 Unordered collection of items
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Set Interface

 Unordered collection of items
* No duplicates
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Set Interface

 Unordered collection of items
* No duplicates

 Methods

—add (X) put X in set
- remove (x) take x out of set
— contains (x) tests if X in set

E Art of Multiprocessor Programming
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List-Based Sets

public interface Set<T> {
public boolean add(T x);
public boolean remove(T x);
public boolean contains(T Xx);

}
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List-Based Sets

[pub11c boolean add(T x);

Add item to set
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List-Based Sets

[pub11c boolean remove(T X);

Remove item from set
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List-Based Sets

[pub11c boolean contains(T x); ]

IS 1tem In set?
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List Node

public class Node {
public T 1item;
public int key;
public Node next;

}
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List Node

[pub11c T item;

Item of Interest
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List Node

[pub'l ic int key;

Usually hash code
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List Node

public Node next; |

Reference to next node

Art of Multiprocessor Programming

31



The List-Based Set

al3— k[l

Sorted with Sentinel nodes
(min & max possible keys)
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Reasoning about Concurrent
Objects

* Invariant
— Property that always holds
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Reasoning about Concurrent
Objects

* Invariant
— Property that always holds

» Established because
— True when object is created

— Truth preserved by each method
« Each step of each method
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Seqguential List Based Set

add()
(I3—l F—{cI3—d]
removel()

(T3—>(a] - b 3=—>(c _
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Seqguential List Based Set
add()

CB—>@I3\ [cT3—>dT]

remove()

(T3—r(a b[F—{c]_
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Coarse-Grained Locking

é6
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Coarse-Grained Locking

i
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Coarse-Grained Locking

2

L5—el— <
—

Simple but hotspot + bottleneck
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Coarse-Grained Locking

« Easy, same as synchronized methods
—“One lock to rule them all ...”
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Coarse-Grained Locking

« Easy, same as synchronized methods
—“One lock to rule them all ...”

« Simple, clearly correct
— Deserves respect!

* Works poorly with contention
— Queue locks help
— But bottleneck still an issue
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Fine-grained Locking

* Requires careful thought

— “Do not meddle in the affairs of wizards, for
they are subtle and quick to anger”
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Fine-grained Locking

* Requires careful thought

— “Do not meddle in the affairs of wizards, for
they are subtle and quick to anger”

* Split object into pieces
— Each piece has own lock

— Methods that work on disjoint pieces need
not exclude each other

Art of Multiprocessor Programming 49




Hand-over-Hand locking

([F—Gl3—blF—{]]
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Hand-over-Hand locking

6

a3kl
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Hand-over-Hand locking
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Hand-over-Hand locking
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Hand-over-Hand locking
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Removing a Node
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Removing a Node




Removing a Node
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Removing a Node
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Removing a Node
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Removing a Node

i
LLrlaly e[l ]

Why hold 2 locks?
remove(b)
O o oa
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Concurrent Removes
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Concurrent Removes
([F=>(e[ 3=l (c[F—(]]
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Concurrent Removes
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Art of Multiprocessor Programming

69



Concurrent Removes

O o,
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Uh, Oh

SEagth [l
{iahing
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Uh, Oh

Bad news, ¢ not removed

B-m_ B
e

Art of Multiprocessor Programming




Problem

* To delete node c
— Swing node b’s next field to d

al F>b

* Problem is,
— Someone deleting b concurrently could

direct a pointer a M @_»

toC
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Insight

e |If a node Is locked
— No one can delete node’s successor

 If a thread locks
— Node to be deleted
— And its predecessor
— Then it works
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Hand-Over-Hand Again
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Hand-Over-Hand Again




Hand-Over-Hand Again
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Hand-Over-Hand Again
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Hand-Over-Hand Again
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Hand-Over-Hand Again

SEagtih GEagl
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Removing a Node

HE g CIE g (I g CIE g (1N

remove(b)
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Removing a Node
(3=l ]3]
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Removing a Node
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Removing a Node
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Removing a Node




Removing a Node




Removing a Node




Removing a Node
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remove(b)
O o . a §; :
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Removing a Node

6 6 o6 o
B OB CIE s d (I ol I

89

ust
acquire
Lock for




Removing a Node

6 6 o6 o
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Cannot ~
acquire O
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lock for b
o
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Removing a Node
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Removing a Node

Proceed
to
remove(b)
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Removing a Node

O, .
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Removing a Node
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Removing a Node

[I-]—*[]ia an
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Removing a Node
([3—(al ‘3 an
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Adding Nodes

e To add node e
— Must lock predecessor
— Must lock successor

* Neither can be deleted
— (Is successor lock actually required?)
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Drawbacks

» Better than coarse-grained lock
— Threads can traverse Iin parallel

 Still not ideal
— Long chain of acquire/release
— Inefficient
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Optimistic Synchronization

* Find nodes without locking
* Lock nodes
* Check that everything is OK
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Optimistic: Traverse without
Locking
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Optimistic: Lock and Load
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Optimistic: Lock and Load
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What could go wrong?
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What could go wrong?
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What could go wrong?
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What could go wrong?
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What could go wrong?
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What could go wrong?
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What could go wrong?

(T3— G0 @F—ED

Uh-oh
Oo”

Art of Multiprocessor Programming 116




Validate — Part 1

Yes, b still
reachable
from head
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What Else Could Go Wrong?
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What Else Coould Go Wrong?
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What Else Coould Go Wrong?
6
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What Else Could Go Wrong?
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What Else Could Go Wrong?
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Validate Part 2
(while holding locks)

Yes, b still
points to d
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Invariants

« Careful: we may traverse deleted nodes

« But we establish properties by
— Validation
— After we lock target nodes
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Correctness

o |f
— Nodes b and ¢ both locked
— Node b still accessible
— Node c still successorto b

* Then
— Neither will be deleted
— OK to delete and return true
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Unsuccessful Remove

6 o6
I!B CE;aq08
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Validate (1)

Yes, b still
reachable
from head

00
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Validate (2)
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OK Computer
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Correctness

o |f
— Nodes b and d both locked
— Node b still accessible
— Node d still successorto b

 Then
— Neither will be deleted
— No thread can add c after b
— OK to return false
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Optimistic List

* Limited hot-spots
— Targets of add(), remove(), contains()
— NO contention on traversals

* Moreover

— Traversals are wait-free
— Food for thought ...
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So Far, So Good

* Much less lock acquisition/release
— Performance
— Concurrency

* Problems
— Need to traverse list twice
— contains() method acquires locks

_; Art of Multiprocessor Programming 132




Evaluation

« Optimistic Is effective If
— cost of scanning twice without locks
IS less than
— cost of scanning once with locks
* Drawback
— contains() acquires locks
— 90% of calls iIn many apps
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Lazy List

 Like optimistic, except
— Scan once
— contains (x) never locks ...

» Key Insight
— Removing nodes causes trouble
— Do it “lazily”
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Lazy List

e remove()
— Scans list (as before)
— Locks predecessor & current (as before)

* Logical delete
— Marks current node as removed (new!)

* Physical delete
— Redirects predecessor’s next (as before)
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Lazy Removal

T3> 3>Cr 3T 3>d -
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Lazy Removal

Present In list
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Lazy Removal

Logically deleted
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Lazy Removal

Physically deleted
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Lazy Removal

EEEENE N | [@T=

S

Physically deleted
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Lazy List

o All Methods

— Scan through locked and marked nodes

— Removing a node doesn’t slow down other
method calls ...

* Must still lock pred and curr nodes.

Art of Multiprocessor Programming 141




Validation

* No need to rescan list!

* Check that pred is not marked
* Check that curr is not marked
* Check that pred points to curr
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Business as Usual

QIEag(lIEndOIE
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Business as Usual

Art of Multiprocessor Programming 144



Business as Usual
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Business as Usual
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Business as Usual
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Business as Usual

(3363~

Art of Multiprocessor Programming 148




Business as Usual

([5Gl bl5>
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Business as Usual
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Business as Usual

scginnjilac
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Invariant

 An item is In the set If
— not marked
— reachable from head

—and If not yet traversed it is reachable from
pred
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Validation

private boolean

validate(Node pred, Node curr) {
return

Ipred.marked &&
lcurr.marked &&
pred.next == curr);

}

Art of Multiprocessor Programming 153




List Validate Method

[!pred.marked &&

Predecessor not
Logically removed
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List Validate Method

[!curr.marked &&

Current not
Logically removed
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List Validate Method

[pred.next == curr);

Predecessor still
Points to current
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Contains

[Node curr = this.head;

Start at the head
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Contains

[whi]e (curr.key < key) {l

Search key range
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Contains

| curr = curr.next;

Traverse without locking
(nodes may have been removed)
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Contains

[return curr.key == key && !curr.marked;]

N

Present and undeleted?
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Summary: Wait-free Contains

/‘\/\/\a,&

EREANE S ANE 1 E NS

Use Mark bit + list ordering
1. Not marked - in the set
2. Marked or missing - not in the set
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Lazy List

/‘\/\/\ 4,,*
6 6 6 6 6
(I [>T 3> S~>T I 3->(c[T )

Lazy add() and remove() + Walit-free contains()
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Evaluation

e Good:

— contains() doesn’t lock

— In fact, its wait-free!

— Good because typically high % contains()
— Uncontended calls don'’t re-traverse

 Bad

— Contended add() and remove() calls do re-
traverse

— Traffic jam if one thread delays

Art of Multiprocessor Programming 163




Traffic Jam

« Any concurrent data structure based on
mutual exclusion has a weakness

* |f one thread
— Enters critical section

— And “eats the big muffin”
« Cache miss, page fault, descheduled ...

— Everyone else using that lock is stuck!
— Need to trust the scheduler....

Art of Multiprocessor Programming 164




Reminder: Lock-Free Data

®

Structures

* No matter what ...

— Guarantees minimal progress in any
execution

—I.e. Some thread will always complete a
method call

— Even if others halt at malicious times
— Implies that implementation can’t use locks
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Lock-free Lists

* Next logical step
— Walit-free contains()
— lock-free add() and remove()

* Use only compareAndSet()
— What could go wrong?
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Lock-free Lists

Logical Removal

Use CAS to verify pointer Physical Removal
IS correct

Not enough!
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Problem...

Logical Removal

Node added
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The Solution: Combine Bit and
Pointer

Logical Removal =
Set Mark Bit

Physical
Mark-Bit and Pointer ~ Removal Failed CAS: Node not
CAS added after logical

are CASed as one Removal

(AtomicMarkableReference)
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Solution

 Use AtomicMarkableReference

« Atomically
— Swing reference and
— Update flag

 Remove In two steps
— Set mark bit in next field
— Redirect predecessor’s pointer
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Removing a Node

ac @Z—]—%@t@]
&
%
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Removing a Node

failed
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Removing a Node
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Removing a Node
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Traversing the List

* Q: what do you do when you find a
“logically” deleted node in your path”

 A: finish the job.
— CAS the predecessor’s next field
— Proceed (repeat as needed)
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Lock-Free Traversal
(only Add and Remove)
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Performance

On 16 node shared memory machine
Benchmark throughput of Java List-based Set
algs. Vary % of Contains() method Calls.
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Low Contains Ratio
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As Contains Ratio Increases
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Summary

« Coarse-grained locking

* Fine-grained locking

« Optimistic synchronization
* Lock-free synchronization
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“To Lock or Not to Lock”

* Locking vs. Non-blocking: Extremist views
on both sides

* The answer: nobler to compromise,
combine locking and non-blocking

— Example: Lazy list combines blocking add() and
remove() and a wait-free contains()

— Remember: Blocking/non-blocking is a property
of a method
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SOME RIGHTS RESERVED

This work i1s licensed under a

You are free:
- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:

- Attribution. You must attribute the work to “The Art of
Multiprocessor Programming” (but not in any way that suggests that
the authors endorse you or your use of the work).

- Share Alike. If you alter, transform, or build upon this work, you
may distribute the resulting work only under the same, similar or a
compatible license.

For any reuse or distribution, you must make clear to others the
license terms of this work. The best way to do this is with a link
to

- http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission
from the copyright holder.

No'ﬁ]hing in this license impairs or restricts the author's moral
rights.
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