Linked Lists: Locking, Lock-Free,
and Beyond ...

[HE AR

MULTIPROCESSOR
PRL)(.J““\I\‘\'\\ NGO

Companion slides for
The Art of Multiprocessor Programming
by Maurice Herlihy & Nir Shavit

Concurrent Objects

* Adding threads should not lower
throughput

— Contention effects
— Mostly fixed by scalable locks

Art of Multiprocessor Programming

Concurrent Objects

* Adding threads should not lower
throughput

— Contention effects
— Mostly fixed by scalable locks
« Should increase throughput
— Not possible if inherently sequential
— Surprising things are parallelizable

Art of Multiprocessor Programming

Coarse-Grained Synchronization

 Each method locks the object
— Avoid contention using scalable locks

Art of Multiprocessor Programming

Coarse-Grained Synchronization

 Each method locks the object
— Avoid contention using scalable locks

— Easy to reason about
 In simple cases

Art of Multiprocessor Programming

Coarse-Grained Synchronization

 Each method locks the object
— Avoid contention using scalable locks

— Easy to reason about
 In simple cases

S0, are we done?

Art of Multiprocessor Programming

Coarse-Grained Synchronization

« Seqguential bottleneck
— Threads “stand in line”

Art of Multiprocessor Programming

Coarse-Grained Synchronization

 Sequential bottleneck
— Threads “stand in line”

» Adding more threads
— Does not improve throughput
— Struggle to keep it from getting worse

Art of Multiprocessor Programming

Coarse-Grained Synchronization

 Sequential bottleneck
— Threads “stand in line”

» Adding more threads
— Does not improve throughput
— Struggle to keep it from getting worse

* S0 why even use a multiprocessor?
— Well, some apps inherently parallel ...

E Art of Multiprocessor Programming
AT,

This Lecture

* Introduce four “patterns”
— Bag of tricks ...
— Methods that work more than once ...

Art of Multiprocessor Programming

10

This Lecture

* Introduce four “patterns”
— Bag of tricks ...
— Methods that work more than once ...

* For highly-concurrent objects
— Concurrent access
— More threads, more throughput

E Art of Multiprocessor Programming
T

11

First:
Fine-Grained Synchronization

* Instead of using a single lock ...
» Split object into
— Independently-synchronized components

* Methods conflict when they access
— The same component ...
— At the same time

Art of Multiprocessor Programming

12

Second;
Optimistic Synchronization

» Search without locking ...

Art of Multiprocessor Programming

13

Second;
Optimistic Synchronization

» Search without locking ...

* If you find it, lock and check ...
— OK: we are done
— Oops: start over

Art of Multiprocessor Programming

14

Second;
Optimistic Synchronization

» Search without locking ...

* If you find it, lock and check ...
— OK: we are done
— Oops: start over

» Evaluation
— Usually cheaper than locking, but
— Mistakes are expensive

Art of Multiprocessor Programming

15

Third:
Lazy Synchronization

* Postpone hard work

 Removing components is tricky

— Logical removal
« Mark component to be deleted

— Physical removal
Do what needs to be done

Art of Multiprocessor Programming

16

Fourth:
Lock-Free Synchronization

* Don't use locks at all
— Use compareAndSet() & relatives ...

Art of Multiprocessor Programming

17

Fourth:
Lock-Free Synchronization

* Don't use locks at all
— Use compareAndSet() & relatives ...

* Advantages
— No Scheduler Assumptions/Support

Art of Multiprocessor Programming

18

Fourth:
Lock-Free Synchronization

* Don't use locks at all
— Use compareAndSet() & relatives ...

* Advantages
— No Scheduler Assumptions/Support

* Disadvantages
— Complex
— Sometimes high overhead

Art of Multiprocessor Programming

19

Linked List

* |llustrate these patterns ...

* Using a list-based Set
— Common application
— Building block for other apps

Art of Multiprocessor Programming

20

Set Interface

 Unordered collection of items

Art of Multiprocessor Programming

21

Set Interface

 Unordered collection of items
* No duplicates

Art of Multiprocessor Programming

22

Set Interface

 Unordered collection of items
* No duplicates

 Methods

—add (X) put X in set
- remove (x) take x out of set
— contains (x) tests if X in set

E Art of Multiprocessor Programming
T

23

List-Based Sets

public interface Set<T> {
public boolean add(T x);
public boolean remove(T x);
public boolean contains(T Xx);

}

Art of Multiprocessor Programming

24

List-Based Sets

[pub11c boolean add(T x);

Add item to set

Art of Multiprocessor Programming

25

List-Based Sets

[pub11c boolean remove(T X);

Remove item from set

Art of Multiprocessor Programming

26

List-Based Sets

[pub11c boolean contains(T x);]

IS 1tem In set?

Art of Multiprocessor Programming

27

List Node

public class Node {
public T 1item;
public int key;
public Node next;

}

Art of Multiprocessor Programming

28

List Node

[pub11c T item;

Item of Interest

Art of Multiprocessor Programming

29

List Node

[pub'l ic int key;

Usually hash code

Art of Multiprocessor Programming

30

List Node

public Node next; |

Reference to next node

Art of Multiprocessor Programming

31

The List-Based Set

al3— k[l

Sorted with Sentinel nodes
(min & max possible keys)

Art of Multiprocessor Programming

32

Reasoning about Concurrent
Objects

* Invariant
— Property that always holds

Art of Multiprocessor Programming

33

Reasoning about Concurrent
Objects

* Invariant
— Property that always holds

» Established because
— True when object is created

— Truth preserved by each method
« Each step of each method

Art of Multiprocessor Programming

34

Seqguential List Based Set

add()
(I3—l F—{cI3—d]
removel()

(T3—>(a] - b 3=—>(c _

Art of Multiprocessor Programming

41

Seqguential List Based Set
add()

CB—>@I3\ [cT3—>dT]

remove()

(T3—r(a b[F—{c]_

Art of Multiprocessor Programming

42

Coarse-Grained Locking

é6
([3F—GE[3F—>b[3—{]]

Art of Multiprocessor Programming

43

Coarse-Grained Locking

i
(I3l 3+

SO S

Art of Multiprocessor Programming

44

Coarse-Grained Locking

2

L5—el— <
—

Simple but hotspot + bottleneck

Art of Multiprocessor Programming

45

Coarse-Grained Locking

« Easy, same as synchronized methods
—“One lock to rule them all ...”

Art of Multiprocessor Programming

46

Coarse-Grained Locking

« Easy, same as synchronized methods
—“One lock to rule them all ...”

« Simple, clearly correct
— Deserves respect!

* Works poorly with contention
— Queue locks help
— But bottleneck still an issue

Art of Multiprocessor Programming

47

Fine-grained Locking

* Requires careful thought

— “Do not meddle in the affairs of wizards, for
they are subtle and quick to anger”

Art of Multiprocessor Programming 48

Fine-grained Locking

* Requires careful thought

— “Do not meddle in the affairs of wizards, for
they are subtle and quick to anger”

* Split object into pieces
— Each piece has own lock

— Methods that work on disjoint pieces need
not exclude each other

Art of Multiprocessor Programming 49

Hand-over-Hand locking

([F—Gl3—blF—{]]

50

Hand-over-Hand locking

6

a3kl

51

Hand-over-Hand locking

52

Hand-over-Hand locking

Art of Multiprocessor Programming

53

Hand-over-Hand locking

54

Removing a Node

HE g CIE g (I g CIE g (1N

O,

r Programming 55

Removing a Node

Removing a Node

6 6
B (OO g OIE g C1B

O o,

Removing a Node

Art of Multiprocessor Programming

58

Removing a Node

6 O
sexanil

O, .

Art of Multiprocessor Programming

59

Removing a Node

i
LLrlaly e[l]

Why hold 2 locks?
remove(b)
O o oa

Art of Multiprocessor Programming 60

Concurrent Removes

HE g CIE g (I g CIE g (1N

rogramming

61

Concurrent Removes
([F=>(e[3=l (c[F—(]]

rogramming

Concurrent Removes
(3=l F~ el (c[F—(]]

rogramming

Concurrent Removes
([l F—=lF~>(c[F—(]]

rogramming

Concurrent Removes

Concurrent Removes

Concurrent Removes

Concurrent Removes

Concurrent Removes

O o,

Art of Multiprocessor Programming

69

Concurrent Removes

O o,

Art of Multiprocessor Programming

70

Uh, Oh

SEagth [l
{iahing

Art of Multiprocessor Programming 71

Uh, Oh

Bad news, ¢ not removed

B-m_ B
e

Art of Multiprocessor Programming

Problem

* To delete node c
— Swing node b’s next field to d

al F>b

* Problem is,
— Someone deleting b concurrently could

direct a pointer a M @_»

toC

_; Art of Multiprocessor Programming 73

e 4
> E |

Insight

e |If a node Is locked
— No one can delete node’s successor

 If a thread locks
— Node to be deleted
— And its predecessor
— Then it works

Art of Multiprocessor Programming

74

Hand-Over-Hand Again

HE g CIE g (I g I g (1N

O,

75

Hand-Over-Hand Again

Hand-Over-Hand Again

O

a3l (el
SERN

a4

Hand-Over-Hand Again

Art of Multiprocessor Programming 78

Hand-Over-Hand Again

Art of Multiprocessor Programming 79

Hand-Over-Hand Again

SEagtih GEagl
Oy .

Art of Multiprocessor Programming 80

Removing a Node

HE g CIE g (I g CIE g (1N

remove(b)
O o . a §; :
of Multiprocessor Programming 8

Art 1

» _,/-E(EE 1

Removing a Node
(3=l]3]

rogramming

Removing a Node
BE O E O EndOE (Il

rogramming

Removing a Node
BE (OE O EdOE (Il

rogramming

Removing a Node

Removing a Node

Removing a Node

Removing a Node

6 6
BB (A5 (O dOE ogCll

remove(b)
O o . a §; :
Art of Multiprocessor Programming 88

Removing a Node

6 6 o6 o
B OB CIE s d (I ol I

89

ust
acquire
Lock for

Removing a Node

6 6 o6 o
B OB CIE s d (I ol I

Cannot ~
acquire O
o A '&

lock for b
o
Art of Multiprocessor Programming 90

Removing a Node

6 6
b c[3>(]]

o, * % ;
D Art of Multiprocessor Programming 9
B8

1

Removing a Node

Proceed
to
remove(b)

Art of Multiprocessor Programming

92

Removing a Node

O, .

Art of Multiprocessor Programming

93

Removing a Node

Art of Multiprocessor Programming

94

Removing a Node

[I-]—*[]ia an
Oy .

Art of Multiprocessor Programming 95

Removing a Node
([3—(al ‘3 an

Art of Multiprocessor Programming 96

Adding Nodes

e To add node e
— Must lock predecessor
— Must lock successor

* Neither can be deleted
— (Is successor lock actually required?)

Art of Multiprocessor Programming 104

43

Drawbacks

» Better than coarse-grained lock
— Threads can traverse Iin parallel

 Still not ideal
— Long chain of acquire/release
— Inefficient

Art of Multiprocessor Programming 105

Optimistic Synchronization

* Find nodes without locking
* Lock nodes
* Check that everything is OK

Art of Multiprocessor Programming 106

Optimistic: Traverse without
Locking

Art of Multiprocessor Programming 107

Optimistic: Lock and Load

Art of Multiprocessor Programming 108

Optimistic: Lock and Load

Art of Multiprocessor Programming 109

What could go wrong?

Art of Multiprocessor Programming 110

What could go wrong?

Art of Multiprocessor Programming 111

What could go wrong?

6 6
(T3 @[3—+(]-

d[3—>(e])

~C

Art of Multiprocessor Programming 112

What could go wrong?

Art of Multiprocessor Programming 113

What could go wrong?

Art of Multiprocessor Programming 114

What could go wrong?

Art of Multiprocessor Programming 115

What could go wrong?

(T3— G0 @F—ED

Uh-oh
Oo”

Art of Multiprocessor Programming 116

Validate — Part 1

Yes, b still
reachable
from head

Art of Multiprocessor Programming 117

What Else Could Go Wrong?

Art of Multiprocessor Programming 118

What Else Coould Go Wrong?

é é
(13— G EH—+aE-+E0]

\VA

What Else Coould Go Wrong?
6

6
) [@EeD
G i

(13— G35

Art of Multiprocessor Programming 120

What Else Could Go Wrong?

Art of Multiprocessor Programming 121

What Else Could Go Wrong?

Art of Multiprocessor Programming 122

Validate Part 2
(while holding locks)

Yes, b still
points to d

Art of Multiprocessor Programming 123

Invariants

« Careful: we may traverse deleted nodes

« But we establish properties by
— Validation
— After we lock target nodes

Art of Multiprocessor Programming 124

Correctness

o |f
— Nodes b and ¢ both locked
— Node b still accessible
— Node c still successorto b

* Then
— Neither will be deleted
— OK to delete and return true

Art of Multiprocessor Programming 125

Unsuccessful Remove

6 o6
I!B CE;aq08

Art of Multiprocessor Programming 126

o
°

i sg %%E

Validate (1)

Yes, b still
reachable
from head

00

Art of Multiprocessor Programming 127

Validate (2)

Art of Multiprocessor Programming 128

OK Computer

129

Correctness

o |f
— Nodes b and d both locked
— Node b still accessible
— Node d still successorto b

 Then
— Neither will be deleted
— No thread can add c after b
— OK to return false

Art of Multiprocessor Programming 130

Optimistic List

* Limited hot-spots
— Targets of add(), remove(), contains()
— NO contention on traversals

* Moreover

— Traversals are wait-free
— Food for thought ...

Art of Multiprocessor Programming 131

43

So Far, So Good

* Much less lock acquisition/release
— Performance
— Concurrency

* Problems
— Need to traverse list twice
— contains() method acquires locks

_; Art of Multiprocessor Programming 132

Evaluation

« Optimistic Is effective If
— cost of scanning twice without locks
IS less than
— cost of scanning once with locks
* Drawback
— contains() acquires locks
— 90% of calls iIn many apps

E Art of Multiprocessor Programming 133
oy
=gt e LA

Lazy List

 Like optimistic, except
— Scan once
— contains (x) never locks ...

» Key Insight
— Removing nodes causes trouble
— Do it “lazily”

_; Art of Multiprocessor Programming 134

Lazy List

e remove()
— Scans list (as before)
— Locks predecessor & current (as before)

* Logical delete
— Marks current node as removed (new!)

* Physical delete
— Redirects predecessor’s next (as before)

Art of Multiprocessor Programming 135

_:’9;;;—;5,

Lazy Removal

T3> 3>Cr 3T 3>d -

Art of Multiprocessor Programming 136

Lazy Removal

Present In list

Art of Multiprocessor Programming 137

Lazy Removal

Logically deleted

Art of Multiprocessor Programming 138

Lazy Removal

Physically deleted

Art of Multiprocessor Programming 139

Lazy Removal

EEEENE N | [@T=

S

Physically deleted

Art of Multiprocessor Programming 140

Lazy List

o All Methods

— Scan through locked and marked nodes

— Removing a node doesn’t slow down other
method calls ...

* Must still lock pred and curr nodes.

Art of Multiprocessor Programming 141

Validation

* No need to rescan list!

* Check that pred is not marked
* Check that curr is not marked
* Check that pred points to curr

Art of Multiprocessor Programming 142

Business as Usual

QIEag(lIEndOIE

Art of Multiprocessor Programming 143

Business as Usual

Art of Multiprocessor Programming 144

Business as Usual

Art of Multiprocessor Programming 145

Business as Usual

(13~ Gll3E13> C

Art of Multiprocessor Programming i 146

Business as Usual

(5~ l5*bly>Cl—

a

Art of Multiprocessor Programming i 147

Business as Usual

(3363~

Art of Multiprocessor Programming 148

Business as Usual

([5Gl bl5>

Art of Multiprocessor Programming i 149

Business as Usual

Art of Multiprocessor Programming i 150

Business as Usual

scginnjilac

Art of Multiprocessor Programming 151

Invariant

 An item is In the set If
— not marked
— reachable from head

—and If not yet traversed it is reachable from
pred

Art of Multiprocessor Programming 152

Validation

private boolean

validate(Node pred, Node curr) {
return

Ipred.marked &&
lcurr.marked &&
pred.next == curr);

}

Art of Multiprocessor Programming 153

List Validate Method

[!pred.marked &&

Predecessor not
Logically removed

Art of Multiprocessor Programming 154

List Validate Method

[!curr.marked &&

Current not
Logically removed

Art of Multiprocessor Programming 155

List Validate Method

[pred.next == curr);

Predecessor still
Points to current

Art of Multiprocessor Programming 156

Contains

[Node curr = this.head;

Start at the head

Art of Multiprocessor Programming 157

Contains

[whi]e (curr.key < key) {l

Search key range

Art of Multiprocessor Programming 158

Contains

| curr = curr.next;

Traverse without locking
(nodes may have been removed)

Art of Multiprocessor Programming 159

Contains

[return curr.key == key && !curr.marked;]

N

Present and undeleted?

Art of Multiprocessor Programming 160

Summary: Wait-free Contains

/‘\/\/\a,&

EREANE S ANE 1 E NS

Use Mark bit + list ordering
1. Not marked - in the set
2. Marked or missing - not in the set

Art of Multiprocessor Programming 161

Lazy List

/‘\/\/\ 4,,*
6 6 6 6 6
(I [>T 3> S~>T I 3->(c[T)

Lazy add() and remove() + Walit-free contains()

Art of Multiprocessor Programming 162

Evaluation

e Good:

— contains() doesn’t lock

— In fact, its wait-free!

— Good because typically high % contains()
— Uncontended calls don'’t re-traverse

 Bad

— Contended add() and remove() calls do re-
traverse

— Traffic jam if one thread delays

Art of Multiprocessor Programming 163

Traffic Jam

« Any concurrent data structure based on
mutual exclusion has a weakness

* |f one thread
— Enters critical section

— And “eats the big muffin”
« Cache miss, page fault, descheduled ...

— Everyone else using that lock is stuck!
— Need to trust the scheduler....

Art of Multiprocessor Programming 164

Reminder: Lock-Free Data

®

Structures

* No matter what ...

— Guarantees minimal progress in any
execution

—I.e. Some thread will always complete a
method call

— Even if others halt at malicious times
— Implies that implementation can’t use locks

Art of Multiprocessor Programming 165

Lock-free Lists

* Next logical step
— Walit-free contains()
— lock-free add() and remove()

* Use only compareAndSet()
— What could go wrong?

Art of Multiprocessor Programming 166

Lock-free Lists

Logical Removal

Use CAS to verify pointer Physical Removal
IS correct

Not enough!

Art of Multiprocessor Programming 167

Problem...

Logical Removal

Node added

Art of Multiprocessor Programming 168

The Solution: Combine Bit and
Pointer

Logical Removal =
Set Mark Bit

Physical
Mark-Bit and Pointer ~ Removal Failed CAS: Node not
CAS added after logical

are CASed as one Removal

(AtomicMarkableReference)

Art of Multiprocessor Programming 169

Solution

 Use AtomicMarkableReference

« Atomically
— Swing reference and
— Update flag

 Remove In two steps
— Set mark bit in next field
— Redirect predecessor’s pointer

Art of Multiprocessor Programming 170

Removing a Node

ac @Z—]—%@t@]
&
%

Art of Multiprocessor Programming 172

_:’9;;;—;5,

Removing a Node

failed

Art of Multiprocessor Programming 173

Removing a Node

(3Gl klB—=E—~El]
.

rogramming

Removing a Node

Art of Multiprocessor Programming 175

Traversing the List

* Q: what do you do when you find a
“logically” deleted node in your path”

 A: finish the job.
— CAS the predecessor’s next field
— Proceed (repeat as needed)

Art of Multiprocessor Programming 176

Lock-Free Traversal
(only Add and Remove)

Art of Multiprocessor Programming 177

Performance

On 16 node shared memory machine
Benchmark throughput of Java List-based Set
algs. Vary % of Contains() method Calls.

Art of Multiprocessor Programming 178

1.2e+07
1e+07
8e+06
6e+06
4e+0
2e+(

High Contains Ratio

Ops/sec (90% reads/0O load)

. | ¥ Lock-free
3 i"\l—~~ g

- Lazy list

| H——k—k\%—%d Coarse Grained

D+
O+
D
-
¢
D
)
o
-

Fine Lock-coupling
15 20 25 30
threads

Art of Multiprocessor Programming 179

Low Contains Ratio

Ops/sec (50% reads/0 load)

W
()
+
-
(0)
X
K
X
X

R ¢ Hock-free

N
3L
®
+
o
»
I
X
XK

| /I/..“";%‘I~~\\~\‘—\\l~—-lj‘/i'.\‘\'/ IQ Lazy list

N
()]
+
o
(o))
I
m X

|
|
*

—
- O
> 2
o 9
> O
[[

3

o

o

o

So

oI
I

- Coarse Grained
< Fine Lock-coupling

O f),,,,C\,l,O,;_;Q;_;@;_‘QW,D\L_Q“,Q,,,/J\,,,,@,,,(E,J,f),,,f),,,,m,,,

~—

5 10 15 20 25 30
threads

Art of Multiprocessor Programming 180

As Contains Ratio Increases

8e+06

7e+06
6e+06 -
5e+06 r
4e+06 -

3e+06
2e+06
1e+06

0

Ops/sec (32 threads/0 load)

I » . T]

,;;;:i;-"ﬁi:;::' e :
e

0O 10 20 30 40 50 60 70 80 90

% Contains()

Art of Multiprocessor Programming

Lock-free
Lazy list

Coarse Grained
Fine Lock-coupling

181

Summary

« Coarse-grained locking

* Fine-grained locking

« Optimistic synchronization
* Lock-free synchronization

Art of Multiprocessor Programming 182

“To Lock or Not to Lock”

* Locking vs. Non-blocking: Extremist views
on both sides

* The answer: nobler to compromise,
combine locking and non-blocking

— Example: Lazy list combines blocking add() and
remove() and a wait-free contains()

— Remember: Blocking/non-blocking is a property
of a method

Art of Multiprocessor Programming 183

SOME RIGHTS RESERVED

This work i1s licensed under a

You are free:
- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:

- Attribution. You must attribute the work to “The Art of
Multiprocessor Programming” (but not in any way that suggests that
the authors endorse you or your use of the work).

- Share Alike. If you alter, transform, or build upon this work, you
may distribute the resulting work only under the same, similar or a
compatible license.

For any reuse or distribution, you must make clear to others the
license terms of this work. The best way to do this is with a link
to

- http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission
from the copyright holder.

No'ﬁ]hing in this license impairs or restricts the author's moral
rights.

_ Art of Multiprocessor Programming 184

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

