Concurrent Queues and Stacks

Companion slides for
The Art of Multiprocessor Programming
by Maurice Herlihy & Nir Shavit

The Five-Fold Path

« Coarse-grained locking

* Fine-grained locking

* Optimistic synchronization
* Lazy synchronization

* Lock-free synchronization

Art of Multiprocessor Programming

Another Fundamental Problem

* We told you about
— Sets implemented by linked lists

* Next: queues
* Next: stacks

Art of Multiprocessor Programming

Queues & Stacks

* pool of items

Art of Multiprocessor Programming

Queues

eng(@)

Total order
First In
First out

Art of Multiprocessor Programming

Stacks

Total order
Last in
First out

Art of Multiprocessor Programming

Bounded

* Fixed capacity
« Good when resources an iIssue

Art of Multiprocessor Programming

Unbounded

« Unlimited capacity
o Often more convenient

Art of Multiprocessor Programming

Blocking

Block on attempt to remove

Q from empty stack or queue

Art of Multiprocessor Programming

Blocking

Block on attempt to add to full
bounded stack or queue

Art of Multiprocessor Programming

10

Non-BIocking

Throw exception on attempt to

Q remove from empty stack or queue

Art of Multiprocessor Programming 11

This Lecture

* Queue

— Bounded, blocking, lock-based

— Unbounded, non-blocking, lock-free
« Stack

— Unbounded, non-blocking lock-free
— Elimination-backoff algorithm

Art of Multiprocessor Programming 12

Queue: Concurrency

eng() and deq()
work at different
ends of the object

Art of Multiprocessor Programming

Concurrency

o E
Challenge: what if
the queue is empty

or full?

Art of Multiprocessor Programming

Bounded Queue

head

tail

Sentinel

Art of Multiprocessor Programming

15

Bounded Queue

head

tail

First actual item

Art of Multiprocessor Programming

16

Bounded Queue

head

tail
deqlLock
EL Lock out other

deq() calls

Art of Multiprocessor Programming 17

Bounded Queue

r

head

deqlLock 6
enqlLock
tL Lock out other

enq() calls

Art of Multiprocessor Programming 18

Not Done Yet

-
s +—@3— BN
tail
deqLock 6
enqlLock 6
Need to tell whether
gueue is full or
empty
_ J

Art of Multiprocessor Programming 19

e
head
tail

deqlLock

enqlLock

size

Not Done Yet

Max size IS 8 items

Art of Multiprocessor Programming

20

e
head
tail

deqlLock

enqlLock

Not Done Yet

Ol +— [N

6
6

Incremented by enq()
Decremented by deq()

Art of Multiprocessor Programming

21

Enqueuer

e
s F—EB— ON
tail
deqlLock 6
engLock Lock enqLock
size 0
. J

Art of Multiprocessor Programming

Enqueuer

r

head
tail

deqlLock

enqlLock

Art of Multiprocessor Programming 23

Enqueuer

e
head

tail

deqlLock
:' /! No needto

lock tall

enqlLock

Art of Multiprocessor Programming 24

Enqueuer

e
head

tail

deqlLock

enqlLock

Engueue Node

Art of Multiprocessor Programming 25

Enqueuer

r

head
tail

deqlLock

enqlLock

getAndincrement()

Art of Multiprocessor Programming 26

e
head
tail

deqlLock

enqlLock

size

Enqueuer

ol +—

6
’[le\ Relea

Art of Multiprocessor Programming

se lock

27

Enqueuer

g5 — OB,

If queue was empty,
otify waiting dequeuers

e
head

tail

deqlLock

enqlLock

size

Art of Multiprocessor Programming 28

Unsuccesful Enqueuer

e
head

tail

deqgLock

enqlLock

size

o= =

Dequeuer

e
head

tail

deqlLock

enqlLock

size

Art of Multiprocessor Programming 30

e
head
tail

deqlLock

enqlLock

size

Dequeuer

ﬁ__

AR

My -

\
v, Read sentinel’s
' next field

\
\“\

Art of Multiprocessor Programming 31

Dequeuer

e
head

tail

deqlLock

enqlLock

size

Art of Multiprocessor Programming 32

Make first Node

new sentinel
Dequeuer
e
head
tail
deqlLock -
enqlLock
size
L J

Art of Multiprocessor Programming 33

Dequeuer

-
g
tail
deqgLock [0‘]
englLock Decrement
size 6 SIZ€
O
)

Art of Multiprocessor Programming 34

e
head
tail

deqgLock

enqlLock

size

Dequeuer

Release
deglLock

Art of Multiprocessor Programming

GER

@

35

Unsuccesful Degueuer

e
head
tail

deqgLock

enqlLock

size

=)
N
!

£
\“\

Art of Multiprocessor Programming

\ .
v, Read sentinel’s

next field

36

Digression: Monitor Locks

* Java synchronized Objects and
ReentrantLocks are monitors

 Allow blocking on a condition rather
than spinning

 Threads:

—acquire and release lock
—wait on a condition

E Art of Multiprocessor Programming 37
a6

The Java Lock Interface

[void lock () ;

Acquire lock

Art of Multiprocessor Programming

38

The Java Lock Interface

[void unlock; s

Release lock

Art of Multiprocessor Programming

39

The Java Lock Interface

|

boolean trylock() ;
boolean trylock(long time, TimeUnit unit);

Try for lock, but not too hard

Art of Multiprocessor Programming

40

The Java Lock Interface

[Condition newCondition() ;

Create condition to wait on

Art of Multiprocessor Programming

41

The Java Lock Interface

[void lockInterruptibly () throws InterruptedException;]

Never mind what this method does

Art of Multiprocessor Programming 42

Lock Conditions

public interface Condition ({
void await () ;
boolean await(long time, TimeUnit unit);

void signal() ;
void signalAll() ;

}

Art of Multiprocessor Programming 43

Lock Conditions

void await() ;
boolean await(long time, TimeUnit unit);

Release lock and
wait on condition

Art of Multiprocessor Programming 44

Lock Conditions

[void signal () ;

Wake up one waiting thread

Art of Multiprocessor Programming

45

Lock Conditions

| void signalall() ;

Wake up all waiting threads

Art of Multiprocessor Programming

46

Awalt

g.await()

* Releases lock associated with g
» Sleeps (gives up processor)

* Awakens (resumes running)

* Reacquires lock & returns

Art of Multiprocessor Programming

47

Signal

qg.signal () ;

« Awakens one waiting thread
— Which will reacquire lock

Art of Multiprocessor Programming

48

Signal Al

q.signalAll () ;

* Awakens all waiting threads
— Which will each reacquire lock

Art of Multiprocessor Programming

_:’9;;;—;5,

49

A Monitor Lock

waiting room

AN A

O

Critical Section

Art of Multiprocessor Programming

50

Unsuccessful Deq

waiting room

[

Critical Section

Art of Multiprocessor Programming

51

Another One

w waiting room

OB

Critical Section

Oh no,
empty!

Art of Multiprocessor Programming 52

Enqueuer to the Rescue

l% waiting ropm

O

Critical Section

Art of Multiprocessor Programming 53

Monitor Signallino

waiting roem

@ Awakened thread
might still lose lock to
outside contender...

Critical Section

Art of Multiprocessor Programming 54

Deqgueuers Signalled

waiting rogm

L

O

(
|
)

Critical Section

Art of Multiprocessor Programming 55

Deqgueuers Signaled

waiting roem

H B]

Critical Section

Art of Multiprocessor Programming 56

Dollar Short + Day Late

Waltlng room

i JE——

Critical Section

Art of Multiprocessor Programming

57

Java Synchronized Methods

public class Queue<T> {

int head = 0, tail = O;
T[QSIZE] items;

public synchronized T deqg() {
while (tail - head == 0)
wait () ;
T result = items[head % QSIZE]; head++;
notifyAll () ;
return result;

}

H}

! Art of Multiprocessor Programming

e o S

58

Java Synchronized Methods

[public class Queue<T>

Each object has an implicit
lock with an implicit condition

Art of Multiprocessor Programming

59

Java Synchronized Methods

Lock on entry,

unlock on return
[synchronized

Art of Multiprocessor Programming

60

Java Synchronized Methods

Wait on implicit
condition

wait () ;

Art of Multiprocessor Programming

61

Java Synchronized Methods

Signal all threads waiting
on condition

[notifyAll () ;

Art of Multiprocessor Programming

62

(Pop!) The Bounded Queue

public class BoundedQueue<T> {
ReentrantLock enqgqlock, deqLock;
Condition notEmptyCondition, notFullCondition;
AtomicInteger size;
Node head;
Node tail;
int capacity;
engLock = new ReentrantLock() ;
notFullCondition = enqlock.newCondition() ;
deqlock = new ReentrantLock() ;
notEmptyCondition = deqLock.newCondition() ;

_ Art of Multiprocessor Programming 63

_:’9;;;—;5,

L

Beware Lost Wake-LIns

waiting room

Queue empty
so signal ()

O

Critical Section

Art of Multiprocessor Programming

64

Critical Section

Lost Wake-Up

waiting room

O
O

Art of Multiprocessor Programming

65

Lost Wake-Up

waiting room

Critical Section

Art of Multiprocessor Programming

66

Lost Wake-Up

waiting room

Critical Section

Art of Multiprocessor Programming

67

What's Wrong Here?

waiting room

H[®]

Critical Section

O

Art of Multiprocessor Programming 68

Solution to Lost Wakeup

* Always use
— signalAll () and notifyAll ()

* Not
—signal () and notify ()

Art of Multiprocessor Programming

69

The eng() & deq () Methods

 Share no locks
— That’'s good
 But do share an atomic counter

— Accessed on every method call
— That’s not so good

« Can we alleviate this bottleneck?

Art of Multiprocessor Programming

70

Split the Counter

* The eng() method
— Increments only
— Cares only If value is capacity

* The deq() method

— Decrements only
— Cares only if value Is zero

Art of Multiprocessor Programming

_:’9;;;—;5,

71

Split Counter

* Enqueuer increments engSize
* Dequeuer decrements deqSize

* When engueuer runs out

— Locks degLock

— computes size = engSize - DeqSize
* Intermittent synchronization

— Not with each method call
— Need both locks! (careful ...)

Art of Multiprocessor Programming 72

A Lock-Free Queue

tail

Sentinel

Art of Multiprocessor Programming

Compare and Set

head

tail

Enqueue

Art of Multiprocessor Programming

75

Enqueue

head

tail

Art of Multiprocessor Programming 76

Logical Enqueue

- 3:-;’.

77

Physical Enqueue

Enqueue

* These two steps are not atomic

 The tal

| field refers to either

— Actual last Node (good)

— Penu
* Be pre

timate Node (not so good)

nared!

Art of Multiprocessor Programming

79

Enqueue

« What do you do if you find
— A trailing tail?
« Stop and help fix it

— If tall node has non-null next field
— CAS the queue’s tail field to tail.next

 As In the universal construction

Art of Multiprocessor Programming

80

When CASs Fall

* During logical enqueue
— Abandon hope, restart
— Still lock-free (why?)

* During physical engueue
— Ignore it (why?)

Art of Multiprocessor Programming

_:’9;;;—;5,

81

Dequeuer

head

tail

'}
/ Read value

Art of Multiprocessor Programming 82

Make first Node
new sentinel
Dequeuer

Art of Multiprocessor Programming 83

Memory Reuse?

 \What do we do with nodes after we
dequeue them?

« Java: let garbage collector deal?

« Suppose there is no GC, or we prefer
not to use It?

Art of Multiprocessor Programming

84

Dequeuer

Art of Multiprocessor Programming 85

Simple Solution

 Each thread has a free list of unused
gueue nodes

 Allocate node: pop from list
* Free node: push onto list
* Deal with underflow somehow ...

Art of Multiprocessor Programming 86

43

Why Recycling Is Hard

Want to
redirect
head from

gray t

Art of Multiprocessor Programming 87

Both Nodes Reclaimed

head tail

Art of Multiprocessor Programming 88

One Node Recycled

Ihead tail I

.lﬂ:MI ‘ —~ @
*
B

%
¥

. —] _— L] —] _— L] —] _— L] — L]

Art of Multiprocessor Programming 89

Why Recycling is Hard

OK, here ..
| go! ‘

Art of Multiprocessor Programming 90

Recycle FAIL

Art of Multiprocessor Programming 91

The Dreaded ABA Problem

Head reference has value A
Thread reads value A

Art of Multiprocessor Programming

92

Dreaded ABA continued

@ Head reference has value B
Node A freed

Art of Multiprocessor Programming

93

Dreaded ABA continued

Head reference has value A again
Node A recycled and reinitialized

Art of Multiprocessor Programming 94

Dreaded ABA continued

CAS succeeds because references match,
even though reference’s meaning has changed

S| — I

Art of Multiprocessor Programming 95

i sg %%E

The Dreaded ABA FAIL

* Is aresult of CAS() semantics
— | blame Sun, Intel, AMD, ...

 Not with Load-Locked/Store-Conditional
— Good for IBM?

Art of Multiprocessor Programming 96

Dreaded ABA — A Solution

« Tag each pointer with a counter
* Unigue over lifetime of node
* Pointer size vs word size issues

e Overflow?

— Don’t worry be happy?
— Bounded tags?

« AtomicStampedReference class

Art of Multiprocessor Programming 97

43

Atomic Stamped Reference

« AtomicStampedReference class
— Java.util.concurrent.atomic package

| Can get reference & stam

0 atomically ‘

f

.
‘L address]
_

Reference —=——

s

Stamp

Art of Multiprocessor Programming 98

Concurrent Stack

 Methods

— push(x)

—pop()
 Last-In, First-out (LIFO) order
* Lock-Free!

Art of Multiprocessor Programming

99

Empty Stack

36N

Art of Multiprocessor Programming 100

Push

Art of Multiprocessor Programming 101

Art of Multiprocessor Programming 102

Push

Art of Multiprocessor Programming 103

Push

Top

Art of Multiprocessor Programming 104

Push

Top

Art of Multiprocessor Programming 105

Push

Art of Multiprocessor Programming 106

Push

Art of Multiprocessor Programming 107

Pop

- @3- E3-6N

Art of Multiprocessor Programming 108

Art of Multiprocessor Programming 109

Art of Multiprocessor Programming 110

Pop

Art of Multiprocessor Programming 111

Pop

Top

Art of Multiprocessor Programming 112

Lock-free Stack

» Good
— No locking

* Bad
— Without GC, fear ABA
— Without backoff, huge contention at top
— In any case, no parallelism

Art of Multiprocessor Programming 113

Big Question

* Are stacks inherently sequential?

 Reasons why
— Every pop() call fights for top item

* Reasons why not
— Stay tuned ...

Art of Multiprocessor Programming 114

Elimination-Backoff Stack

e How to
— “turn contention into parallelism”

* Replace familiar
— exponential backoff

e With alternative
— elimination-backoff

E Art of Multiprocessor Programming 115
AT,

Observation

linearizable stack

Push(@©)

Pop()

After an equal number
of pushes and pops,

stack stays the same

Art of Multiprocessor Programming 116

ldea: Elimination Array

Push(©) stack
Pop()

Elimination
Array

Art of Multiprocessor Programming 117

Push Collides With Pop

g

Push@©) stack
Pop()

No need to
‘ access stack

Art of Multiprocessor Programming 118

No Collision

Push(© stack

n

Pop()

If pushes collide or
pops collide
access stack

Art of Multiprocessor Programming 119

Elimination-Backoff Stack

* Lock-free stack + elimination array

* Access Lock-free stack,
— If uncontended, apply operation

— If contended, back off to elimination array
and attempt elimination

Art of Multiprocessor Programming 120

Elimination-Backoff Stack

ol

Push©

Art of Multiprocessor Programming 121

Pop()

s

Dynamic Range and Delay

Pick random range and
max waiting time based
on level of contention
encountered

g

Push©®

Art of Multiprocessor Programming 122

Linearizability

« Un-eliminated calls
— linearized as before

« Eliminated calls:

— linearize pop() immediately after matching
push()
e Combination is a linearizable stack

_ Art of Multiprocessor Programming 123

Un-Eliminated LI

Art of Multiprocessor Programming 124

Eliminated Line

Collision
Point

lmll

Red calls are
> eliminated

Art of Multiprocessor Programming 125

Backoff Has Dual Effect

* Elimination introduces parallelism

« Backoff to array cuts contention on lock-
free stack

* Elimination In array cuts down number
of threads accessing lock-free stack

Art of Multiprocessor Programming 126

Elimination Array

public class EliminationArray {
private static final int duration 5o o
private static final int timeUnit oo b
Exchanger<T>[] exchanger;
public EliminationArray(int capacity) {
exchanger = new Exchanger[capacity];
for (int i = 0; i < capacity; i++)
exchanger[i] = new Exchanger<T>() ;

Art of Multiprocessor Programming 127

Elimination Array

(exchanger = new Exchanger[capacity];)
for (int i = 0; i < capacity; i++)
L exchanger[i] = new Exchanger<T>() ;)

——”””’7

An array of Exchangers ‘

Art of Multiprocessor Programming

128

Digression: A Lock-Free
Exchanger

public class Exchanger<T> ({
AtomicStampedReference<T> slot
= new AtomicStampedReference<T>(null, O0);

Art of Multiprocessor Programming 129

A Lock-Free Exchanger

[AtomicStampedReference<T> slot]

T

Atomically modifiable
reference + status

Art of Multiprocessor Programming 130

Atomic Stamped Reference

+ AtomicStampedReference class
— Java.util.concurrent.atomic package

e In C or C++:

‘ reference ‘<

address] [S

f(_IL\

| stamp

Art of Multiprocessor Programming 131

Extracting Reference & Stamp

public T get(int[] stampHolder);

Art of Multiprocessor Programming 132

Extracting Reference & Stamp

@ EstampHolder

Returns reference to
object of type T

Returns stamp at
array index 0!

Art of Multiprocessor Programming 133

Exchanger Status

enum Status {EMPTY, WAITING, BUSY};

Art of Multiprocessor Programming 134

Exchanger Status

EMPTY

Nothing yet

Art of Multiprocessor Programming 135

Exchange Status

EMPTY | (WAITING|

Nothing yet

One thread Is waiting
for rendez-vous

Art of Multiprocessor Programming 136

Exchange Status

EMPTY | [WAITING) (BUSY})

Nothing yet

One thread Is waiting V
for rendez-vous

Other threads busy
with rendez-vous

Art of Multiprocessor Programming

137

The Exchange

public T Exchange (T myItem, long nanos)
throws TimeoutException ({
long timeBound = System.nanoTime () + nanos;
int[] stampHolder = {EMPTY} ;
while (true) {
if (System.nanoTime () > timeBound)
throw new TimeoutException() ;
T herItem = slot.get (stampHolder) ;
int stamp = stampHolder([O0O];
switch (stamp) {

case EMPTY: .. // slot is free
case WAITING: .. // someone waiting for me
case BUSY: .. // others exchanging

Art of Multiprocessor Programming 138

The Exchange

public T Exchange (T myItem, long nanos)
throws TimeoutException {

I/

‘ Item and timeout ‘

Art of Multiprocessor Programming 139

The Exchange

[int[] stampHolder = {EMPTY} ; l

B

‘Array holds status ‘

Art of Multiprocessor Programming 140

The Exchange

while (true) {
if (System.nanoTime () > timeBound)
throw new TimeoutException() ;

Loop until timeout

Art of Multiprocessor Programming 141

The Exchange

[T herItem

slot.get (stampHolder) ;
int stamp

stampHolder[0] ;

N

‘Get other’s item and status ‘

Art of Multiprocessor Programming 142

The Exchange

‘An Exchanger has three possible states

PV | | I - Jg ™ 999

(;witch(stamp) { A
case EMPTY: .. // slot is free
case WAITING: .. // someone waiting for me
case BUSY: .. // others exchanging

_! J

Art of Multiprocessor Programming 143

Lock-free Exchanger

Art of Multiprocessor Programming 144

Lock-free Exchanger

Art of Multiprocessor Programming 145

Lock-free Exchanger

a1

Art of Multiprocessor Programming 146

Lock-free Exchanger

In search of
partner ...

Art of Multiprocessor Programming 147

Try to exchange
item and set
status to BUSY

L ock-free E

Art of Multiprocessor Programming 148

ce Exchanger

Partner showed
up, take item and
reset to EMPTY

item status

Art of Multiprocessor Programming 149

Partner showed
up, take item and
reset to EMPTY

item status

Art of Multiprocessor Programming 150

Exchanger State EMPTY

case EMPTY: // slot is free
if (slot.CAS (herItem, myItem, EMPTY, WAITING)) {
while (System.nanoTime () < timeBound) {
herItem = slot.get (stampHolder) ;
if (stampHolder[0] == BUSY) {
slot.set (null, EMPTY) ;
return herlItem;
}}
if (slot.CAS(myItem, null, WAITING, EMPTY)) {
throw new TimeoutException() ;
} else {
herItem = slot.get (stampHolder) ;
slot.set (null, EMPTY) ;
return herItem;

}
} break;

]
=

Art of Multiprocessor Programming 151

Exchanger State EMPTY

[(slot.CAS (herItem, myItem, EMPTY, WAITING)) {]

B

Try to insert myltem and
change state to WAITING

Art of Multiprocessor Programming 152

Exchanger State EMPTY

herItem = slot.get (stampHolder) ;

while (System.nanoTime () < timeBound) {
if (stampHolder[0] == BUSY) {

Spin until either
myltem is taken or timeout

Art of Multiprocessor Programming 153

Exchanger State EMPTY

slot.set (null, EMPTY) ;
return herItem;

myltem was taken,
SO return herltem
that was put in its place

Art of Multiprocessor Programming 154

Exchanger State EMPTY

Otherwise we ran out of time,
try to reset status to EMPTY
and time out

R

if (slot.CAS(myItem, null, WAITING, EMPTY)) {
throw new TimeoutException() ;

Art of Multiprocessor Programming 155

Exchanger State EMPTY

If reset failed,
someone showed up after all,
so take that item

else {
herItem = slot.get (stampHolder)

riuyiaiiniimiyy riciiy-oliavit
2Y%00N7

Exchanger State EMPTY

Clear slot and take that item

slot.set (null, EMPTY) ;
return herlItem;

Art of Multiprocessor Programming 157

Exchanger State EMPTY

If initial CAS falled,
then someone else changed status
from EMPTY to WAITING,
So retry from start

Art of Multiprocessor Programming 158

States WAITING and BUSY

case WAITING: // someone waiting for me
if (slot.CAS (herItem, myItem, WAITING, BUSY))
return herItem;

break;

case BUSY: // others in middle of exchanging
break;

default: // impossible
break;

}

Art of Multiprocessor Programming 159

States WAITING and BUSY

return herItem;

T

someone Is waiting to exchange,
so try to CAS my item in
and change state to BUSY

[%f (slot.CAS (herItem, myItem, WAITING, BUSY))]

Art of Multiprocessor Programming 160

States WAITING and BUSY

[return herItem; l

If successful, return other’s item,
otherwise someone else took It,
So try again from start

Art of Multiprocessor Programming 161

States WAITING and BUSY

case BUSY:
[break; &
If BUSY,

other threads exchanging,
so start again

Art of Multiprocessor Programming 162

The Exchanger Slot

« Exchanger is lock-free

* Because the only way an exchange can
fail Is If others repeatedly succeeded or
no-one showed up

* The slot we need does not require
symmetric exchange

Art of Multiprocessor Programming 163

Back to the Stack: the
Elimination Array

public class EliminationArray {

public T visit(T value, int range)
throws TimeoutException ({
int slot = random.nextInt (range) ;
int nanodur = convertToNanos (duration, timeUnit)) ;
return (exchanger|[slot] .exchange (value, nanodur)

)

Art of Multiprocessor Programming 164

Elimination Array

[public T visit (T value, int range)]

b

visit the elimination array
with fixed value and range

Art of Multiprocessor Programming 165

Elimination Array

[int slot = random.nextInt(range);l

AN

‘ Pick a random array entry

Art of Multiprocessor Programming 166

Elimination Array

‘ Exchange value or time out‘

]

[return (exchanger|[slot] .exchange (value, nanodur)]

Art of Multiprocessor Programming 167

Elimination Stack Push

public void push (T value) {

while (true) {
if (tryPush(node)) {
return;
} else try {
T otherValue =
eliminationArray.visit(value,policy.range) ;
if (otherValue == null) {
return;

Art of Multiprocessor Programming 168

Elimination Stack Push

if (tryPush(node)) {
return;

First, try to push

Art of Multiprocessor Programming 169

Elimination Stack Push

‘ If | failed, backoff & try to eliminate ‘

ST

e

.

} else try {

T otherValue =
eliminationArray.visit(value,policy.range);

Art of Multiprocessor Programming 170

Elimination Stack Push

‘Value pushed and range to try‘

(value,policy.range);]

Art of Multiprocessor Programming 171

Elimination Stack Push

Only pop() leaves null,
so elimination was successful

if (otherValue == null) {
return;

Art of Multiprocessor Programming 172

Elimination Stack Push

‘ Otherwise, retry push() on lock-free stack‘

Art of Multiprocessor Programming 173

Elimination Stack Pop

public T pop() {

while (true) {

if (tryPop()) {

return returnNode.value;

} else

try {
T otherValue =
eliminationArray.visit(null,policy.range;
if (otherValue !'= null) {
return otherValue;

}

Art of Multiprocessor Programming 174

Elimination Stack Pop

If value not null, other thread is a push(),
so elimination succeeded

if (otherValue '= null) {
return otherValue;

Art of Multiprocessor Programming

175

Summary

 \We saw both lock-based and lock-free
Implementations of

* gueues and stacks

* Don't be quick to declare a data
structure inherently sequential

— Linearizable stack is not inherently
sequential (though it is in worst case)

 ABA Is a real problem, pay attention

Art of Multiprocessor Programming 176

SOME RIGHTS RESERVED

This work i1s licensed under a

You are free:
- to Share — to copy, distribute and transmit the work

- to Remix — to adapt the work
Under the following conditions:

- Attribution. You must attribute the work to “The Art of
Multiprocessor Programming” (but not in any way that
sugﬂests that the authors endorse you or your use of the
work).

- Share Alike. If you alter, transform, or build upon this work,
you may distribute the resulting work only under the same,
similar or a compatible license.

For any reuse or distribution, you must make clear to others the

license terms of this work. The best way to do this is with a link

{o

- http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission
from the copyright holder.

Noﬁhing in this license impairs or restricts the author's moral
rights.

- Art of Multiprocessor Programming 177

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Art of Multiprocessor Programming 178

