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The Five-Fold Path

« Coarse-grained locking

* Fine-grained locking

* Optimistic synchronization
* Lazy synchronization

* Lock-free synchronization
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Another Fundamental Problem

* We told you about
— Sets implemented by linked lists

* Next: queues
* Next: stacks
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Queues & Stacks

* pool of items
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Queues

eng( @)

Total order
First In
First out
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Stacks

Total order
Last in
First out
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Bounded

* Fixed capacity
« Good when resources an iIssue
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Unbounded

« Unlimited capacity
o Often more convenient
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Blocking

Block on attempt to remove

Q from empty stack or queue
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Blocking

Block on attempt to add to full
bounded stack or queue
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Non-BIocking

Throw exception on attempt to

Q remove from empty stack or queue
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This Lecture

* Queue

— Bounded, blocking, lock-based

— Unbounded, non-blocking, lock-free
« Stack

— Unbounded, non-blocking lock-free
— Elimination-backoff algorithm
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Queue: Concurrency

eng() and deq()
work at different
ends of the object
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Concurrency

o E
Challenge: what if
the queue is empty

or full?
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Bounded Queue

head

tail

Sentinel
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Bounded Queue

head

tail

First actual item
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Bounded Queue

head

tail
deqlLock
EL Lock out other

deq() calls
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Bounded Queue

r

head

deqlLock 6
enqlLock
tL Lock out other

enq() calls
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Not Done Yet

-
s +—@3— BN
tail
deqLock 6
enqlLock 6
Need to tell whether
gueue is full or
empty
\_ J
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e
head
tail

deqlLock

enqlLock

size

Not Done Yet

Max size IS 8 items
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e
head
tail

deqlLock

enqlLock

Not Done Yet

Ol +— [N

6
6

Incremented by enq()
Decremented by deq()
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Enqueuer

e
s F—EB— ON
tail
deqlLock 6
engLock Lock enqLock
size 0
. J
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Enqueuer

r

head
tail

deqlLock

enqlLock
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Enqueuer

e
head

tail

deqlLock
:' /!  No needto

lock tall

enqlLock

Art of Multiprocessor Programming 24




Enqueuer

e
head

tail

deqlLock

enqlLock

Engueue Node
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Enqueuer

r

head
tail

deqlLock

enqlLock

getAndincrement()
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e
head
tail

deqlLock

enqlLock

size

Enqueuer

ol +—

6
’[le\ Relea
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Enqueuer

g5 — OB,

If queue was empty,
otify waiting dequeuers

e
head

tail

deqlLock

enqlLock

size
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Unsuccesful Enqueuer

e
head

tail

deqgLock

enqlLock

size

o= =




Dequeuer

e
head

tail

deqlLock

enqlLock

size
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e
head
tail

deqlLock

enqlLock

size

Dequeuer

ﬁ__

AR

My -

\
v, Read sentinel’s
' next field

\
\“\
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Dequeuer

e
head

tail

deqlLock

enqlLock

size
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Make first Node

new sentinel
Dequeuer
e
head
tail
deqlLock -
enqlLock
size
L J
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Dequeuer

-
g
tail
deqgLock [0‘ ]
englLock Decrement
size 6 SIZ€
O
)
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e
head
tail

deqgLock

enqlLock

size

Dequeuer

Release
deglLock
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Unsuccesful Degueuer

e
head
tail

deqgLock

enqlLock

size

= )
N
!

£
\“\
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Digression: Monitor Locks

* Java synchronized Objects and
ReentrantLocks are monitors

 Allow blocking on a condition rather
than spinning

 Threads:

—acquire and release lock
—wait on a condition
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The Java Lock Interface

[void lock () ;

Acquire lock
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The Java Lock Interface

[void unlock; s

Release lock
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The Java Lock Interface

|

boolean trylock() ;
boolean trylock(long time, TimeUnit unit);

Try for lock, but not too hard
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The Java Lock Interface

[Condition newCondition() ;

Create condition to wait on
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The Java Lock Interface

[void lockInterruptibly () throws InterruptedException;]

Never mind what this method does
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Lock Conditions

public interface Condition ({
void await () ;
boolean await(long time, TimeUnit unit);

void signal() ;
void signalAll() ;

}
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Lock Conditions

void await() ;
boolean await(long time, TimeUnit unit);

Release lock and
wait on condition
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Lock Conditions

[void signal () ;

Wake up one waiting thread
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Lock Conditions

| void signalall() ;

Wake up all waiting threads
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Awalt

g.await()

* Releases lock associated with g
» Sleeps (gives up processor)

* Awakens (resumes running)

* Reacquires lock & returns
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Signal

qg.signal () ;

« Awakens one waiting thread
— Which will reacquire lock
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Signal Al

q.signalAll () ;

* Awakens all waiting threads
— Which will each reacquire lock
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A Monitor Lock

waiting room

AN A

O

Critical Section
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Unsuccessful Deq

waiting room

[

Critical Section
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Another One

w waiting room

OB

Critical Section

Oh no,
empty!
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Enqueuer to the Rescue

l% waiting ropm

O

Critical Section
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Monitor Signallino

waiting roem

@ Awakened thread
might still lose lock to
outside contender...

Critical Section
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Deqgueuers Signalled

waiting rogm

L

O

(
|
)

Critical Section
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Deqgueuers Signaled

waiting roem

H B ]

Critical Section
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Dollar Short + Day Late

Waltlng room

i JE——

Critical Section
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Java Synchronized Methods

public class Queue<T> {

int head = 0, tail = O;
T[QSIZE] items;

public synchronized T deqg() {
while (tail - head == 0)
wait () ;
T result = items[head % QSIZE]; head++;
notifyAll () ;
return result;

}

H}
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Java Synchronized Methods

[public class Queue<T>

Each object has an implicit
lock with an implicit condition
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Java Synchronized Methods

Lock on entry,

unlock on return
[synchronized
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Java Synchronized Methods

Wait on implicit
condition

wait () ;
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Java Synchronized Methods

Signal all threads waiting
on condition

[ notifyAll () ;
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(Pop!) The Bounded Queue

public class BoundedQueue<T> {
ReentrantLock enqgqlock, deqLock;
Condition notEmptyCondition, notFullCondition;
AtomicInteger size;
Node head;
Node tail;
int capacity;
engLock = new ReentrantLock() ;
notFullCondition = enqlock.newCondition() ;
deqlock = new ReentrantLock() ;
notEmptyCondition = deqLock.newCondition() ;
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Beware Lost Wake-LIns

waiting room

Queue empty
so signal ()

O

Critical Section
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Critical Section

Lost Wake-Up

waiting room

O
O
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Lost Wake-Up

waiting room

Critical Section
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Lost Wake-Up

waiting room

Critical Section
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What's Wrong Here?

waiting room

H[® ]

Critical Section

O
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Solution to Lost Wakeup

* Always use
— signalAll () and notifyAll ()

* Not
—signal () and notify ()

Art of Multiprocessor Programming
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The eng() & deq () Methods

 Share no locks
— That’'s good
 But do share an atomic counter

— Accessed on every method call
— That’s not so good

« Can we alleviate this bottleneck?

Art of Multiprocessor Programming
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Split the Counter

* The eng() method
— Increments only
— Cares only If value is capacity

* The deq() method

— Decrements only
— Cares only if value Is zero

Art of Multiprocessor Programming
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Split Counter

* Enqueuer increments engSize
* Dequeuer decrements deqSize

* When engueuer runs out

— Locks degLock

— computes size = engSize - DeqSize
* Intermittent synchronization

— Not with each method call
— Need both locks! (careful ...)
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A Lock-Free Queue

tail

Sentinel
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Compare and Set




head

tail

Enqueue
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Enqueue

head

tail
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Logical Enqueue

- 3:-;’.
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Physical Enqueue




Enqueue

* These two steps are not atomic

 The tal

| field refers to either

— Actual last Node (good)

— Penu
* Be pre

timate Node (not so good)

nared!

Art of Multiprocessor Programming
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Enqueue

« What do you do if you find
— A trailing tail?
« Stop and help fix it

— If tall node has non-null next field
— CAS the queue’s tail field to tail.next

 As In the universal construction

Art of Multiprocessor Programming
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When CASs Fall

* During logical enqueue
— Abandon hope, restart
— Still lock-free (why?)

* During physical engueue
— Ignore it (why?)

Art of Multiprocessor Programming
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Dequeuer

head

tail

'}
/ Read value
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Make first Node
new sentinel
Dequeuer
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Memory Reuse?

 \What do we do with nodes after we
dequeue them?

« Java: let garbage collector deal?

« Suppose there is no GC, or we prefer
not to use It?

Art of Multiprocessor Programming
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Dequeuer
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Simple Solution

 Each thread has a free list of unused
gueue nodes

 Allocate node: pop from list
* Free node: push onto list
* Deal with underflow somehow ...

Art of Multiprocessor Programming 86

43



Why Recycling Is Hard

Want to
redirect
head from

gray t
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Both Nodes Reclaimed

head tail
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One Node Recycled

Ihead tail I

.lﬂ:MI ‘ —~ @
*
B

%
¥

. — ] _— L] — ] _— L] — ] _— L] — L]
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Why Recycling is Hard

OK, here ..
| go! ‘
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Recycle FAIL
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The Dreaded ABA Problem

Head reference has value A
Thread reads value A
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Dreaded ABA continued

@ Head reference has value B
Node A freed
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Dreaded ABA continued

Head reference has value A again
Node A recycled and reinitialized
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Dreaded ABA continued

CAS succeeds because references match,
even though reference’s meaning has changed

S| — I
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The Dreaded ABA FAIL

* Is aresult of CAS() semantics
— | blame Sun, Intel, AMD, ...

 Not with Load-Locked/Store-Conditional
— Good for IBM?
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Dreaded ABA — A Solution

« Tag each pointer with a counter
* Unigue over lifetime of node
* Pointer size vs word size issues

e Overflow?

— Don’t worry be happy?
— Bounded tags?

« AtomicStampedReference class

Art of Multiprocessor Programming 97

43



Atomic Stamped Reference

« AtomicStampedReference class
— Java.util.concurrent.atomic package

| Can get reference & stam

0 atomically ‘

f

.
‘L address ]
\_

Reference —=——

s

Stamp
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Concurrent Stack

 Methods

— push(x)

—pop()
 Last-In, First-out (LIFO) order
* Lock-Free!

Art of Multiprocessor Programming

99



Empty Stack

36N
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Push
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Push
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Push

Top
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Push

Top
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Push
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Push
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Pop

- @3- E3-6N
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Pop
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Pop

Top
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Lock-free Stack

» Good
— No locking

* Bad
— Without GC, fear ABA
— Without backoff, huge contention at top
— In any case, no parallelism
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Big Question

* Are stacks inherently sequential?

 Reasons why
— Every pop() call fights for top item

* Reasons why not
— Stay tuned ...
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Elimination-Backoff Stack

e How to
— “turn contention into parallelism”

* Replace familiar
— exponential backoff

e With alternative
— elimination-backoff

E Art of Multiprocessor Programming 115
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Observation

linearizable stack

Push(@©)

Pop()

After an equal number
of pushes and pops,

stack stays the same
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ldea: Elimination Array

Push(©) stack
Pop()

Elimination
Array
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Push Collides With Pop

g

Push@©) stack
Pop()

No need to
‘ access stack
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No Collision

Push(© stack

n

Pop()

If pushes collide or
pops collide
access stack
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Elimination-Backoff Stack

* Lock-free stack + elimination array

* Access Lock-free stack,
— If uncontended, apply operation

— If contended, back off to elimination array
and attempt elimination
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Elimination-Backoff Stack

ol

Push©
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Dynamic Range and Delay

Pick random range and
max waiting time based
on level of contention
encountered

g

Push©®
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Linearizability

« Un-eliminated calls
— linearized as before

« Eliminated calls:

— linearize pop() immediately after matching
push()
e Combination is a linearizable stack
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Un-Eliminated LI
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Eliminated Line

Collision
Point

lmll

Red calls are
> eliminated
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Backoff Has Dual Effect

* Elimination introduces parallelism

« Backoff to array cuts contention on lock-
free stack

* Elimination In array cuts down number
of threads accessing lock-free stack
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Elimination Array

public class EliminationArray {
private static final int duration 5o o
private static final int timeUnit oo b
Exchanger<T>[] exchanger;
public EliminationArray(int capacity) {
exchanger = new Exchanger[capacity];
for (int i = 0; i < capacity; i++)
exchanger[i] = new Exchanger<T>() ;
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Elimination Array

(exchanger = new Exchanger[capacity]; )
for (int i = 0; i < capacity; i++)
L exchanger[i] = new Exchanger<T>() ; )

——”””’7

An array of Exchangers ‘

Art of Multiprocessor Programming
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Digression: A Lock-Free
Exchanger

public class Exchanger<T> ({
AtomicStampedReference<T> slot
= new AtomicStampedReference<T>(null, O0);
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A Lock-Free Exchanger

[AtomicStampedReference<T> slot ]

T

Atomically modifiable
reference + status
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Atomic Stamped Reference

+ AtomicStampedReference class
— Java.util.concurrent.atomic package

e In C or C++:

‘ reference ‘<

address] [ S

f(_IL\

| stamp
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Extracting Reference & Stamp

public T get(int[] stampHolder);
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Extracting Reference & Stamp

@ EstampHolder

Returns reference to
object of type T

Returns stamp at
array index 0!
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Exchanger Status

enum Status {EMPTY, WAITING, BUSY};
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Exchanger Status

EMPTY

Nothing yet
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Exchange Status

EMPTY | (WAITING|

Nothing yet

One thread Is waiting
for rendez-vous
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Exchange Status

EMPTY | [WAITING) (BUSY})

Nothing yet

One thread Is waiting V
for rendez-vous

Other threads busy
with rendez-vous

Art of Multiprocessor Programming
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The Exchange

public T Exchange (T myItem, long nanos)
throws TimeoutException ({
long timeBound = System.nanoTime () + nanos;
int[] stampHolder = {EMPTY} ;
while (true) {
if (System.nanoTime () > timeBound)
throw new TimeoutException() ;
T herItem = slot.get (stampHolder) ;
int stamp = stampHolder([O0O];
switch (stamp) {

case EMPTY: .. // slot is free
case WAITING: .. // someone waiting for me
case BUSY: .. // others exchanging
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The Exchange

public T Exchange (T myItem, long nanos)
throws TimeoutException {

I/

‘ Item and timeout ‘
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The Exchange

[int[] stampHolder = {EMPTY} ; l

B

‘Array holds status ‘
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The Exchange

while (true) {
if (System.nanoTime () > timeBound)
throw new TimeoutException() ;

Loop until timeout
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The Exchange

[ T herItem

slot.get (stampHolder) ;
int stamp

stampHolder[0] ;

N

‘Get other’s item and status ‘
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The Exchange

‘An Exchanger has three possible states

PV | | I - Jg ™ 999

(;witch(stamp) { A
case EMPTY: .. // slot is free
case WAITING: .. // someone waiting for me
case BUSY: .. // others exchanging

\_! J
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Lock-free Exchanger
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Lock-free Exchanger
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Lock-free Exchanger

a1
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Lock-free Exchanger

In search of
partner ...
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Try to exchange
item and set
status to BUSY

L ock-free E
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ce Exchanger

Partner showed
up, take item and
reset to EMPTY

item status
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Partner showed
up, take item and
reset to EMPTY

item status
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Exchanger State EMPTY

case EMPTY: // slot is free
if (slot.CAS (herItem, myItem, EMPTY, WAITING)) {
while (System.nanoTime () < timeBound) {
herItem = slot.get (stampHolder) ;
if (stampHolder[0] == BUSY) {
slot.set (null, EMPTY) ;
return herlItem;
}}
if (slot.CAS(myItem, null, WAITING, EMPTY)) {
throw new TimeoutException() ;
} else {
herItem = slot.get (stampHolder) ;
slot.set (null, EMPTY) ;
return herItem;

}
} break;

]
=
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Exchanger State EMPTY

[(slot.CAS (herItem, myItem, EMPTY, WAITING)) {]

B

Try to insert myltem and
change state to WAITING
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Exchanger State EMPTY

herItem = slot.get (stampHolder) ;

while (System.nanoTime () < timeBound) {
if (stampHolder[0] == BUSY) {

Spin until either
myltem is taken or timeout
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Exchanger State EMPTY

slot.set (null, EMPTY) ;
return herItem;

myltem was taken,
SO return herltem
that was put in its place
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Exchanger State EMPTY

Otherwise we ran out of time,
try to reset status to EMPTY
and time out

R

if (slot.CAS(myItem, null, WAITING, EMPTY)) {
throw new TimeoutException() ;
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Exchanger State EMPTY

If reset failed,
someone showed up after all,
so take that item

else {
herItem = slot.get (stampHolder)

riuyiaiiniimiyy riciiy-oliavit
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Exchanger State EMPTY

Clear slot and take that item

slot.set (null, EMPTY) ;
return herlItem;
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Exchanger State EMPTY

If initial CAS falled,
then someone else changed status
from EMPTY to WAITING,
So retry from start
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States WAITING and BUSY

case WAITING: // someone waiting for me
if (slot.CAS (herItem, myItem, WAITING, BUSY))
return herItem;

break;

case BUSY: // others in middle of exchanging
break;

default: // impossible
break;

}
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States WAITING and BUSY

return herItem;

T

someone Is waiting to exchange,
so try to CAS my item in
and change state to BUSY

[%f (slot.CAS (herItem, myItem, WAITING, BUSY))]
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States WAITING and BUSY

[return herItem; l

If successful, return other’s item,
otherwise someone else took It,
So try again from start
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States WAITING and BUSY

case BUSY:
[ break; &
If BUSY,

other threads exchanging,
so start again
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The Exchanger Slot

« Exchanger is lock-free

* Because the only way an exchange can
fail Is If others repeatedly succeeded or
no-one showed up

* The slot we need does not require
symmetric exchange
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Back to the Stack: the
Elimination Array

public class EliminationArray {

public T visit(T value, int range)
throws TimeoutException ({
int slot = random.nextInt (range) ;
int nanodur = convertToNanos (duration, timeUnit)) ;
return (exchanger|[slot] .exchange (value, nanodur)

)
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Elimination Array

[public T visit (T value, int range) ]

b

visit the elimination array
with fixed value and range
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Elimination Array

[int slot = random.nextInt(range);l

AN

‘ Pick a random array entry
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Elimination Array

‘ Exchange value or time out‘

]

[ return (exchanger|[slot] .exchange (value, nanodur) ]
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Elimination Stack Push

public void push (T value) {

while (true) {
if (tryPush(node)) {
return;
} else try {
T otherValue =
eliminationArray.visit(value,policy.range) ;
if (otherValue == null) {
return;
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Elimination Stack Push

if (tryPush(node)) {
return;

First, try to push
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Elimination Stack Push

‘ If | failed, backoff & try to eliminate ‘

ST

e

.

} else try {

T otherValue =
eliminationArray.visit(value,policy.range);
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Elimination Stack Push

‘Value pushed and range to try‘

(value,policy.range);]
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Elimination Stack Push

Only pop() leaves null,
so elimination was successful

if (otherValue == null) {
return;
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Elimination Stack Push

‘ Otherwise, retry push() on lock-free stack‘
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Elimination Stack Pop

public T pop() {

while (true) {

if (tryPop()) {

return returnNode.value;

} else

try {
T otherValue =
eliminationArray.visit(null,policy.range;
if (otherValue !'= null) {
return otherValue;

}
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Elimination Stack Pop

If value not null, other thread is a push(),
so elimination succeeded

if ( otherValue '= null) {
return otherValue;

Art of Multiprocessor Programming
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Summary

 \We saw both lock-based and lock-free
Implementations of

* gueues and stacks

* Don't be quick to declare a data
structure inherently sequential

— Linearizable stack is not inherently
sequential (though it is in worst case)

 ABA Is a real problem, pay attention
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SOME RIGHTS RESERVED

This work i1s licensed under a

You are free:
- to Share — to copy, distribute and transmit the work

- to Remix — to adapt the work
Under the following conditions:

- Attribution. You must attribute the work to “The Art of
Multiprocessor Programming” (but not in any way that
sugﬂests that the authors endorse you or your use of the
work).

- Share Alike. If you alter, transform, or build upon this work,
you may distribute the resulting work only under the same,
similar or a compatible license.

For any reuse or distribution, you must make clear to others the

license terms of this work. The best way to do this is with a link

{o

- http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission
from the copyright holder.

Noﬁhing in this license impairs or restricts the author's moral
rights.
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