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Engineering distributed software? 

  Structure  
 Programming-in-the-small Vs Programming-in-
the-large 
  deRemer and Kron, TSE 1975 

  Composition 
 “Having divided to conquer, we must reunite 
to rule” 
  Jackson, CompEuro 1990 



3 

How? our approach is …. Model Based Design 

integrate modelling into the software lifecycle: 
 Software Architectures  
 of components,  
 translatable to models  

Relatively easy to learn and use: 
 State Machines  
 in form of LTS  
 (Labelled Transition Systems) 

Lightweight Tool support: 
 Model Checking in form of CRA 
 (Compositional Reachability Analysis)  
 with animation 

DRINKS

red

blue

tea

coffee

0 1 2
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Background: Book 

Concurrency: 
State Models & 
Java Programs 

Jeff Magee & 
Jeff Kramer 

WILEY 

2006 (2nd edition) 
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Background: Web based course material 

  Java examples and demonstration programs 
  State models for the examples 
  Labelled Transition System Analyser (LTSA) for 

modelling concurrency, model animation and model 
property checking. 

http://www.doc.ic.ac.uk/~jnm/book/ 



6 

Chapter 1.   Context and experience 

Software 
Architectures 
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structural view - Darwin ADL (Architecture Description Language) 

Component types have one or 
more interfaces. An interface 
is simply a set of names 
referring to actions in a 
specification or services in an 
implementation, provided      or 
required      by the component.  

Systems / composite 
components are 
composed hierarchically 
by component instantiation 
and interface binding.  

interfaces 
Component 

Composite Component 
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construction view  - Koala ADL for consumer electronics 

… based on Darwin, in use by Philips for product families 

Interfaces 
are sets 
of C 
functions 

(IEEE Computer 2000) 
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Koala experience  

 “It turns out to be very simple to make different 
configurations. We are profiting from the 
composability in that it is very easy to create small 
environments in which to test parts of the software.”  

Rob van Ommering 
Philips Research Eindhoven 

 The individual processes are really quite simple state 
machines. What we really need is a way to compose 
these state machines, and perform some sort of 
analysis on the composition...” 
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Architectural description -  multiple views 

Structural View 

Component 
behaviour 

models 

Construction View 

Implementation 

Component 
implementations 

Behavioural View 

Modelling and Analysis 
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Chapter 2.   Modelling processes 

Primitive 
components 



12 

processes and threads 

Concepts: component processes  
   - units of sequential execution. 

Models:   finite state processes (FSP)  
                  to model processes as sequences of actions. 

   labelled transition systems (LTS) 
   to analyse, display and animate behavior. 

Practice:  Java threads 
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FSP – finite state processes  

Component/Process: 
DRINKS tea 

coffee 
red 
blue 

DRINKS = ( red->coffee->DRINKS  
         | blue->tea->DRINKS 
         ). 

FSP to model behaviour of the drinks machine : 

->   action prefix 
|     choice 
       recursion 

LTS : 

component DRINKS { 
     provides red; blue; 
     requires tea; coffee; 
} 

DRINKS

red

blue

tea

coffee

0 1 2
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FSP - guarded actions 

COUNT inc 
dec 

COUNT (N=3)   = COUNT[0], 
COUNT[i:0..N] = ( when(i<N) inc->COUNT[i+1] 
                | when(i>0) dec->COUNT[i-1] 
                ). 

when     guarded choice 
process parameter 
Process labelling 

component COUNT { 
       provides  inc; dec; 
} 

COUNT
inc inc

dec

inc

dec dec

0 1 2 3
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A countdown timer 

COUNTDOWN 
beep 

start 
stop 

A countdown timer which beeps after N ticks, 
or can be stopped. 

FSP? 

LTS? 

Java 
Demo 

component COUNTDOWN { 
       provides start; stop; 
       requires beep;  
} 
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A countdown timer 

COUNTDOWN (N=3)   = (start->COUNTDOWN[N]), 
COUNTDOWN[i:0..N] =  

  ( when(i>0) tick->COUNTDOWN[i-1] 
     | when(i==0)beep->STOP 

   | stop->STOP 
   ). 

COUNTDOWN
start

stop

tick

stop

tick

stop

tick {beep, stop}

0 1 2 3 4 5
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component PERSON - behaviour 

PERSON enter 
exit 

component PERSON { 
       requires enter; exit; 
} 

PERSON = ( enter -> bathe -> exit -> PERSON 
         ) @{enter,exit}. 

@     interface 

Actions {enter,exit} are exposed, 
bathe is hidden.  



18 

Labelled transition system LTS:  
LTS Animation 
can be used to 
step through 
the actions to 
test specific 
scenarios. 

PERSON can be minimised 
with respect to Milner’s 
observational equivalence. 

component PERSON - behaviour 

PERSON
enter tau

exit

0 1 2

enter

exit

0 1
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component BATH - behaviour  

BATH 
enter 

component BATH (N=Max) { 
       provides enter; exit; 
} 

exit 

const Max = 3 
range Int = 0..Max 

BATH(N=Max) = BATH[N], 
BATH[v:Int] = ( when(v>0) enter-> BATH[v-1] 
              | when(v<N) exit -> BATH[v+1] 
              ). 

BATH enter

exit

enter

exit

enter

exit

0 1 2 3



20 

Primitive Components - summary 

  Component behaviour is modelled using 
Labelled Transition Systems (LTS). 

  Primitive components are described as 
finite state processes (FSP) using the 
dynamic operators of the process algebra: 
  action prefix  -> 
  (guarded) choice | 
  recursion 

  Interface @ represents an action (or set 
of actions) in which the component can 
engage (ie. constrains the visible alphabet 
of the process). 
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Chapter 3.   Modelling systems 

Composite 
components 
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Concurrent execution 

Concepts: processes - concurrent execution  
        and interleaving. 
    process interaction. 

Models:  parallel composition of asynchronous processes  
       - interleaving 
  interaction  - shared actions 
   

Practice:  Multithreaded Java programs 
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Definition 

 Concurrency 
  Logically simultaneous processing. 

Does not imply multiple processing elements.  Requires  
interleaved execution on a single processing element.  

A 

Time 

B 

C 
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Modeling Concurrency 

  How should we model process execution speed? 
   arbitrary speed  

 (we abstract away time) 

  How do we model concurrency? 
   arbitrary relative order of actions from different processes 

(interleaving but preservation of each process order ) 

  What is the result? 
   provides a general model independent of scheduling 

(asynchronous model of execution) 
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parallel composition - action interleaving  

thinktalkscratch 
thinkscratchtalk 
scratchthinktalk 

Possible traces as 
a result of action 
interleaving. 

If P and Q are processes then (P||Q) represents the 
concurrent execution of P and Q. The operator || is 
the parallel composition operator. 

ITCH  = (scratch->STOP). 
CONVERSE = (think->talk->STOP). 

||CONVERSE_ITCH = (ITCH || CONVERSE). 
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parallel composition - action interleaving 

2 states 3 states 

(0,0) (0,1) (0,2) (1,2) (1,1) (1,0) 

from CONVERSE from ITCH 2 x 3 states 

ITCH scratch

0 1
CONVERSE think talk

0 1 2

CONVERSE_ITCH

scratch

think

scratch

talk scratch

talk think

0 1 2 3 4 5
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parallel composition - algebraic laws 

Commutative:  (P||Q) = (Q||P) 
Associative:   (P||(Q||R))  = ((P||Q)||R)  

       = (P||Q||R). 

Clock radio example: 
CLOCK = (tick->CLOCK). 
RADIO = (on->off->RADIO). 

||CLOCK_RADIO = (CLOCK || RADIO). 

LTS?   Traces?   Number of states?  
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modeling interaction - shared actions 

MAKER = (make->ready->MAKER). 
USER  = (ready->use->USER). 

||MAKER_USER = (MAKER || USER). 

MAKER 
synchronizes 
with USER 
when ready. 

If processes in a composition have actions in common, 
these actions are said to be shared.  Shared actions are 
the way that process interaction is modeled. While 
unshared actions may be arbitrarily interleaved, a 
shared action must be executed at the same time by all 
processes that participate in the shared action. 

LTS?   Traces?   Number of states?  Non-disjoint 
alphabets 
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modeling interaction - handshake 

MAKERv2 = (make->ready->used->MAKERv2). 
USERv2  = (ready->use->used ->USERv2). 

||MAKER_USERv2 = (MAKERv2 || USERv2). 

A handshake is an action acknowledged by another: 

Interaction 
constrains 
the overall 
behaviour. 

3 states 
3 states 

3 x 3 
states? 

4 states MAKER_USERv2 make ready use

used

0 1 2 3
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Composite component behaviour 

Three persons 
p[1..3] use 

a shared 
Russian bath, 
banya.  

p[1] : PERSON 

banya: BATH(3) 

p[2] : PERSON p[3] : PERSON 

SANDUNOVSKY 

exit enter 

component SANDUNOVSKY 
 {inst    p[1..3]  : PERSON; 
  banya: BATH(3); 

     bind p[1..3].enter -- banya.enter; 
     bind p[1..3].exit   -- banya.exit; } 
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Composite component behaviour - FSP 

||SANDUNOVSKY = (  p[1..Max]:PERSON  
      || banya:BATH(3)  
       )/{p[1..Max].enter/ banya.enter,  
             p[1..Max].exit/ banya.exit}. 

 :    instantiation 
||   composition 
/    relabelling 

p[1] : PERSON 

banya: BATH(3) 

p[2] : PERSON p[3] : PERSON 

SANDUNOVSKY  

exit enter 
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Composite Component – summary of FSP static operators 

  Component composition is modelled as 
parallel composition ||. 

  (Interleaving of all the actions)  

  Binding is modelled by relabelling /. 
 (Processes synchronise on shared 
actions) 

  Composition expressions are direct 
translations from architecture descriptions. 
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Chapter 4.  Behaviour analysis 
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Reachability analysis for checking models 

Searches the entire system state space for deadlock states 
and ERROR states arising from property violations.  

Deadlock - state with no outgoing transitions.  

ERROR (π) state -1 is a trap state. Undefined transitions 
are automatically mapped to the ERROR state. 

3 0 1 2 -1 
ERROR 
state 

Deadlock 
state 
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Safety - property automata 

Safety properties are specified by deterministic finite 
state processes called property automata. These generate 
an image automata which is transparent for valid behaviour, 
but transitions to an ERROR state otherwise.  

property EXCLUSION =( p[i:1..3].enter  
      -> p[i].exit  
      -> EXCLUSION ). 

||CHECK = (SANDUNOVSKY || EXCLUSION).  

Safety properties are composed with the (sub)systems to 
which they apply, then check if ERROR is reachable in the 
composed system. 

…if the number of spaces in the bath is 1 ? …or 0? 
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Liveness - progress properties 

To avoid the need to know LTL (Linear Temporal Logic), 
we directly support a limited class of liveness properties, 
called progress,  which can be checked efficiently : 

     []◊a 
   

i.e. Progress properties check that, in an infinite 
execution, particular actions occur infinitely often.  

For example: 

progress OKtoBATH[i:1..3] = {p[i].enter} 

…if we give priority to two of the bathers? 
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•  Compositional Reachability Analysis 
We construct the system incrementally from subcomponents, 
based on the software architecture. 
State reduction is achieved by hiding actions not in their 
interfaces and minimising. Property checks remain in the 
minimised subcomponents. 

Scalability 

The problem with reachability analysis is that the 
state space “explodes” exponentially with 
increasing problem size. 

How do we hope to alleviate this problem? 

•  Partial Order Reduction 
As in SPIN, we employ on-the-fly analysis, exploring only 
that part of the state space which affects visible actions 
(cf. properties in SPIN).  
This can be done while preserving observational equivalence. 
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Chapter 5.  Implementation in Java 
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Translation to Java 

FSP:   when cond act -> NEWSTAT 

Java:  public synchronized void act()  
              throws InterruptedException  
       { 
      while (!cond) wait(); 
      // modify monitor data 
      notifyAll() 
      } 

Identify active components (threads)  
& passive components (monitors): 

person 
bath 
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class Bath 
class Bath { 
  protected int spaces; 
  protected int max; 

  Bath(int n)  
    {max = spaces = n;} 

  synchronized void enter() throws InterruptedException { 
    while (spaces==0) wait(); 
    --spaces; 
    notifyAll();       //omit? 
  } 

  synchronized void exit() throws InterruptedException { 
    while (spaces==n) wait();    //omit? 
    ++spaces; 
    notifyAll(); 
  } 
} 
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Person threads 

class Person implements Runnable { 
  Bath bath; 

  Person(Bath b) {bath = b;} 

  public void run() { 
    try { 
      while(true) { 
        … 
        bath.enter(); 
        <bathe actions> 

    bath.exit(); 
    … 

      } 
    } catch (InterruptedException e){} 
  } 
} 
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Chapter 6.    Graphical Animation – some examples 

a
b

x 

a

b

LTS FMC  
NATS  
Chan 

Puzzle  
…. 
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Model analysis & animation 

LTS 
model 

LTS Model checking 
 safety properties 
 progress properties 
 compositional reachability 
 abstraction & minimisation 

Animation 

 Separate graphic animation 
model which preserves the 
behaviour of the model and 
has sound semantics based 
on Timed Automata. 

mapping 
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A simple example - CHAN 

CHAN = (in -> out  -> CHAN 
       |in -> fail -> CHAN 
       ).  
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Models & Annotated models 

Safety Properties 
The annotated model cannot exhibit behavior that 
is not contained in the base model: 

 Any safety property that holds for the base model 
also holds for the animated model. 
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Puzzle 

The animated model can 
thus be used to help 
understand the meaning 
of counterexamples. 
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Flexible Manufacturing Cell 

Animated 
models can 
be composed 
to form 
complex 
models. 
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A simple workflow system – OpenFlow  
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NATS – short term conflict alert (STCA) 

For each pair of 
aircraft determine 
potential conflict. 

We can construct 
hybrid models that 
combine the discrete 
behavioural model with 
a real valued data 
stream. 
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Chapter 7.    Logical Properties - states Vs events 

a
b

x 

a

b

LTS Linear 
Temporal 

Logic 
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Properties – some deficiencies 

- For simple models, safety properties are very 
similar to the model itself. 

- Cannot specify some common liveness properties 
directly  
   e.g.  Response       [](request -> <> reply) 

Use the Fluent Linear Temporal Logic model 
checker in LTSA tool:-  
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Defining Abstract States over Sequences of Events 

 Fluents - from the Event Calculus 

“Fluents - time varying properties of the world 
 Fluents are true at particular time-points if 
they have been initiated by an action 
occurrence at some earlier time-point and 
not terminated by another action occurrence 
in the meantime. “ 

Miller & Shanahan 
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Fluent Propositions 

Defined in terms of sets actions 

Time 

fluent  
  LIGHT = <{on},{power_cut,off}> initially False 

on off 

TRUE FALSE FALSE 

[Magee & Giannakopoulou] 
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Fluents and the LTSA 

 LTSA supports model checking of Fluent 
Linear Temporal Logic (FLTL) 
  Fluents  

  and (&&) , or (||) , implies (->), not (!) 

  always ([]), eventually (<>), until (U),  

  weak until (W), next (X),  
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Using Fluents in SANDUNOVSKY 

fluent BATHING[i:1..Max]  

    = <p[i].enter,p[i].exit> 

//safety property 
assert EXCLUSIONf  = []!(exists[i:1..Max-1]  

  (BATHING[i] && BATHING [i+1..Max])) 

//liveness property 

assert OKtoBATHf = forall[i:1..Max]  

      []<>p[i].enter 
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Chapter 8.      Dynamic and Adaptive Systems  


