
Microsoft Research Summer School, 2012

Jeff Kramer

Imperial College London

Model-based design and
analysis of concurrent and

adaptive software

2

Engineering distributed software?

  Structure
 Programming-in-the-small Vs Programming-in-
the-large
 deRemer and Kron, TSE 1975

  Composition
 “Having divided to conquer, we must reunite
to rule”
 Jackson, CompEuro 1990

3

How? our approach is …. Model Based Design

integrate modelling into the software lifecycle:
 Software Architectures
 of components,
 translatable to models

Relatively easy to learn and use:
 State Machines
 in form of LTS
 (Labelled Transition Systems)

Lightweight Tool support:
 Model Checking in form of CRA
 (Compositional Reachability Analysis)
 with animation

DRINKS

red

blue

tea

coffee

0 1 2

4

Background: Book

Concurrency:
State Models &
Java Programs

Jeff Magee &
Jeff Kramer

WILEY

2006 (2nd edition)

5

Background: Web based course material

  Java examples and demonstration programs
  State models for the examples
  Labelled Transition System Analyser (LTSA) for

modelling concurrency, model animation and model
property checking.

http://www.doc.ic.ac.uk/~jnm/book/

6

Chapter 1. Context and experience

Software
Architectures

7

structural view - Darwin ADL (Architecture Description Language)

Component types have one or
more interfaces. An interface
is simply a set of names
referring to actions in a
specification or services in an
implementation, provided or
required by the component.

Systems / composite
components are
composed hierarchically
by component instantiation
and interface binding.

interfaces
Component

Composite Component

8

construction view - Koala ADL for consumer electronics

… based on Darwin, in use by Philips for product families

Interfaces
are sets
of C
functions

(IEEE Computer 2000)

9

Koala experience

 “It turns out to be very simple to make different
configurations. We are profiting from the
composability in that it is very easy to create small
environments in which to test parts of the software.”

Rob van Ommering
Philips Research Eindhoven

 The individual processes are really quite simple state
machines. What we really need is a way to compose
these state machines, and perform some sort of
analysis on the composition...”

10

Architectural description - multiple views

Structural View

Component
behaviour

models

Construction View

Implementation

Component
implementations

Behavioural View

Modelling and Analysis

11

Chapter 2. Modelling processes

Primitive
components

12

processes and threads

Concepts: component processes
 - units of sequential execution.

Models: finite state processes (FSP)
 to model processes as sequences of actions.

 labelled transition systems (LTS)
 to analyse, display and animate behavior.

Practice: Java threads

13

FSP – finite state processes

Component/Process:
DRINKS tea

coffee
red
blue

DRINKS = (red->coffee->DRINKS
 | blue->tea->DRINKS
).

FSP to model behaviour of the drinks machine :

-> action prefix
| choice
 recursion

LTS :

component DRINKS {
 provides red; blue;
 requires tea; coffee;
}

DRINKS

red

blue

tea

coffee

0 1 2

14

FSP - guarded actions

COUNT inc
dec

COUNT (N=3) = COUNT[0],
COUNT[i:0..N] = (when(i<N) inc->COUNT[i+1]
 | when(i>0) dec->COUNT[i-1]
).

when guarded choice
process parameter
Process labelling

component COUNT {
 provides inc; dec;
}

COUNT
inc inc

dec

inc

dec dec

0 1 2 3

15

A countdown timer

COUNTDOWN
beep

start
stop

A countdown timer which beeps after N ticks,
or can be stopped.

FSP?

LTS?

Java
Demo

component COUNTDOWN {
 provides start; stop;
 requires beep;
}

16

A countdown timer

COUNTDOWN (N=3) = (start->COUNTDOWN[N]),
COUNTDOWN[i:0..N] =

 (when(i>0) tick->COUNTDOWN[i-1]
 | when(i==0)beep->STOP

 | stop->STOP
).

COUNTDOWN
start

stop

tick

stop

tick

stop

tick {beep, stop}

0 1 2 3 4 5

17

component PERSON - behaviour

PERSON enter
exit

component PERSON {
 requires enter; exit;
}

PERSON = (enter -> bathe -> exit -> PERSON
) @{enter,exit}.

@ interface

Actions {enter,exit} are exposed,
bathe is hidden.

18

Labelled transition system LTS:
LTS Animation
can be used to
step through
the actions to
test specific
scenarios.

PERSON can be minimised
with respect to Milner’s
observational equivalence.

component PERSON - behaviour

PERSON
enter tau

exit

0 1 2

enter

exit

0 1

19

component BATH - behaviour

BATH
enter

component BATH (N=Max) {
 provides enter; exit;
}

exit

const Max = 3
range Int = 0..Max

BATH(N=Max) = BATH[N],
BATH[v:Int] = (when(v>0) enter-> BATH[v-1]
 | when(v<N) exit -> BATH[v+1]
).

BATH enter

exit

enter

exit

enter

exit

0 1 2 3

20

Primitive Components - summary

  Component behaviour is modelled using
Labelled Transition Systems (LTS).

  Primitive components are described as
finite state processes (FSP) using the
dynamic operators of the process algebra:
  action prefix ->
  (guarded) choice |
  recursion

  Interface @ represents an action (or set
of actions) in which the component can
engage (ie. constrains the visible alphabet
of the process).

21

Chapter 3. Modelling systems

Composite
components

22

Concurrent execution

Concepts: processes - concurrent execution
 and interleaving.
 process interaction.

Models: parallel composition of asynchronous processes
 - interleaving
 interaction - shared actions

Practice: Multithreaded Java programs

23

Definition

 Concurrency
  Logically simultaneous processing.

Does not imply multiple processing elements. Requires
interleaved execution on a single processing element.

A

Time

B

C

24

Modeling Concurrency

  How should we model process execution speed?
  arbitrary speed

 (we abstract away time)

  How do we model concurrency?
  arbitrary relative order of actions from different processes

(interleaving but preservation of each process order)

  What is the result?
  provides a general model independent of scheduling

(asynchronous model of execution)

25

parallel composition - action interleaving

thinktalkscratch
thinkscratchtalk
scratchthinktalk

Possible traces as
a result of action
interleaving.

If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q. The operator || is
the parallel composition operator.

ITCH = (scratch->STOP).
CONVERSE = (think->talk->STOP).

||CONVERSE_ITCH = (ITCH || CONVERSE).

26

parallel composition - action interleaving

2 states 3 states

(0,0) (0,1) (0,2) (1,2) (1,1) (1,0)

from CONVERSE from ITCH 2 x 3 states

ITCH scratch

0 1
CONVERSE think talk

0 1 2

CONVERSE_ITCH

scratch

think

scratch

talk scratch

talk think

0 1 2 3 4 5

27

parallel composition - algebraic laws

Commutative: (P||Q) = (Q||P)
Associative: (P||(Q||R)) = ((P||Q)||R)

 = (P||Q||R).

Clock radio example:
CLOCK = (tick->CLOCK).
RADIO = (on->off->RADIO).

||CLOCK_RADIO = (CLOCK || RADIO).

LTS? Traces? Number of states?

28

modeling interaction - shared actions

MAKER = (make->ready->MAKER).
USER = (ready->use->USER).

||MAKER_USER = (MAKER || USER).

MAKER
synchronizes
with USER
when ready.

If processes in a composition have actions in common,
these actions are said to be shared. Shared actions are
the way that process interaction is modeled. While
unshared actions may be arbitrarily interleaved, a
shared action must be executed at the same time by all
processes that participate in the shared action.

LTS? Traces? Number of states? Non-disjoint
alphabets

29

modeling interaction - handshake

MAKERv2 = (make->ready->used->MAKERv2).
USERv2 = (ready->use->used ->USERv2).

||MAKER_USERv2 = (MAKERv2 || USERv2).

A handshake is an action acknowledged by another:

Interaction
constrains
the overall
behaviour.

3 states
3 states

3 x 3
states?

4 states MAKER_USERv2 make ready use

used

0 1 2 3

30

Composite component behaviour

Three persons
p[1..3] use

a shared
Russian bath,
banya.

p[1] : PERSON

banya: BATH(3)

p[2] : PERSON p[3] : PERSON

SANDUNOVSKY

exit enter

component SANDUNOVSKY
 {inst p[1..3] : PERSON;
 banya: BATH(3);

 bind p[1..3].enter -- banya.enter;
 bind p[1..3].exit -- banya.exit; }

31

Composite component behaviour - FSP

||SANDUNOVSKY = (p[1..Max]:PERSON
 || banya:BATH(3)
)/{p[1..Max].enter/ banya.enter,
 p[1..Max].exit/ banya.exit}.

 : instantiation
|| composition
/ relabelling

p[1] : PERSON

banya: BATH(3)

p[2] : PERSON p[3] : PERSON

SANDUNOVSKY

exit enter

32

Composite Component – summary of FSP static operators

  Component composition is modelled as
parallel composition ||.

 (Interleaving of all the actions)

  Binding is modelled by relabelling /.
 (Processes synchronise on shared
actions)

  Composition expressions are direct
translations from architecture descriptions.

33

Chapter 4. Behaviour analysis

34

Reachability analysis for checking models

Searches the entire system state space for deadlock states
and ERROR states arising from property violations.

Deadlock - state with no outgoing transitions.

ERROR (π) state -1 is a trap state. Undefined transitions
are automatically mapped to the ERROR state.

3 0 1 2 -1
ERROR
state

Deadlock
state

35

Safety - property automata

Safety properties are specified by deterministic finite
state processes called property automata. These generate
an image automata which is transparent for valid behaviour,
but transitions to an ERROR state otherwise.

property EXCLUSION =(p[i:1..3].enter
 -> p[i].exit
 -> EXCLUSION).

||CHECK = (SANDUNOVSKY || EXCLUSION).

Safety properties are composed with the (sub)systems to
which they apply, then check if ERROR is reachable in the
composed system.

…if the number of spaces in the bath is 1 ? …or 0?

36

Liveness - progress properties

To avoid the need to know LTL (Linear Temporal Logic),
we directly support a limited class of liveness properties,
called progress, which can be checked efficiently :

 []◊a

i.e. Progress properties check that, in an infinite
execution, particular actions occur infinitely often.

For example:

progress OKtoBATH[i:1..3] = {p[i].enter}

…if we give priority to two of the bathers?

37

•  Compositional Reachability Analysis
We construct the system incrementally from subcomponents,
based on the software architecture.
State reduction is achieved by hiding actions not in their
interfaces and minimising. Property checks remain in the
minimised subcomponents.

Scalability

The problem with reachability analysis is that the
state space “explodes” exponentially with
increasing problem size.

How do we hope to alleviate this problem?

•  Partial Order Reduction
As in SPIN, we employ on-the-fly analysis, exploring only
that part of the state space which affects visible actions
(cf. properties in SPIN).
This can be done while preserving observational equivalence.

38

Chapter 5. Implementation in Java

39

Translation to Java

FSP: when cond act -> NEWSTAT

Java: public synchronized void act()
 throws InterruptedException
 {
 while (!cond) wait();
 // modify monitor data
 notifyAll()
 }

Identify active components (threads)
& passive components (monitors):

person
bath

40

class Bath
class Bath {
 protected int spaces;
 protected int max;

 Bath(int n)
 {max = spaces = n;}

 synchronized void enter() throws InterruptedException {
 while (spaces==0) wait();
 --spaces;
 notifyAll(); //omit?
 }

 synchronized void exit() throws InterruptedException {
 while (spaces==n) wait(); //omit?
 ++spaces;
 notifyAll();
 }
}

41

Person threads

class Person implements Runnable {
 Bath bath;

 Person(Bath b) {bath = b;}

 public void run() {
 try {
 while(true) {
 …
 bath.enter();
 <bathe actions>

 bath.exit();
 …

 }
 } catch (InterruptedException e){}
 }
}

42

Chapter 6. Graphical Animation – some examples

a
b

x

a

b

LTS FMC
NATS
Chan

Puzzle
….

43

Model analysis & animation

LTS
model

LTS Model checking
 safety properties
 progress properties
 compositional reachability
 abstraction & minimisation

Animation

 Separate graphic animation
model which preserves the
behaviour of the model and
has sound semantics based
on Timed Automata.

mapping

44

A simple example - CHAN

CHAN = (in -> out -> CHAN
 |in -> fail -> CHAN
).

45

Models & Annotated models

Safety Properties
The annotated model cannot exhibit behavior that
is not contained in the base model:

 Any safety property that holds for the base model
also holds for the animated model.

46

Puzzle

The animated model can
thus be used to help
understand the meaning
of counterexamples.

47

Flexible Manufacturing Cell

Animated
models can
be composed
to form
complex
models.

48

A simple workflow system – OpenFlow

49

NATS – short term conflict alert (STCA)

For each pair of
aircraft determine
potential conflict.

We can construct
hybrid models that
combine the discrete
behavioural model with
a real valued data
stream.

50

Chapter 7. Logical Properties - states Vs events

a
b

x

a

b

LTS Linear
Temporal

Logic

51

Properties – some deficiencies

- For simple models, safety properties are very
similar to the model itself.

- Cannot specify some common liveness properties
directly
 e.g. Response [](request -> <> reply)

Use the Fluent Linear Temporal Logic model
checker in LTSA tool:-

52

Defining Abstract States over Sequences of Events

 Fluents - from the Event Calculus

“Fluents - time varying properties of the world
 Fluents are true at particular time-points if
they have been initiated by an action
occurrence at some earlier time-point and
not terminated by another action occurrence
in the meantime. “

Miller & Shanahan

53

Fluent Propositions

Defined in terms of sets actions

Time

fluent
 LIGHT = <{on},{power_cut,off}> initially False

on off

TRUE FALSE FALSE

[Magee & Giannakopoulou]

54

Fluents and the LTSA

 LTSA supports model checking of Fluent
Linear Temporal Logic (FLTL)
  Fluents

  and (&&) , or (||) , implies (->), not (!)

  always ([]), eventually (<>), until (U),

  weak until (W), next (X),

55

Using Fluents in SANDUNOVSKY

fluent BATHING[i:1..Max]

 = <p[i].enter,p[i].exit>

//safety property
assert EXCLUSIONf = []!(exists[i:1..Max-1]

 (BATHING[i] && BATHING [i+1..Max]))

//liveness property

assert OKtoBATHf = forall[i:1..Max]

 []<>p[i].enter

56

Chapter 8. Dynamic and Adaptive Systems

