
60

Chapter 8. Dynamic and Adaptive Systems

61

 Software Architecture
+

programmed software
components

Managed Structural Change

evolved structural
 description

change
script

system

Construction/
implementation

evolved system

change
script

e.g. Conic, Regis TSE 1985

62

Structural change

!   load
component type

!   create/delete
component instances

!   bind/unbind
component services

But how can we do this safely?
Can we maintain consistency of the application
during and after change?

T

a:T

a
b

63

Example - a simplified RING Database

rcv snd
node[0]

local

rcv snd
node[2]

local

rcv

snd
node[1]

local
rcv

snd
node[3]

local

Nodes perform
autonomous
updates

Updates propagate
round the ring via
channels

CDS 1998, IEE Proc 1998

64

General Change Model

The image cannot be displayed. Your computer may not
have enough memory to open the image, or the image may
have been corrupted. Restart your computer, and then open
the file again. If the red x still appears, you may have to
delete the image and then insert it again.

PASSIVE ACTIVE

bind

unbind

activate
create

delete
passivate

Component
States

A Passive component
 - is consistent with its environment, and
 - services interactions, but does not initiate them.

Principle:

Separate the
specification of
structural
change from
the component
application
contribution.

65

Change Rules

Quiescent – passive and no transactions are in
progress or will be initiated.

Operation Pre-condition
!   delete – component is quiescent

 and isolated
!   bind/unbind – connected component

 is quiescent
!   create - true

TSE 1990

66

RING Required Properties (1)

// node is PASSIVE if passive signalled and not yet changing or deleted

fluent PASSIVE[i:Nodes]
 = <node[i].passive,
 node[i].{change[Value],delete}>

// node is CREATED after create until delete

fluent CREATED[i:Nodes]
 = <node[i].create, node[i].delete>

// system is QUIESCENT if all CREATED nodes are PASSIVE
assert QUIESCENT
 = forall[i:Nodes] (CREATED[i]->PASSIVE[i])

67

RING Required Properties (2)

// value for a node i with color c
fluent VALUE[i:Nodes][c:Value]
 = <node[i].change[c], ...>

// state is consistent if all created nodes have the same value
assert CONSISTENT
 = exists[c:Value] forall[i:Nodes]
 (CREATED[i]-> VALUE[i][c])

// safe if the system is consistent when quiescent
assert SAFE = [](QUIESCENT -> CONSISTENT)

// live if quiescence is always eventually achieved
assert LIVE = []<> QUIESCENT

68

Current Research ...

Managed dynamic
structural change!
Self-managed adaptive

 change?

69

Self-Managed Adaptive Systems

WOSS 2003

!  Autonomous Adaptation
!  Change/update behaviour

dynamically in response to
changes in goals & environment
without operator intervention.

!  Self
!   - Configuring
!   - Healing
!   - Tuning

70

Example Scenario: robotics

71

S/W Architecture in Robotics

!  SPA 1970’s

Sense Plan Act

Deliberator

Sequencer

Controller

!  …….

!  Three-Layer Architecture (Gat 98)

72

A Three-Layer Architecture Model

!   separation of concerns
!   layering according to required response times

Planning over
abstract
domain

Assembly of
software
components
to execute
plans

Plan
execution
using
components

FOSE (ICSE) 2007

73

1. Component Control Layer

Layer supports
!  Dynamic configuration

!   component creation, deletion and binding
!   Event/status reporting during change
!   Probes & Effectors

!  Component execution
!  Component self-tuning

!   e.g. TCP timeouts,
 collision avoidance

74

Component Control - implementation

75

Component Control - Research Challenges

!  Safe operation during change
!   stable conditions (quiescence)

 – Kramer & Magee 1986
!  Tranquility

 – Vandewoude et al 2006
!   avoid control transients

 – Schaefer & Wehrheim 2007
!  Verification of safety properties during

change
!   Zhang & Cheng 2006

76

2. Change Management Layer

Layer supports
!   Plan execution

!   in response to predicted class of events/ state
changes in the underlying layer e.g. component
failure, mode change.

!  Component selection and configuration
management

!   Plan update
!   in response to unpredicted
 change (eg. goals)

77

Plan execution

!   Reactive Plans are described in terms of
condition-action rules over an alphabet of
plan actions

Includes alternative
paths to the goals
should the
environment change
in an unpredictable
manner.

...
AT.loc1 && !LOADED

 -> pickup
AT.loc1 && LOADED

 -> moveto.loc2
AT.loc2 && LOADED

 -> putdown
AT.loc2 && !LOADED

 -> moveto.loc1
...

Deriving configurations

!   Plan actions (pickup, moveto, …) do not refer to
component configurations explicitly

!   Primitive actions associated with interfaces which
the interpreter can call (pickup, moveto, …)

!   Hence, need a set of components which implement
every interface required by the plan, elaborated
using dependencies

!   Components to interfaces is a many to many
relationship, providing alternatives

Component selection

GoToTask

Motors Location

moveto(t)

Repository

Hardware

Motors

SkyCamera

Location

SLAM

Location

Camera
Unavailable,
network failure

Already instantiated

Webcam
Camera

Adaptation Demonstration

Adaptation
may require
component
reselection
OR
replanning

81

Change Management ‒ Research Challenges

!  Scalability -> Distribution & Decentralisation

Georgiadis 2002 – Imposed total ordering
Decentralized but not Scalable

Daniel Sykes 2010 – gossip algorithm with
convergence

82

3. Goal Management Layer

!  Layer supports plan generation in
response to
!  addition/removal of goals
!  requests from below, due to plan failure

83

Goal Management

“For reactive systems, (systems that maintain an ongoing
interaction with a dynamic environment) the synthesis
problem has been posed as early as 1957 by Church in the
context of digital circuits ... but apart from some impressive
theoretical results ... the work on synthesis remained
marginal compared to the vast literature on verification ...”

Symbolic Controller Synthesis for Discrete and Timed
Systems, Asarin, Maler & Pnueli, LNCS 999, 1995.

Synthesis

84

Goal Management ‒ our approach

!   Use synthesis to facilitate automated response to
changes in goals & environment.

!   Translate existing state-based synthesis work into
event-based framework – facilitated by our work
on Fluent LTL.

!   Validate in Koala robot test-bed.

85

Goal Management

Consider plan as a winning strategy in an infinite two player
game between the environment and the system such that
goal G is always satisfied no matter what order of inputs from
environment.

Plan Synthesis

Environment
System

inputs

controls

86

Example

Goal:
Controller of
the cat and
mouse flaps
such that
ensure cat
and mouse
are never in
the same
room.

87

Environment Representation

Environment: || composition of LTS

MOUSE start mouse_in[4] m5 mouse_in[3] m6 mouse_in[0]
m1

m4

mouse_in[4]

mouse_in[2] m2 mouse_in[1]

m3

0 1 2 3 4 5 6 7 8 9 10 11

88

Goal Representation

Goal: Linear Temporal Logic property

ltl_property SAFE =
 [](!exists[i:0..4]

 (CATROOM[i] && MOUSEROOM[i]))

fluent CATROOM[room:0..4] =
 <cat_in[room],
 {cat_in[0..4]}\{cat_in[room]}>
fluent MOUSEROOM[room:0..4] =
 <mouse_in[room],
 {mouse_in[0..4]}\{mouse_in[room]}>

Fluents:

89

Goal Representation - LTS

!  Safety Property Automata

90

Plan Synthesis*

* Symbolic Controller Synthesis.., Asarin, Maler, Pneuli, 1989

G F
Q

F*

Q = set of states
F = set of accepting states (G holds)
F* = set of winning states found iteratively
 such that transition out of F* is via a
 controlled action.

safety
game

91

Computing F*

!  Q = (CAT || MOUSE || SAFE)
!  Compute F* by backward propagation

of error state:

finally

input control control
-1

-1
control

-1
input

-1

-1
input

92

Reactive Plan

controller:-
 CATROOM.0 MOUSEROOM.1 -> c4
 CATROOM.0 MOUSEROOM.2 -> {c1, c4, m2}
 CATROOM.0 MOUSEROOM.3 -> c1
 CATROOM.0 MOUSEROOM.4 -> {c1, c4, m5}
 CATROOM.1 MOUSEROOM.0 -> {c2, c7b, m1, m4}
 CATROOM.1 MOUSEROOM.2 -> c7b
 CATROOM.1 MOUSEROOM.3 -> {c2, m6}
 CATROOM.1 MOUSEROOM.4 -> {c2, c7b, m5}
 CATROOM.2 MOUSEROOM.0 -> m4
 CATROOM.2 MOUSEROOM.3 -> {c3, m6}
 CATROOM.2 MOUSEROOM.4 -> {c3, m5}
 CATROOM.3 MOUSEROOM.0 -> {c5, c7a, m1, m4}
 CATROOM.3 MOUSEROOM.1 -> {c5, m3}
 CATROOM.3 MOUSEROOM.2 -> {c5, c7a, m2}
 CATROOM.3 MOUSEROOM.4 -> c7a
 CATROOM.4 MOUSEROOM.0 -> m1
 CATROOM.4 MOUSEROOM.1 -> {c6, m3}
 CATROOM.4 MOUSEROOM.2 -> {c6, m2}

93

Plan extraction

!   Label states in F* with fluent
values

!   Reactive Plan computed from
set of control states S.

!   Control state – has outgoing
transition labelled with
control.

!   Stable state – all outgoing
transitions are controls –
environment can make no
moves – quiescent.

input

s

s

94

Adaptation

!  Additional Goals (safety)
!   []!(MOUSEROOM[0] && CATROOM[2])

!  Changing Environment
!   doors c7a and c7b not controllable

controller:-
 CATROOM.0 MOUSEROOM.3 -> {}
 CATROOM.0 MOUSEROOM.4 -> {c1, c4, m5}
 CATROOM.2 MOUSEROOM.0 -> m4
 CATROOM.2 MOUSEROOM.3 -> {c3, m6}
 CATROOM.2 MOUSEROOM.4 -> {c3, m5}

95

General Goals

!   General synthesis problem is 2EXPTIME in length
of LTL formula.

!   For Generalised Reactivity*, problem can be solved
in N3 , where N is state space size.

!   Large state spaces can be represented
symbolically using BDDs

*Synthesis of Reactive(1) Designs, Piterman, Pnueli and Sa’ar, 2004

96

Generalized Reactivity

Using Safety Game algorithm No Safety
Violations!

Liveness
Assumptions

Liveness
Guarantees

97

Example

!   Cat & Mouse repeatedly visit room 2 & room 4

assert A1 = MOUSEROOM[2]
assert A2 = MOUSEROOM[4]
assert A3 = CATROOM[2]
assert A4 = CATROOM[4]

goal G1 =
 safety { SAFE }
 assume {}
 guarantee {A1, A2, A3, A4}
 controls { Controllable }

98

Goal Management ‒ Research Challenges

!  Specification of domain model and goals
!   application goals
!   system goals
!   covering structure, behaviour, performance …
!   partial knowledge

!  Goal refinement
!  Runtime Goal & Constraint Checking
!   Planning

!   Liveness goals
!  Scalability → Hierarchical Decomposition

Generating Revised Plans

!   Plan revision
through model
revision using
observations
and
probabilistic
machine
learning

99

with Daniel Sykes, Alessandra Russo, Katsumi Inoue and Dominico Corapi

Implementation - Status

!   Plan interpreter
!  Currently runs on

a desktop machine

!   Component selection
!  Selection not yet fully

integrated with plan
interpreter

!   Components
!   implemented in Java,

running on top of the
Backbone system,
directly on the Koala
robots

100

101

!   Challenge is to automate and run on-line what are
currently off-line RE/design processes e.g. goal-
refinement….

!   Need to decide for a given application the
requirement for adaptability etc. and the level of
automation needed.

!   Need to cope with incomplete information about
the environment.

Overall SE Research Challenges

102

Chapter 9. In conclusion... Model Based Design

103

Software tools

Automated software tools are
essential to support software
engineers in the design
process.

Techniques which are not
amenable to automation are
unlikely to survive in practice.

Extensive experience in teaching the approach to both
undergraduates and postgraduates in courses on
Concurrency.

Experience with R&D teams in industry (BT, Philips, NATS)

104

Software Tools - Lightweight vs. Heavyweight

Short learning curve.
Immediate benefits.
Supports incremental model
construction. Facilitates interactive
experimentation.

Traditional verification and
analysis tools tend to require
considerable expertise and have
as their goal the ability to target
large problems rather than ease
of use.

vs.

105

A Three-Layer Architecture Model

!   separation of concerns
!   layering according to response times

Planning

Assembly of
software
components

Plan execution

“Self-Managed Systems:
An Architectural Challenge”,
Jeff Kramer & Jeff Magee
ICSE FOSE'07

106

Related Work ‒

!   Lots and lots and lots……

107

Current work

!   Modal transition systems (MTS) for partial
models

!   Adaptive autonomous systems
!   Model Checking & Machine Learning for

requirements elaboration
!   Model revision using observations and

probabilistic machine learning

 Emphasis on lightweight, accessible and interactive
tools tailored for engineers.

LTSA available from: http://www.doc.ic.ac.uk/~jnm/book/

Microsoft Research Summer School, 2012

Jeff Kramer

Imperial College
London

Model-based design and
analysis of concurrent and

adaptive software

