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Chapter 8.      Dynamic and Adaptive Systems  
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 Software Architecture 
+ 

programmed software 
components 

Managed Structural Change 

evolved structural 
  description 

change 
script 

system 

Construction/ 
implementation 

evolved system 

change 
script 

e.g. Conic, Regis TSE 1985 
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Structural change 

!    load  
component type 

!    create/delete  
component instances 

!    bind/unbind  
component services 

But how can we do this safely? 
Can we maintain consistency of the application 
during and after change? 

T 

a:T 

a 
b 
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Example - a simplified RING Database 

rcv snd 
node[0] 

local 

rcv snd 
node[2] 

local 

rcv 

snd 
node[1] 

local 
rcv 

snd 
node[3] 

local 

Nodes perform 
autonomous 
updates 

Updates propagate 
round the ring via 
channels 

CDS 1998, IEE Proc 1998 
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General Change Model 

The image cannot be displayed. Your computer may not 
have enough memory to open the image, or the image may 
have been corrupted. Restart your computer, and then open 
the file again. If the red x still appears, you may have to 
delete the image and then insert it again.

PASSIVE ACTIVE 

bind 

unbind 

activate 
create 

delete 
passivate 

Component 
States 

A Passive component  
  - is consistent with its environment, and 
  - services interactions, but does not initiate them. 

Principle: 

Separate the 
specification of 
structural 
change from 
the component 
application 
contribution. 
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Change Rules 

Quiescent – passive and no transactions are in 
progress or will be initiated.  

Operation      Pre-condition 
!    delete         – component is quiescent  

                       and isolated 
!    bind/unbind – connected component  

                       is quiescent 
!    create         - true 

TSE 1990 
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RING Required Properties (1) 

// node is PASSIVE if passive signalled and not yet changing or deleted  

fluent PASSIVE[i:Nodes]  
  = <node[i].passive,  
     node[i].{change[Value],delete}>   

// node is CREATED after create until delete 

fluent CREATED[i:Nodes]  
  = <node[i].create, node[i].delete>  
          
// system is QUIESCENT if all CREATED nodes are PASSIVE 
assert QUIESCENT  
  = forall[i:Nodes] (CREATED[i]->PASSIVE[i]) 
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RING Required Properties (2) 

// value for a node i with color c 
fluent VALUE[i:Nodes][c:Value]  
  = <node[i].change[c], ...> 

// state is consistent if all created nodes have the same value 
assert CONSISTENT  
  = exists[c:Value] forall[i:Nodes]  
        (CREATED[i]-> VALUE[i][c]) 

// safe if the system is consistent when quiescent 
assert SAFE = [](QUIESCENT -> CONSISTENT) 

// live if quiescence is always eventually achieved 
assert LIVE = []<> QUIESCENT  
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Current Research ...  

Managed dynamic 
structural change! 
Self-managed adaptive  

 change? 
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Self-Managed Adaptive Systems 

WOSS 2003 

!  Autonomous Adaptation 
!  Change/update behaviour 

dynamically in response to 
changes in goals & environment 
without operator intervention. 

!  Self  
!   - Configuring 
!   - Healing 
!   - Tuning 
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Example Scenario: robotics 
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S/W Architecture in Robotics 

!  SPA 1970’s 

Sense Plan Act 

Deliberator 

Sequencer 

Controller 

!  ……. 

!  Three-Layer Architecture  (Gat 98) 
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A Three-Layer Architecture Model 

!   separation of concerns  
!   layering according to required response times 

Planning over 
abstract 
domain 

Assembly of 
software 
components 
to execute 
plans  

Plan 
execution 
using 
components  

FOSE (ICSE) 2007 
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1. Component Control Layer 

Layer supports  
!  Dynamic configuration 

!    component creation, deletion and binding 
!    Event/status reporting during change 
!    Probes & Effectors  

!  Component execution 
!  Component self-tuning 

!    e.g. TCP timeouts,  
           collision avoidance 
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Component Control - implementation 
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Component Control - Research Challenges 

!  Safe operation during change 
!    stable conditions (quiescence) 

  – Kramer & Magee 1986 
!  Tranquility 

  – Vandewoude et al 2006  
!    avoid control transients  

 – Schaefer & Wehrheim 2007 
!  Verification of safety properties during 

change 
!    Zhang & Cheng 2006 
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2. Change Management Layer 

Layer supports 
!   Plan execution  

!    in response to predicted class of events/ state 
changes in the underlying layer e.g. component 
failure, mode change. 

!  Component selection and configuration 
management 

!   Plan update  
!    in response to unpredicted  
    change (eg. goals)  
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Plan execution 

!   Reactive Plans are described in terms of 
condition-action rules over an alphabet of 
plan actions 

Includes alternative 
paths to the goals 
should the 
environment change 
in an unpredictable 
manner. 

... 
AT.loc1 && !LOADED  

 -> pickup 
AT.loc1 && LOADED   

 -> moveto.loc2 
AT.loc2 && LOADED   

 -> putdown 
AT.loc2 && !LOADED  

 -> moveto.loc1 
... 



Deriving configurations 

!   Plan actions  (pickup, moveto, …)  do not refer to 
component configurations explicitly 

!   Primitive actions associated with interfaces which 
the interpreter can call (pickup, moveto, …) 

!   Hence, need a set of components which implement 
every interface required by the plan, elaborated 
using dependencies 

!   Components to interfaces is a many to many 
relationship, providing alternatives 



Component selection 

GoToTask 

Motors Location 

moveto(t) 

Repository 

Hardware 

Motors 

SkyCamera 

Location 

SLAM 

Location 

Camera 
Unavailable, 
network failure 

Already instantiated 

Webcam 
Camera 



Adaptation Demonstration 

Adaptation 
may require 
component 
reselection 
OR 
replanning 
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Change Management ‒ Research Challenges 

!  Scalability -> Distribution & Decentralisation 

Georgiadis 2002 – Imposed total ordering 
Decentralized but not Scalable 

Daniel Sykes 2010 – gossip algorithm with 
convergence 
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3. Goal Management Layer 

!  Layer supports plan generation in 
response to 
!  addition/removal of goals 
!  requests from below, due to plan failure 
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Goal Management 

“For reactive systems, (systems that maintain an ongoing 
interaction with a dynamic environment) the synthesis 
problem has been posed as early as 1957 by Church in the 
context of digital circuits ... but apart from some impressive 
theoretical results  ... the work on synthesis remained 
marginal compared to the vast literature on verification ...” 

Symbolic Controller Synthesis for Discrete and Timed 
Systems, Asarin, Maler & Pnueli, LNCS 999, 1995. 

Synthesis 
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Goal Management ‒ our approach 

!   Use synthesis to facilitate automated response to 
changes in goals & environment. 

!   Translate existing state-based synthesis work into 
event-based framework – facilitated by our work 
on Fluent LTL. 

!   Validate in Koala robot test-bed. 
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Goal Management 

Consider plan as a winning strategy in an infinite two player 
game between the environment and the system such that 
goal G is always satisfied no matter what order of inputs from 
environment. 

Plan Synthesis 

Environment 
System 

inputs 

controls 
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Example 

Goal: 
Controller of 
the cat and 
mouse flaps 
such that 
ensure cat 
and mouse 
are never in 
the same 
room. 
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Environment Representation 

Environment:  || composition of LTS 

MOUSE start mouse_in[4] m5 mouse_in[3] m6 mouse_in[0]
m1

m4

mouse_in[4]

mouse_in[2] m2 mouse_in[1]

m3

0 1 2 3 4 5 6 7 8 9 10 11



88 

Goal Representation 

Goal:  Linear Temporal Logic property 

ltl_property SAFE =  
 []( !exists[i:0..4]  

   (CATROOM[i] && MOUSEROOM[i])) 

fluent CATROOM[room:0..4] =     
      <cat_in[room], 
      {cat_in[0..4]}\{cat_in[room]}> 
fluent  MOUSEROOM[room:0..4] = 
   <mouse_in[room], 
   {mouse_in[0..4]}\{mouse_in[room]}> 

Fluents: 
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Goal Representation - LTS 

!  Safety Property Automata 
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Plan Synthesis* 

* Symbolic Controller Synthesis.., Asarin, Maler, Pneuli, 1989 

G F 
Q 

F* 

Q =  set of states 
F  =  set of accepting states (G holds) 
F* = set of winning states found iteratively  
        such that transition out of F* is via a 
        controlled action. 

safety 
game 
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Computing F* 

!  Q = (CAT || MOUSE || SAFE) 
!  Compute F* by backward propagation 

of error state: 

finally 

input control control 
-1 

-1 
control 

-1 
input 

-1 

-1 
input 
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Reactive Plan 

controller:- 
 CATROOM.0 MOUSEROOM.1 -> c4  
 CATROOM.0 MOUSEROOM.2 -> {c1, c4, m2}  
 CATROOM.0 MOUSEROOM.3 -> c1  
 CATROOM.0 MOUSEROOM.4 -> {c1, c4, m5}  
 CATROOM.1 MOUSEROOM.0 -> {c2, c7b, m1, m4}  
 CATROOM.1 MOUSEROOM.2 -> c7b  
 CATROOM.1 MOUSEROOM.3 -> {c2, m6}  
 CATROOM.1 MOUSEROOM.4 -> {c2, c7b, m5}  
 CATROOM.2 MOUSEROOM.0 -> m4  
 CATROOM.2 MOUSEROOM.3 -> {c3, m6}  
 CATROOM.2 MOUSEROOM.4 -> {c3, m5}  
 CATROOM.3 MOUSEROOM.0 -> {c5, c7a, m1, m4}  
 CATROOM.3 MOUSEROOM.1 -> {c5, m3}  
 CATROOM.3 MOUSEROOM.2 -> {c5, c7a, m2}  
 CATROOM.3 MOUSEROOM.4 -> c7a  
 CATROOM.4 MOUSEROOM.0 -> m1  
 CATROOM.4 MOUSEROOM.1 -> {c6, m3}  
 CATROOM.4 MOUSEROOM.2 -> {c6, m2} 
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Plan extraction 

!   Label states in F* with fluent 
values 

!   Reactive Plan computed from 
set of control states S.  

!   Control state – has outgoing 
transition labelled with 
control. 

!   Stable state – all outgoing 
transitions are controls – 
environment can make no 
moves – quiescent. 

input 

s 

s 
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Adaptation 

!  Additional Goals (safety) 
!   []!(MOUSEROOM[0] && CATROOM[2]) 

!  Changing Environment 
!   doors c7a and c7b not controllable 

controller:- 
 CATROOM.0 MOUSEROOM.3 -> {}  
 CATROOM.0 MOUSEROOM.4 -> {c1, c4, m5}  
 CATROOM.2 MOUSEROOM.0 -> m4  
 CATROOM.2 MOUSEROOM.3 -> {c3, m6}  
 CATROOM.2 MOUSEROOM.4 -> {c3, m5}  
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General Goals  

!   General synthesis problem is 2EXPTIME in length 
of LTL formula. 

!   For Generalised Reactivity*, problem can be solved 
in N3 , where N is state space size. 

!   Large state spaces can be represented 
symbolically using BDDs 

*Synthesis of Reactive(1) Designs, Piterman, Pnueli and Sa’ar, 2004 
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Generalized Reactivity 

Using Safety Game algorithm No Safety  
Violations! 

Liveness  
Assumptions 

Liveness  
Guarantees 
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Example 

!   Cat & Mouse repeatedly visit room 2 & room 4 

assert A1 = MOUSEROOM[2] 
assert A2 = MOUSEROOM[4] 
assert A3 = CATROOM[2] 
assert A4 = CATROOM[4] 

goal G1 = 
    safety    { SAFE } 
    assume    {}  
    guarantee {A1, A2, A3, A4} 
    controls  { Controllable } 
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Goal Management ‒ Research Challenges 

!  Specification of domain model and goals 
!    application goals 
!    system goals 
!    covering structure, behaviour, performance … 
!    partial knowledge 

!  Goal refinement 
!  Runtime Goal & Constraint Checking 
!   Planning 

!    Liveness goals 
!  Scalability → Hierarchical Decomposition 



Generating Revised Plans 

!    Plan revision 
through model 
revision using 
observations 
and 
probabilistic 
machine 
learning 
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with Daniel Sykes, Alessandra Russo, Katsumi Inoue and Dominico Corapi 



Implementation - Status 

!   Plan interpreter 
!  Currently runs on  

a desktop machine 

!   Component selection 
!  Selection not yet fully 

integrated with plan 
interpreter 

!   Components 
!   implemented in Java, 

running on top of the 
Backbone system,  
directly on the Koala 
robots 

100 
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!   Challenge is to automate and run on-line what are 
currently off-line RE/design processes e.g. goal-
refinement…. 

!   Need to decide for a given application the 
requirement for adaptability etc. and the level of 
automation needed. 

!   Need to cope with incomplete information about 
the environment.  

Overall SE Research Challenges 
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Chapter 9.    In conclusion... Model Based Design 
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Software tools 

Automated software tools are 
essential to support software 
engineers in the design 
process.  

Techniques which are not 
amenable to automation are 
unlikely to survive in practice. 

Extensive experience in teaching the approach to both 
undergraduates and postgraduates in courses on 
Concurrency.  

Experience with R&D teams in industry (BT, Philips, NATS)   
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Software Tools - Lightweight vs. Heavyweight 

Short learning curve.  
Immediate benefits. 
Supports incremental model 
construction. Facilitates interactive 
experimentation. 

Traditional verification and 
analysis tools tend to require 
considerable expertise and have 
as their goal the ability to target 
large problems rather than ease 
of use. 

vs. 
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A Three-Layer Architecture Model 

!   separation of concerns  
!   layering according to response times 

Planning 

Assembly of 
software 
components 

Plan execution  

“Self-Managed Systems: 
An Architectural Challenge”, 
Jeff Kramer & Jeff Magee 
ICSE FOSE'07 
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Related Work ‒  

!    Lots and lots and lots…… 
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Current work 

!    Modal transition systems (MTS)  for partial 
models 

!    Adaptive autonomous systems 
!    Model Checking & Machine Learning for 

requirements elaboration  
!    Model revision using observations and 

probabilistic machine learning 

 Emphasis on lightweight, accessible and interactive 
tools tailored for engineers. 

LTSA available from: http://www.doc.ic.ac.uk/~jnm/book/ 



Microsoft Research Summer School, 2012 

Jeff Kramer 

Imperial College 
London 

Model-based design and 
analysis of concurrent and 

adaptive software 


