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Abstract
We present an implementation and evaluation of atomicity (also
known as software transactions) for a dialect of Java. Our imple-
mentation is fundamentally different from prior work in three re-
spects: (1) It is entirely a source-to-source translation, producing
Java source code that can be compiled by any Java compiler and
run on any Java Virtual Machine. (2) It can enforce “strong” atom-
icity without assuming special hardware or a uniprocessor. (3) The
implementation uses locks rather than optimistic concurrency, but
it cannot deadlock and requires inter-thread communication only
when there is data contention.

Categories and Subject DescriptorsD.3.3 [Language Constructs
and Features]: Concurrent programming structures

General Terms Languages

Keywords Atomicity, Transactional Memory, Concurrent Pro-
gramming, Java

1. Introduction
1.1 Atomicity: Definition and Prior Approaches

Multithreaded programs using shared memory, mutual-exclusion
locks, and condition variables are notoriously difficult to write
correctly. Avoiding races and deadlocks requires cumbersome and
error-prone idioms. Yet for an increasing number of applications
on an increasing number of platforms, parallelism is important
for performance (to exploit multiple processors) and isolation (by
running separate tasks with separate threads).

To make shared-memory multithreaded programming easier,
many researchers have argued foratomicity, also known assoftware
transactions. The software-engineering advantages of atomicity are
numerous and not the focus of this paper. We note simply that it lets
programmers write mutually-exclusive critical sections that access
any number of objects, without risking deadlock or relying on other
threads to obey a locking protocol.

Atomicity can complement or replace existing synchronization
mechanisms with the statement formatomic { s } wheres is a
(nearly arbitrary) statement. Semantically, so-calledstrong atomic-
ity meanss must executeas thoughthere is no interleaved compu-
tation, i.e., no other threads are running. (The implementation, of
course, need not actually stop other threads provided it preserves
the semantics.) Furthermore, a language should also ensure fair
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scheduling: long transactions must not starve other threads. Strong
atomicity ensures sequential reasoning is sound within a transac-
tion; no other thread can interfere or observe intermediate results.

The less rigorousweak atomicityprovides a no-interleaving
guarantee only among transactions, not between transactions and
other computation. To achieve atomicity, programmers (perhaps
with the aid of a type system or analysis tool) must use other
means to ensure there are no conflicting memory accesses between
transactional and non-transactional code.

The conventional wisdom followed in the many existing atomic-
ity implementations (see Section 7) is that a quality multiprocessor
implementation requires optimistic concurrency protocols imple-
mented in hardware or low-level software libraries (perhaps with
compiler back-end support). Moreover, strong atomicity is gener-
ally considered too performance limiting without hardware support
since it can require reads and writes not in transactions to synchro-
nize with other threads.

In this work, we take the view that a primary implementation
consideration is avoiding unnecessary synchronization (for uncon-
tended memory), and doing so correctly and efficiently requires
neither low-level techniques nor optimistic protocols.

1.2 Source-To-Source Translation To Java

Our prototype atomicity implementation (for Java) takes the novel
approach of modifying neither a compiler nor a (virtual) machine.
Rather, we perform source-to-source translation: We take a pro-
gram written withatomic and produce a regular Java source pro-
gram. Together with a few classes we wrote in Java (our “runtime
system” for atomicity), we can compile this Java code with any
compiler and run it on any virtual machine.

As such, we have demonstrated that implementing atomicity
can be kept quite separate from other concerns. Our translation
occasionally uses particular Java features, but our approach should
apply to other high-level languages. That is, we do not “pull any
Java tricks” that restrict the applicability of lock-based atomicity or
source-to-source translation.

Section 6 informally evaluates the use of source-to-source trans-
lation for this type of research study.

1.3 Transactions via Rollback and Locking

Instead of optimistic concurrency protocols, hardware cache co-
herence, or a restricted thread scheduler, we use automatically-
managed locks to manage contention and have transactions roll-
back memory if they hold the lock for data needed by another
thread.

A basic atomicity implementation using locks in this way is
surprisingly simple:

1. Let every object “lock itself” in the sense that every object has
a field holding theThread object that currently “owns” (i.e.,
may access) its fields. Letnull indicate the “lock is available.”
Assume access to these “current-holder” fields is synchronized



via primitive means (e.g., compare-and-swap operations). Note
these “locks” arenot Java’s built-in locks.

2. Require all code to acquire an object’s lock (i.e., set the lock-
field to the current thread) before reading or writing any other
field of the object. (For weak-atomicity, require the lock only in
a transaction.)

3. If a necessary lock is unavailable, “inform” the current holder it
must be “released soon.”

4. Require atomic-block execution to log all writes by storing the
object-field written to and the overwritten value in a thread-
local data structure.

5. Require threads to “poll” for locks to release. If in an atomic
block, “rollback” (abort) the transaction before releasing a lock.

Parts (1), (2), and (5) ensure no execution of an atomic block reads
inconsistent values or reveals inconsistent writes. Parts (3), (4),
and (5) prevent deadlock because no thread holds onto a requested
lock forever. The ability to rollback is crucial for preventing star-
vation. Exponential back-off can avoid livelock (any contention-
management scheme would suffice). Note we could change “lock
granularity” (making it finer by locking fields separately or coarser
by locking multiple objects together) without sacrificing correct-
ness. Similarly, it is correct to release a lock at any point outside an
atomic block (reacquiring it as necessary).

1.4 Contributions

This work presents a lock-based source-level implementation of
atomicity (with strong or weak semantics). The most novel con-
tributions are:

• A prototype demonstrating that atomicity does not require spe-
cial virtual-machine or hardware support. This indicates that
even with such support (which could improve performance
or simplify parts of the implementation), transactions can be
largely decoupled from the rest of the memory system.

• A correct design for software-transactional memory that uses a
lock-based approach and requires inter-thread communication
only when there is data contention. Strong atomicity does not
treat every memory access as a “little transaction.”

• Preliminary experimental results showing reasonable perfor-
mance for weak atomicity, much worse performance for naive
strong atomicity, but some hope that simple whole-program op-
timization can recover much of the difference.

2. Basic Approach
This section describes our implementation assuming the entire pro-
gram consists of user-defined classes containing constructors, in-
stance methods, and field accesses. Our implementation supports
other language features such as arrays; native code; the standard
library; static fields, methods, and initializers; exceptions; etc.

Our implementation, built with the Polyglot extensible com-
piler [25], takes a Java program withatomic statements and pro-
duces a Java program that can be compiled and run by any Java
implementation. The basic approach in this section obeys separate
compilation: we can compile each class as independently as a Java
compiler.

Figures 1 and 2 contain examples demonstrating how the fea-
tures of our translation fit together. For simplicity, they elide access
modifiers (e.g.,public) and package names. The examples show
substantial code bloat because they do little actual computation and
do not incorporate optimizations (Section 4). Also, a just-in-time
compiler can eliminate much of the introduced code.

2.1 Acquiring and Releasing Locks

We add one field to every object and several fields to each thread.
As a source-to-source translation, we cannot change the definition
of Object or Thread, but we can create subclassesAObject and
AThread respectively. Any class extendingObject or Thread has
its extends clause changed or added appropriately. In this way, we
can add fields to (almost) every user-defined class.

AObject has one field,currentHolder, of type AThread.
This field indicates which thread may currently access the object’s
fields;null means no thread may. This field is the conceptual lock
for the object, but it clearly is not a Java lock. The constructors
for AObject initialize currentHolder to the current-thread; this
policy choice does not affect correctness.

Every field access is preceded by checking that the field’s
object’s currentHolder field is the current-thread. If not, we
must first “acquire the lock.” IfcurrentHolder is null we
write the current-thread in it and proceed (synchronization of
currentHolder is discussed below). Else we add the object to
the current-holder’s “locks to release” set (theAThread instance
field lks_to_release holds this set) and we later retry acquiring
the lock. In summary,ignoring synchronization, the algorithm to
acquire the lock for an object is roughly this method ofAObject:

0. void acq_mylk() {
1. AThread me = (AThread)Thread.currentThread();
2. if(currentHolder != me)
3. while(true) {
4. if(currentHolder == null) {
5. currentHolder = me;
6. break;
7. }
8. currentHolder.lks_to_release.add(this);
9. AThread.check_release();
10. Thread.yield();
11. }
12. }

A field accesse.f wheref is defined in classC is rewritten as
C.get_f(e) whereget_f1 is a static method the translation of
C generates. It acquires the lock then returns the field’s contents.
Similarly, x.f=v becomesC.set_f(x,v).

Every threadpolls itslks_to_release field. To ensure polling,
we add a call toAThread.check_release to the start of each
method body and loop.2 The thread releases a lock by setting
currentHolder to null. When in an atomic block, we roll back
(see Section 2.3) before releasing any locks.

A key feature of our system is that threads do not release a
lock until another thread requests it. This policy avoids unnecessary
synchronization (see below), but does require polling throughout
the program.

2.2 Synchronization of Locks

The above scheme ensures field accesses use locks and locks
always become available eventually. Rolling back a transaction
before releasing locks ensures atomicity. However, the actual
implementation is more complicated: ThecurrentHolder and
lks_to_release fields are thread-shared so accessing them re-
quires synchronization.

For lks_to_release, each AThread has its own monitor
that every thread acquires before accessinglks_to_release.
Deadlock is impossible because no thread acquires another lock

1 Throughout this paper, we ignore name-mangling. For example, we actu-
ally use__aj_get_f in case there is a user-definedget_f method.
2 We omit checks where it is obviously sound. For example, a method body
containing no calls needs no check on entry.



class A {
int x;
A() { x=10; }
}

class A extends AObject {
int x;
static int get_x(A o) {

o.acq_mylk(); return o.x;
}
static int set_x(A o, int v) {

o.acq_mylk(); return o.x = v;
}
static int set_atomic_x(A o, int v) {

o.acq_mylk();
((AThread)Thread.currentThread())

.log(o,undo_x,o.x);
return o.x = v;

}
static UndoInteger undo_x = new UndoInteger() {

void undo(Object o,long v){((A)o).x = (int)v;}
};
A() {
super();
set_x(this,10);

}
A(DummyArg x) {

super(x);
set_atomic_x(this, 10);

}
}

Figure 1. A simple class before (above) and after (below) transla-
tion.

while holding one of these locks. This synchronization would be
a bottleneck if we actually incurred it on every loop iteration and
method call. Instead,AThread.check_release just decrements
a thread-local counter and checkslks_to_release only when
the counter reaches zero. We then reset the counter to a con-
stantPOLL_FREQUENCY. This constant trades off responsiveness
for communication. Section 5 measures the effect of varying it.

For currentHolder, every object has a Java monitor that is
held for lines 4–8 of the lock-acquire code above and when releas-
ing the lock. We could use the object itself (i.e., synchronize on
this in the code), but if user code also synchronizes on the object,
we could introduce deadlock. So we conservatively use a separate
array of monitors for controlling access tocurrentHolder fields,
usingSystem.identityHashcode on an object to index into this
array. (An alternative is to usejava.atomic.compareAndSet for
accessingcurrentHolder fields.)

Most importantly, the common case of a thread accessing a field
of an object for which it already holds the lock doesnot require
synchronization: The condition on line 2 of the lock-acquire code is
true, so we neither hash nor acquire a monitor. In particular, thread-
local data will never incur Java synchronization and this does not
require any static analysis. Rather, we incur only the overhead of
checking thatx.currentHolder==me always holds.

This algorithm is correct under Java’s Memory Model [20], i.e.,
we arenot assuming sequential consistency: Although the read on
line 2 above is not synchronized, the condition can be true only if
the same thread has already performed a synchronized write to the
currentHolder field. That is, we exploit that threads only ever
write their own thread-id intocurrentHolder fields.

class B extends C {
A a;
void f() { a = new A(); }
int g() { return a.x; }
B(int i) {
super(); f();
atomic { ++i; f(); a.x = a.x+i; }
}
}

class B extends C {
A a;
static A get_a(B o) {

o.acq_mylk(); return o.a;
}
static A set_a(B o, A v) {

o.acq_mylk(); return o.a = v;
}
static A set_atomic_a(B o, A v) {

o.acq_mylk();
((AThread)Thread.currentThread())

.log(o,undo_a,o.a);
return o.a = v;

}
static UndoObject undo_a = new UndoObject() {

void undo(Object o,Object v){((B)o).a = (A)v;}
};
void f() {
((AThread)Thread.currentThread()).check_release();
set_a(this, new A());
}
void __aj_f(){
((AThread)Thread.currentThread()).check_release();
set_atomic_a(this,new A(DummyArg.single));
}
int g() { return A.get_x(get_a(this)); }
int __aj_g() { return A.get_x(get_a(this)); }
B(int i) {
super(); f();
AThread me = (AThread)Thread.currentThread();
int __i = i;
boolean done = false;
me.start_atomic();
while(!done) {

done = true;
try {

++i; __aj_f();
A.set_atomic_x(get_a(this),

A.get_x(get_a(this))+i);
} catch (RollBack e) {

done = false;
i = __i;
me.sleep_after_rollback();

} finally { if(done) me.end_atomic(); }
}
}
B(DummyArg x, int i) {
super(x); __aj_f();
++i; __aj_f();
A.set_atomic_x(get_a(this),

A.get_x(get_a(this))+i);
}
}

Figure 2. A class before (above) and after (below) translation,
which uses the class in Figure 1.



2.3 Logging and Rollback

Correctness demands an atomic block not release locks for any
objects it has accessed. To avoid deadlock, it suffices to release
locks when requested, but to first undo all assignments to memory.
This section discusses how we undo field assignments; Section 2.4
discusses local variables.

While executing a transaction, assignment to fieldf of objectx
of typeC callsC.set_atomic_f(x,v) instead ofC.set_f(x,v).
The former is like the latter except it also calls the current thread’s
log method.Conceptually, it passesx (the “container” object),f
(the “field name”), andx.f before the assignment (the “old value”).
A thread-local data structure holds log entries in aconceptualstack.
To rollback, one pops elements off the stack, assigning each old
value back to the field of the container object.

The logging implementation realizes this concept via some clev-
erness to minimize per-assignment-in-transaction cost and obey
Java’s type system. (The latter would be no concern were the log
implemented in the virtual machine.) Relevant issues are:

• Field names are not first-class; we cannot pass them. (We could
use reflection but have chosen not to.)

• Container objects could be any subtype ofAObject.

• Previous values could be any type.

• Logging field-assignments should not cause memory allocation.

To begin, eachAThread has four fields that together encode the
log for fields whose types are subtypes ofObject:

int obj_log_index;
Object[] obj_log_containers;
UndoObject[] obj_log_undoers;
Object[] obj_log_oldvalues;

The ith log-entry is in theith index of the three arrays and
obj_log_index holds the current log size. If the arrays fill, we
double their size (see Section 2.5 for avoiding this). Hence we typ-
ically do no memory allocation, but never do more thanO(log n)
allocations for a transaction that doesn field assignments.

The obj_log_containers andobj_log_oldvalues arrays
hold the container-objects and previous-values. More interestingly,
obj_log_undoers holds call-back objects that the roll-back code
uses. TheUndoObject class is just:

abstract public class UndoObject {
abstract public void undo(Object container,

Object old);
}

and the roll-back code is just:

for(int i = obj_log_index; i >= 0; i--)
obj_log_undoers[i].undo(obj_log_containers[i],

obj_log_oldvalues[i]);

It just remains for the caller tolog to pass an appropriate instance
of UndoObject. For example, if assigning to fieldf of type D
of an instance of classC, the body ofundo is the assignment
((C)container).f = (D)old;. These downcasts execute only
if we rollback a transaction; the call tolog upcasts the container
and previous-value toObject.

For every field declaration, we have one (anonymous) subclass
for its undoer held in a static field of the field’s class. Continuing
our example, classC would have this declaration:

private static undo_f = new UndoObject () {
public void undo(Object container, Object old) {

((C)container).f = (D)old;
}};

Hence we have one new class for every field, but no per-instance or
per-assignment memory allocation. Moreover, two log entries are
for the same field of the same object if and only if the container and
undoer are the same object (i.e., pointer-equal).

For fields with primitive types, the log described so far would
incur the overhead of boxing the old-values. Instead, we use two
other logs, one for integral types (the old-values array has type
long[]) and one forfloat anddouble (the old-values array has
type double[]). We use different abstract “undo” classes, which
haveundo methods that may perform narrowing conversions.

When a transaction commits, it is not necessary to empty the
logs (the next transaction can just reset the indices to0). How-
ever, leaving objects in the container and old-value arrays can cause
space leaks. Section 5 reports the cost of “nulling-out” these array
entries to avoid potential leaks. (Another option would be to real-
locate the arrays for every transaction.) Note we cannot use weak-
arrays because during a transaction a log could hold the last refer-
ence to an object that will be live if we rollback.

2.4 Translation of atomic

We create two versions of each methodm in a source program:
We call m while not executing a transaction (so a write to fieldx
in m usesset_x) and__aj_m while executing a transaction (so a
write usesset_atomic_x). Similarly, calls inm are to other “non-
atomic” methods and calls in__aj_m are to “atomic methods.”
In this way, we know at each program point whether we are in a
transaction or not, so there is no run-time overhead for deciding if
we need to log. (Prior work [19] and our experience indicate that
whole-program analysis can remove most of this code duplication
because most methods are never used within a transaction.)

The obvious exception to the description above is that the non-
atomic version of a method containingatomic{s} uses atomic
methods ins. (In the atomic version we omit theatomic to imple-
ment a “flattened semantics” for nested atomic-blocks.) Translating
atomic{s} also involves logging local variables, catching an ex-
ception indicating a rollback occurred, and looping until the trans-
action succeeds. For example,atomic{ m(); ++i; } becomes:

AThread me = (AThread)Thread.currentThread();
int __i = i; // log original value
boolean done = false; // loop guard
me.start_atomic(); // initialize logs
while(!done) {

done = true;
try { __aj_m(); ++i; }
catch (RollBack e) {

// locks were released and field-writes undone
done = false;
i = __i; // rollback local
me.sleep_after_rollback(); // back-off

} finally { if(done) me.end_atomic(); }
}

Methods like__aj_m do not log local variables; they are simply
popped off the stack if a rollback occurs. Similarly, writes to fields
of this in the atomic version of constructors need not be logged
since the new object will be unreachable (garbage) after rollback.

However, to create atomic and non-atomic versions of each con-
structor we cannot follow our instance-method approach of giving
the atomic version a different name. Therefore, we have atomic
constructors take a dummy argument of an otherwise unused type
and callers pass a (globally-shared) object of this type.

2.5 Details

We now discuss some less critical details relevant to the translation.



In-place update Translatingf().x += 3 to
C_set_x(f(),C_get_x(f())+3) is incorrect because the latter
calls f twice. For such expressions (including(f().x)++) we
generate a helper method to do the update and passf() to it.

Log-duplicates If the same field of the same object is set multiple
times in the same transaction, only the first needs logging. As in
prior work [27], we assume most atomic blocks have few writes, so
it is faster not to detect duplicates. To avoid pathological situations,
we detect and remove duplicates once the log arrays fill using a
simpleO(n2) approach: Two entries are duplicates if the containers
and undoers are the same object. If after duplicate removal the
arrays are still over half full, we create new arrays twice as long.

Thread Objects Threads must be a subclass ofThread, so Java’s
single inheritance means threads cannot be a subclass ofAObject.
Therefore, we also have acurrentHolder field andacq_mylk
method inAThread. We also seem to assume everyThread is
anAThread lest(AThread)Thread.currentThread() fail. We
have additional support for threads the virtual machine creates.

Final fields We readfinal fields directly; there is no need for
getters, setters, and undoers. Similarly, forfinal local variables
accessed within an atomic-block, we need not and must not do roll-
back. What remains is initializing afinal field in a constructor
(or instance initializer). In the atomic-constructor (the one taking a
DummyArg) we can just do the initialization; if the transaction aborts
the new object will be garbage anyway. In the non-atomic construc-
tor, we statically disallow a final-field initialization to be lexically
within an atomic block since rollback would not be possible.

Field and instance initializers Given a field initialization likeT
x=f(); we cannot generate atomic and non-atomic versions like
we do for methods and constructors. So here and only here we incur
a run-time test to determine if the running thread is in a transaction.

Static getter/setter methodsWhy have we made the getter and
setter methodsstatic, with calls likeget_x(e), rather than calls
like e.get_x()? Because fields and static methods have the same
lookup rules, but instance methods use dynamic dispatch, which
would be incorrect if a subclass reuses a field name.

Lock Stealing So far, we assume a thread holding access to an
object will eventually release access when another thread requests
it. However, threads that have terminated or are blocked (due to
legacy synchronization or waiting for a lock to be released) will
not do so. We did not pursue having threads release all objects they
hold on termination because we do not want the space and time
overheads of maintaining the set of objects held. (At the very least
we would need to use weak references for this set.)

Instead, the thread requesting an object checks if the holding
thread is blocked (or no longer alive). If so, it is safe to set the
object’scurrentHolder to null “on behalf” of the dead thread,
using appropriate synchronization.3

Catch/Finally Catch and finally blocks in user code must not
“intercept” aRollback exception. As necessary, we rewrite such
blocks so that during rollback they immediately rethrowRollback.

2.6 Summary

To review our source-to-source translation:

• For every field, there are 3 new methods (getters and setters) and
one new field holding an anonymous inner class (the undoer).

• For every method and constructor, there are two versions
(atomic and non-atomic).

3 This synchronization requires modifying a flag before and after a thread
blocks itself, but this is straightforward with source-to-source translation.

• Every object has acurrentHolder field. A global array of
monitors synchronizes access to such fields.

• Every loop and method has a check to see if the running thread
must release ownership of an object.

• EveryThread is anAThread holding thread-local data such as
the logs for rollback.

3. Other Language Features
We need to “scale up” our basic approach to support interaction
with other language features in modern languages like Java. Some
features we can support fully (arrays, static fields, other concur-
rency primitives, exceptions, and inner classes). For other features
we have had to limit (but not forbid) their use (reflection, native
code, finalizers) or relax Java’s semantics (class loading). In gen-
eral, we can identify three causes of such limitations:

1. Source-to-source translation: We add fields, methods, calls, etc.
to programs. If these additions are visible (e.g., via reflection),
then translation could change a program’s meaning. In principle
one could enrich the translation to hide the changes (e.g., by
rewriting all uses of reflection), but we have not done so.

2. Irreversible virtual-machine actions: We must be able to abort a
transaction and rollback to an equivalent pre-transaction state.
But certain actions in Java are both visible and not undoable
(e.g., loading a class with static initializers or creating an object
with a finalizer). Virtual-machine support would avoid these
limitations, but the practical impact is probably small.

3. Unavailable code: All code must obey our translation’s in-
variants, but we cannot change native code nor certain library
classes whose definition is assumed by the virtual machine.

We have chosen to make these limitations cause run-time excep-
tions (e.g., if a native call occurs in a transaction) rather than to
relax our atomicity guarantees, but this is an easily changed policy.

Space constraints preclude discussing how we support these
extensions, but an extended version [18] includes the details.

4. Optimizations
Our source-to-source translation introduces several sources of over-
head that we could hope to ameliorate with compile-time analysis
on the translated source program. Our experiments (Section 5) in-
dicate that most overheads (e.g., polling, logging, and adding space
to every object) are relatively small, so we consider the one that is
not: The getters and setters for field (and array) accesses amount to
read- and write-barriers on heap accesses.

Figure 3 summarizes the barrier overheads without optimiza-
tion: Under strong atomicity, every access requires “owning” (i.e.,
having thecurrentHolder be the running thread) the object.
Under weak atomicity, only accesses within transactions require
“owning” the object; other accesses can read/write the field directly.
As discussed in Section 7, much prior work provides only weak
atomicity. Doing so produces faster multithreaded code, and in the
limit case that a program does not use transactions, weak atomicity
suffers no read or write barriers.

A variety of compile-time analyses could safely remove barri-
ers from non-transactional code while preserving strong atomic-
ity, such as thread-escape analysis for establishing that an object is
thread-local. We implemented a novel analysis that is complemen-
tary to escape-analysis: We can remove a barrier if we can prove
that the accessed object could never be accessed within a transac-
tion. Although pointer-analysis would improve precision, we can
remove many barriers with only class-based information. After all,
if no atomic block ever accesses some fieldf, then no access of field



weak atomicity strong atomicity
non-atomic read none own
non-atomic write none own

atomic read own own
atomic write own+log own+log

Figure 3. What reads and writes do under different semantics:
“own” means get exclusive access; “log” means log the old value.

f needs a barrier. In the limit, a program without atomic blocks will
be optimized back to exactly the weak-atomicity implementation.

Therefore, our implementation supports “optimized strong
atomicity” by using a linear-time whole-program analysis to re-
move barriers on accesses that cannot conflict with an access within
a transaction. Details of the analysis are available [18].

5. Experiments
We view our current prototype as a proof-of-concept that one can
implement atomicity for a modern programming language on top
of existing hardware and virtual machines. Some performance pa-
rameters and large parts of the design space remain unexplored (see
Section 8). Nonetheless, we have run our translator on small bench-
marks to evaluate overall performance. We conclude that our ap-
proach is sometimes but not always competitive with lock-based
code, and it provides a reasonable platform for evaluating ongoing
research.

Section 5.1 describes the benchmarks and platforms. Section 5.2
presents overall performance results. Section 5.3 presents addi-
tional results from modifying parameters such as threads’ polling
frequency. Section 5.4 summarizes our results.

5.1 Benchmarks and Platforms

We have investigated four small programs. For each, we changed
uses ofsynchronized to uses ofatomic and manually verified
that the programs are correct with either strong or weak atomicity.

• tsp solves a traveling salesperson problem. It has been used
in previous concurrency studies [31, 8]. Threads share partially
completed work and the best-answer-so-far via shared memory,
but there is parallelism as they search independently. All data
is pre-allocated (after the threads are spawned there are no uses
of new). In the original Java, locking is coarse: all thread-shared
data is immutable or guarded by one of two locks, and nontrivial
work is done while holding locks. The original program also has
benign data races: Code reads the “shortest tour found so far”
without synchronization; this is correct because the value only
decreases, so stale values lead only to useless work.

• crypt is an embarrassingly parallel program in the Java-
Grande suite (www.epcc.ed.ac.uk/javagrande/) that does
not need synchronization (threads operate over disjoint data).
Therefore it is useful for measuring the slowdown of our trans-
lation for sequential code and the cost of unnecessary barriers
in our unoptimized translation.

• synchBench is a small benchmark in the JavaGrande suite orig-
inally designed to measure the cost of Java’ssynchronized
construct. We can similarly measure the cost of heavily con-
tended atomic blocks where the body of theatomic does very
little work (essentially increment a thread-shared counter).

• hashtable is our implementation of a benchmark described in
previous work [13] in which parallel threads access a shared
hashtable with a mix of insert and lookup operations (16%
inserts). We keep the table sparsely populated enough that it is

never resized. All threads share a hashtable-object which has an
array for which each operation accesses an index of the array.
The Java version uses one lock for the whole table; we have not
had time to experiment with a lock-based concurrent hashtable.

All experiments used the Java HotSpot VM and Runtime Envi-
ronment (build 1.5.006-b06) with the-server option. This option
favors long-running programs, so we “warmed up” by running each
program until we saw consistent timing data and then took the av-
erage of twenty runs. This methodology has two caveats:

• Without “warm up,” all data had larger variance (the lock-based
more than the atomic code), and the slowdown for atomic was
much lower. That is, “warmed up” results are worse for our
translation.

• While most runs have times near the average, occasionally runs
take twice as long or longer. We believe unfortunate thread pre-
emptions is to blame. These outliers exist for lock-based code
and atomic code but are more common for atomic code.

We ran experiments on three machines, all running Linux
2.6.12. Our uniprocessor is a 2.8GHz Intel Pentium 4 with a 512Kb
cache and 1GB RAM. Our two-processor machine has 2 Intel Xeon
3.22GHz processors with 2MB caches and 3GB RAM. Our eight-
processor machine (which we use for most of our results) is a Dell
Poweredge Server with 8 Intel Xeon 3.16GHz processors with 1
MB caches and 8GB RAM.

5.2 Overall Performance

We can measure the slowdown of the atomic versions of the bench-
marks relative to the original Java programs. The latter are com-
piled directly byjavac, i.e., they are not translated by us. For
the atomic versions, we consider three settings: (1) Strong atom-
icity without optimization, (2) Strong atomicity with optimization,
and (3) Weak atomicity. With optimization, our translator takes the
whole program and passes specialized Java files tojavac.

Figure 4 shows results for our benchmark programs for each
semantics, various numbers of threads, and various machines. Fig-
ure 5 shows parallel speedups fortsp andcrypt. The other bench-
marks do not parallelize (even the Java versions), so synchroniza-
tion overhead causes significant slow down with more processors.
The slowdown for atomic is actually less than for locks (see [18]).

The tsp program shows significant slowdown compared to
lock-based code, even with weak atomicity. This application has
larger atomic blocks than other benchmarks, and we observed that
rollbacks are not uncommon (on the order of tens of rollbacks
per second on the eight-processor machine). We also believe the
slowdown results from threads not releasing ownership of objects
until another thread requests them, which is a bad match for the
work-sharing style of the application.

Nonetheless,tsp shows our optimization has value: We recover
about half the performance gap between strong and weak atomic-
ity even though the optimization still cannot allow the benign data
races. Unfortunately, the performance of strong atomicity (with or
without optimization) does not scale with the number of proces-
sors for this benchmark. The weak-atomicity version shows some
speed-up with the number of processors, though the Java version
shows more (and neither is close to linear). We conclude that while
removing barriers significantly speeds up sequential execution, we
do not remove enough to achieve much parallelism fortsp, a fairly
complicated benchmark with large atomic sections.

crypt has no synchronization (locks in the Java version or
atomic in our version). Hence this is the ideal case for our opti-
mization: It removes all barriers (so optimized and weak atomicity
are identical) whereas the unoptimized version is essentially se-
quential because all threads contend for the same arrays. (See the



Figure 4. Benchmark results with 8-processors for various implementations and thread-counts. Slowdown is relative to the locking versions.

discussion forhashtable for how to avoid this.) Moreover, the
overhead after removing barriers (polling for locks to release, space
increases, etc.) is minimal; we run only 10% slower than the Java
version and preserve parallel speedup (super-linear on 2 processors
and almost 5x on 8 processors).

synchBench is designed to measure the cost of acquiring and
releasing locks. All threads contend for the same data, so neither
the lock nor the atomic version have parallelism. The Java pro-
gram synchronizes on every iteration of every thread’s inner-loop
whereas our program synchronizes less often due to the polling fre-
quency. Therefore, we run several timesfaster(slowdown of 0.2x
is speedup of 5x). However, while the data when the thread-count
does not exceed the processor-count is reliable, with 16 threads and
8 processors, run times for any semantics vary by several factors.

hashtable also exhibits no parallelism for any version, but the
work done in critical sections is a larger than forsynchBench.
There are two reasons the atomic version cannot exploit parallelism
using our implementation. First, all hashtable operations use the
same hashtable object. Second, all hashtable operations use the
same array contained in the hashtable object. The hashtable object
is immutable, so a read-only analysis or reader-writer locks for
currentHolder (i.e., allowing concurrent reads) would fix the
first problem. For the array, our locking is too coarse; it is important
to allow concurrent access to disjoint indices [2].

5.3 Sensitivity to Parameters

The results presented so far incorporate some tuning of implemen-
tation parameters. We now demonstrate that these parameters do
involve trade-offs but that performance does not require “getting
them exactly right.”

Polling Frequency Recall that on every loop and non-leaf method
call, a thread callscheck_release but this method usually only
decrements a thread-local counter. We can vary how often it actu-
ally checks for locks to release. If too low, threads wait too long for
other threads. If too high, too much time is spent on synchronized
access to thread-shared data. Results in the previous section used a
polling frequency of 1024. As Figure 7 shows, fortsp (which has
some parallelism and some contention), the best polling frequency
is neither too small nor too large. For the other benchmarks, polling
frequency is not important. In particular, forcrypt (which has no
inter-thread communication), the cost of checking for locks to re-
lease is extremely low because the virtual machine special-cases
synchronizing on a monitor that is never held by another thread.

Back-Off Policy We can also adjust the back-off policy for when
a thread aborts a transaction. To make livelock unlikely, we use
exponential backoff, i.e., wait timeb ∗ cn wheren is how many
times a transaction has aborted. We can adjustb andc, though the
HotSpot VM does not support sleeping less than one millisecond.4

Results in the previous section usedb = 1ms and c = 1.1.
For tsp these small values produced the best results; significantly
larger values could lead to additional slowdown by about a factor
of two. The other benchmarks rollback too rarely for the exact
parameters to matter except for very large values (e.g.,b = 100ms)
a single unfortunate rollback can produce very bad performance.

We also noticed that while a thread intsp sleeps after aborting
a transaction, it is common for other threads to “steal” locks it owns
(see Section 2.5). The reason is this sequence of events when two
threads are executing code that uses many of the same objects:

4 The virtual machine implementsThread’s sleep(long millis,long
nanos) method by rounding to the nearest number of milliseconds.



Figure 5. Parallel speedup: Results for 2 threads on a 2-processor machine and 8 threads on an 8-processor machine, relative to 1 thread on
a 1-processor machine (results for 1-processor are normalized to 1).

Benchmark (thread-count) default synchronize onthis no current-thread sharing null-out logs
tsp (4) 0.72s 0.69s (0.96x) 0.98s (1.36x) 0.73s (1.02x)
tsp (8) 0.71s 0.73s (1.02x) 0.95s (1.33x) 0.74s (1.04x)
crypt (4) 2.94s 2.93s (0.99x) 2.89s (0.98x) 2.94s (1.00x)
crypt (8) 2.80s 2.76s (0.98x) 2.75s (0.98x) 2.78s (0.99x)
synchBench (4) 1000K 953K (1.05x) 903K (1.11x) 784K (1.28x)
synchBench (8) 499K 503K (.99x) 419K (1.19 x) 353K (1.41x)

Figure 6. Effect of changing current-holder synchronization, current-thread sharing, and log destruction on our 8-processor machine. Times
for tsp and crypt are absolute running times in seconds (low is good) with slowdown relative to “default” in parentheses. Times for
syncBench are “operations per second” (high is good), with slowdown relative to “default” in parentheses. “Default” is the configuration
used for other experiments: optimized strong atomicity, separate monitors for current-holder instead ofthis, with current-thread sharing,
without writingnull in log entries when atomic commits. Subsequent columns change one of these policies at a time.

• Thread 1 blocks to wait for object 1, owned by thread 2.

• Thread 2 rolls back a transaction, releases object 1, and sleeps.

• Thread 1 acquires object 1 and then “steals” other objects thread
2 had accessed and still owns.

If objects with this sort of locality shared acurrentHolder (i.e.,
ownership had coarser granularity), performance would improve.

Current-Holder Synchronization Using an array of monitors for
synchronizing access tocurrentHolder fields requires a level of
indirection and computing hashcodes. This array is necessary only
to avoid deadlock if the program still hassynchronized state-
ments. Our benchmarks do not, so we can synchronize directly on
the object whosecurrentHolder field we are accessing. The third
column in Figure 6 shows the slowdown (i.e., speedup when num-
bers are less than 1) with this change. The very small improvement
suggests that the level of indirection and hashcode computation is
well-optimized by the underlying virtual-machine.

Current-Thread Sharing Results presented so far include a sim-
ple translation-time optimization: Methods that use the current-
thread more than once store the result ofThread.currentThread()
in a local variable. To make this more useful, we also use versions
of the getter methods that take the current-thread as an argument.
The fourth column in Figure 6 shows that disabling this common-
subexpression elimination slows downtsp andsynchBench 11–
36%, which suggests we should implement even more aggressive
sharing.

Log Destruction When an atomic block completes, we just set
the log indices back to 0 to prepare for the nextatomic block.

Figure 7. Effect of polling frequency with optimized strong atom-
icity, 8 processors, 8 threads. The x-axis has powers of 2 from 32
to 64K.

Hence the logs can leak space if they hold references to otherwise
unreachable objects. For our benchmarks, the number of objects is
too small for these potential leaks to matter, but a safer approach
is to writenull in the log entries when an atomic block commits.
(Doing so does not change the asymptotic running time of transac-
tions.) As the fifth column in Figure 6 shows, the slowdown from
taking the time to write thesenull values is noticeable only for
synchBench, in which we have no computation except very short
atomic blocks (so we are adding a significant amount of work).



5.4 Summary

With weak atomicity, our performance for small benchmarks is sur-
prisingly good considering the work we add and the lack of virtual-
machine support. With strong atomicity, the results are less im-
pressive. Optimizing away barriers improves performance, but too
much unnecessary synchronization remains to achieve much paral-
lelism. Tuning parameters can affect results, but not dramatically.

6. Effect of Source-to-Source Translation
With the benefit of hindsight, we discuss advantages and disadvan-
tages of performing transactional-memory research via source-to-
source-translation. Many of the conclusions apply broadly to re-
search on memory systems for modern programming systems.

The most obvious advantages of source-to-source translation
are rapid prototyping (making it easy to experiment with many set-
tings and implementations), ease of programming (e.g., writing the
“run-time” for our system in Java source code), and portability (i.e,
working with any Java implementation). For memory studies where
contention and synchronization are the primary factors, working at
the source level is perfectly fine assuming lower levels do not in-
troduce false sharing.

Probably more important but less obvious are the performance
and correctness advantages of “reusing” an unchanged Java com-
piler. We know we have not broken or slowed down another
memory-system component (e.g., the garbage collector) because
we are completely decoupled. Put another way, we neither had to
reimplement Java from scratch nor modify a complicated optimiz-
ing implementation; both would surely lead to bugs. Other minor
advantages include the debugging advantages of producing source
code that must type-check and for which sophisticated tools ex-
ist. For example, we used Java PathFinder [30] to check simple
correctness properties of our run-time system.

The most obvious disadvantages of source-to-source transla-
tion are relying on an uncontrollable back-end for performance
(e.g., method-inlining), sacrificing opportunities to share overhead
(e.g., combining our polling with heap-limit checks), and having to
compromise semantics when features are simply unavailable (e.g.,
rolling back class-loading).

Much less obvious when we began is the extra work required
to produce source code that passes Java’s semantic analysis. For
example, the result of translatingatomic{s; return 1;} is not
something that Java’s compile-time checker deems to “always re-
turn” (even though it does), so we have to insert a second (unreach-
able) return statement. A good compiler framework like Polyglot
helps with these issues, but it really is work that should not be nec-
essary. Another practical disadvantage is having to deal with arrays
and unchangeable standard-library classes. For example, we can-
not addcurrentHolder fields to arrays, even though this would
be straightforward with virtual-machine support.

7. Related Work
Language design and implementation for transactional memory is
a very active research area [29], particularly in the programming-
language [6, 2, 16, 27, 9] and architecture [24, 26, 3] communi-
ties, but we believe our source-to-source translation and lock-based
implementation are novel. This section briefly describes other lan-
guage designs, atomicity implementations, and systems using sim-
ilar implementation techniques.

Language Design We currently provide only the simplest lan-
guage construct for software transactions. Prior work has pro-
vided conditional critical regions [13], better support for exter-
nal actions [12, 27], alternative composition [14, 2], open transac-
tions [6], and nested transactions [2]. Most systems let a transaction

abort explicitly. Nothing in our approach precludes these features.
Next-generation languages Fortress, Chapel, and X10 have trans-
actions, but implementations are not yet available.

Implementation Approach Other languages guaranteeing atom-
icity and fair-scheduling employ one or more of: special-purpose
hardware [11, 26, 3, 6], optimistic concurrency protocols for soft-
ware transactional memory [28, 13, 14, 16, 2], limiting execution
to one processor [27, 19], or not updating shared memory un-
til a transaction completes [13, 32]. Software approaches that re-
quire exclusive ownership for writes to shared memory are closest
to our approach, but they still use version-number techniques for
reads [16, 2, 7]. That is, one can view these approaches as locking
on write but using optimistic concurrency for reads. This approach
allows read-parallelism (as would reader-writer locks) but in theory
can waste more computation in transactions that abort.

Other implementations use a library [22, 21, 10, 17, 7] rather
than a language extension. Like source-to-source translation, this
avoids changing a compiler, making it easier to experiment with
different techniques and parameters. Unlike a language extension,
programmers must manually wrap access to transactional memory
in library calls, which can require manual code duplication for
functions and libraries used inside and outside transactions. It is
unclear how to enforce strong atomicity via a library.

Pessimistic Atomicity The “pessimistic atomic sections” in Au-
tolocker [23] share the most implementation ideas with our work,
but there are substantial differences. In Autolocker, a C program-
mer usesatomic and also annotates data with what lock (if any)
guards access to it. A whole-program analysis then determines if
it can implementatomic by acquiring locks such that deadlock is
impossible. Salient differences with our system include: (1) Au-
tolocker provides weak atomicity. (2) Autolocker does not provide
even weak atomicity if the programmer wrongly indicates that data
accessed within a transaction does not need a lock. (3) Autolocker
does not provide rollback or fairness: A transaction that does not
terminate will hold locks forever, which can starve other threads.

Strong vs. Weak Atomicity Weak and strong atomicity are seman-
tically incomparable (see [4], which also coined the terms), and
it is widely believed that strong atomicity is better for software-
engineering but worse for performance. We believe we are the first
to investigate the performance of strong atomicity without assum-
ing novel hardware [3, 6], a uniprocessor [27, 19], or a purely func-
tional language that segregates mutable memory that can partici-
pate in transactions [15]. One could provide strong atomicity in a
weak atomicity system in other ways, such as using a sound data-
race detector [1, 5] or treating every memory operation as “its own
little transaction.” Our implementation isnotequivalent to the latter
because outside transactions we require ownership but not logging.

8. Conclusions and Future Work
We have presented a prototype for software transactions imple-
mented in terms of locks. We have shown the approach can apply
to a full object-oriented language and that (at least for small bench-
marks) whole-program optimization can ameliorate some of the
costs of strong atomicity. As a source-to-source translation written
with an extensible compiler, our implementation provides an un-
precedented level of portability and serves as an easy-to-use start-
ing point for us and others in ongoing research.

Looking forward, many design parameters remain uninvesti-
gated. We would like to use our system to study the following:

• Ownership granularity: Our prototype groups ownership of
all an object’s fields or array’s indices by using exactly one
currentHolder field for each object. Other granularities, both



finer (e.g., each array index) and coarser (e.g., entire data struc-
tures), can improve performance in some situations.

• Advantage of virtual-machine support: We would like to deter-
mine which aspects of the translation benefit most performance-
wise when we implement them beneath the Java layer.

• More barrier removal: We believe extending our barrier-removal
optimizations with alias analysis and escape analysis will im-
prove the performance of strong atomicity even further.

• Early lock releasing: We currently do not release ownership of
an object until another thread requests it, but any release-point
outside a transaction is sound. For contended objects, an “early
release” could improve performance.

• Reader-writer locks: Extending the notion ofcurrentHolder
to allow parallel readers is straightforward in principle, but it re-
mains to investigate if the extra complexity helps performance.

Longer term, we expect hybrid approaches, dynamically adjust-
ing between our lock-based approach for less contended data and
optimistic approaches for more contended data, may prove best.
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