
How Programming Languages Will Co-evolve with
Software Engineering: A Bright Decade Ahead

Emerson Murphy-Hill
North Carolina State University

Raleigh, North Carolina
emerson@csc.ncsu.edu

Dan Grossman
University of Washington

Seattle, Washington
djg@cs.washington.edu

ABSTRACT
Programming languages are an indispensable foundation of
software engineering, so it is essential that innovations in software
engineering anticipate and influence innovations in programming
languages and vice-versa. We discuss seven emerging trends in
the design, adoption, and use of programming languages that have
clear and valuable overlap with software engineering. These
themes include language design that assumes modern
development ecosystems; languages that support multiple views;
data-driven language design; formal and machine-checked
verification that works for real systems; gradual typing; languages
that embrace a distributed, asynchronous world of large external
data sources; and the increasing influence of functional-
programming concepts. We discuss how the time is now for
software-engineering research to influence and improve these
significant changes to the field.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General.
D.3.0 [Programming Languages]: General.

General Terms
Design, Human Factors, Languages

Keywords
Programming languages, software engineering, future

1. INTRODUCTION
Software engineering is a disciplined approach to creating and
maintaining software in a systematic and predictable fashion.
While there are many variables that influence how systematic and
predictable a software project is, one common factor is the
programming language[s] the software engineers use. Software
engineers can decide whether to use or not use any number of
prescribed software engineering practices, from whether to do
code reviews to whether to write acceptance tests, but engineers
cannot make software without a programming language.

In the past, innovations in programming languages have typically
occurred separately from innovations in software engineering. For
example, in 1995 the Java language and runtime environment was
first released without any accompanying software engineering
tools that would ease the development of large Java systems.
These would emerge years later as their necessity became
apparent. Even today, the separation between programming

languages and software engineering tools is often treated as a
virtue, with many environments touting their language
independence (e.g. [1]) and many programming languages touting
their tool independence (e.g. [2]).

We believe that the software engineering and programming
languages fields will become more deeply intertwined in the
decade ahead. As such, there are likely innovations in
programming languages that the software-engineering research
community should anticipate and influence. In particular, we
make the following predictions:

1. Over the next decade, the design of new programming
languages will increasingly focus on leveraging supportive
IDEs, as well as assuming powerful social networks.

2. Over the next decade, the source-code ecosystem will evolve
away from an ASCII-as-ground-truth mindset, treating code
as rich, structured data supporting many views.

3. Over the next decade, language designers will increasingly
use data to drive the design of new languages and language
features.

4. Over the next decade, the use of interactive proof assistants
for co-developing robust programs and proofs of correctness
will allow developers to prove more powerful properties of
real programs, with the proof-engineering difficulties
becoming a primary research focus.

5. Over the next decade, the passé argument over static versus
dynamic typing will give way to languages supporting a
continuum and a gradual-typing methodology that can be
adapted to application needs.

6. Over the next decade, language innovations will shift from
focusing on batch-oriented or single-user programs to
distributed, concurrent, and parallel programming; large
workflows of asynchronous computations; accessing massive
amounts of rapidly changing data; and other modern-
computing challenges that will change the boundaries of a
well-defined “program” or “code base.”

7. Over the next decade, functional programming will continue
to see increased industry adoption, both in terms of
developers adopting functional languages (Clojure, Erlang,
F#, Haskell, OCaml, Racket, Scala, etc.) and in terms of
language designers adopting functional features into other
languages. The term "functional language" will continue to
lose precise meaning, replaced by a split focus on immutable
data and first-class functions.

We expand on each of these predictions in the following sections.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FOSE'14, May 31 – June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2865-4/14/05... $15.00.

2. LANGUAGES ASSUME THE IDE

Over the next decade, the design of new programming languages
will increasingly focus on leveraging supportive IDEs, as well as
assuming powerful social networks.

In the past, some programming languages and integrated
development environments (IDEs) have been tightly coupled,
perhaps most notably environments for Smalltalk. More
commonly, the language and environment are decoupled, but
modern powerful IDEs are now the norm: While more traditional
text editors provide simplicity for small programs and retain some
popularity, developers expect powerful and feature-rich IDEs.
Some IDEs are more feature-rich for a particular programming
language (e.g., Eclipse and IntelliJ for Java), but the clear
separation is useful for the designers of both the language and the
environment.

We argue that to date programming languages have had more
influence over IDE features than vice-versa. For example, IDEs
often compensate for cumbersome language features. Consider the
complaint that Java is unnecessarily verbose. IDEs can
compensate by providing auto-completion, such as expanding
Foo x = new into Foo x = new Foo(…), completing the
type signature for a well-known method like main, or filling in
generic type instantiations since the Java language has no type
inference in such contexts.

Programming environments have often “played catch up” in this
way, providing features to make programming in particular
languages easier only after community experience has identified
the most common frustrations. Many refactoring tools, while
extremely useful once available, meet this description and are
arduous to build. This delay in IDE feature availability can hinder
the adoption and efficient use of new languages and language
features.

Some programming features can be supported either by
introduction into the language or into the IDE. In both cases, post-
release evolutionary changes can be disorienting to the
programmer. For example, new programming language features
may increase expressivity to a language, but often require the
programmers to learn those features. Maintaining backward
compatibility in the language and IDE do not avoid this problem
when the programmer works in a team environment where other
programmers are injecting new language features into the
programmer’s code. Our view is that in the next ten years, such
feature changes will be increasingly made to the IDE rather than
the language, because IDE changes are generally viewed as less
risky (lower commitment) than evolving a code base to use new
features. Time will tell if this trend is good or bad: avoiding risk
can also avoid progress.

Beyond the IDE, programming is no longer a solitary or even
team-based exercise where developers sit alone with their source
code and documentation. In either open-source settings or closed-
source settings in large organizations, we see large, rich,
searchable corpora of code, as well as technical discussions and
informal third-party documentation that are consulted often. Sites
like GitHub allow developers to observe easily how other
developers work, enabling them to learn from “coding rockstars”

[3]. Sites like StackOverflow enable developers to ask questions
about new languages and language features, where most questions
receive acceptable answers within about a half an hour [4] and,
anecdotally, many questions are already answered, reducing
confusion-resolution to effective web-search. Arguably, this trend
has reduced the need for programming language designers to
provide comprehensive documentation, or has at least reduced
developers’ reliance on official documentation.

Evolution of existing programming languages and creation of new
programming languages both show no signs of slowing. Indeed,
language heterogeneity strikes us as greater than it was a decade
or two ago. (We avoid listing [all] modern popular languages for
fear of omission.) Only recently, however, have we noticed
particular language-design decisions motivated by IDE
interaction. In this way, we start to see a virtuous feedback loop
where IDEs start to influence languages in a way that
complements languages driving IDE features.

We cite three particular examples, though there are surely others.
First, consider dot-notation in F#. Like all ML dialects, F# allows
defining functions over a type such as length : string ->
int, which are used like length x. But F# also allows
members, which are used with the more object-oriented syntax
x.Length. In addition to supporting a more object-oriented
perspective, dot-notation’s primary benefit is IDE code-
completion: given that x has type string, typing “x.” can bring
up a list of completions including Length. This advantage is
meaningless without the IDE feature.

The type systems of emerging languages Dart and TypeScript also
have IDE-focused benefits. These type systems are, by design,
unsound by the conventional definition of actually preventing
using a value of the wrong type at run-time. For example, they
allow covariant subtyping in places that can lead to run-time type
errors, thus requiring the run-time checks normally associated
with dynamically typed languages. However, the unsound type
system can still provide enough type information to enable key
IDE features, like hovering over a variable to learn its type or
providing continuous type-checking to identify errors. In purely
dynamically typed languages, supporting such IDE features
requires static type inference, which remains a difficult research
question in practice for such languages [5] [6] [7] [8] [9].

Our third example where language evolution relies on IDEs is so
ubiquitous we barely notice it: Modern languages can include
enormous standard libraries and popular frameworks with
thousands of classes or modules and hundreds of thousands of
methods or procedures. We argue these frameworks are simply
unusable without modern programming-environment (and
Internet) features for searching for features and identifying the
necessary arguments, rather than manually consulting off-line
documentation as in bygone eras.

We anticipate that ongoing and future language design can take
for granted IDE features beyond just code completion and API
search, including refactoring tools, continuous testing, version
control, and much more. While this could lead to more syntactic
convergence across languages (e.g., dot-notation), it could more
interestingly lead to languages with new features for modularity
and programming in the large. After all, if tools and
environments can do more to take care of finding the code that is

relevant and hiding the code that is not, then languages may be
able to focus on other needs.

We also believe the impact of sites like GitHub and
StackOverflow is huge on programming practice, but they have
not yet had their full impact on the design of both languages and
programming environments. These sites do nothing less than
make programming in many ways a global social experience,
which can fundamentally change the notion of software team and
available programming resources. What, we wonder, could a
programming language design do to make StackOverflow
searches easier and more effective as developers learn the
language and the language evolves? Conversely, would it help to
have better support in languages for provenance of code as
developers copy-and-modify from online templates and version-
control repositories?

Crowd documentation will likely have some new implications as
well. For one, the dispersal of documentation will mean that it
may be harder for the end programmer to find information that
she is looking for. For example, a programmer may find an
answer to a very similar question to the one she wants answered,
but adapting the answer to her precise needs will remain a
challenge. Language-related information may also be difficult to
find whenever it is located in places that are not easy to search,
such as in screencasts or closed-source codebases. Another
challenge will be in bootstrapping documentation – if
documentation for mature languages is extensive and crowd-
maintained (where, in fact, crowd-maintenance is what drives the
extensiveness), then new and emerging languages will need to
have at least some minimum amount of documentation before the
crowd can use them in earnest. What that documentation should
contain remains unclear. Similarly, it seems likely that languages
designers will continue to have to produce and maintain at least
some core documentation, yet it remains to be seen what types of
core documentation is best for the designers to produce and which
are best for the crowd to produce.

Will crowd-managed “documentation” become so good that it can
replace carefully curated language reference manuals, easing the
documentation burden on language providers? We imagine that
the breadth and depth of language documentation will increase,
but in non-traditional ways. Rather than having a single location
where a developer can find documentation, pieces of
documentation will be dispersed around the web, in the form of
questions and answers, examples, and screencasts.

Finally, we expect the tool-support “barrier to entry” for new
programming languages will continue to increase since
programmers have rightly come to expect rich tooling.
Specifically, we predict language designers will co-develop tools
along with languages so that both are released simultaneously.
This has the advantage that a developer’s transition from an
existing, rich language-tool ecosystem will be smoother.

Co-developing languages and tools will have other effects. First,
when a language is designed independent of tooling, the design
space is constrained because the language itself must support all
identified needs. When tools are co-developed with the language,
the design space expands; a tradeoff made in a language feature
can be ameliorated in an accompanying tool. This expansion of
the design space may have a significant impact on new

programming languages. Second, development of tools alongside
languages will spur innovation in making it easier to develop
tools. Some headway has been made in this space already, such as
extensible IDEs that make the user interfaces of these tools easier
to build, as well as extensible program analysis infrastructure,
such as LLVM [10], which makes the back-end of tools easier to
build.

3. BEYOND ASCII FOR SOURCE CODE

Over the next decade, the source-code ecosystem will evolve away
from an ASCII-as-ground-truth mindset, treating code as rich,
structured data supporting many views.

Software source code has traditionally been defined in terms of a
single, canonical view: A set of files, each of which is a linear
sequence of characters. It is surprising for two reasons that this
historical view of ASCII (or Unicode) as ground truth remains the
norm (e.g., it is plain-text that is recorded in version-control
repositories). First, code is richly structured and there are
advantages to viewing source code in terms of syntax trees, as
almost every program-analysis tool does. So why not view the
syntax tree as the ground truth with the text-editor aspect of an
IDE serving just as a tool for modifying the tree?

Second, given the rich multidimensional structure of software,
why do we restrict ourselves to a single view of source code,
choosing one single structure as a fundamental aspect of design,
possibly later refactoring to change this central choice?

The idea of multivew is that software should instead have multiple
views that a developer can work with [11]. Multiple views on
software is useful because different views are useful for different
purposes. As an example of why multiple views are useful for
programming, consider a laboratory experiment performed by
Green and Petre [12]. The authors asked programmers to compare
several simple programs displayed in four different ways: two
textual representations and two graphical representations. Two of
the textual representations are reproduced in Figure 1. When
answering, “Given this input, what is the output?” programmers
could answer the question faster using one view (Figure 1, left)
than the other view, but when answering “What input produced a
given output?”, programmers answered the question faster using
the other view (Figure 1, right). Thus, neither view was across-
the-board superior to the other – it depends on the programmer’s
task (and quite possibly the programmer). Much of the theory of
multiview, as well as prototype implementations, have been
worked out for the semantics of maintaining multiple consistent
views of data [13] [14]; a tantalizing next step would be to more
thoroughly support these approaches for large bodies of source
code in full-fledged languages.

While the notion of multiple views is not new, the technical
challenge in implementing it in programming languages or
development environments has been the ability to switch back and
forth quickly and with strong consistency guarantees. Several
trends have enabled such switching, however.

One is refactoring, which enables programmers to switch views,
even if they work in one programming language because there
may be multiple ways to represent the same computation. With

refactoring, a programmer can switch among these ways by
restructuring his or her program. However, the process is
sometimes slow and error prone. Tools speed up the process, yet
developers still often do not use them [15].

Other recent approaches have enabled multiple views in a single
language, but without modifying the source code. Davis and
Kiczales’ registration-based abstractions enables programmers to
switch between different views of their program at the press of a
button [16]. Empirical results evaluating registration-based
abstractions suggest that novice programmers can understand new
views of code after being exposed to those views four times or
fewer, without the need for additional training or documentation
[17]. The Intentional Software Workbench is another realization
of the multiview idea, with a slightly different focus; different
views are intended to help different stakeholders view the
software from their preferred perspective [18].

In the next 10 years, we expect the emergence of multiview
programming in a mainstream programming environment.
Moreover, we feel that the multiview concept will likely expand
beyond programming languages into new other programming
domains, such as compiler error messages. In the same sense that
software is typically viewed as a linear sequence of characters, so
too are compiler messages (and, in general, from all types of
program analysis tools). And the benefits of multiple views for
programming likely extends to such program analysis messages as
well.

We believe the next decade is particularly ripe for the
mainstreaming of multiview programming for three reasons. First,
as shown by the research described in this section, we have
enough experimentation with multiview to know what the pain
points are, and hopefully, how to deal with them. Second, our

feeling is that the programming public is less dogmatic about
programming languages than they were in the past, taking more of
a “best tool for the job” mentality. The next logical step, then, is
to enable them to switch between “tools” seamlessly. Finally, we
believe that programmers’ increasing comfort with storing and
running their programs in the cloud has helped them break free
from the traditional file-based mindset, and in turn break into the
multiview mindset.

4. DATA-DRIVEN LANGUAGE DESIGN
Many programming languages designed today are designed by
passionate individuals or teams who create new languages to
solve challenges poorly met by existing languages. These
challenges are often defined by personal experience and
anecdotes. In the past, some claims made about the benefits of
these languages have not been supported by the evidence [19].
At the same time, recent research has been studying how
languages and language features are really being used. This
research has come roughly in two forms, as controlled
experiments and as field studies. In controlled experiments, such
as the family of experiments about the effects of types [20] [21]
and annotations [22], researchers have begun to establish cause
and effect relationships between programming languages and
programming outcomes, like productivity and defects. In field
studies, such as those that investigate how developers adopt and
use generics [23] and languages in open source [24], have
investigated how real developers in the wild have used languages
and language features.
In the past, this research rarely has influenced language design. As
one positive example, research about Java generics influenced
whether a new language at Microsoft would include generics (it
didn’t) [25].

if high:
 if wide:
 if deep: weep
 not deep:
 if tall: weep
 not tall: cluck
 end tall
 end deep
 not wide:
 if long:
 if thick: gasp
 not thick: roar
 end thick
 not long:
 if thick: sigh
 not thick: gasp
 end thick
 end long
 end wide
not high:
 if tall: burp
 not tall: hiccup
 end tall
end high

weep : if high & wide & (deep | tall)

cluck : if high & wide & -deep & -tall

gasp : if high & -wide & - (long & thick | -long & -thick)

roar : if high & -wide & long & -thick

sigh : if high & -wide & -long & -thick

burp : if -high & tall

hiccup : if -high & -tall

Figure 1. Two views of the same program, reproduced and adapted from Green and Petre [12].

This is not to say that designers do not use feedback from their
programming community. Eric Lippert, previously a principal
developer on the C# compiler team, wrote a blog for many years,
explaining the concepts behind C# language features and
soliciting feedback from an eager community of C# developers.
For instance, in a post about asynchronous programming in C#
5.0, Lippert reflects on confusing concurrent operators and
modifiers:

It is unfortunate that people’s intuition upon first exposure
regarding what the “async” and “await” contextual keywords
mean is frequently the opposite of their actual meanings.
Many attempts to come up with better keywords failed to find
anything better. If you have ideas for a keyword or
combination of keywords that is short, snappy, and gets across
the correct ideas, I am happy to hear them.1

Although Lippert has left the C# compiler team, Microsoft
continues to solicit feedback about the language through a formal
customer feedback platform.2
While such social media has surely encouraged more interaction
between programming language designers and programming
language users, this interaction does not include the silent

1http://blogs.msdn.com/b/ericlippert/archive/2010/10/29/asynchro

nous-programming-in-c-5-0-part-two-whence-await.aspx
2http://visualstudio.uservoice.com/forums/121579-visual-

studio/category/30931-languages-c-

majority of programmers who have neither the time nor the
interest in interacting with their language’s designers.
We believe that the research community will produce increasingly
useful findings that will help inform the design of new languages.
One way will be to characterize how existing language features
have been used, which will inform how language designers can
expect the same language features to be adopted and used in
different languages. For example, we have good existing data
about how generics have been used in multiple languages [25],
which we expect forms a sufficient grounding to make predictions
about how generics would be accepted by developers in new
languages. We also expect that such findings can generalize to
completely new language features as well. For instance,
comparing the past use of the generics in C# and Java, our past
results [25] suggest that forsaking backwards compatibility and
offering developers a “carrot” (in the form of new APIs, in the
case of C# generics) is a more successful strategy than simply
retrofitting an existing language and not offering any new
functionality (in the form of Java generics). This principle should
generalize to other language features as well, and we expect the
future will hold more such findings, and they will have an
increasing impact on how language designers evolve existing
languages. Moreover, if research can begin to look at languages
from a more holistic perspective (as Meyerovich and Rabkin have
done [24]), it may also be able to predict and influence how the
developer community will react to entirely new langauges.
Beyond research findings, we expect in the next decade that better
language analytic tools will help language designers ask and

Figure 2. Current programming language analytics on ohloh.net.

answer their own questions about how developers use existing
languages and language features. On one hand, researchers’
toolsets are often open source, but our experience has been that
these toolsets are often brittle because research does not reward
robustness in language analysis tools (some researchers have
bucked this trend, such as those creating the Boa framework [26]).
On the other hand, we anticipate that industry-created analytics
tools will be increasingly helpful to software developers. To take
a current example, Figure 2 displays some publically-visible
programming language analytics displayed on Ohloh.net. We
anticipate such dashboard systems will contain more detailed data,
such as about language feature usage, suitable for consumption by
language designers.

5. FORMAL VERIFICATION FOR REAL

Over the next decade, the use of interactive proof assistants for
co-developing robust programs and proofs of correctness will
allow developers to prove more powerful properties of real
programs, with the proof-engineering difficulties becoming a
primary research focus.

For software that is critical infrastructure affecting our safety,
health, financial system, etc., correctness is paramount. For
decades, this truism has led to the call for formal specifications
and proofs that software meets those specifications. For just as
long, skeptics have pointed to the classic arguments of De Millo,
Lipton, and Perlis [27] that, “ease of formal verification should
not dominate programming-language design” because
specifications are too complex to be correct anyway, software
requirements change too rapidly, and manual proofs are often
riddled with infelicities that undermine our confidence in them.

In the last several years, researchers pursuing formally verified
software infrastructure have made substantial progress in winning
the argument in the most direct way possible: By actually building
real systems with machine-checked proofs of non-trivial
correctness properties. As leading examples, we now have the
CompCert C-to-x86 compiler guaranteed to preserve semantics
[28], an operating system kernel with many guaranteed properties
including correct access control and robustness to malicious
system-call arguments [29], a web browser guaranteed to isolate
distinct browser tabs securely and preserve web-cookie integrity
[30], and a relational database with query optimizations proven
correct with respect to relational algebra [31]. Some independent
studies have confirmed some of these systems are “more correct”
and robust. For example, random-testing exposed dozens of bugs
in common C compilers, but none in CompCert [32]. In a world
that depends on correct and secure software infrastructure,
particularly the middleware and compilers on which all other
software depends, we can expect advances in formal verification
to continue to make progress.

How has this success circumvented De Millo, Lipton, and Perlis’
arguments? First, formal specifications need not encompass all
requirements. We can prove browser security without formalizing
everything a web browser must do, which is essential since even
specifying how to render HTML is surely intractable. Second,
interactive proof assistants mechanically check all proofs, so there
is no longer a need to trust the proof. Of course, the proof checker
must now be trusted, but the proof checkers used today are
independent of the particular software system being verified, have
been refined over many years, and rely on only the most

indisputable logical axioms. The modest size and clarity of such
proof checkers make them amenable to thorough manual
inspection, and once we believe a checker is correct, we can
safely trust any proof it checks. Third, the need for changing
requirements and verification that can evolve with sophisticated
systems has been solved by… well, in fact, this challenge largely
remains unsolved!

Indeed, the large formal-verification efforts to date, while
impressive engineering achievements, have taken heroic difficult
work by leading researchers. These systems can involve person-
decades and the need to maintain proofs that can be larger than the
code itself makes adding new features or refactoring a system far,
far too difficult. The authors of the systems listed above report
proofs that were 6-20× larger than the code-bases proven correct,
but here “lines of code [and proof]” still make the proofs seem
easier than they actually are: they take world experts in formal
theorem proving orders of magnitude longer than writing the
code. (Of course, these mechanically verified proofs reduce the
need for testing and debugging time, but the imbalance in effort
remains striking.) It is not uncommon in this domain today to
find proof-debugging and proof-evaluation so difficult that one
just throws away a proof that takes days to develop and starts
over.

So, the challenge for the next decade is to design better [proof]
languages, tools, and methodologies to meet the needs of these
efforts, particularly for proof evolution and maintenance. We
argue this challenge is truly open – the methodologies of
interactive theorem proving for real software are sufficiently
different from conventional software engineering that we need
fresh ideas. On the other hand, we see no fundamental
impossibility, i.e., no reason why proof engineering cannot
succeed even if, in the next decade, developing formally verified
systems remains an important specialized subdiscipline. What
remains to be seen is how to combine ideas from the formal
methods community with ideas from the software engineering
community to bring the same sort of productivity gains that we
have seen in other areas of software engineering.

6. GRADUAL TYPING WILL SUCCEED

Over the next decade, the passé argument over static versus
dynamic typing will give way to languages supporting a
continuum and a gradual-typing methodology that can be adapted
to application needs.

Are professional programmers more productive with or without a
static type system? Do novices learn better with or without the
structure imposed by types? Does static typing reduce the need
for testing and the number of defects in deployed products?
These questions represent a classic “holy war” that, in their
generality and yes/no nature, obscure and oversimplify a large
amount of agreed-upon conventional wisdom. In the next decade,
we believe the field will move beyond a dichotomy to appreciate
the complementary roles of sound static analysis and run-time
checking.

Let us try to quell the argument with as little controversy as
possible: Programmers make errors. Tools, such as type systems,
that can detect some of those errors or prove their absence without

needing test coverage are valuable. As the theory and practice of
type systems grows and computational resources are brought to
bear on static analysis, the range of properties that can be verified
in practice grows as well. However, undecidability renders static
analysis either unsound or (more often) incomplete in theory, and
we see this in practice as well, requiring false alarms, programmer
annotations, or both. Type systems impose structure on code that
can limit code reuse and require commitment to design decisions
prematurely. They can prevent testing incomplete systems. Thus,
while traditional type systems enable developers to find and fix
errors early, they also force developers to deal with those errors
immediately, before doing anything else.

Where the challenge lies in the next decade is taking two ideas
that are widely acknowledged as good ones and making them
commonplace and effective. First, gradual typing is the idea that
development can transition smoothly between dynamic typing and
static typing without switching languages or having to rewrite an
entire codebase. The typical proposed methodology is to start
with little or no static typing and to add types as design decisions
harden and invariants become more difficult to maintain. Second,
surely many applications, and even many abstractions within an
application, have their own internal invariants that would benefit
from the rigor and soundness of type systems, so making type
systems extensible and application-specific is valuable. In the
extreme, a fully malleable type system would let application
developers (re-)implement gradual typing, but we believe it is
valuable to keep the former concept distinct.

Mixing static typing and dynamic typing is a very old idea that
has received considerable recent attention. A full survey of recent
work is not our focus here, but some representative work shows
the range of complementary perspectives:

 We can start with a dynamically typed language and infer
types to detect likely bugs or perform compile-time
optimizations, a now commonplace idea that goes back at
least twenty years in programming languages [33].

 We can start with a statically typed language and make it
possible to run (incomplete) programs by converting
compile-time errors into run-time errors [34] [35].

 We can have a language with typed and untyped modules
that can interact while maintaining appropriate blame for
when an error occurs [36].

 We can enrich a dynamically typed language with optional
types that still support common programming patterns like
structural conformance [37].

 We can build extensible type systems for encoding
application-specific properties, building on well-known
semantic foundations like type qualifiers [38].

Much of this work to date, however, has focused on the core
programming language design and implementation aspects.
Programming environments, development methodologies, and
rigorous field studies have been secondary considerations at best.
While the success of gradual typing is by no means inevitable
(true partisans of type systems or their absence will surely
continue to promote their respective endpoints on the type-system
continuum), we believe it will succeed, and we challenge the
community to prepare software engineering for a gradual-typing
world.

7. MODERN, SCALABLE APPLICATIONS

Over the next decade, language innovations will shift from
focusing on batch-oriented or single-user programs to distributed,
concurrent, and parallel programming; large workflows of
asynchronous computations; accessing massive amounts of
rapidly changing data; and other modern-computing challenges
that will change the boundaries of a well-defined “program” or
“code base.”

Innovation in programming languages and software engineering is
not always spurred internally from those communities. There is
no shame in identifying that innovations are often a response to
changing needs and priorities for software, and the next decade
will be no exception. The world of programs that operate without
communicating with other programs, networks, and external data
sources is an ever-smaller portion of the software ecosystem and
has plenty of sufficient programming environments. Software-
system challenges are now often related to asynchrony,
distribution, concurrency, and data management. Either
programming languages and software engineering tools will help
make developing such systems easier or our fields will diminish in
importance, where programming will become craft work, which
depends “on special skills [which is marked by] the lack of
standardization of the product” [39].

Fortunately, there is much work already to build on. To pick just
a couple examples, Erlang’s success is largely due to its primary
consideration of failure in distributed systems, and language or
library support for asynchrony (such as Scala’s framework[s] for
actors or .Net’s async) are practical successes built on solid
foundations. However, it is far from clear that we have yet
achieved conventional wisdom and agreed-upon best practices for
language features and software-engineering approaches for this
kind of programming. Will the next decade achieve clarity,
separating winners from losers, or will new ideas lead to an even
wider range of approaches?

Dealing with “big data” also deserves increased attention even if
the phrase itself may be a buzzword with unclear boundaries. We
know how to approach using, say, Java to build a GUI application
for a laptop or smartphone. But is it as clear how to use Java to
build an application that processes 1TB of data each day? Such
applications are written regularly with a collection of tools that are
not yet an integrated part of the conventional languages and
toolsets. What synergies lie ahead by treating big-data as the
norm in planning and executing software development, and how
should these synergies influence software tools and language
design?

8. MAINSTREAM FUNCTIONAL
PROGRAMMING

Over the next decade, functional programming will continue to
see increased industry adoption, both in terms of developers
adopting functional languages (Clojure, Erlang, F#, Haskell,
OCaml, Racket, Scala,etc.) and in terms of language designers
adopting functional features into other languages. The term
"functional language" will continue to lose precise meaning,
replaced by a split focus on immutable data and first-class
functions.

For decades, functional languages have had the reputation of
being outside the mainstream, favored more by the programming-
languages research community than by industry. As such,
functional languages have often been the proving ground for new
language features, type systems, etc. and have been used in
computer-science education as ways to focus on compositionality
and clear, simple semantics.

But this view of the world is already outmoded. First, “functional
languages” (an ambiguous term, as discussed shortly) are used for
real software all the time. Before Java’s success, it was common
to state without evidence that any language relying on garbage
collection was impractical. Nowadays, dismissing functional
programming as impractical is similarly antiquated. The
Commercial Users of Functional Programming conference3
attracts hundreds of people each year. The Haskell wiki lists
dozens of companies using the language.4 In alphabetical order,
Clojure, Erlang, F#, Haskell, OCaml, Racket, and Scala have
dedicated user communities building real systems and lauding the
functional nature of these languages – as well as their convenient
facilities for interfacing with other languages and external
libraries as needed.

But more importantly and conclusively, the two primary features
of functional languages – first-class function closures and
immutable data5 – are increasingly common in languages not
deemed “functional.” In a world where C++, C#, and Java all
“have lambdas,” not to mention JavaScript and Ruby, functional
programming has already gone mainstream. We challenge the
software-engineering research community to focus on functions
with the same vigor that objects have received in the past –
perhaps there are processes, tools, and best practices yet to be
discovered and distilled.

We argue further that the terms “functional programming” and
“functional language” will start to lose meaning. The traditional
marriage of closures and immutability will remain a valuable pair,
but the ideas are orthogonal. For example, the rise of mainstream
concurrency has made immutable objects a common design
choice (there is arguably no easier way to prevent race conditions
and other concurrency bugs), irrespective of programming with
closures. Combining the loss of “functional” as a distinct term
with the blending of static and dynamic typing discussed
previously, we will struggle to categorize emerging programming
languages with a convenient simplistic set of adjectives. Already
the designers of F#, Racket, Scala, etc. chafe at having their
languages pigeonholed into a single “paradigm,” and even Haskell
has been described by one of its lead designers as, without
sarcasm, “the world’s finest imperative programming language”
[40].

How should this fundamental breakdown of separable paradigms
affect research into effective software-engineering practices?
What taxonomy should we create to better describe actual

3 http://cufp.org/conference
4 http://www.haskell.org/haskellwiki/Haskell_in_industry
5 By immutability, we mean the use of that data structures cannot

be modified by a program, but instead can only be modified
when copied as a second data structure. Immutable objects are
advantageous in that they are naturally thread-safe.

practice? Is JavaScript more like C++ or more like Scheme – or
does the question even make sense? We challenge the software-
engineering research community to understand these questions
and search for answers.

9. CONCLUSION
The next decade will certainly bring changes to the way software
engineers use programming languages. In this paper, we have
made seven predictions about what some of those changes will be.
While these changes will entail challenges to software engineering
practice and research, they also present great opportunity. We are
of the opinion that one of the best ways to meet these challenges
is by encouraging the software engineering and programming
language research communities to work together.

ACKNOWLEDGEMENTS

Thanks to Václav Rajlich for providing comments on a prior
version of this paper. Portions of this paper benefited from
feedback from Kathleen Fisher and Zach Tatlock, but any
mistakes and controversies are the fault of the authors alone.

10. REFERENCES

[1] G. Canfora, L. Cerulo and M. Di Penta, "Tracking Your
Changes: A Language-Independent Approach," IEEE
Software, vol. 26, no. 1, pp. 50-57, 2009.

[2] M. Fernández, K. Fisher, J. N. Foster, M. Greenberg and Y.
Mandelbaum, "A Generic Programming Toolkit for
PADS/ML: First-Class Upgrades for Third-Party
Developers," Lecture Notes in Computer Science: Practical
Aspects of Declarative Languages, vol. 4902, pp. 133-149,
2008.

[3] L. Dabbish, C. Stuart, J. Tsay and J. Herbsleb, "Social coding
in GitHub: transparency and collaboration in an open
software repository," in ACM 2012 Conference on Computer
Supported Cooperative Work, 2012.

[4] S. M. Nasehi, J. Sillito, F. Maurer and C. Burns, "What
Makes a Good Code Example? A Study of Proramming
Q&A in StackOverflwo," in 28th IEEE International
Conference on Software Maintenance, 2012.

[5] M. Furr, J.-h. An, J. S. Foster and M. Hicks, "Static Type
Inference for Ruby," Proceedings of the Object-Oriented
Program Languages and Systems (OOPS) Track at ACM
Symposium on Applied Computing (SAC), pp. 1859-1866,
2009.

[6] A. Guha, C. Saftoiu and S. Krishnamurthi, "Typing Local
Control and State Using Flow Analysis," 2011.

[7] P. Heidegger and P. Thiemann, "Recency Types for
Analyzing Scripting Languages," Proceedings of the
European Conference on Object-Oriented Programming, pp.
200-224, 2010.

[8] T. Zhao, "Type Inference for Scripting languages with
Implicit Extension," Proceedings of the International
Workshop on Foundations of Object-Oriented Languages,
pp. 37-50 , 2010.

[9] S. Tobin-Hochstadt and M. Felleisen, "Logical Types for
Untyped Languages," Proceedings of the ACM International
Conference on Functional Programming, pp. 117-128 ,
2010.

[10] C. Lattner and A. Vikram, "LLVM: a compilation framework
for lifelong program analysis & transformation,"
Proceedings of the International Symposium on Code
Generation and Optimization, pp. 75-86, 2004.

[11] A. P. Black and M. P. Jones, "The Case for Multiple Views,"
Proceedings of the Workshop on Directions in Software
Engineering Environments (WoDSEE), pp. 1-8, 2004.

[12] T. R. G. Green and M. Petre, "When Visual Programs are
Harder to Read than Textual Programs," Proceedings of the
6th European Conference on Cognitive Ergonomics, 1992.

[13] N. Foster, K. Matsuda and J. Voigtländer, "Three
Complementary Approaches to Bidirectional Programming,"
Proceedings of the International Spring School on Generic
and Indexed Programming, pp. 1-46, 2012.

[14] N. Foster J., M. B. Greenwald, J. T. Moore, B. C. Pierce and
A. Schmit, "Combinators for Bidirectional Tree
Transformations: A Linguistic Approach to the View Update
Problem," ACM Transactions on Programming Languages
and Systems, vol. 29, no. 3, 2007.

[15] E. Murphy-Hill, C. Parnin and A. P. Black, "How We
Refactor, and How we know it," IEEE Transactions on
Software Engineering, pp. 5-18 , 2012.

[16] S. Davis and G. Kiczales, "Registration-based Language
Abstractions," Proceedings of the ACM International
Conference on Object Oriented Programming Systems
Languages and Applications, pp. 754-773, 2010.

[17] J.-J. Nunez and G. Kiczales, "Understanding Registration-
Based Abstractions: A Quantitative User Study,"
Proceedings of the IEEE 20th International Conference on
Program Comprehension, pp. 93-102, 2012.

[18] C. Simonyi, M. Christerson and S. Clifford, "Intentional
Software," Proceedings of the 21st Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pp. 451-464 , 2006.

[19] S. Markstrum, "Staking Claims: a History of Programming
Language Design Claims and Evidence: a Positional Work in
progress," Proceedings of the Workshop on Evaluation and
Usability of Programming Languages and Tools
(PLATEAU), pp. 1-5, 2010.

[20] C. Mayer, S. Hanenberg, R. Robbes, É. Tanter and A. Stefik,
"An empirical study of the influence of static type systems
on the usability of undocumented software.," Proceedings of
the ACM International Conference on Object Oriented
Programming Systems Languages and Applications, pp. 683-
702 , 2013.

[21] S. Hanenberg, "An experiment about static and dynamic type
systems: doubts about the positive impact of static type

systems on development time," Proceedings of the ACM
International Conference on Object Oriented Programming
Systems Languages and Applications, pp. 22-35, 2010.

[22] S. Schulze, J. Liebig, J. Siegmund and S. Apel, "Does the
Discipline of Preprocessor Annotations Matter? A Controlled
Experiment," Proceedings of the 12th International
Conference on Generative Programming: Concepts &
Experiences, pp. 65-74, 2013.

[23] C. Parnin, C. Bird and E. Murphy-Hill, "Adoption and Use of
Java Generics," Journal of Empirical Software Engineering,
vol. 18, no. 6, pp. 1047-1089, 2013.

[24] L. A. Meyerovich and A. S. Rabkin, "Empirical Analysis of
Programming Language Adoption," Proceedings of the 2013
ACM SIGPLAN International Conference on Object
Oriented Programming Systems, Languages, and
Applications, pp. 1-18, 2013.

[25] D. Kim, E. Murphy-Hill, C. Parnin, C. Bird and R. Garcia,
"The Reaction of Open-Source Projects to New Language
Features," Journal of Object Technology, 2013.

[26] R. Dyer, H. A. Nguyen, H. Rajan and T. N. Nguyen, "Boa: a
language and infrastructure for analyzing ultra-large-scale
software repositories," Proceedings of the International
Conference on Software Engineering, pp. 422-431, 2013.

[27] R. A. De Millo, R. J. Lipton and A. J. Perlis, "Social
Processes and Proofs of Theorems and Programs,"
Communications of the ACM, vol. 22, no. 5, pp. 271-280,
May 1979.

[28] X. Leroy, "Formal Certification of a Compiler Back-End, or:
Programming a Compiler with a Proof Assistant,"
Proceedings of the 33rd ACM Symposium on Principles of
Programming Languages, pp. 42 - 54 , 2006.

[29] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M.
Norrish, T. Sewell, H. Tuch and S. Winwood, "seL4: Formal
Verification of an OS Kernel," Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles,
pp. 207-220, 2009.

[30] D. Jang, Z. Tatlock and S. Lerner, "Establishing Browser
Security Guarantees Through Formal Shim Verification,"
Proceedings of the 21st USENIX Conference on Security
Symposium, pp. 8-8 , 2012.

[31] G. Malecha, G. Morrisett, A. Shinnar and R. Wisnesky,
"Toward a Verified Relational Database Management
System," Proceedings of the 37th ACM Symposium on
Principles of Programming Languages, vol. 45, no. 1, pp.
237-248 , 2010.

[32] X. Yang, Y. Chen, E. Eide and J. Regehr, "Finding and
Understanding Bugs in C Compilers," Proceedings of the
ACM Conference on Programming Language Design and
Implementation, pp. 283-294, 2011.

[33] R. Cartwright and M. Fagan, "Soft Typing," Proceedings of
the ACM Conference on Programming Language Design and
Implementation, pp. 278-292 , 1991.

[34] M. Bayne, R. Cook and M. D. Ernst, "Always-Available
Static and Dynamic Feedback," Proceedings of the 33rd

International Conference on Software Engineering, 2011.

[35] D. Vytiniotis, S. Peyton Jones and J. P. Magalhães, "Equality
Proofs and Deferred Type Errors: A Compiler Pearl,"
Proceedings of the ACM International Conference on
Functional Programming, pp. 341-352 , 2012.

[36] S. Tobin-Hochstadt and M. Felleisen, "The Design and
Implementation of Typed Scheme," Proceedings of the 35th
ACM Symposium on Principles of Programming Languages,
pp. 395-406 , 2008.

[37] T. Wrigstad, F. Z. Nardelli, S. Lebresne, J. Östlund and J.
Vitek, "Integrating Typed and Untyped Code in a Scripting
Language," Proceedings of the 37th ACM Symposium on
Principles of Programming Languages, pp. 377-388, 2010.

[38] W. Dietl, S. Dietzel, M. D. Ernst, K. Muslu and T. Schiller,
"Building and Using Pluggable Type-Checkers,"
Proceedings of the 33rd International Conference on

Software Engineering, pp. 681-690, 2011.

[39] R. Blauner, Alienation and Freedom, University of Chicago
Press, 1964.

[40] S. Peyton Jones, "Tackling the Awkward Squad: Monadic
Input/Output, Concurrency, Exceptions, and Foreign-
Language Calls in Haskell," Engineering Theories of
Software Construction, pp. 47-96, 2001.

