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ABSTRACT 
Programming languages are an indispensable foundation of 
software engineering, so it is essential that innovations in software 
engineering anticipate and influence innovations in programming 
languages and vice-versa.   We discuss seven emerging trends in 
the design, adoption, and use of programming languages that have 
clear and valuable overlap with software engineering.  These 
themes include language design that assumes modern 
development ecosystems; languages that support multiple views; 
data-driven language design; formal and machine-checked 
verification that works for real systems; gradual typing; languages 
that embrace a distributed, asynchronous world of large external 
data sources; and the increasing influence of functional-
programming concepts.   We discuss how the time is now for 
software-engineering research to influence and improve these 
significant changes to the field.   

Categories and Subject Descriptors 
D.2.0 [Software Engineering]: General.      
D.3.0 [Programming Languages]: General.  

General Terms 
Design, Human Factors, Languages 

Keywords 
Programming languages, software engineering, future 

1. INTRODUCTION 
Software engineering is a disciplined approach to creating and 
maintaining software in a systematic and predictable fashion. 
While there are many variables that influence how systematic and 
predictable a software project is, one common factor is the 
programming language[s] the software engineers use. Software 
engineers can decide whether to use or not use any number of 
prescribed software engineering practices, from whether to do 
code reviews to whether to write acceptance tests, but engineers 
cannot make software without a programming language. 

In the past, innovations in programming languages have typically 
occurred separately from innovations in software engineering. For 
example, in 1995 the Java language and runtime environment was 
first released without any accompanying software engineering 
tools that would ease the development of large Java systems. 
These would emerge years later as their necessity became 
apparent. Even today, the separation between programming 

languages and software engineering tools is often treated as a 
virtue, with many environments touting their language 
independence (e.g. [1]) and many programming languages touting 
their tool independence (e.g. [2]). 

We believe that the software engineering and programming 
languages fields will become more deeply intertwined in the 
decade ahead. As such, there are likely innovations in 
programming languages that the software-engineering research 
community should anticipate and influence.  In particular, we 
make the following predictions: 

1. Over the next decade, the design of new programming 
languages will increasingly focus on leveraging supportive 
IDEs, as well as assuming powerful social networks. 

2. Over the next decade, the source-code ecosystem will evolve 
away from an ASCII-as-ground-truth mindset, treating code 
as rich, structured data supporting many views. 

3. Over the next decade, language designers will increasingly 
use data to drive the design of new languages and language 
features. 

4. Over the next decade, the use of interactive proof assistants 
for co-developing robust programs and proofs of correctness 
will allow developers to prove more powerful properties of 
real programs, with the proof-engineering difficulties 
becoming a primary research focus. 

5. Over the next decade, the passé argument over static versus 
dynamic typing will give way to languages supporting a 
continuum and a gradual-typing methodology that can be 
adapted to application needs. 

6. Over the next decade, language innovations will shift from 
focusing on batch-oriented or single-user programs to 
distributed, concurrent, and parallel programming; large 
workflows of asynchronous computations; accessing massive 
amounts of rapidly changing data; and other modern-
computing challenges that will change the boundaries of a 
well-defined “program” or “code base.” 

7. Over the next decade, functional programming will continue 
to see increased industry adoption, both in terms of 
developers adopting functional languages (Clojure, Erlang, 
F#, Haskell, OCaml, Racket, Scala, etc.) and in terms of 
language designers adopting functional features into other 
languages.  The term "functional language" will continue to 
lose precise meaning, replaced by a split focus on immutable 
data and first-class functions. 

We expand on each of these predictions in the following sections. 
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2. LANGUAGES ASSUME THE IDE 

Over the next decade, the design of new programming languages 
will increasingly focus on leveraging supportive IDEs, as well as 
assuming powerful social networks. 

In the past, some programming languages and integrated 
development environments (IDEs) have been tightly coupled, 
perhaps most notably environments for Smalltalk.  More 
commonly, the language and environment are decoupled, but 
modern powerful IDEs are now the norm: While more traditional 
text editors provide simplicity for small programs and retain some 
popularity, developers expect powerful and feature-rich IDEs.  
Some IDEs are more feature-rich for a particular programming 
language (e.g., Eclipse and IntelliJ for Java), but the clear 
separation is useful for the designers of both the language and the 
environment. 

We argue that to date programming languages have had more 
influence over IDE features than vice-versa.  For example, IDEs 
often compensate for cumbersome language features. Consider the 
complaint that Java is unnecessarily verbose.  IDEs can 
compensate by providing auto-completion, such as expanding 
Foo x = new into Foo x = new Foo(…), completing the 
type signature for a well-known method like main, or filling in 
generic type instantiations since the Java language has no type 
inference in such contexts. 

Programming environments have often “played catch up” in this 
way, providing features to make programming in particular 
languages easier only after community experience has identified 
the most common frustrations.  Many refactoring tools, while 
extremely useful once available, meet this description and are 
arduous to build.  This delay in IDE feature availability can hinder 
the adoption and efficient use of new languages and language 
features. 

Some programming features can be supported either by 
introduction into the language or into the IDE. In both cases, post-
release evolutionary changes can be disorienting to the 
programmer. For example, new programming language features 
may increase expressivity to a language, but often require the 
programmers to learn those features. Maintaining backward 
compatibility in the language and IDE do not avoid this problem 
when the programmer works in a team environment where other 
programmers are injecting new language features into the 
programmer’s code. Our view is that in the next ten years, such 
feature changes will be increasingly made to the IDE rather than 
the language, because IDE changes are generally viewed as less 
risky (lower commitment) than evolving a code base to use new 
features.  Time will tell if this trend is good or bad: avoiding risk 
can also avoid progress. 

Beyond the IDE, programming is no longer a solitary or even 
team-based exercise where developers sit alone with their source 
code and documentation.  In either open-source settings or closed-
source settings in large organizations, we see large, rich, 
searchable corpora of code, as well as technical discussions and 
informal third-party documentation that are consulted often.  Sites 
like GitHub allow developers to observe easily how other 
developers work, enabling them to learn from “coding rockstars” 

[3]. Sites like StackOverflow enable developers to ask questions 
about new languages and language features, where most questions 
receive acceptable answers within about a half an hour [4] and, 
anecdotally, many questions are already answered, reducing 
confusion-resolution to effective web-search.  Arguably, this trend 
has reduced the need for programming language designers to 
provide comprehensive documentation, or has at least reduced 
developers’ reliance on official documentation. 

Evolution of existing programming languages and creation of new 
programming languages both show no signs of slowing.  Indeed, 
language heterogeneity strikes us as greater than it was a decade 
or two ago. (We avoid listing [all] modern popular languages for 
fear of omission.)  Only recently, however, have we noticed 
particular language-design decisions motivated by IDE 
interaction.  In this way, we start to see a virtuous feedback loop 
where IDEs start to influence languages in a way that 
complements languages driving IDE features. 

We cite three particular examples, though there are surely others.  
First, consider dot-notation in F#.  Like all ML dialects, F# allows 
defining functions over a type such as length : string -> 
int, which are used like length x. But F# also allows 
members, which are used with the more object-oriented syntax 
x.Length.  In addition to supporting a more object-oriented 
perspective, dot-notation’s primary benefit is IDE code-
completion: given that x has type string, typing “x.” can bring 
up a list of completions including Length.  This advantage is 
meaningless without the IDE feature. 

The type systems of emerging languages Dart and TypeScript also 
have IDE-focused benefits.  These type systems are, by design, 
unsound by the conventional definition of actually preventing 
using a value of the wrong type at run-time.  For example, they 
allow covariant subtyping in places that can lead to run-time type 
errors, thus requiring the run-time checks normally associated 
with dynamically typed languages.  However, the unsound type 
system can still provide enough type information to enable key 
IDE features, like hovering over a variable to learn its type or 
providing continuous type-checking to identify errors. In purely 
dynamically typed languages, supporting such IDE features 
requires static type inference, which remains a difficult research 
question in practice for such languages [5] [6] [7] [8] [9]. 

Our third example where language evolution relies on IDEs is so 
ubiquitous we barely notice it: Modern languages can include 
enormous standard libraries and popular frameworks with 
thousands of classes or modules and hundreds of thousands of 
methods or procedures.  We argue these frameworks are simply 
unusable without modern programming-environment (and 
Internet) features for searching for features and identifying the 
necessary arguments, rather than manually consulting off-line 
documentation as in bygone eras. 

We anticipate that ongoing and future language design can take 
for granted IDE features beyond just code completion and API 
search, including refactoring tools, continuous testing, version 
control, and much more.  While this could lead to more syntactic 
convergence across languages (e.g., dot-notation), it could more 
interestingly lead to languages with new features for modularity 
and programming in the large.  After all, if tools and 
environments can do more to take care of finding the code that is 



relevant and hiding the code that is not, then languages may be 
able to focus on other needs. 

We also believe the impact of sites like GitHub and 
StackOverflow is huge on programming practice, but they have 
not yet had their full impact on the design of both languages and 
programming environments.  These sites do nothing less than 
make programming in many ways a global social experience, 
which can fundamentally change the notion of software team and 
available programming resources.  What, we wonder, could a 
programming language design do to make StackOverflow 
searches easier and more effective as developers learn the 
language and the language evolves?  Conversely, would it help to 
have better support in languages for provenance of code as 
developers copy-and-modify from online templates and version-
control repositories?   

Crowd documentation will likely have some new implications as 
well. For one, the dispersal of documentation will mean that it 
may be harder for the end programmer to find information that 
she is looking for. For example, a programmer may find an 
answer to a very similar question to the one she wants answered, 
but adapting the answer to her precise needs will remain a 
challenge. Language-related information may also be difficult to 
find whenever it is located in places that are not easy to search, 
such as in screencasts or closed-source codebases. Another 
challenge will be in bootstrapping documentation – if 
documentation for mature languages is extensive and crowd-
maintained (where, in fact, crowd-maintenance is what drives the 
extensiveness), then new and emerging languages will need to 
have at least some minimum amount of documentation before the 
crowd can use them in earnest. What that documentation should 
contain remains unclear. Similarly, it seems likely that languages 
designers will continue to have to produce and maintain at least 
some core documentation, yet it remains to be seen what types of 
core documentation is best for the designers to produce and which 
are best for the crowd to produce. 

Will crowd-managed “documentation” become so good that it can 
replace carefully curated language reference manuals, easing the 
documentation burden on language providers?  We imagine that 
the breadth and depth of language documentation will increase, 
but in non-traditional ways. Rather than having a single location 
where a developer can find documentation, pieces of 
documentation will be dispersed around the web, in the form of 
questions and answers, examples, and screencasts.  

Finally, we expect the tool-support “barrier to entry” for new 
programming languages will continue to increase since 
programmers have rightly come to expect rich tooling.  
Specifically, we predict language designers will co-develop tools 
along with languages so that both are released simultaneously. 
This has the advantage that a developer’s transition from an 
existing, rich language-tool ecosystem will be smoother.  

Co-developing languages and tools will have other effects. First, 
when a language is designed independent of tooling, the design 
space is constrained because the language itself must support all 
identified needs. When tools are co-developed with the language, 
the design space expands; a tradeoff made in a language feature 
can be ameliorated in an accompanying tool. This expansion of 
the design space may have a significant impact on new 

programming languages. Second, development of tools alongside 
languages will spur innovation in making it easier to develop 
tools. Some headway has been made in this space already, such as 
extensible IDEs that make the user interfaces of these tools easier 
to build, as well as extensible program analysis infrastructure, 
such as LLVM [10], which makes the back-end of tools easier to 
build. 

3. BEYOND ASCII FOR SOURCE CODE 

Over the next decade, the source-code ecosystem will evolve away 
from an ASCII-as-ground-truth mindset, treating code as rich, 
structured data supporting many views. 

Software source code has traditionally been defined in terms of a 
single, canonical view: A set of files, each of which is a linear 
sequence of characters. It is surprising for two reasons that this 
historical view of ASCII (or Unicode) as ground truth remains the 
norm (e.g., it is plain-text that is recorded in version-control 
repositories).  First, code is richly structured and there are 
advantages to viewing source code in terms of syntax trees, as 
almost every program-analysis tool does.  So why not view the 
syntax tree as the ground truth with the text-editor aspect of an 
IDE serving just as a tool for modifying the tree?   

Second, given the rich multidimensional structure of software, 
why do we restrict ourselves to a single view of source code, 
choosing one single structure as a fundamental aspect of design, 
possibly later refactoring to change this central choice?   

The idea of multivew is that software should instead have multiple 
views that a developer can work with [11].  Multiple views on 
software is useful because different views are useful for different 
purposes. As an example of why multiple views are useful for 
programming, consider a laboratory experiment performed by 
Green and Petre [12]. The authors asked programmers to compare 
several simple programs displayed in four different ways: two 
textual representations and two graphical representations. Two of 
the textual representations are reproduced in Figure 1. When 
answering, “Given this input, what is the output?” programmers 
could answer the question faster using one view (Figure 1, left) 
than the other view, but when answering “What input produced a 
given output?”, programmers answered the question faster using 
the other view (Figure 1, right). Thus, neither view was across-
the-board superior to the other – it depends on the programmer’s 
task (and quite possibly the programmer).  Much of the theory of 
multiview, as well as prototype implementations, have been 
worked out for the semantics of maintaining multiple consistent 
views of data [13] [14]; a tantalizing next step would be to more 
thoroughly support these approaches for large bodies of source 
code in full-fledged languages. 

While the notion of multiple views is not new, the technical 
challenge in implementing it in programming languages or 
development environments has been the ability to switch back and 
forth quickly and with strong consistency guarantees. Several 
trends have enabled such switching, however. 

One is refactoring, which enables programmers to switch views, 
even if they work in one programming language because there 
may be multiple ways to represent the same computation. With 



refactoring, a programmer can switch among these ways by 
restructuring his or her program. However, the process is 
sometimes slow and error prone. Tools speed up the process, yet 
developers still often do not use them [15]. 

Other recent approaches have enabled multiple views in a single 
language, but without modifying the source code. Davis and 
Kiczales’ registration-based abstractions enables programmers to 
switch between different views of their program at the press of a 
button [16]. Empirical results evaluating registration-based 
abstractions suggest that novice programmers can understand new 
views of code after being exposed to those views four times or 
fewer, without the need for additional training or documentation 
[17]. The Intentional Software Workbench is another realization 
of the multiview idea, with a slightly different focus; different 
views are intended to help different stakeholders view the 
software from their preferred perspective [18]. 

In the next 10 years, we expect the emergence of multiview 
programming in a mainstream programming environment. 
Moreover, we feel that the multiview concept will likely expand 
beyond programming languages into new other programming 
domains, such as compiler error messages. In the same sense that 
software is typically viewed as a linear sequence of characters, so 
too are compiler messages (and, in general, from all types of 
program analysis tools). And the benefits of multiple views for 
programming likely extends to such program analysis messages as 
well. 

We believe the next decade is particularly ripe for the 
mainstreaming of multiview programming for three reasons. First, 
as shown by the research described in this section, we have 
enough experimentation with multiview to know what the pain 
points are, and hopefully, how to deal with them. Second, our 

feeling is that the programming public is less dogmatic about 
programming languages than they were in the past, taking more of 
a “best tool for the job” mentality. The next logical step, then, is 
to enable them to switch between “tools” seamlessly. Finally, we 
believe that programmers’ increasing comfort with storing and 
running their programs in the cloud has helped them break free 
from the traditional file-based mindset, and in turn break into the 
multiview mindset. 

4. DATA-DRIVEN LANGUAGE DESIGN 
Many programming languages designed today are designed by 
passionate individuals or teams who create new languages to 
solve challenges poorly met by existing languages. These 
challenges are often defined by personal experience and 
anecdotes. In the past, some claims made about the benefits of 
these languages have not been supported by the evidence [19].  
At the same time, recent research has been studying how 
languages and language features are really being used. This 
research has come roughly in two forms, as controlled 
experiments and as field studies. In controlled experiments, such 
as the family of experiments about the effects of types [20] [21] 
and annotations [22], researchers have begun to establish cause 
and effect relationships between programming languages and 
programming outcomes, like productivity and defects. In field 
studies, such as those that investigate how developers adopt and 
use generics [23] and languages in open source [24], have 
investigated how real developers in the wild have used languages 
and language features.  
In the past, this research rarely has influenced language design. As 
one positive example, research about Java generics influenced 
whether a new language at Microsoft would include generics (it 
didn’t) [25]. 

if high: 
 if wide: 
  if deep: weep 
  not deep:  
   if tall: weep 
   not tall: cluck 
   end tall 
  end deep 
 not wide: 
  if long: 
   if thick: gasp 
   not thick: roar 
   end thick 
  not long: 
   if thick: sigh 
   not thick: gasp 
   end thick 
  end long 
 end wide 
not high: 
 if tall: burp 
 not tall: hiccup 
 end tall 
end high 

weep :  if high & wide & (deep | tall) 

cluck :  if high & wide & -deep & -tall 

gasp : if high & -wide & - (long & thick | -long & -thick) 

roar :  if high & -wide & long & -thick 

sigh :  if high & -wide & -long & -thick 

burp :  if -high & tall 

hiccup : if -high & -tall 

 
Figure 1. Two views of the same program, reproduced and adapted from Green and Petre [12]. 

 
 



This is not to say that designers do not use feedback from their 
programming community. Eric Lippert, previously a principal 
developer on the C# compiler team, wrote a blog for many years, 
explaining the concepts behind C# language features and 
soliciting feedback from an eager community of C# developers. 
For instance, in a post about asynchronous programming in C# 
5.0, Lippert reflects on confusing concurrent operators and 
modifiers: 

It is unfortunate that people’s intuition upon first exposure 
regarding what the “async” and “await” contextual keywords 
mean is frequently the opposite of their actual meanings. 
Many attempts to come up with better keywords failed to find 
anything better. If you have ideas for a keyword or 
combination of keywords that is short, snappy, and gets across 
the correct ideas, I am happy to hear them.1 

Although Lippert has left the C# compiler team, Microsoft 
continues to solicit feedback about the language through a formal 
customer feedback platform.2 
While such social media has surely encouraged more interaction 
between programming language designers and programming 
language users, this interaction does not include the silent 

                                                                 
1http://blogs.msdn.com/b/ericlippert/archive/2010/10/29/asynchro

nous-programming-in-c-5-0-part-two-whence-await.aspx 
2http://visualstudio.uservoice.com/forums/121579-visual-

studio/category/30931-languages-c-  

majority of programmers who have neither the time nor the 
interest in interacting with their language’s designers. 
We believe that the research community will produce increasingly 
useful findings that will help inform the design of new languages. 
One way will be to characterize how existing language features 
have been used, which will inform how language designers can 
expect the same language features to be adopted and used in 
different languages. For example, we have good existing data 
about how generics have been used in multiple languages [25], 
which we expect forms a sufficient grounding to make predictions 
about how generics would be accepted by developers in new 
languages. We also expect that such findings can generalize to 
completely new language features as well. For instance, 
comparing the past use of the generics in C# and Java, our past 
results [25] suggest that forsaking backwards compatibility and 
offering developers a “carrot” (in the form of new APIs, in the 
case of C# generics) is a more successful strategy than simply 
retrofitting an existing language and not offering any new 
functionality (in the form of Java generics). This principle should 
generalize to other language features as well, and we expect the 
future will hold more such findings, and they will have an 
increasing impact on how language designers evolve existing 
languages. Moreover, if research can begin to look at languages 
from a more holistic perspective (as Meyerovich and Rabkin have 
done [24]), it may also be able to predict and influence how the 
developer community will react to entirely new langauges.  
Beyond research findings, we expect in the next decade that better 
language analytic tools will help language designers ask and 

 
 

Figure 2. Current programming language analytics on ohloh.net. 
 

 



answer their own questions about how developers use existing 
languages and language features. On one hand, researchers’ 
toolsets are often open source, but our experience has been that 
these toolsets are often brittle because research does not reward 
robustness in language analysis tools (some researchers have 
bucked this trend, such as those creating the Boa framework [26]). 
On the other hand, we anticipate that industry-created analytics 
tools will be increasingly helpful to software developers. To take 
a current example, Figure 2 displays some publically-visible 
programming language analytics displayed on Ohloh.net. We 
anticipate such dashboard systems will contain more detailed data, 
such as about language feature usage, suitable for consumption by 
language designers.  

5. FORMAL VERIFICATION FOR REAL 

Over the next decade, the use of interactive proof assistants for 
co-developing robust programs and proofs of correctness will 
allow developers to prove more powerful properties of real 
programs, with the proof-engineering difficulties becoming a 
primary research focus. 

For software that is critical infrastructure affecting our safety, 
health, financial system, etc., correctness is paramount.  For 
decades, this truism has led to the call for formal specifications 
and proofs that software meets those specifications.  For just as 
long, skeptics have pointed to the classic arguments of De Millo, 
Lipton, and Perlis [27] that, “ease of formal verification should 
not dominate programming-language design” because 
specifications are too complex to be correct anyway, software 
requirements change too rapidly, and manual proofs are often 
riddled with infelicities that undermine our confidence in them. 

In the last several years, researchers pursuing formally verified 
software infrastructure have made substantial progress in winning 
the argument in the most direct way possible: By actually building 
real systems with machine-checked proofs of non-trivial 
correctness properties.  As leading examples, we now have the 
CompCert C-to-x86 compiler guaranteed to preserve semantics 
[28], an operating system kernel with many guaranteed properties 
including correct access control and robustness to malicious 
system-call arguments [29], a web browser guaranteed to isolate 
distinct browser tabs securely and preserve web-cookie integrity 
[30], and a relational database with query optimizations proven 
correct with respect to relational algebra [31].  Some independent 
studies have confirmed some of these systems are “more correct” 
and robust.  For example, random-testing exposed dozens of bugs 
in common C compilers, but none in CompCert [32].  In a world 
that depends on correct and secure software infrastructure, 
particularly the middleware and compilers on which all other 
software depends, we can expect advances in formal verification 
to continue to make progress. 

How has this success circumvented De Millo, Lipton, and Perlis’ 
arguments?  First, formal specifications need not encompass all 
requirements.  We can prove browser security without formalizing 
everything a web browser must do, which is essential since even 
specifying how to render HTML is surely intractable.  Second, 
interactive proof assistants mechanically check all proofs, so there 
is no longer a need to trust the proof.  Of course, the proof checker 
must now be trusted, but the proof checkers used today are 
independent of the particular software system being verified, have 
been refined over many years, and rely on only the most 

indisputable logical axioms.  The modest size and clarity of such 
proof checkers make them amenable to thorough manual 
inspection, and once we believe a checker is correct, we can 
safely trust any proof it checks.  Third, the need for changing 
requirements and verification that can evolve with sophisticated 
systems has been solved by… well, in fact, this challenge largely 
remains unsolved! 

Indeed, the large formal-verification efforts to date, while 
impressive engineering achievements, have taken heroic difficult 
work by leading researchers.  These systems can involve person-
decades and the need to maintain proofs that can be larger than the 
code itself makes adding new features or refactoring a system far, 
far too difficult.  The authors of the systems listed above report 
proofs that were 6-20× larger than the code-bases proven correct, 
but here “lines of code [and proof]” still make the proofs seem 
easier than they actually are: they take world experts in formal 
theorem proving orders of magnitude longer than writing the 
code.  (Of course, these mechanically verified proofs reduce the 
need for testing and debugging time, but the imbalance in effort 
remains striking.)   It is not uncommon in this domain today to 
find proof-debugging and proof-evaluation so difficult that one 
just throws away a proof that takes days to develop and starts 
over.   

So, the challenge for the next decade is to design better [proof] 
languages, tools, and methodologies to meet the needs of these 
efforts, particularly for proof evolution and maintenance.  We 
argue this challenge is truly open – the methodologies of 
interactive theorem proving for real software are sufficiently 
different from conventional software engineering that we need 
fresh ideas.  On the other hand, we see no fundamental 
impossibility, i.e., no reason why proof engineering cannot 
succeed even if, in the next decade, developing formally verified 
systems remains an important specialized subdiscipline.  What 
remains to be seen is how to combine ideas from the formal 
methods community with ideas from the software engineering 
community to bring the same sort of productivity gains that we 
have seen in other areas of software engineering. 

6. GRADUAL TYPING WILL SUCCEED 

Over the next decade, the passé argument over static versus 
dynamic typing will give way to languages supporting a 
continuum and a gradual-typing methodology that can be adapted 
to application needs. 

Are professional programmers more productive with or without a 
static type system?  Do novices learn better with or without the 
structure imposed by types?  Does static typing reduce the need 
for testing and the number of defects in deployed products?  
These questions represent a classic “holy war” that, in their 
generality and yes/no nature, obscure and oversimplify a large 
amount of agreed-upon conventional wisdom.  In the next decade, 
we believe the field will move beyond a dichotomy to appreciate 
the complementary roles of sound static analysis and run-time 
checking. 

Let us try to quell the argument with as little controversy as 
possible:  Programmers make errors.  Tools, such as type systems, 
that can detect some of those errors or prove their absence without 



needing test coverage are valuable.  As the theory and practice of 
type systems grows and computational resources are brought to 
bear on static analysis, the range of properties that can be verified 
in practice grows as well.  However, undecidability renders static 
analysis either unsound or (more often) incomplete in theory, and 
we see this in practice as well, requiring false alarms, programmer 
annotations, or both.  Type systems impose structure on code that 
can limit code reuse and require commitment to design decisions 
prematurely.  They can prevent testing incomplete systems. Thus, 
while traditional type systems enable developers to find and fix 
errors early, they also force developers to deal with those errors 
immediately, before doing anything else. 

Where the challenge lies in the next decade is taking two ideas 
that are widely acknowledged as good ones and making them 
commonplace and effective.  First, gradual typing is the idea that 
development can transition smoothly between dynamic typing and 
static typing without switching languages or having to rewrite an 
entire codebase.  The typical proposed methodology is to start 
with little or no static typing and to add types as design decisions 
harden and invariants become more difficult to maintain.  Second, 
surely many applications, and even many abstractions within an 
application, have their own internal invariants that would benefit 
from the rigor and soundness of type systems, so making type 
systems extensible and application-specific is valuable.  In the 
extreme, a fully malleable type system would let application 
developers (re-)implement gradual typing, but we believe it is 
valuable to keep the former concept distinct. 

Mixing static typing and dynamic typing is a very old idea that 
has received considerable recent attention.  A full survey of recent 
work is not our focus here, but some representative work shows 
the range of complementary perspectives: 

 We can start with a dynamically typed language and infer 
types to detect likely bugs or perform compile-time 
optimizations, a now commonplace idea that goes back at 
least twenty years in programming languages [33]. 

 We can start with a statically typed language and make it 
possible to run (incomplete) programs by converting 
compile-time errors into run-time errors [34] [35]. 

 We can have a language with typed and untyped modules 
that can interact while maintaining appropriate blame for 
when an error occurs [36]. 

 We can enrich a dynamically typed language with optional 
types that still support common programming patterns like 
structural conformance [37]. 

 We can build extensible type systems for encoding 
application-specific properties, building on well-known 
semantic foundations like type qualifiers [38]. 

Much of this work to date, however, has focused on the core 
programming language design and implementation aspects.  
Programming environments, development methodologies, and 
rigorous field studies have been secondary considerations at best.  
While the success of gradual typing is by no means inevitable 
(true partisans of type systems or their absence will surely 
continue to promote their respective endpoints on the type-system 
continuum), we believe it will succeed, and we challenge the 
community to prepare software engineering for a gradual-typing 
world.     

7. MODERN, SCALABLE APPLICATIONS 

Over the next decade, language innovations will shift from 
focusing on batch-oriented or single-user programs to distributed, 
concurrent, and parallel programming; large workflows of 
asynchronous computations; accessing massive amounts of 
rapidly changing data; and other modern-computing challenges 
that will change the boundaries of a well-defined “program” or 
“code base.” 

Innovation in programming languages and software engineering is 
not always spurred internally from those communities.  There is 
no shame in identifying that innovations are often a response to 
changing needs and priorities for software, and the next decade 
will be no exception.  The world of programs that operate without 
communicating with other programs, networks, and external data 
sources is an ever-smaller portion of the software ecosystem and 
has plenty of sufficient programming environments.  Software-
system challenges are now often related to asynchrony, 
distribution, concurrency, and data management.  Either 
programming languages and software engineering tools will help 
make developing such systems easier or our fields will diminish in 
importance, where programming will become craft work, which 
depends “on special skills [which is marked by] the lack of 
standardization of the product” [39]. 

Fortunately, there is much work already to build on.  To pick just 
a couple examples, Erlang’s success is largely due to its primary 
consideration of failure in distributed systems, and language or 
library support for asynchrony (such as Scala’s framework[s] for 
actors or .Net’s async) are practical successes built on solid  
foundations.  However, it is far from clear that we have yet 
achieved conventional wisdom and agreed-upon best practices for 
language features and software-engineering approaches for this 
kind of programming.  Will the next decade achieve clarity, 
separating winners from losers, or will new ideas lead to an even 
wider range of approaches? 

Dealing with “big data” also deserves increased attention even if 
the phrase itself may be a buzzword with unclear boundaries.  We 
know how to approach using, say, Java to build a GUI application 
for a laptop or smartphone.  But is it as clear how to use Java to 
build an application that processes 1TB of data each day?  Such 
applications are written regularly with a collection of tools that are 
not yet an integrated part of the conventional languages and 
toolsets.  What synergies lie ahead by treating big-data as the 
norm in planning and executing software development, and how 
should these synergies influence software tools and language 
design? 

8. MAINSTREAM FUNCTIONAL 
PROGRAMMING 

Over the next decade, functional programming will continue to 
see increased industry adoption, both in terms of developers 
adopting functional languages (Clojure, Erlang, F#, Haskell, 
OCaml, Racket, Scala,etc.) and in terms of language designers 
adopting functional features into other languages.  The term 
"functional language" will continue to lose precise meaning, 
replaced by a split focus on immutable data and first-class 
functions. 



For decades, functional languages have had the reputation of 
being outside the mainstream, favored more by the programming-
languages research community than by industry.  As such, 
functional languages have often been the proving ground for new 
language features, type systems, etc. and have been used in 
computer-science education as ways to focus on compositionality 
and clear, simple semantics.   

But this view of the world is already outmoded.  First, “functional 
languages” (an ambiguous term, as discussed shortly) are used for 
real software all the time.  Before Java’s success, it was common 
to state without evidence that any language relying on garbage 
collection was impractical.  Nowadays, dismissing functional 
programming as impractical is similarly antiquated.  The 
Commercial Users of Functional Programming conference3 
attracts hundreds of people each year.  The Haskell wiki lists 
dozens of companies using the language.4  In alphabetical order, 
Clojure, Erlang, F#, Haskell, OCaml, Racket, and Scala have 
dedicated user communities building real systems and lauding the 
functional nature of these languages – as well as their convenient 
facilities for interfacing with other languages and external 
libraries as needed.   

But more importantly and conclusively, the two primary features 
of functional languages – first-class function closures and 
immutable data5 – are increasingly common in languages not 
deemed “functional.”  In a world where C++, C#, and Java all 
“have lambdas,” not to mention JavaScript and Ruby, functional 
programming has already gone mainstream.  We challenge the 
software-engineering research community to focus on functions 
with the same vigor that objects have received in the past – 
perhaps there are processes, tools, and best practices yet to be 
discovered and distilled. 

We argue further that the terms “functional programming” and 
“functional language” will start to lose meaning.  The traditional 
marriage of closures and immutability will remain a valuable pair, 
but the ideas are orthogonal.  For example, the rise of mainstream 
concurrency has made immutable objects a common design 
choice (there is arguably no easier way to prevent race conditions 
and other concurrency bugs), irrespective of programming with 
closures.  Combining the loss of “functional” as a distinct term 
with the blending of static and dynamic typing discussed 
previously, we will struggle to categorize emerging programming 
languages with a convenient simplistic set of adjectives.  Already 
the designers of F#, Racket, Scala, etc. chafe at having their 
languages pigeonholed into a single “paradigm,” and even Haskell 
has been described by one of its lead designers as, without 
sarcasm, “the world’s finest imperative programming language” 
[40].   

How should this fundamental breakdown of separable paradigms 
affect research into effective software-engineering practices?  
What taxonomy should we create to better describe actual 
                                                                 
3 http://cufp.org/conference  
4 http://www.haskell.org/haskellwiki/Haskell_in_industry  
5 By immutability, we mean the use of that data structures cannot 

be modified by a program, but instead can only be modified 
when copied as a second data structure. Immutable objects are 
advantageous in that they are naturally thread-safe. 

practice?  Is JavaScript more like C++ or more like Scheme – or 
does the question even make sense?  We challenge the software-
engineering research community to understand these questions 
and search for answers. 

9. CONCLUSION 
The next decade will certainly bring changes to the way software 
engineers use programming languages. In this paper, we have 
made seven predictions about what some of those changes will be. 
While these changes will entail challenges to software engineering 
practice and research, they also present great opportunity. We are 
of the opinion that one of the best ways to meet these challenges 
is by encouraging the software engineering and programming 
language research communities to work together.  
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