
Graduate Programming Languages, Extra Homework Problems
(These All Fit Between Assignments 3 and 5)

Associated Caml files are in hw extra code.tar.

1. (The CPS Transformation) Extend the CPS transformation from lecture 13 to include the translation
for pairs and sums as introduced in lecture 11.

2. (Continuation-Passing Style) In this problem you will reimplement the large-step, environment-based
interpreter and the type-checker from homework 3. Your reimplementations should always use a
constant amount of stack space regardless of how big a program they evaluate or type-check. To do
so, use the idiom of continuation passing. Note that you are manually using continuation-passing style
to implement the interpreter and type-checker; you are not applying a CPS transformation to the
program being type-checked and evaluated.

• In the provided code, complete the definition of problem2/interpret, which should have type
exp -> (exp * heap) option where the result Some (v,h) carries the final value and heap and
the result None indicates a run-time error occurred. Two cases of the tail-recursive helper function
are provided to you. This helper function should never raise an exception: it should return None

or invoke the continuation it is passed. Hints:

– There is no reason to use the Some constructor in this helper function.

– It is probably easiest to copy parts of your solution to homework 3 and then modify them.

• In the provided code, complete the definition of typecheck, which should have type exp -> typ option

where the result Some typ carries the type of the entire program and None indicates a type-error
was found. You need to define a helper function that, like the helper function in part (a), takes
a function as an extra argument that serves as a continuation.

3. (Machines and Continuations) You are given an untyped lambda-calculus and part of a low-level
abstract machine. The machine uses explicit evaluation contexts and environments, much like the last
and most efficient interpreter in lecture 14 (interp closure). The definition of syntax and contexts
(problem3/ast.ml) is somewhat different to support more easily the fact that, unlike in lecture, we
have several types of values.

(a) Complete the definition of Main.interp to support pairs, conditionals, and first-class continua-
tions. You must maintain tail-recursion. Note the kinds of contexts you need are already defined
for you in ast.ml, along with comments about their purpose. You can do continuations last; the
provided testing program (adder) doesn’t use them.

(b) Change Main.allow halt such that:

• It takes an expression e and returns an expression e′.

• e can have free occurrences of the variable halt and call it as a function taking one argument,
i.e., halt e′′.

• If e evaluates to v without ever calling halt, then e′ evaluates to (true, v).

• If e evaluates after some number of steps to E[halt v], then e′ evaluates to (false, v).

• e′ contains e as a subexpression – that is, do not examine e, just wrap it with some outer
code.

Sample solution is 3 lines. Advice: Work out your solution on paper first. Put e in a function
that takes halt as an argument. Pass this function a function that contains a throw.

1

4. (Sums and Subtyping) Consider a typed λ-calculus with a more flexible version of sum types than
considered in lecture:

• There are an infinite number of constructors, not just A and B. Let C range over constructors.
So an example expression is C7 (λx. x).

• A single sum type +{C1:τ1, . . . , Cn:τn} can list any finite number of constructors and the types
of the values they carry. So one example type would be +{C3:int, C7:int → int, C2:int}. Like in
Caml, the order of constructors is not significant. Unlike in Caml, we are using structural typing
and different types can use the same constructors (with possibly different types they carry).

• As you should expect, a match expression can have any finite number of branches, with a different
constructor for each branch. Informally (it can be formalized), a match expression has type τ if
(1) the matched expression has type +{C1:τ1, . . . , Cn:τn}, (2) for each Ci in the type there is a
branch of the form Ci xi → ei where ei has type τ assuming xi has type τi.

• The typing rule for constructor expressions can just be:

Γ ` e : τ

Γ ` C e : +{C τ}

If that seems odd, read on.

Come up with three sound and generally useful subtyping rules for these sum types and justify infor-
mally why each rule is sound. Write the rules formally.

Note: We already have rules like reflexivity and transitivity. Your rules should specifically deal with
the new sum types.

5. (Recursive types) In this problem, we show that a typed lambda-calculus with recursive types and
explicit roll and unroll coercions is as powerful as the untyped lambda-calculus. We give this language
the following syntax, operational semantics, and typing rules (where for the sake of part (c) we allow
evaluation of the right side of an application even if the left side is not yet a value):

τ ::= α | τ → τ | µα.τ
e ::= x | λx:τ . e | e e | rollµα.τ e | unroll e
v ::= λx:τ . e | rollµα.τ v

e→ e′

e e2 → e′ e2

e→ e′

e1 e→ e1 e
′

e→ e′

rollµα.τ e→ rollµα.τ e
′

e→ e′

unroll e→ unroll e′

(λx. e) v → e[v/x] unroll (rollµα.τ v)→ v

∆; Γ ` x : Γ(x)

∆; Γ, x:τ1 ` e : τ2 ∆ ` τ1
∆; Γ ` λx:τ1. e : τ1 → τ2

∆; Γ ` e1 : τ2 → τ1 ∆; Γ ` e2 : τ2

∆; Γ ` e1 e2 : τ1

∆; Γ ` e : τ [(µα.τ)/α]

∆; Γ ` rollµα.τ e : µα.τ

∆; Γ ` e : µα.τ

∆; Γ ` unroll e : τ [(µα.τ)/α]

(a) Define a translation from the pure, untyped, call-by-value lambda-calculus to the language above.
Naturally, your translation should preserve meaning (see part (c)) and produce well-typed terms
(see part (b)). Use trans(e) to mean the result of translating e. You just need to write down how
to translate variables, functions (notice the target language has explicit argument types), and
applications. The translation must insert roll and unroll coercions exactly where needed. The key
trick is to make sure every subexpression of trans(e) has type µα.α→ α.

2

(b) Prove this theorem, which implies that if e has no free variables, then trans(e) type-checks: If
Γ(x) = µα.α→ α for all x ∈ FV (trans(e)), then ·; Γ ` trans(e) : µα.α→ α. (If the theorem is
false, go back to part (a) and fix your translation.)

(c) Prove this theorem, which, along with determinism of the target language (not proven, but true),
implies that trans(e) preserves meaning: If e→ e′ then trans(e)→2 trans(e′) (notice the 2!). (If
the theorem is false, go back to part (a) and fix your translation.) Note: A correct proof will
require you to state and prove an appropriate lemma about substitution.

(d) Explain briefly why the theorem in part(c) is false if we replace
e→ e′

e1 e→ e1 e
′ with

e→ e′

v e→ v e′
.

6. (Data Races) Consider these two code fragments in a shared-memory multithreaded language:

• while(f()) { y = (x+1)*g(); }

• int t = x+1; while(f()) { y = t * g(); }

Note that, like in C/C++/Java, the variable t is thread-local. Assume functions f and g are known to
not read or write global integers x or y (nor t) and to not perform any synchronization, but nothing
else is known about them statically.

(a) Sketch how, given an operational semantics for the language, you could prove that it would be
meaning preserving to replace the first fragment with the second one if there is only one thread.

(b) There are situations with multiple threads where replacing the first fragment with the second one
introduces data races into a previously data-race-free program. Fully describe such a situation.
(Therefore, in a language in which data races allow more behaviors, which might include “catch-
fire semantics,” this transformation would be illegal.) Note: A situation need not be something
we expect programmers to do often.

(c) Come up with a slightly more sophisticated transformation for the first fragment such that:

• If the original program has no data races, then neither will the transformed program.

• It has the same single-threaded semantics.

• Each time the transformed program fragment executes, x+1 is evaluated no more than once.

3

