
CS-XXX: Graduate Programming Languages

Lecture 11 — STLC Extensions and Related Topics

Dan Grossman
2012

Review

e ::= λx. e | x | e e | c
v ::= λx. e | c

τ ::= int | τ → τ
Γ ::= · | Γ, x : τ

(λx. e) v → e[v/x]

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2

e[e′/x]: capture-avoiding substitution of e′ for free x in e

Γ � c : int Γ � x : Γ(x)

Γ, x : τ1 � e : τ2

Γ � λx. e : τ1 → τ2

Γ � e1 : τ2 → τ1 Γ � e2 : τ2

Γ � e1 e2 : τ1

Preservation: If · � e : τ and e → e′, then · � e′ : τ .
Progress: If · � e : τ , then e is a value or ∃ e′ such that e → e′.

Dan Grossman CS-XXX 2012, Lecture 11 2

Adding Stuff

Time to use STLC as a foundation for understanding other
common language constructs

We will add things via a principled methodology thanks to a proper
education

� Extend the syntax

� Extend the operational semantics
� Derived forms (syntactic sugar), or
� Direct semantics

� Extend the type system

� Extend soundness proof (new stuck states, proof cases)

In fact, extensions that add new types have even more structure

Dan Grossman CS-XXX 2012, Lecture 11 3

Let bindings (CBV)

e ::= . . . | let x = e1 in e2

e1 → e′1
let x=e1 in e2 → let x=e′1 in e2 let x=v in e → e[v/x]

Γ � e1 : τ ′ Γ, x : τ ′ � e2 : τ

Γ � let x = e1 in e2 : τ

(Also need to extend definition of substitution...)

Progress: If e is a let, 1 of the 2 new rules apply (using induction)

Preservation: Uses Substitution Lemma

Substitution Lemma: Uses Weakening and Exchange

Dan Grossman CS-XXX 2012, Lecture 11 4

Derived forms

let seems just like λ, so can make it a derived form

� let x = e1 in e2 “a macro” / “desugars to” (λx. e2) e1

� A “derived form”

(Harder if λ needs explicit type)

Or just define the semantics to replace let with λ:

let x = e1 in e2 → (λx. e2) e1

These 3 semantics are different in the state-sequence sense
(e1 → e2 → . . . → en)

� But (totally) equivalent and you could prove it (not hard)

Note: ML type-checks let and λ differently (later topic)
Note: Don’t desugar early if it hurts error messages!

Dan Grossman CS-XXX 2012, Lecture 11 5

Booleans and Conditionals

e ::= . . . | true | false | if e1 e2 e3
v ::= . . . | true | false
τ ::= . . . | bool

e1 → e′1
if e1 e2 e3 → if e′1 e2 e3

if true e2 e3 → e2 if false e2 e3 → e3

Γ � e1 : bool Γ � e2 : τ Γ � e3 : τ

Γ � if e1 e2 e3 : τ

Γ � true : bool Γ � false : bool

Also extend definition of substitution (will stop writing that)...
Notes: CBN, new Canonical Forms case, all lemma cases easy

Dan Grossman CS-XXX 2012, Lecture 11 6

Pairs (CBV, left-right)

e ::= . . . | (e, e) | e.1 | e.2
v ::= . . . | (v, v)
τ ::= . . . | τ ∗ τ

e1 → e′1
(e1, e2) → (e′1, e2)

e2 → e′2
(v1, e2) → (v1, e

′
2)

e → e′

e.1 → e′.1
e → e′

e.2 → e′.2

(v1, v2).1 → v1 (v1, v2).2 → v2

Small-step can be a pain

� Large-step needs only 3 rules

� Will learn more concise notation later (evaluation contexts)

Dan Grossman CS-XXX 2012, Lecture 11 7

Pairs continued

Γ � e1 : τ1 Γ � e2 : τ2

Γ � (e1, e2) : τ1 ∗ τ2

Γ � e : τ1 ∗ τ2

Γ � e.1 : τ1

Γ � e : τ1 ∗ τ2

Γ � e.2 : τ2

Canonical Forms: If · � v : τ1 ∗ τ2, then v has the form (v1, v2)

Progress: New cases using Canonical Forms are v.1 and v.2

Preservation: For primitive reductions, inversion gives the result
directly

Dan Grossman CS-XXX 2012, Lecture 11 8

Records

Records are like n-ary tuples except with named fields
� Field names are not variables; they do not α-convert

e ::= . . . | {l1 = e1; . . . ; ln = en} | e.l
v ::= . . . | {l1 = v1; . . . ; ln = vn}
τ ::= . . . | {l1 : τ1; . . . ; ln : τn}

ei → e′i
{l1=v1, . . . , li−1=vi−1, li=ei, . . . , ln=en}

→ {l1=v1, . . . , li−1=vi−1, li=e′i, . . . , ln=en}

e → e′

e.l → e′.l

1 ≤ i ≤ n

{l1 = v1, . . . , ln = vn}.li → vi

Γ � e1 : τ1 . . . Γ � en : τn labels distinct

Γ � {l1 = e1, . . . , ln = en} : {l1 : τ1, . . . , ln : τn}

Γ � e : {l1 : τ1, . . . , ln : τn} 1 ≤ i ≤ n

Γ � e.li : τi
Dan Grossman CS-XXX 2012, Lecture 11 9

Records continued

Should we be allowed to reorder fields?

� · � {l1 = 42; l2 = true} : {l2 : bool; l1 : int} ??

� Really a question about, “when are two types equal?”

Nothing wrong with this from a type-safety perspective, yet many
languages disallow it

� Reasons: Implementation efficiency, type inference

Return to this topic when we study subtyping

Dan Grossman CS-XXX 2012, Lecture 11 10

Sums

What about ML-style datatypes:

type t = A | B of int | C of int * t

1. Tagged variants (i.e., discriminated unions)

2. Recursive types

3. Type constructors (e.g., type ’a mylist = ...)

4. Named types

For now, just model (1) with (anonymous) sum types
� (2) is in a later lecture, (3) is straightforward, and (4) we’ll discuss

informally

Dan Grossman CS-XXX 2012, Lecture 11 11

Sums syntax and overview

e ::= . . . | A(e) | B(e) | match e with Ax. e | Bx. e
v ::= . . . | A(v) | B(v)
τ ::= . . . | τ1 + τ2

� Only two constructors: A and B

� All values of any sum type built from these constructors

� So A(e) can have any sum type allowed by e’s type

� No need to declare sum types in advance

� Like functions, will “guess the type” in our rules

Dan Grossman CS-XXX 2012, Lecture 11 12

Sums operational semantics

match A(v) with Ax. e1 | By. e2 → e1[v/x]

match B(v) with Ax. e1 | By. e2 → e2[v/y]

e → e′

A(e) → A(e′)
e → e′

B(e) → B(e′)

e → e′

match e with Ax. e1 | By. e2 → match e′ with Ax. e1 | By. e2

match has binding occurrences, just like pattern-matching

(Definition of substitution must avoid capture, just like functions)

Dan Grossman CS-XXX 2012, Lecture 11 13

What is going on

Feel free to think about tagged values in your head:

� A tagged value is a pair of:
� A tag A or B (or 0 or 1 if you prefer)
� The (underlying) value

� A match:
� Checks the tag
� Binds the variable to the (underlying) value

This much is just like OCaml and related to homework 2

Dan Grossman CS-XXX 2012, Lecture 11 14

Sums Typing Rules

Inference version (not trivial to infer; can require annotations)

Γ � e : τ1

Γ � A(e) : τ1 + τ2

Γ � e : τ2

Γ � B(e) : τ1 + τ2

Γ � e : τ1 + τ2 Γ, x:τ1 � e1 : τ Γ, y:τ2 � e2 : τ

Γ � match e with Ax. e1 | By. e2 : τ

Key ideas:

� For constructor-uses, “other side can be anything”
� For match, both sides need same type

� Don’t know which branch will be taken, just like an if.
� In fact, can drop explicit booleans and encode with sums:

E.g., bool = int + int, true = A(0), false = B(0)

Dan Grossman CS-XXX 2012, Lecture 11 15

Sums Type Safety

Canonical Forms: If · � v : τ1 + τ2, then there exists a v1 such
that either v is A(v1) and · � v1 : τ1 or v is B(v1) and
· � v1 : τ2

� Progress for match v with Ax. e1 | By. e2 follows, as usual,
from Canonical Forms

� Preservation for match v with Ax. e1 | By. e2 follows from
the type of the underlying value and the Substitution Lemma

� The Substitution Lemma has new “hard” cases because we
have new binding occurrences

� But that’s all there is to it (plus lots of induction)

Dan Grossman CS-XXX 2012, Lecture 11 16

What are sums for?

� Pairs, structs, records, aggregates are fundamental
data-builders

� Sums are just as fundamental: “this or that not both”

� You have seen how OCaml does sums (datatypes)

� Worth showing how C and Java do the same thing
� A primitive in one language is an idiom in another

Dan Grossman CS-XXX 2012, Lecture 11 17

Sums in C

type t = A of t1 | B of t2 | C of t3

match e with A x -> ...

One way in C:

struct t {

enum {A, B, C} tag;

union {t1 a; t2 b; t3 c;} data;

};

... switch(e->tag){ case A: t1 x=e->data.a; ...

� No static checking that tag is obeyed
� As fat as the fattest variant (avoidable with casts)

� Mutation costs us again!

Dan Grossman CS-XXX 2012, Lecture 11 18

Sums in Java

type t = A of t1 | B of t2 | C of t3

match e with A x -> ...

One way in Java (t4 is the match-expression’s type):

abstract class t {abstract t4 m();}

class A extends t { t1 x; t4 m(){...}}

class B extends t { t2 x; t4 m(){...}}

class C extends t { t3 x; t4 m(){...}}

... e.m() ...

� A new method in t and subclasses for each match expression

� Supports extensibility via new variants (subclasses) instead of
extensibility via new operations (match expressions)

Dan Grossman CS-XXX 2012, Lecture 11 19

Pairs vs. Sums

You need both in your language

� With only pairs, you clumsily use dummy values, waste space,
and rely on unchecked tagging conventions

� Example: replace int + (int → int) with
int ∗ (int ∗ (int → int))

Pairs and sums are “logical duals” (more on that later)

� To make a τ1 ∗ τ2 you need a τ1 and a τ2

� To make a τ1 + τ2 you need a τ1 or a τ2

� Given a τ1 ∗ τ2, you can get a τ1 or a τ2 (or both; your
“choice”)

� Given a τ1 + τ2, you must be prepared for either a τ1 or τ2
(the value’s “choice”)

Dan Grossman CS-XXX 2012, Lecture 11 20

Base Types and Primitives, in general

What about floats, strings, ...?
Could add them all or do something more general...

Parameterize our language/semantics by a collection of base types
(b1, . . . , bn) and primitives (p1 : τ1, . . . , pn : τn). Examples:

� concat : string→string→string

� toInt : float→int

� “hello” : string

For each primitive, assume if applied to values of the right types it
produces a value of the right type

Together the types and assumed steps tell us how to type-check
and evaluate pi v1 . . . vn where pi is a primitive

We can prove soundness once and for all given the assumptions

Dan Grossman CS-XXX 2012, Lecture 11 21

Recursion

We won’t prove it, but every extension so far preserves termination

A Turing-complete language needs some sort of loop, but our
lambda-calculus encoding won’t type-check, nor will any encoding
of equal expressive power

� So instead add an explicit construct for recursion

� You might be thinking let rec f x = e, but we will do
something more concise and general but less intuitive

e ::= . . . | fix e

e → e′

fix e → fix e′ fix λx. e → e[fix λx. e/x]

No new values and no new types
Dan Grossman CS-XXX 2012, Lecture 11 22

Using fix

To use fix like let rec, just pass it a two-argument function where
the first argument is for recursion

� Not shown: fix and tuples can also encode mutual recursion

Example:
(fix λf. λn. if (n<1) 1 (n ∗ (f(n − 1)))) 5
→
(λn. if (n<1) 1 (n ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n − 1))))(n − 1)))) 5
→
if (5<1) 1 (5 ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n − 1))))(5 − 1))
→2

5 ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n − 1))))(5 − 1))
→2

5 ∗ ((λn. if (n<1) 1 (n ∗ ((fix λf. λn. if (n<1) 1 (n ∗ (f(n − 1))))(n − 1)))) 4)

→
...

Dan Grossman CS-XXX 2012, Lecture 11 23

Why called fix?

In math, a fix-point of a function g is an x such that g(x) = x

� This makes sense only if g has type τ → τ for some τ

� A particular g could have have 0, 1, 39, or infinity fix-points

� Examples for functions of type int → int:

� λx. x + 1 has no fix-points

� λx. x ∗ 0 has one fix-point

� λx. absolute value(x) has an infinite number of fix-points

� λx. if (x < 10 && x > 0) x 0 has 10 fix-points

Dan Grossman CS-XXX 2012, Lecture 11 24

Higher types

At higher types like (int → int) → (int → int), the notion of
fix-point is exactly the same (but harder to think about)

� For what inputs f of type int → int is g(f) = f

Examples:

� λf. λx. (f x) + 1 has no fix-points

� λf. λx. (f x) ∗ 0 (or just λf. λx. 0) has 1 fix-point
� The function that always returns 0
� In math, there is exactly one such function (cf. equivalence)

� λf. λx. absolute value(f x) has an infinite number of
fix-points: Any function that never returns a negative result

Dan Grossman CS-XXX 2012, Lecture 11 25

Back to factorial

Now, what are the fix-points of
λf. λx. if (x < 1) 1 (x ∗ (f(x − 1)))?

It turns out there is exactly one (in math): the factorial function!

And fix λf. λx. if (x < 1) 1 (x ∗ (f(x − 1))) behaves just
like the factorial function

� That is, it behaves just like the fix-point of
λf. λx. if (x < 1) 1 (x ∗ (f(x − 1)))

� In general, fix takes a function-taking-function and returns its
fix-point

(This isn’t necessarily important, but it explains the terminology
and shows that programming is deeply connected to mathematics)

Dan Grossman CS-XXX 2012, Lecture 11 26

Typing fix

Γ � e : τ → τ

Γ � fix e : τ

Math explanation: If e is a function from τ to τ , then fix e, the
fixed-point of e, is some τ with the fixed-point property

� So it’s something with type τ

Operational explanation: fix λx. e′ becomes e′[fix λx. e′/x]
� The substitution means x and fix λx. e′ need the same type

� The result means e′ and fix λx. e′ need the same type

Note: The τ in the typing rule is usually insantiated with a
function type

� e.g., τ1 → τ2, so e has type (τ1 → τ2) → (τ1 → τ2)

Note: Proving soundness is straightforward!

Dan Grossman CS-XXX 2012, Lecture 11 27

General approach

We added let, booleans, pairs, records, sums, and fix

� let was syntactic sugar

� fix made us Turing-complete by “baking in” self-application

� The others added types

Whenever we add a new form of type τ there are:

� Introduction forms (ways to make values of type τ)

� Elimination forms (ways to use values of type τ)

What are these forms for functions? Pairs? Sums?

When you add a new type, think “what are the intro and elim
forms”?

Dan Grossman CS-XXX 2012, Lecture 11 28

Anonymity

We added many forms of types, all unnamed a.k.a. structural.
Many real PLs have (all or mostly) named types:

� Java, C, C++: all record types (or similar) have names
� Omitting them just means compiler makes up a name

� OCaml sum types and record types have names

A never-ending debate:

� Structual types allow more code reuse: good

� Named types allow less code reuse: good

� Structural types allow generic type-based code: good

� Named types let type-based code distinguish names: good

The theory is often easier and simpler with structural types

Dan Grossman CS-XXX 2012, Lecture 11 29

Termination

Surprising fact: If · � e : τ in STLC with all our additions except
fix, then there exists a v such that e →∗ v

� That is, all programs terminate

So termination is trivially decidable (the constant “yes” function),
so our language is not Turing-complete

The proof requires more advanced techniques than we have learned
so far because the size of expressions and typing derivations does
not decrease with each program step

� Could present it in about an hour if desired

Non-proof:

� Recursion in λ calculus requires some sort of self-application

� Easy fact: For all Γ, x, and τ , we cannot derive Γ � x x : τ

Dan Grossman CS-XXX 2012, Lecture 11 30

