CS-XXX: Graduate Programming Languages

Lecture 11 — STLC Extensions and Related Topics

Dan Grossman
2012

Review

e == Az.e|xz|ee]c T = int|T —> T
v = Az.e|c r «= |T,x:7
61—)6’1 82—)8/2

(Az. e) v — e[v/x] e1 ez — €] ez vey—vey

ele’/x]: capture-avoiding substitution of e’ for free x in e

Tex:mmbe:ms

'FXx.e:m — 12

I'kc:int 'kta:I'(x)

'kei:mo— 1 I'kex:mo

I'Feiex:m

Preservation: If -+ e : 7 and e — €, then - e’ : T.
Progress: If - = e : T, then e is a value or 3 €’ such that e — €.

Dan Grossman CS-XXX 2012, Lecture 11

Adding Stuff

Time to use STLC as a foundation for understanding other
common language constructs

We will add things via a principled methodology thanks to a proper
education

» Extend the syntax
» Extend the operational semantics

> Derived forms (syntactic sugar), or
> Direct semantics

» Extend the type system

> Extend soundness proof (new stuck states, proof cases)

In fact, extensions that add new types have even more structure

Dan Grossman CS-XXX 2012, Lecture 11

Let bindings (CBV)

ex=...|letx=e1inez

61—>611

let z=eq inex — let z=¢€] in ez let z=v in e — e[v/x]

T'key:7 T,e:7' Fey:T

I'Fletx =ei1ines: 7

(Also need to extend definition of substitution...)
Progress: If e is a let, 1 of the 2 new rules apply (using induction)
Preservation: Uses Substitution Lemma

Substitution Lemma: Uses Weakening and Exchange

Dan Grossman CS-XXX 2012, Lecture 11

Derived forms
let seems just like A, so can make it a derived form
> let x = ey in ez “a macro” / “desugars to” (Az. ez2) e
» A “derived form”
(Harder if X needs explicit type)

Or just define the semantics to replace let with A:

let x =ejinex — (Az. e2) e1

These 3 semantics are different in the state-sequence sense
(e1 —e2— ... > ep)
> But (totally) equivalent and you could prove it (not hard)

Note: ML type-checks let and X differently (later topic)
Note: Don't desugar early if it hurts error messages!

Dan Grossman CS-XXX 2012, Lecture 11

Booleans and Conditionals

e == ...|true | false | if e; ez e3
v == ...|true | false
T 2= ...|bool

e — €

if e1 e e3 — if e'1 es eg

if true e3 e3 — eo if false ez e3 — e3

I' - ey : bool I'Fey: T I'Feg:T
I'Hifeiezseg: T

I' I true : bool T - false : bool

Also extend definition of substitution (will stop writing that)...
Notes: CBN, new Canonical Forms case, all lemma cases easy

Dan Grossman CS-XXX 2012, Lecture 11

Pairs (CBV, left-right)

e == ...|(e,e)|el]e2
v = ...| (v,v)
T n= .| TxT
e1 — €} ez — €5

(e1,e2) — (e}, e2) (v1, e2) — (v1,€h)

e—¢€ e— e

el—ell e2 —e'.2
(1)1,1}2).1 — V1 ('Ul, ’1)2).2 — V2
Small-step can be a pain

> Large-step needs only 3 rules

» Will learn more concise notation later (evaluation contexts)

Dan Grossman CS-XXX 2012, Lecture 11

Pairs continued

F|_€1:T1 F|_€2:T2

Tk (e1,e2): 7 x72

I'Fe:rm 7o
I'el:m

I'Fe:m *x7o
I'e2:m

Canonical Forms: If - - v : 71 * 79, then v has the form (v1,v2)
Progress: New cases using Canonical Forms are v.1 and v.2

Preservation: For primitive reductions, inversion gives the result
directly

Dan Grossman CS-XXX 2012, Lecture 11

Records

Records are like n-ary tuples except with named fields
» Field names are not variables; they do not a-convert

e == ...|{li=e1;...5ln=en}|el
v = | {li =v15..050, = v}
T u= . {liiTec sl s T}
e; — e, e —¢e
{l1=’l}1, cee ,li—1=vi—17li=eia cese 7ln=en} el — 8’.l
— {l1=v1, .o .,li_]_:vi_l,li=e;, . .,ln=en}
1<i<n
{l1=v1,...,ln=vn}.li—>vi
I'te :m T'ke,:7 labels distinct
FE{li=e1yeeesln=en}: {l1 71,0yl :mn}
Trhe:{li:7T1,..5ln T} 1<i<n
T'ktel;:7;

Dan Grossman CS-XXX 2012, Lecture 11

Records continued

Should we be allowed to reorder fields?

> - {l3 = 42513 = true} : {l2 : bool;l; : int} 77

> Really a question about, “when are two types equal?”
Nothing wrong with this from a type-safety perspective, yet many
languages disallow it

» Reasons: Implementation efficiency, type inference

Return to this topic when we study subtyping

Dan Grossman CS-XXX 2012, Lecture 11

10

Sums
What about ML-style datatypes:
type t = A | B of int | C of int * t
1. Tagged variants (i.e., discriminated unions)
2. Recursive types
3. Type constructors (e.g., type ’a mylist = ...)

4. Named types

For now, just model (1) with (anonymous) sum types

> (2) is in a later lecture, (3) is straightforward, and (4) we'll discuss
informally

Dan Grossman CS-XXX 2012, Lecture 11

11

Sums syntax and overview

e == ...|A(e) | B(e) | match e with Az. e | Bx. e
v == ...|A(v) | B(v)
T = ... |71+ T2

» Only two constructors: A and B

v

All values of any sum type built from these constructors

v

So A(e) can have any sum type allowed by e's type

v

No need to declare sum types in advance

v

Like functions, will “guess the type” in our rules

Dan Grossman CS-XXX 2012, Lecture 11

12

Sums operational semantics

match A(v) with Az. e; | By. es — e1[v/x]

match B(v) with Az. e; | By. ea — ex[v/y]

e— ¢
B(e) — B(e)

e— ¢
A(e) — A(e))

e —¢€

match e with Az. e; | By. ez — match e’ with Az. e; | By. ez

match has binding occurrences, just like pattern-matching

(Definition of substitution must avoid capture, just like functions)

Dan Grossman CS-XXX 2012, Lecture 11

13

What is going on

Feel free to think about tagged values in your head:

> A tagged value is a pair of:

> A tag A or B (or 0 or 1 if you prefer)
> The (underlying) value

» A match:

> Checks the tag
> Binds the variable to the (underlying) value

This much is just like OCaml and related to homework 2

Dan Grossman CS-XXX 2012, Lecture 11

14

Sums Typing Rules

Inference version (not trivial to infer; can require annotations)

I'kte:m
I'-A(e): 11+ 7

I'kFe:m
I'-B(e): 11+ 7

I'Fe:m + 1
T' - match e with Az. e; | By. ez : 7

e bep: 7 Tyyma Fex: T

Key ideas:
> For constructor-uses, “other side can be anything”
» For match, both sides need same type
» Don't know which branch will be taken, just like an if.

» In fact, can drop explicit booleans and encode with sums:
E.g., bool = int + int, true = A(0), false = B(0)

Dan Grossman CS-XXX 2012, Lecture 11

15

Sums Type Safety

Canonical Forms: If -+ = v : 71 + 72, then there exists a v1 such
that either v is A(v1) and - - v1 : 7 or v is B(v1) and
kv i

> Progress for match v with Azx. e; | By. ez follows, as usual,
from Canonical Forms

> Preservation for match v with Az. ey | By. e follows from
the type of the underlying value and the Substitution Lemma

» The Substitution Lemma has new “hard” cases because we
have new binding occurrences

> But that's all there is to it (plus lots of induction)

Dan Grossman CS-XXX 2012, Lecture 11

16

What are sums for?

» Pairs, structs, records, aggregates are fundamental
data-builders

» Sums are just as fundamental: “this or that not both”

> You have seen how OCaml does sums (datatypes)

» Worth showing how C and Java do the same thing
> A primitive in one language is an idiom in another

Dan Grossman CS-XXX 2012, Lecture 11

17

Sums in C

type t = A of t1 | B of t2 | C of t3
match e with A x ->

One way in C:

struct t {
enum {A, B, C} tag;
union {t1 a; t2 b; t3 c;} data;
}s

switch(e->tag){ case A: tl x=e->data.a;

» No static checking that tag is obeyed
» As fat as the fattest variant (avoidable with casts)
» Mutation costs us again!

Dan Grossman CS-XXX 2012, Lecture 11

18

Sums in Java

type t = A of t1 | B of t2 | C of t3
match e with A x ->

One way in Java (t4 is the match-expression’s type):

abstract class t {abstract t4 m();}

class A extends t { t1 x; t4 mO{...}}

class B extends t { t2 x; t4 mO{...}}

class C extends t { t3 x; t4 m(O){...}}
e.m()

» A new method in t and subclasses for each match expression

> Supports extensibility via new variants (subclasses) instead of
extensibility via new operations (match expressions)

Dan Grossman CS-XXX 2012, Lecture 11 19

Pairs vs. Sums

You need both in your language

» With only pairs, you clumsily use dummy values, waste space,
and rely on unchecked tagging conventions

» Example: replace int 4+ (int — int) with
int x (int x (int — int))

Pairs and sums are “logical duals” (more on that later)
> To make a 7y * T2 you need a 71 and a T2
» To make a 71 + 72 you need a 71 ora T2
» Given a 71 * Tg, you can get a 71 or a T2 (or both; your
“choice")
» Given a 71 + T2, you must be prepared for either a 71 or T2
(the value's “choice”)

Dan Grossman CS-XXX 2012, Lecture 11

20

Base Types and Primitives, in general

What about floats, strings, ...7
Could add them all or do something more general...

Parameterize our language/semantics by a collection of base types
(b1y-..,by) and primitives (p1 : T1,...,Pn ¢ Tn). Examples:

» concat : string—>string—string

> tolnt : float—int

> “hello” : string

For each primitive, assume if applied to values of the right types it
produces a value of the right type

Together the types and assumed steps tell us how to type-check
and evaluate p; vy ... v, where p; is a primitive

We can prove soundness once and for all given the assumptions

Dan Grossman CS-XXX 2012, Lecture 11 21

Recursion

We won't prove it, but every extension so far preserves termination

A Turing-complete language needs some sort of loop, but our
lambda-calculus encoding won't type-check, nor will any encoding
of equal expressive power

» So instead add an explicit construct for recursion

» You might be thinking let rec f * = e, but we will do
something more concise and general but less intuitive

ex=...|fixe

e— e

fix e — fix €’ fix Az. e — ef[fix Azx. e/z]
No new values and no new types

Dan Grossman CS-XXX 2012, Lecture 11

Using fix

To use fix like let rec, just pass it a two-argument function where
the first argument is for recursion

» Not shown: fix and tuples can also encode mutual recursion

Example:

(fix Af. An. if (n<1) 1 (n*(f(n—1))))5

%

(An.if (n<1) 1 (n * ((ix s An.if (a<1) 1 (= (Fn—1)n(N — 1)))) 5
%

if (5<1) 1 (5% ((fixar. an.if (n<1) 1 (nx (F(n — 1)) (5 — 1))

2

5 % ((fix Af. An. if (n<1) 1 (nx (F(n — 1)) (B — 1))

2

5% (An. if (n<1) 1 (1 * ((fixAf. An. if (n<1) 1 (n = (F(n — 1)) (N — 1)))) 4)
%

Dan Grossman CS-XXX 2012, Lecture 11 28]

Why called fix?

In math, a fix-point of a function g is an « such that g(x) = «
» This makes sense only if g has type 7 — 7 for some 7T
» A particular g could have have 0, 1, 39, or infinity fix-points

» Examples for functions of type int — int:
» Ax. + 1 has no fix-points
> Ax. x * 0 has one fix-point
> Ax. absolute_value(x) has an infinite number of fix-points

> Az. if (z < 10 && x > 0) = 0 has 10 fix-points

Dan Grossman CS-XXX 2012, Lecture 11

Higher types

At higher types like (int — int) — (int — int), the notion of
fix-point is exactly the same (but harder to think about)

» For what inputs f of type int — intis g(f) = f

Examples:
> Af. Azx. (f) + 1 has no fix-points
> Af. Az. (f x) %0 (or just Af. Az. 0) has 1 fix-point

» The function that always returns 0
> In math, there is exactly one such function (cf. equivalence)

> Af. Az. absolute value(f @) has an infinite number of
fix-points: Any function that never returns a negative result

Dan Grossman CS-XXX 2012, Lecture 11

Back to factorial

Now, what are the fix-points of
Aoz if (< 1)1 (z*(f(x—1)))7

It turns out there is exactly one (in math): the factorial function!

And fix Af. Az. if (x < 1)1 (x* (f(x — 1))) behaves just
like the factorial function

» That is, it behaves just like the fix-point of
Aoz if (< 1)1 (z* (f(x—1)))

» In general, fix takes a function-taking-function and returns its
fix-point

(This isn't necessarily important, but it explains the terminology
and shows that programming is deeply connected to mathematics)

Dan Grossman CS-XXX 2012, Lecture 11

26

Typing fix

'te:T—> 71
T'kHfixe:r
Math explanation: If e is a function from 7 to 7, then fix e, the
fixed-point of e, is some 7 with the fixed-point property

» So it's something with type T

Operational explanation: fix Az. e’ becomes €’[fix Az. e’/z]
» The substitution means = and fix Az. e’ need the same type
» The result means e’ and fix Ax. e’ need the same type

Note: The 7 in the typing rule is usually insantiated with a
function type

> e.g., T — T2, S0 e has type (11 — T2) — (11 — T2)
Note: Proving soundness is straightforward!

Dan Grossman CS-XXX 2012, Lecture 11

General approach

We added let, booleans, pairs, records, sums, and fix
» let was syntactic sugar
» fix made us Turing-complete by “baking in" self-application
» The others added types

Whenever we add a new form of type 7 there are:
» Introduction forms (ways to make values of type 7)
> Elimination forms (ways to use values of type T)

What are these forms for functions? Pairs? Sums?

When you add a new type, think “what are the intro and elim
forms”?

Dan Grossman CS-XXX 2012, Lecture 11

Anonymity

We added many forms of types, all unnamed a.k.a. structural.
Many real PLs have (all or mostly) named types:
» Java, C, C++: all record types (or similar) have names
» Omitting them just means compiler makes up a name

» OCaml sum types and record types have names

A never-ending debate:
» Structual types allow more code reuse: good
» Named types allow less code reuse: good
» Structural types allow generic type-based code: good
» Named types let type-based code distinguish names: good

The theory is often easier and simpler with structural types

Dan Grossman CS-XXX 2012, Lecture 11

Termination
Surprising fact: If - = e : 7 in STLC with all our additions except
fix, then there exists a v such that e —=* v

» That is, all programs terminate

So termination is trivially decidable (the constant “yes” function),
so our language is not Turing-complete

The proof requires more advanced techniques than we have learned
so far because the size of expressions and typing derivations does
not decrease with each program step

» Could present it in about an hour if desired

Non-proof:
» Recursion in A calculus requires some sort of self-application

» Easy fact: For all ', @, and 7, we cannot derive ' - x = : T

Dan Grossman CS-XXX 2012, Lecture 11

30

