CS-XXX: Graduate Programming Languages

Lecture 27 — Higher-Order Polymorphism

Matthew Fluet
2012

Looking back, looking forward
Have defined System F.

» Metatheory (what properties does it have)

» What (else) is it good for

» How/why ML is more restrictive and implicit

» Recursive types (also use type variables, but differently)

» Existential types (dual to universal types)

Next:

» Type operators and type-level “computations”

Matthew Fluet CS-XXX 2012, Lecture 27 2

System F with Recursive and Existential Types

e u= c|lz|Az:T.e|ee]
Aa.e|e[T]|
packg,,. (7, e) | unpack e as (a,) in e |
roll, . +(e) | unroll(e)

v = c|Ax:iT.e| Aa. e | packgy, (7T,v) | rollya. +(v)
4 ’
€f —*cbv €f €a —*cbyv €a
’ ’
(Ax: T. ep) Va —Fcphy €b[Va/x] ef €a —>cphy €f €a Vf§ €a —Fchy VS €q

’
€f —*cbv ©r

(Acx. ep) [Tal —>cpy eblTa/] ef [Tal —chy €} [Tal

’
€a —*cby €a

7
PaCkEQ. ‘I'(Tw’ ea) _>CbV paCkEQ. T(Tw’ ea,)

’
€a —*cbv €a

- 7 -
unpack eq as (@, @) in ep —>p, unpack e, as (o, x) in ey

unpack packgy, . - (Tw, Va) as (o, @) in ey —>(py €p[Tw /][va /]

’
€a —*cbv €a

unroll(eq) —*chy unroll(e;) unroll(roll, . +(Va)) —>chy Va

Matthew Fluet CS-XXX 2012, Lecture 27

System F with Recursive and Existential Types

T = int|T > 7|a|Va.7|3a. T | pa. T
A = |Aa
r = | T, x:7
T(z) =71
A;T F c:int AT T
At Tq AsT,x:1q Fep:Tp A;T Hefp:1q = T AT Feq:Ta
A;T - AxiTg.ep t Tq —> Tr A;T Hefpeq:Tr
A,o;T +ep: AT - ep : Va. T A b Tq
AT F Aa. ep : Vo T AT Fep [1a] : Tr[Ta/]
AT F eq : T[Tw/a] A;T Feq : Ja. T A,oT, 27+ ep : ™ A T
AT F packgy,, +(Twsea) : Fa. T A; T+ unpack eq as (o,) inep : T
A;T Feq : T[(pa. 7)/al A;T Feq : pa. T
AT Frolly., r(€a) t pa. T A; T F unroll(eq) : T[(pa. 7))/l

Matthew Fluet CS-XXX 2012, Lecture 27

Goal

Understand what this interface means and why it matters:

type 'a list

val empty : 'a list

val cons : 'a -> 'a list -> 'a 1list

val unlist : 'a list -> ('a * 'a list) option
val size : 'a list -> int

val map : ('a -> 'b) -> 'a list -> 'b list

Story so far:

» Recursive types to define list data structure

> Universal types to keep element type abstract in library
» Existential types to keep list type abstract in client

But, “cheated” when abstracting the list type in client:
considered just intlist.

Matthew Fluet CS-XXX 2012, Lecture 27

(Integer) List Library with 3

List library is an existential package:

pack(p€. unit 4 (int x &), list_library)
as 3L. {empty : L;
cons :int - L — L;
unlist : L — unit 4 (int = L);
map : (int — int) > L — L;
The witness type is integer lists: p&. unit 4 (int * &).
The existential type variable L represents integer lists.

List operations are monomorphic in element type (int).

The map function only allows mapping integer lists to integer lists.

Matthew Fluet CS-XXX 2012, Lecture 27

(Polymorphic?) List Library with V/3
List library is a type abstraction that yields an existential package:

Aa. pack(p€. unit + (a * £), list_library)
as 3L. {empty : L;
cons: o« — L — L;
unlist : L — unit 4 (a * L);
map: (o - a) - L — L;
The witness type is a lists: p&. unit + (o * £).
The existential type variable L represents « lists.

List operations are monomorphic in element type ().

The map function only allows mapping « lists to « lists.

Matthew Fluet CS-XXX 2012, Lecture 27 7

Type Abbreviations and Type Operators

Reasonable enough to provide list type as a (parametric) type abbreviation:

La = p& unit+ (ax§)

» replace occurrences of L 7 in programs

with (p€. unit + (a * €))[7/a]

Gives an informal notion of functions at the type-level.
But, doesn't help with with list library,

because this exposes the definition of list type.

» How “modular” and “safe” are libraries built from cpp macros?

Matthew Fluet CS-XXX 2012, Lecture 27 8

Type Abbreviations and Type Operators

Instead, provide list type as a type operator:
» a function from types to types
L = Aa. p&. unit+ (a *§)

Gives a formal notion of functions at the type-level.
» abstraction and application at the type-level
» equivalence of type-level expressions

» well-formedness of type-level expressions

List library will be an existential package that hides a type operator,
(rather than a type).

Matthew Fluet CS-XXX 2012, Lecture 27

Type-level Expressions

Abstraction and application at the type level

makes it possible to write the same type with different syntax.

Id = Aa. o
int — bool int — Id bool

Id int — bool Id int — Id bool
Id (int — bool) Id (Id (int — bool))

Matthew Fluet CS-XXX 2012, Lecture 27

10

Type-level Expressions

Abstraction and application at the type level
makes it possible to write the same type with different syntax.

Id = Aa. o
int — bool int — Id bool Id int — bool Id int — Id bool
Id (int — bool) Id (Id (int — bool))

Require a precise definition of when two types are the same:

(Aa. 1) Ta = Tp[a/Ta]

Matthew Fluet CS-XXX 2012, Lecture 27 10

Type-level Expressions

Abstraction and application at the type level
makes it possible to write the same type with different syntax.

Id = Aa. o
int — bool int — Id bool Id int — bool Id int — Id bool
Id (int — bool) Id (Id (int — bool))

Require a typing rule to exploit types that are the same:

AsT'He: T r=17'
A;THe: 7’

Matthew Fluet CS-XXX 2012, Lecture 27 10

Type-level Expressions

Abstraction and application at the type level
makes it possible to write the same type with different syntax.

Id = A\a. o«

int — bool int — Id bool Id int — bool Id int — Id bool

Id (int — bool) Id (Id (int — bool))

Admits “wrong/bad/meaningless” types:

bool int (Id bool) int bool (Id int)

Matthew Fluet CS-XXX 2012, Lecture 27

10

Type-level Expressions

Abstraction and application at the type level
makes it possible to write the same type with different syntax.

Id = Aa. o
int — bool int — Id bool Id int — bool Id int — Id bool
Id (int — bool) Id (Id (int — bool))

Require a “type system” for types:

AF Ty Kg = Ky AF T4t K

Al T 74 i Ky

Matthew Fluet CS-XXX 2012, Lecture 27 10

Terms, Types, and Kinds, Oh My

Matthew Fluet CS-XXX 2012, Lecture 27

11

Terms, Types and Kinds, Oh My

Terms:

vVvyvyVvyy

Matthew Fluet

clz| Azt . e|ee| Aak. e | e [T]
c| Axz:T. e | Aaik. e

atomic values (e.g., ¢) and operations (eg., e + e)
compound values (e.g., (v,v)) and operations (eg. e.1)
value abstraction and application

type abstraction and application

classified by types (but not all terms have a type)

CS-XXX 2012, Lecture 27

11

Terms, Types, and Kinds, Oh My

Terms: w= clx|Az:T.e|ee| Aak. e | e [T]
= c|Ax:iT. e | Aazik. e
» atomic values (eg., ¢) and operations (eg., e + €)
» compound values (e.g., (v,v)) and operations (eg. e.1)
» value abstraction and application
> type abstraction and application
> classified by types (but not all terms have a type)
Types: 7 == int|7 =7 |a|Voauk. 7| Aazk. 7| T T
> atomic types (e.g., int) classify the terms that evaluate to atomic values
» compound types (eg., T * 7) classify the terms that evaluate to compound values
» function types 7 — T classify the terms that evaluate to value abstractions
» universal types Va. 7 classify the terms that evaluate to type abstractions
> type abstraction and application
> type abstractions do not classify terms,

but can be applied to type arguments

to form types that do classify terms
> classified by kinds (but not all types have a kind)

Matthew Fluet CS-XXX 2012, Lecture 27

11

Terms, Types, and Kinds, Oh My

Types: 7 u= int|7 =7 |a|Vouk. 7| dazk. 7| T T
> atomic types (e.g., int) classify the terms that evaluate to atomic values
» compound types (eg., T * 7) classify the terms that evaluate to compound values
> function types 7 — 7 classify the terms that evaluate to value abstractions
> universal types Va. 7 classify the terms that evaluate to type abstractions
> type abstraction and application
> type abstractions do not classify terms,

but can be applied to type arguments

to form types that do classify terms
» classified by kinds (but not all types have a kind)

Matthew Fluet CS-XXX 2012, Lecture 27

11

Terms, Types, and Kinds, Oh My

Types: 7 u= int|7 =7 |a|Vouk. 7| dazk. 7| T T
> atomic types (e.g., int) classify the terms that evaluate to atomic values
» compound types (eg., T * 7) classify the terms that evaluate to compound values
> function types 7 — 7 classify the terms that evaluate to value abstractions
> universal types Va. 7 classify the terms that evaluate to type abstractions
> type abstraction and application
> type abstractions do not classify terms,
but can be applied to type arguments
to form types that do classify terms
» classified by kinds (but not all types have a kind)
Kinds & :: *| kK=K
> kind of proper types x classify
the types (that are the same as the types) that classify terms
» arrow kinds kK = K classify

the types (that are the same as the types) that are type abstractions

Matthew Fluet CS-XXX 2012, Lecture 27

11

Kind Examples

Matthew Fluet

CS-XXX 2012, Lecture 27

Kind Examples

> %

» the kind of proper types
» Bool, Bool — Bool, ...

Matthew Fluet

CS-XXX 2012, Lecture 27

Kind Examples

>

the kind of proper types
Bool, Bool — Bool, ...
= %

the kind of (unary) type operators
List, Maybe, ...

L 2 AR

v
Y V %

Matthew Fluet CS-XXX 2012, Lecture 27

Kind Examples

>
the kind of proper types

Bool, Bool — Bool, Maybe Bool, Maybe Bool — Maybe Bool, ...
= %

the kind of (unary) type operators
List, Maybe, ...

L 2 AR

v
Y V %

Matthew Fluet CS-XXX 2012, Lecture 27

12

Kind Examples

> %

> the kind of proper types

» Bool, Bool — Bool, Maybe Bool, Maybe Bool — Maybe Bool, ...
> ok = X

» the kind of (unary) type operators

» List, Maybe, ...
> ok =k = %

» the kind of (binary) type operators

» Either, Map, ...

Matthew Fluet CS-XXX 2012, Lecture 27

12

Kind Examples

>
the kind of proper types

Bool, Bool — Bool, Maybe Bool, Maybe Bool — Maybe Bool, ...
= *x

the kind of (unary) type operators

List, Maybe, Map Int, Either (List Bool), ...

= % = %

the kind of (binary) type operators
Either, Map, ...

v
YV % VYV OV %

v
Y ¥V %

Matthew Fluet CS-XXX 2012, Lecture 27

12

Kind Examples

>

the kind of proper types

L 2 AR

= %
the kind of (unary) type operators
List, Maybe, Map Int, Either (List Bool), ...
= * =
the kind of (binary) type operators
Either, Map, ...
> (k= %) = &
» the kind of higher-order type operators

taking unary type operators to proper types
> 777

v
Y V %

v
A

v

Matthew Fluet CS-XXX 2012, Lecture 27

Bool, Bool — Bool, Maybe Bool, Maybe Bool — Maybe Bool, ...

12

Kind Examples

> x
> the kind of proper types
» Bool, Bool — Bool, Maybe Bool, Maybe Bool — Maybe Bool, ...
> ok = %
» the kind of (unary) type operators
> List, Maybe, Map Int, Either (List Bool), ...
> x = k = %
» the kind of (binary) type operators
» Either, Map, ...
> (k= %) = &
» the kind of higher-order type operators
taking unary type operators to proper types
> 777, ...
> (x = %) = x = %

» the kind of higher-order type operators
taking unary type operators to unary type operators
» MaybeT, ListT, ...

Matthew Fluet CS-XXX 2012, Lecture 27

Kind Examples

> x

> the kind of proper types

» Bool, Bool — Bool, Maybe Bool, Maybe Bool — Maybe Bool, ...
> ok = %

» the kind of (unary) type operators

> List, Maybe, Map Int, Either (List Bool), ListT Maybe, ...
> x = k = %

» the kind of (binary) type operators

» Either, Map, ...
> (k= %) = &

» the kind of higher-order type operators

taking unary type operators to proper types

> 777, ...

> (x = %) = x = %

» the kind of higher-order type operators
taking unary type operators to unary type operators
» MaybeT, ListT, ...

Matthew Fluet CS-XXX 2012, Lecture 27

System F,: Syntax

e u= cl|lxz|Ar:T.e|ee| Aak. e | e [T]
v = c|Ax:iT.e| Aaik. e
r = . |Iz:r
T = int|T—>7|a|Vauk. T| Ak, T | T T
A = | Aok
K 2= x| K=K
New things:

» Types: type abstraction and type application
» Kinds: the “types” of types

» x: kind of proper types

> Kgq = K. kind of type operators

Matthew Fluet CS-XXX 2012, Lecture 27

13

System F,,: Operational Semantics

Small-step, call-by-value (CBV), left-to-right operational semantics:

4

er —cbv €
(Ax: 7. ep) Vo —>cpy €blVa/T] €f €a —chy e} €q

’
€a _)va €a

Vf €a _)CbV vy e:z (Aa::k"’a‘ eb) [Ta] _>cbv eb[Ta/a]

€r by €f
ef [Ta] = chy e} [7al

» Unchanged! All of the new action is at the type-level.

Matthew Fluet CS-XXX 2012, Lecture 27

14

System F: Type System, part 1

In the context A the type 7 has kind k:

Al T 0% Al 1. 0%

A Fint % AbF T, — 70 it x
A(a) =k A, kKg b7t
AFa::k A FVYaikg. T it %
A, it Kg ETp it Ky ATyt Kg = Ky Al T4 it Kg
AF AaiiKg. Tp it Kg = Ky AF T Tq it Ky

Should look familiar:

Matthew Fluet CS-XXX 2012, Lecture 27 15

System F: Type System, part 1

In the context A the type 7 has kind k:

Al T 0% Al 1. 0%

A Fint % AbF T, — 70 it x
A(a) =k A, kKg b7t
AFa::k A FVYaikg. T it %
A, it Kg ETp it Ky ATyt Kg = Ky Al T4 it Kg
AF AaiiKg. Tp it Kg = Ky AF T Tq it Ky

Should look familiar:
the typing rules of the Simply-Typed Lambda Calculus “one level up”

Matthew Fluet CS-XXX 2012, Lecture 27 15

System F: Type System, part 2

Definitional Equivalence of T and 7’:

T2 = T1 T = T2 T2 = T3
T=T T1 = T2 T1 = T3
Tal = Ta2 Trl = Tr2 Trl = Tr2
Tal = Trl = Ta2 —> Tr2 Vaikge. Tr1 = Vaiikg. Tro
Tbl = Tb2 TFL = Tf2 Tal = Ta2
AQKg. Thl = AQiKg. Th2 Tf1 Tal = T2 Ta2

(Aatikg. Tp) Ta = To[a/Ta]

Should look familiar:

Matthew Fluet CS-XXX 2012, Lecture 27

16

System F: Type System, part 2

Definitional Equivalence of T and 7’:

T2 = T1 T = T2 T2 = T3
T=T T1 = T2 T1 = T3
Tal = Ta2 Trl = Tr2 Trl = Tr2
Tal = Trl = Ta2 —> Tr2 Vaikge. Tr1 = Vaiikg. Tro
Tbl = Tb2 TFL = Tf2 Tal = Ta2
AQKg. Thl = AQiKg. Th2 Tf1 Tal = T2 Ta2

(Aatikg. Tp) Ta = To[a/Ta]

Should look familiar:
the full reduction rules of the Lambda Calculus “one level up”

Matthew Fluet CS-XXX 2012, Lecture 27

16

System F,,: Type System, part 3

In the contexts A and I the expression e has type 7:

I'(z) =71
A;T Fc:int AsThHa: T
AF Tq it x AsT,x:71q Fep: T AsT -ef:Tqg — Tr AT Feq: Ta
AT F Axirg. ep : Ta — Tr A;T - efeq:7r
A, :: kg 'Hep: A;I‘I—Ef :Vaiikg. Tr Al Tq it Ka
AT F Aa. ep : Vaiikg. Tr AsT & ep [ta] 2 Tr[Ta/]

AsTHe: T =1 AT %
AsTHe: 7’

Matthew Fluet CS-XXX 2012, Lecture 27

System F,,: Type System, part 3

In the contexts A and I the expression e has type 7:

I'(z) =71
A;T Fc:int AsThHa: T
AF Tq it x AsT,x:71q Fep: T AsT -ef:Tqg — Tr AT Feq: Ta
AT F Axirg. ep : Ta — Tr A;T - efeq:7r
A, :: kg 'Hep: A;I‘I—Ef :Vaiikg. Tr Al Tq it Ka
AT F Aa. ep : Vaiikg. Tr AsT & ep [ta] 2 Tr[Ta/]

AsTHe: T =1 AT %
AsTHe: 7’

Syntax and type system easily extended with recursive and existential
types.

Matthew Fluet CS-XXX 2012, Lecture 27

17

Polymorphic List Library with higher-order 3

List library is an existential package:

pack(Aa:ik. p€:k. unit + (a x £), list_library)
as JL::k = *. {empty : Va::x. L a;
cons : Vai:x. « - L o = L oy
unlist : Va::x. L a — unit + (a * L a);
map : Va::x. VBix. (o - 3) > L a — L 3
The witness type operator is poly.lists: Aa:ix. p&::%. unit + (o * &).
The existential type operator variable L represents poly. lists.

List operations are polymorphic in element type.

The map function only allows mapping « lists to 3 lists.

Matthew Fluet CS-XXX 2012, Lecture 27 18

Other Kinds of Kinds

Kinding systems for checking and tracking properties of type expressions:
» Record kinds

» records at the type-level; define systems of mutually recursive types
» Polymorphic kinds

» kind abstraction and application in types; System F “one level up”
» Dependent kinds

» dependent types “one level up”
» Row kinds

» describe “pieces” of record types for record polymorphism
» Power kinds

» alternative presentation of subtyping
» Singleton kinds

» formalize module systems with type sharing

Matthew Fluet CS-XXX 2012, Lecture 27 19

Metatheory

System F, is type safe.

Matthew Fluet

CS-XXX 2012, Lecture 27

20

Metatheory

System F, is type safe.

> Preservation:
Induction on typing derivation, using substitution lemmas:

» Term Substitution:
if A1, AgsT1, i 7, o ey :7and AT Feo it 7o,
then A1, AT, T2 Feqfex/x] : T.
» Type Substitution:
if A, ik, As 71 it kand A F T2 i Ka,
then Ay, Az F 1 [m2/a] :: k.
» Type Substitution:
if 71 = T2, then T [7/a] = m2[7T/a].
» Type Substitution:
if Ay, aike, Ag;T1,Ta ey :7and Ay F 75 it Kq,
then Ay, Ag; T, Ia[me/a] F ei[m2/a] : T.

> All straightforward inductions, using various weakening and exchange lemmas.

Matthew Fluet CS-XXX 2012, Lecture 27

20

Metatheory

System F, is type safe.

» Progress:

Induction on typing derivation, using canonical form lemmas:

» If ;- F v :int, then v = c.
> If5-Fv:71y — 70, then v = Axi7,. €p.
» If 5. v: Vaiikge. T, then v = Aaiikg. €p.

» Complicated by typing derivations that end with:
AsTHe: T =7 AFT %
AsTHe: T

(just like with subtyping and subsumption).

Matthew Fluet CS-XXX 2012, Lecture 27

20

Definitional Equivalence and Parallel Reduction

Parallel Reduction of T to T/:

T=>T
Tal 3 Ta2 Trl 3 Tr2 Tril 3 Tr2
Tal —> Trl = Ta2 —> Tr2 Va::ke. Tr1 = VaiiKae. Tr2
Tbl = Tb2 Tf1 = T2 Tal = Ta2
AQ:iiKg. Tol = AQiiKg. Tb2 Tf1 Tal = Tf2 Ta2
’ ’
T = Tp Ta = Ta

Aazikg. o) Ta = Tola/T0]

A more “computational” relation.

Matthew Fluet CS-XXX 2012, Lecture 27

21

Definitional Equivalence and Parallel Reduction

Key properties:

Matthew Fluet CS-XXX 2012, Lecture 27

Definitional Equivalence and Parallel Reduction

Key properties:

» Transitive and symmetric closure of parallel reduction
and type equivalence coincide:

T e* T iffr=1'

Matthew Fluet CS-XXX 2012, Lecture 27

Definitional Equivalence and Parallel Reduction
Key properties:

» Transitive and symmetric closure of parallel reduction
and type equivalence coincide:

» TS iffr =1
» Parallel reduction has the Church-Rosser property:
> Ifr=*71and 7 =* 1,
then there exists 7/ such that 71 =* 7/ and 2 =* 7/

Matthew Fluet CS-XXX 2012, Lecture 27

Definitional Equivalence and Parallel Reduction

Key properties:
» Transitive and symmetric closure of parallel reduction
and type equivalence coincide:
» TS iffr =1
» Parallel reduction has the Church-Rosser property:
> Ifr=*71and 7 =* 1,
then there exists 7/ such that 71 =* 7/ and 2 =* 7/

» Equivalent types share a common reduct:

» If 74 = 75, then there exists 7/ such that 7y =* 7/ and ™ =* 7/

Matthew Fluet CS-XXX 2012, Lecture 27

22

Definitional Equivalence and Parallel Reduction

Key properties:
» Transitive and symmetric closure of parallel reduction
and type equivalence coincide:
» TS iffr =1
» Parallel reduction has the Church-Rosser property:
> Ifr=*71and 7 =* 1,
then there exists 7/ such that 71 =* 7/ and 2 =* 7/
» Equivalent types share a common reduct:
» If 74 = 75, then there exists 7/ such that 7y =* 7/ and ™ =* 7/
» Reduction preserves shapes:
» Ifint =* 7/, then 7/ = int
» Ifrg &> 71 2* 7/ then 7/ =7 = 7/ and 74 =2* 7} and 7. 2* 7/
» If Vaiikg. 7 2 7/, then 7/ = Vaiikg. 7). and 7, =* 7]

Matthew Fluet CS-XXX 2012, Lecture 27

22

Canonical Forms

If 5. Fv:7q — 70, then v = Ax:i74. €p.
Proof:
By cases on the form of v:

Matthew Fluet CS-XXX 2012, Lecture 27

23

Canonical Forms

If 5. Fv:7q — 70, then v = Ax:i74. €p.
Proof:
By cases on the form of v:

> V= AL:Tq. €b.
We have that v = Axz:7,. ep.

Matthew Fluet CS-XXX 2012, Lecture 27

23

Canonical Forms

If 5. Fv:7q — 70, then v = Ax:i74. €p.
Proof:
By cases on the form of v:

> v=oc
Derivation of «;+ - v : T4 — 7T must be of the form:

ek ctint int =71
sekFec:T
ek erT, 1 Tn—1 = Tn
ek ey Tn = Ta —> Tr

ek eciTqg = T
Therefore, we can construct the derivation int = 7, — 7.
We can find a common reduct: int =* 77 and 74 — 7 =* 1.
Reduction preserves shape: int =* 71 implies 71 = int.
Reduction preserves shape: 7o — 7 =* 71 implies 71 = 72 — 7.
But, ¥ = int and 71 = 7/ — 7/ is a contradiction.

Matthew Fluet CS-XXX 2012, Lecture 27

23

Canonical Forms

If 5. Fv:7q — 70, then v = Ax:i74. €p.
Proof:
By cases on the form of v:

> v = AaiKg. €p.
Derivation of «;+ - v : T4 — 7T must be of the form:

s Aaitkg. ep : Vaiikg. T2 Vaiikg. Tz = T1

ek Aaiikg. ep t T1

ek Aaiikg.ep t T Tn—1 = Tn

o Aaiikg. ep 1 Th Tn = Ta —> Tr

5o Aaiikg. ep t Ta —> T
Therefore, we can construct the derivation Vai:ikg. T2 = Ta — Tr.
We can find a common reduct: Yaiikg. 72 =* 717 and 7o — 7 =* 71,
Reduction preserves shape: Vaiikg. 72 = 1 implies T = Vaiikg. TL.
Reduction preserves shape: 7, — 7 =* 71 implies 77 = 7/, — 7.
But, 7t = Va:ike. 72 and 71 = 7, — 7/ is a contradiction.

Matthew Fluet CS-XXX 2012, Lecture 27

23

Metatheory

System F, is type safe.

Where was the A F 7 :: k judgement used in the proof?

Matthew Fluet CS-XXX 2012, Lecture 27

24

Metatheory

System F, is type safe.

Where was the A F 7 :: k judgement used in the proof?
In Type Substitution lemmas, but only in an inessential way.

Matthew Fluet CS-XXX 2012, Lecture 27

24

Metatheory

System F, is type safe.

Where was the A F 7 :: k judgement used in the proof?
In Type Substitution lemmas, but only in an inessential way.

After weeks of thinking about type systems, kinding seems natural;
but kinding is not required for type safety!

Matthew Fluet CS-XXX 2012, Lecture 27

24

System F,

Matthew Fluet

without Kinds / System F with Type-Level Abstraction and Application

clz|Az:T.e|ee| Aa. e | e [T]
c|dz:T.e| Aa. e
int| r—>7|a|Va.7|Aa.T|TT

r
A

| Ty
A

CS-XXX 2012, Lecture 27 25

System F,, without Kinds / System F with Type-Level Abstraction and Application
e = clax|I:T.e|lee|Aa.e]|e]T] I s= .|D,ar
v u= c|Az:T.e| Aa. e A i= -|Aa
T u= int|T—>7|a|Va.T|At.T|TT B ’
e —rcpy €
€5 —cby €f €a —cby a
(Az: 7. ep) Va —>cpy €b[Va/T] €f €a —cpy €F €a Vf €a —>cpy VF €a
er by €f

Matthew Fluet

(Ao ep) [Ta] —cpy €b[Ta/a]

CS-XXX 2012, Lecture 27

es [Ta] —cbv e} [Ta]

25

System F,, without Kinds / System F with Type-Level Abstraction and Application

e 2= clz|Az:iT.e|ee|Aa.e]|e[T] r = .|T, &

v un= c|Az:T.e|Aa.e A = -|A«

T u= int|7T=>7|a|Va.T|A.T|TT B ’
ATV

Al T1q 0V A1V

AFint: Vv AbF 1y > 10 0V
ac A Ajak 1V
ArFa: Vv AFVa. 72V
Aol TV ATV AFTq Vv
AFda. iV Al Te7e vV

Check that free type variables of 7 are in A, but nothing else.

Matthew Fluet CS-XXX 2012, Lecture 27 25

System F,, without Kinds / System F with Type-Level Abstraction and Application

e = clax|I:T.e|lee|Aa.e]|e]T] r == .|0,z:7
v un= c|Az:T.e|Aa.e A = -|A«
T u= int|T—>7|a|Voa.T|Aa.T|TT - ’

TR =71 T1L = T2 T2 = T3
T=T T = T2 T1L = T3
Tal = Ta2 Trl = Tr2 Trl = Tr2
Tal —> Trl = Ta2 —> Tr2 Va. 701 = Va. Tr2
Tbl = Tb2 Tf1 = Tf2 Tal = Ta2
AQ. Tp1 = AQx. Tp2 Tf1 Tal = Tf2 Ta2

(Aa. 1) Ta = To[v/Ta]

Matthew Fluet CS-XXX 2012, Lecture 27 25

System F,, without Kinds / System F with Type-Level Abstraction and Application

e = clax|I:T.e|lee|Aa.e]|e]T] I s= .|D,ar
v u= c|Az:T.e| Aa. e A i= -|Aa
T u= int|T—>7|a|Voa.T|Aa.T|TT o ’
I'(x) =71
A;T Fe:int AsTHax: T
Al T1q 2V AsT,x:71qaFep:Tr AsT Hefp:Ta = Tr A;T FHeq:Ta
AT F Axirq. €ep : Ta — Tr AsT -efeq:Tr
A,a;T Fep:Tr A;TFHef:Va. AbFT1q 2V
AT H Aa. ep : Vo 1 A;T e [1a] : Tr[Ta/a]

A;THe: T =71

AsTHe: 7

Matthew Fluet CS-XXX 2012, Lecture 27 25

System F,, without Kinds / System F with Type-Level Abstraction and Application

This language is type safe.

Matthew Fluet CS-XXX 2012, Lecture 27 26

System F,, without Kinds / System F with Type-Level Abstraction and Application

This language is type safe.

» Preservation:

Induction on typing derivation, using substitution lemmas:

>

Term Substitution:

if A1, AgsT1,x: 7, o ey :7and AT Feo it 7o,
then A1, Ag; T4, T2 Feqfex/x] : T.

Type Substitution:

ifAl,a,A2 - T1 ¢ v' and Al - T2 ¢ \/,

then Ay, Ag F 1 [m2/a] 2 V.

Type Substitution:

if 71 = T2, then T [7/a] = m2[7T/a].

Type Substitution:

if Al,a,A2;I‘1,I‘2 + e ' T and Al [T2 ot \/,
then Ay, Ag; T, Ia[me/a] F ei[me/a] : T.

All straightforward inductions, using various weakening and exchange lemmas.

Matthew Fluet CS-XXX 2012, Lecture 27

26

System F,, without Kinds / System F with Type-Level Abstraction and Application

This language is type safe.

» Progress:
Induction on typing derivation, using canonical form lemmas:

» If ;- F v :int, then v = c.
> If5-Fv:71y — 70, then v = Axi7,. €p.
» If 5. v:Va. 1, then v = Aa. ep.

> Using parallel reduction relation.

Matthew Fluet CS-XXX 2012, Lecture 27 26

Why Kinds?

Why aren't kinds required for type safety?

Matthew Fluet CS-XXX 2012, Lecture 27

27

Why Kinds?
Why aren't kinds required for type safety?
Recall statement of type safety:

If <.+ e: 7, then e does not get stuck.

Matthew Fluet CS-XXX 2012, Lecture 27

27

Why Kinds?
Why aren't kinds required for type safety?

Recall statement of type safety:

If <.+ e: 7, then e does not get stuck.

The typing derivation <5 e : T
includes definitional-equivalence sub-derivations 7 = 7/,
which are explicit evidence that 7 and 7/ are the same.

» E.g., to show that the “natural” type of the function expression
in an application is equivalent to an arrow type:

AsT -ef:7p Tf=Ta — Tr

AsTHef:Tq = T A;T Feq: Ta
AsTHepeq:Tr

Matthew Fluet CS-XXX 2012, Lecture 27

27

Why Kinds?
Why aren't kinds required for type safety?
Recall statement of type safety:

If <.+ e: 7, then e does not get stuck.

The typing derivation <5 e : T
includes definitional-equivalence sub-derivations 7 = 7/,
which are explicit evidence that 7 and 7/ are the same.

Definitional equivalence (7 = 7’) and parallel reduction (7 = 77)
do not require well-kinded types
(although they preserve the kinds of well-kinded types).

» Eg., (Aa. a = «a) (int int) = (int int) — (int int)

Matthew Fluet CS-XXX 2012, Lecture 27

27

Why Kinds?
Why aren't kinds required for type safety?
Recall statement of type safety:
If <.+ e: 7, then e does not get stuck.

The typing derivation <5 e : T
includes definitional-equivalence sub-derivations 7 = 7/,
which are explicit evidence that 7 and 7/ are the same.

Definitional equivalence (7 = 7’) and parallel reduction (7 = 77)
do not require well-kinded types
(although they preserve the kinds of well-kinded types).

Type (and kind) erasure means that “wrong/bad/meaningless” types
do not affect run-time behavior.

» lll-kinded types can't make well-typed terms get stuck.

Matthew Fluet CS-XXX 2012, Lecture 27 27

Why Kinds?

Kinds aren't for type safety:
» Because a typing derivation (even with ill-kinded types),
carries enough evidence to guarantee that expressions don't get stuck.

Matthew Fluet CS-XXX 2012, Lecture 27

28

Why Kinds?

Kinds aren't for type safety:

» Because a typing derivation (even with ill-kinded types),

carries enough evidence to guarantee that expressions don't get stuck.

Kinds are for type checking:

» Because programmers write programs, not typing derivations.
» Because type checkers are algorithms.

Matthew Fluet

CS-XXX 2012, Lecture 27

28

Why Kinds?

Kinds are for type checking:
» Because programmers write programs, not typing derivations.

» Because type checkers are algorithms.

Matthew Fluet CS-XXX 2012, Lecture 27

28

Why Kinds?

Kinds are for type checking:

» Because programmers write programs, not typing derivations
» Because type checkers are algorithms.

Recall the statement of type checking:

Given A, T, and e, does there exist 7 such that A;T e : 7.

Matthew Fluet CS-XXX 2012, Lecture 27

28

Why Kinds?

Kinds are for type checking:

» Because programmers write programs, not typing derivations.
» Because type checkers are algorithms.

Recall the statement of type checking:

Given A, T, and e, does there exist T such that A;T' e : 7.

Two issues:
AsTHe: T =7 AT k. .

’ . is a non-syntax-directed rule
As;THe:T
» 7 = 7’ is a non-syntax-directed relation

One non-issue:

>

» A T :: kis a syntax-directed relation (STLC “one level up")

Matthew Fluet CS-XXX 2012, Lecture 27

28

Type Checking for System F,

Remove non-syntax-directed rules and relations:

'(x) =71
A;T Fc:int AsTHx:T
Al 14 1t % AsT,x:7qFep:Tr

A,ake;T'Fep: 70
AT AxiTq. €0 2 Ta — Tr

AT FH Aa. ey : Vaiikg. Tr

AsT Hep:Ty Tf%“T}

= The = The
AT Feq : 7o ‘rasl}ﬂ;

ot
Tfa—‘ra

AsT Fep ea:‘r}r

AsT Hep:Ty Tf?l}‘l";:
AF T4 it Ka
AT+ ef [Ta]

‘r;c =Vai:kfa. Trr
Kfa = Ka

: Tir[Ta /]

Matthew Fluet CS-XXX 2012, Lecture 27

29

Type Checking for System F,

Kinds are for type checking.

Given A, T, and e, does there exist T such that A;T' e : 7.

Metatheory for kind system:

Matthew Fluet CS-XXX 2012, Lecture 27

30

Type Checking for System F,

Kinds are for type checking.

Given A, T, and e, does there exist T such that A;T' e : 7.

Metatheory for kind system:
» Well-kinded types don't get stuck.

» fAFT:kand T =% 7/,
then either 7/ is in (weak-head) normal form (i.e., a type-level “value")

ort’' = 7"
> Proofs by Progress and Preservation on kinding and parallel reduction derivations.

Matthew Fluet CS-XXX 2012, Lecture 27

30

Type Checking for System F,

Kinds are for type checking.
Given A, T, and e, does there exist T such that A;T' e : 7.

Metatheory for kind system:
» Well-kinded types don't get stuck.
» fAFT:kand T =% 7/,
then either 7/ is in (weak-head) normal form (i.e., a type-level "value™)
ort' = 1.
> Proofs by Progress and Preservation on kinding and parallel reduction derivations.
» But, irrelevant for type checking of expressions.
If 7p = T}- “gets stuck” at a type T}- that is not an arrow type,
then the application typing rule does not apply
and a typing derivation does not exist.

Matthew Fluet CS-XXX 2012, Lecture 27

30

Type Checking for System F,

Kinds are for type checking.

Given A, T, and e, does there exist T such that A;T' e : 7.

Metatheory for kind system:
» Well-kinded types don't get stuck.
» fAF T Kkand T =2* 7/,
then either 7/ is in (weak-head) normal form (i.e., a type-level “value")
or' = 1.
» But, irrelevant for type checking of expressions.

Matthew Fluet CS-XXX 2012, Lecture 27

30

Type Checking for System F,

Kinds are for type checking.

Given A, T, and e, does there exist T such that A;T' e : 7.

Metatheory for kind system:
» Well-kinded types don't get stuck.
» fAFT:kand T =% 7/,
then either 7/ is in (weak-head) normal form (i.e., a type-level “value")
or' = 1.
» But, irrelevant for type checking of expressions.
» Well-kinded types terminate.

» If A F 7 :: K, then there exists 7/ such that 7 =¥ /.

> Proof is similar to that of termination of STLC.

Matthew Fluet CS-XXX 2012, Lecture 27

30

Type Checking for System F,,
Kinds are for type checking.

Given A, T, and e, does there exist T such that A;T' e : 7.

Metatheory for kind system:
» Well-kinded types don't get stuck.
» fAFT:kand T =% 7/,
then either 7/ is in (weak-head) normal form (i.e., a type-level “value")
or' = 1.
» But, irrelevant for type checking of expressions.
» Well-kinded types terminate.

» If A F 7 :: K, then there exists 7/ such that 7 =¥ /.

> Proof is similar to that of termination of STLC.

Type checking for System F, is decidable.

Matthew Fluet CS-XXX 2012, Lecture 27

30

Going Further

This is just the tip of an iceberg.

» Pure type systems
» Why stop at three levels of expressions (terms, types, and kinds)?
» Allow abstraction and application at the level of kinds,

and introduce sorts to classify kinds.
» Why stop at four levels of expressions?

v

“For programming languages, however, three levels have proved sufficient.”

Matthew Fluet CS-XXX 2012, Lecture 27

31

