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Looking back, looking forward

Have defined System F.

� Metatheory (what properties does it have)

� What (else) is it good for

� How/why ML is more restrictive and implicit

� Recursive types (also use type variables, but differently)

� Existential types (dual to universal types)

Next:

� Type operators and type-level “computations”
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System F with Recursive and Existential Types
e ::= c | x | λx:τ. e | e e |

Λα. e | e [τ ] |
pack∃α. τ (τ, e) | unpack e as (α, x) in e |
rollμα. τ (e) | unroll(e)

v ::= c | λx:τ. e | Λα. e | pack∃α. τ (τ, v) | rollμα. τ (v)

e →cbv e′

(λx: τ. eb) va →cbv eb[va/x]

ef →cbv e
′
f

ef ea →cbv e
′
f ea

ea →cbv e
′
a

vf ea →cbv vf e
′
a

(Λα. eb) [τa] →cbv eb[τa/α]

ef →cbv e
′
f

ef [τa] →cbv e
′
f [τa]

ea →cbv e
′
a

pack∃α. τ (τw, ea) →cbv pack∃α. τ (τw, e
′
a)

ea →cbv e
′
a

unpack ea as (α, x) in eb →cbv unpack e
′
a as (α, x) in eb

unpack pack∃α. τ (τw, va) as (α, x) in eb →cbv eb[τw/α][va/x]

ea →cbv e
′
a

unroll(ea) →cbv unroll(e
′
a) unroll(rollμα. τ (va)) →cbv va
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System F with Recursive and Existential Types
τ ::= int | τ → τ | α | ∀α. τ | ∃α. τ | μα. τ
Δ ::= · | Δ, α
Γ ::= · | Γ, x:τ

Δ;Γ � e : τ

Δ;Γ � c : int

Γ(x) = τ

Δ;Γ � x : τ

Δ � τa Δ;Γ, x : τa � eb : τr

Δ;Γ � λx:τa. eb : τa → τr

Δ;Γ � ef : τa → τr Δ;Γ � ea : τa

Δ;Γ � ef ea : τr

Δ, α; Γ � eb : τr

Δ;Γ � Λα. eb : ∀α. τr

Δ;Γ � ef : ∀α. τr Δ � τa

Δ;Γ � ef [τa] : τr[τa/α]

Δ; Γ � ea : τ [τw/α]

Δ; Γ � pack∃α. τ (τw, ea) : ∃α. τ

Δ;Γ � ea : ∃α. τ Δ, α; Γ, x:τ � eb : τr Δ � τr

Δ;Γ � unpack ea as (α, x) in eb : τr

Δ;Γ � ea : τ [(μα. τ)/α]

Δ; Γ � rollμα. τ (ea) : μα. τ

Δ;Γ � ea : μα. τ

Δ;Γ � unroll(ea) : τ [(μα. τ)/α]
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Goal

Understand what this interface means and why it matters:

type �a list

val empty : �a list

val cons : �a -> �a list -> �a list

val unlist : �a list -> (�a * �a list) option

val size : �a list -> int

val map : (�a -> �b) -> �a list -> �b list

Story so far:

� Recursive types to define list data structure

� Universal types to keep element type abstract in library

� Existential types to keep list type abstract in client

But, “cheated” when abstracting the list type in client:
considered just intlist.
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(Integer) List Library with ∃
List library is an existential package:

pack(μξ. unit + (int ∗ ξ), list library)
as ∃L. {empty : L;

cons : int → L → L;
unlist : L → unit + (int ∗ L);
map : (int → int) → L → L;
. . .}

The witness type is integer lists: μξ. unit + (int ∗ ξ).

The existential type variable L represents integer lists.

List operations are monomorphic in element type (int).

The map function only allows mapping integer lists to integer lists.
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(Polymorphic?) List Library with ∀/∃
List library is a type abstraction that yields an existential package:

Λα. pack(μξ. unit + (α ∗ ξ), list library)
as ∃L. {empty : L;

cons : α → L → L;
unlist : L → unit + (α ∗ L);
map : (α → α) → L → L;
. . .}

The witness type is α lists: μξ. unit + (α ∗ ξ).

The existential type variable L represents α lists.

List operations are monomorphic in element type (α).

The map function only allows mapping α lists to α lists.
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Type Abbreviations and Type Operators

Reasonable enough to provide list type as a (parametric) type abbreviation:

L α = μξ. unit + (α ∗ ξ)

� replace occurrences of L τ in programs
with (μξ. unit + (α ∗ ξ))[τ/α]

Gives an informal notion of functions at the type-level.

But, doesn’t help with with list library,
because this exposes the definition of list type.

� How “modular” and “safe” are libraries built from cpp macros?
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Type Abbreviations and Type Operators

Instead, provide list type as a type operator:

� a function from types to types

L = λα. μξ. unit + (α ∗ ξ)

Gives a formal notion of functions at the type-level.

� abstraction and application at the type-level

� equivalence of type-level expressions

� well-formedness of type-level expressions

List library will be an existential package that hides a type operator,
(rather than a type).
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Type-level Expressions

Abstraction and application at the type level
makes it possible to write the same type with different syntax.

Id = λα. α

int → bool int → Id bool Id int → bool Id int → Id bool

Id (int → bool) Id (Id (int → bool)) . . .
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Type-level Expressions

Abstraction and application at the type level
makes it possible to write the same type with different syntax.

Id = λα. α

int → bool int → Id bool Id int → bool Id int → Id bool

Id (int → bool) Id (Id (int → bool)) . . .

Require a precise definition of when two types are the same:

τ ≡ τ ′

. . .
(λα. τb) τa ≡ τb[α/τa]

. . .
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Type-level Expressions

Abstraction and application at the type level
makes it possible to write the same type with different syntax.

Id = λα. α

int → bool int → Id bool Id int → bool Id int → Id bool

Id (int → bool) Id (Id (int → bool)) . . .

Require a typing rule to exploit types that are the same:

Δ;Γ � e : τ

. . .
Δ;Γ � e : τ τ ≡ τ ′

Δ;Γ � e : τ ′ . . .

Matthew Fluet CS-XXX 2012, Lecture 27 10



Type-level Expressions

Abstraction and application at the type level
makes it possible to write the same type with different syntax.

Id = λα. α

int → bool int → Id bool Id int → bool Id int → Id bool

Id (int → bool) Id (Id (int → bool)) . . .

Admits “wrong/bad/meaningless” types:

. . . bool int (Id bool) int bool (Id int) . . .
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Type-level Expressions

Abstraction and application at the type level
makes it possible to write the same type with different syntax.

Id = λα. α

int → bool int → Id bool Id int → bool Id int → Id bool

Id (int → bool) Id (Id (int → bool)) . . .

Require a “type system” for types:

Δ � τ :: κ

. . .
Δ � τf :: κa ⇒ κr Δ � τa :: κa

Δ � τf τa :: κr
. . .
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Terms, Types, and Kinds, Oh My
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Terms, Types, and Kinds, Oh My

Terms:
e ::= c | x | λx:τ . e | e e | Λα::κ. e | e [τ ]
v ::= c | λx:τ . e | Λα::κ. e

� atomic values (e.g., c) and operations (e.g., e + e)

� compound values (e.g., (v,v)) and operations (e.g., e.1)

� value abstraction and application

� type abstraction and application

� classified by types (but not all terms have a type)
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Terms, Types, and Kinds, Oh My

Terms:
e ::= c | x | λx:τ . e | e e | Λα::κ. e | e [τ ]
v ::= c | λx:τ . e | Λα::κ. e

� atomic values (e.g., c) and operations (e.g., e + e)

� compound values (e.g., (v,v)) and operations (e.g., e.1)

� value abstraction and application

� type abstraction and application

� classified by types (but not all terms have a type)

Types: τ ::= int | τ → τ | α | ∀α::κ. τ | λα::κ. τ | τ τ

� atomic types (e.g., int) classify the terms that evaluate to atomic values

� compound types (e.g., τ ∗ τ ) classify the terms that evaluate to compound values

� function types τ → τ classify the terms that evaluate to value abstractions

� universal types ∀α. τ classify the terms that evaluate to type abstractions

� type abstraction and application

� type abstractions do not classify terms,
but can be applied to type arguments
to form types that do classify terms

� classified by kinds (but not all types have a kind)
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Types: τ ::= int | τ → τ | α | ∀α::κ. τ | λα::κ. τ | τ τ
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Terms, Types, and Kinds, Oh My

Types: τ ::= int | τ → τ | α | ∀α::κ. τ | λα::κ. τ | τ τ

� atomic types (e.g., int) classify the terms that evaluate to atomic values

� compound types (e.g., τ ∗ τ ) classify the terms that evaluate to compound values

� function types τ → τ classify the terms that evaluate to value abstractions

� universal types ∀α. τ classify the terms that evaluate to type abstractions

� type abstraction and application

� type abstractions do not classify terms,
but can be applied to type arguments
to form types that do classify terms

� classified by kinds (but not all types have a kind)

Kinds κ ::= � | κ ⇒ κ

� kind of proper types � classify
the types (that are the same as the types) that classify terms

� arrow kinds κ ⇒ κ classify
the types (that are the same as the types) that are type abstractions
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Kind Examples
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Kind Examples

� �
� the kind of proper types
� Bool, Bool → Bool, . . .
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Kind Examples

� �
� the kind of proper types
� Bool, Bool → Bool, . . .

� � ⇒ �
� the kind of (unary) type operators
� List, Maybe, . . .
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Kind Examples

� �
� the kind of proper types
� Bool, Bool → Bool, Maybe Bool, Maybe Bool → Maybe Bool, . . .

� � ⇒ �
� the kind of (unary) type operators
� List, Maybe, . . .
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Kind Examples

� �
� the kind of proper types
� Bool, Bool → Bool, Maybe Bool, Maybe Bool → Maybe Bool, . . .

� � ⇒ �
� the kind of (unary) type operators
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� the kind of (binary) type operators
� Either, Map, . . .
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Kind Examples

� �
� the kind of proper types
� Bool, Bool → Bool, Maybe Bool, Maybe Bool → Maybe Bool, . . .

� � ⇒ �
� the kind of (unary) type operators
� List, Maybe, Map Int, Either (List Bool), . . .

� � ⇒ � ⇒ �
� the kind of (binary) type operators
� Either, Map, . . .
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Kind Examples

� �
� the kind of proper types
� Bool, Bool → Bool, Maybe Bool, Maybe Bool → Maybe Bool, . . .

� � ⇒ �
� the kind of (unary) type operators
� List, Maybe, Map Int, Either (List Bool), . . .

� � ⇒ � ⇒ �
� the kind of (binary) type operators
� Either, Map, . . .

� (� ⇒ �) ⇒ �
� the kind of higher-order type operators

taking unary type operators to proper types
� ???, . . .
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Kind Examples

� �
� the kind of proper types
� Bool, Bool → Bool, Maybe Bool, Maybe Bool → Maybe Bool, . . .

� � ⇒ �
� the kind of (unary) type operators
� List, Maybe, Map Int, Either (List Bool), ListT Maybe, . . .

� � ⇒ � ⇒ �
� the kind of (binary) type operators
� Either, Map, . . .

� (� ⇒ �) ⇒ �
� the kind of higher-order type operators

taking unary type operators to proper types
� ???, . . .

� (� ⇒ �) ⇒ � ⇒ �
� the kind of higher-order type operators

taking unary type operators to unary type operators
� MaybeT, ListT, . . .

Matthew Fluet CS-XXX 2012, Lecture 27 12

System Fω: Syntax

e ::= c | x | λx:τ . e | e e | Λα::κ. e | e [τ ]
v ::= c | λx:τ . e | Λα::κ. e
Γ ::= · | Γ, x:τ
τ ::= int | τ → τ | α | ∀α::κ. τ | λα::κ. τ | τ τ
Δ ::= · | Δ, α::κ
κ ::= � | κ ⇒ κ

New things:

� Types: type abstraction and type application
� Kinds: the “types” of types

� �: kind of proper types
� κa ⇒ κr: kind of type operators
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System Fω: Operational Semantics

Small-step, call-by-value (CBV), left-to-right operational semantics:

e →cbv e′

(λx: τ . eb) va →cbv eb[va/x]

ef →cbv e′f
ef ea →cbv e′f ea

ea →cbv e′a
vf ea →cbv vf e′a (Λα::κa. eb) [τa] →cbv eb[τa/α]

ef →cbv e′f
ef [τa] →cbv e′f [τa]

� Unchanged! All of the new action is at the type-level.
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System Fω: Type System, part 1

In the context Δ the type τ has kind κ:

Δ � τ :: κ

Δ � int :: �

Δ � τa :: � Δ � τr :: �

Δ � τa → τr :: �

Δ(α) = κ

Δ � α :: κ

Δ, α :: κa � τr :: �

Δ � ∀α::κa. τr :: �

Δ, α :: κa � τb :: κr

Δ � λα::κa. τb :: κa ⇒ κr

Δ � τf :: κa ⇒ κr Δ � τa :: κa

Δ � τf τa :: κr

Should look familiar:
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System Fω: Type System, part 1

In the context Δ the type τ has kind κ:

Δ � τ :: κ

Δ � int :: �

Δ � τa :: � Δ � τr :: �

Δ � τa → τr :: �

Δ(α) = κ

Δ � α :: κ

Δ, α :: κa � τr :: �

Δ � ∀α::κa. τr :: �

Δ, α :: κa � τb :: κr

Δ � λα::κa. τb :: κa ⇒ κr

Δ � τf :: κa ⇒ κr Δ � τa :: κa

Δ � τf τa :: κr

Should look familiar:
the typing rules of the Simply-Typed Lambda Calculus “one level up”
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System Fω: Type System, part 2

Definitional Equivalence of τ and τ ′:

τ ≡ τ ′

τ ≡ τ

τ2 ≡ τ1

τ1 ≡ τ2

τ1 ≡ τ2 τ2 ≡ τ3

τ1 ≡ τ3

τa1 ≡ τa2 τr1 ≡ τr2

τa1 → τr1 ≡ τa2 → τr2

τr1 ≡ τr2

∀α::κa. τr1 ≡ ∀α::κa. τr2

τb1 ≡ τb2

λα::κa. τb1 ≡ λα::κa. τb2

τf1 ≡ τf2 τa1 ≡ τa2

τf1 τa1 ≡ τf2 τa2

(λα::κa. τb) τa ≡ τb[α/τa]

Should look familiar:
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System Fω: Type System, part 2

Definitional Equivalence of τ and τ ′:

τ ≡ τ ′

τ ≡ τ

τ2 ≡ τ1

τ1 ≡ τ2

τ1 ≡ τ2 τ2 ≡ τ3

τ1 ≡ τ3

τa1 ≡ τa2 τr1 ≡ τr2

τa1 → τr1 ≡ τa2 → τr2

τr1 ≡ τr2

∀α::κa. τr1 ≡ ∀α::κa. τr2

τb1 ≡ τb2

λα::κa. τb1 ≡ λα::κa. τb2

τf1 ≡ τf2 τa1 ≡ τa2

τf1 τa1 ≡ τf2 τa2

(λα::κa. τb) τa ≡ τb[α/τa]

Should look familiar:
the full reduction rules of the Lambda Calculus “one level up”
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System Fω: Type System, part 3

In the contexts Δ and Γ the expression e has type τ :

Δ;Γ � e : τ

Δ;Γ � c : int

Γ(x) = τ

Δ;Γ � x : τ

Δ � τa :: � Δ;Γ, x : τa � eb : τr

Δ;Γ � λx:τa. eb : τa → τr

Δ;Γ � ef : τa → τr Δ;Γ � ea : τa

Δ;Γ � ef ea : τr

Δ, α :: κa; Γ � eb : τr

Δ;Γ � Λα. eb : ∀α::κa. τr

Δ;Γ � ef : ∀α::κa. τr Δ � τa :: κa

Δ;Γ � ef [τa] : τr[τa/α]

Δ; Γ � e : τ τ ≡ τ ′ Δ � τ ′ :: �

Δ;Γ � e : τ ′
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System Fω: Type System, part 3

In the contexts Δ and Γ the expression e has type τ :

Δ;Γ � e : τ

Δ;Γ � c : int

Γ(x) = τ

Δ;Γ � x : τ

Δ � τa :: � Δ;Γ, x : τa � eb : τr

Δ;Γ � λx:τa. eb : τa → τr

Δ;Γ � ef : τa → τr Δ;Γ � ea : τa

Δ;Γ � ef ea : τr

Δ, α :: κa; Γ � eb : τr

Δ;Γ � Λα. eb : ∀α::κa. τr

Δ;Γ � ef : ∀α::κa. τr Δ � τa :: κa

Δ;Γ � ef [τa] : τr[τa/α]

Δ; Γ � e : τ τ ≡ τ ′ Δ � τ ′ :: �

Δ;Γ � e : τ ′

Syntax and type system easily extended with recursive and existential
types.
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Polymorphic List Library with higher-order ∃
List library is an existential package:

pack(λα::�. μξ::�. unit + (α ∗ ξ), list library)
as ∃L::� ⇒ �. {empty : ∀α::�. L α;

cons : ∀α::�. α → L α → L α;
unlist : ∀α::�. L α → unit + (α ∗ L α);
map : ∀α::�. ∀β::�. (α → β) → L α → L β;
. . .}

The witness type operator is poly.lists: λα::�. μξ::�. unit + (α ∗ ξ).

The existential type operator variable L represents poly. lists.

List operations are polymorphic in element type.

The map function only allows mapping α lists to β lists.
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Other Kinds of Kinds

Kinding systems for checking and tracking properties of type expressions:
� Record kinds

� records at the type-level; define systems of mutually recursive types

� Polymorphic kinds
� kind abstraction and application in types; System F “one level up”

� Dependent kinds
� dependent types “one level up”

� Row kinds
� describe “pieces” of record types for record polymorphism

� Power kinds
� alternative presentation of subtyping

� Singleton kinds
� formalize module systems with type sharing
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Metatheory

System Fω is type safe.
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Metatheory

System Fω is type safe.

� Preservation:
Induction on typing derivation, using substitution lemmas:
� Term Substitution:

if Δ1,Δ2; Γ1, x : τx,Γ2 � e1 : τ and Δ1; Γ1 � e2 : τx,
then Δ1,Δ2; Γ1,Γ2 � e1[e2/x] : τ .

� Type Substitution:
if Δ1, α::κα,Δ2 � τ1 :: κ and Δ1 � τ2 :: κα,
then Δ1,Δ2 � τ1[τ2/α] :: κ.

� Type Substitution:
if τ1 ≡ τ2, then τ1[τ/α] ≡ τ2[τ/α].

� Type Substitution:
if Δ1, α::κα,Δ2; Γ1,Γ2 � e1 : τ and Δ1 � τ2 :: κα,
then Δ1,Δ2; Γ1,Γ2[τ2/α] � e1[τ2/α] : τ .

� All straightforward inductions, using various weakening and exchange lemmas.
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Metatheory

System Fω is type safe.

� Progress:
Induction on typing derivation, using canonical form lemmas:
� If ·; · � v : int, then v = c.
� If ·; · � v : τa → τr, then v = λx:τa. eb.
� If ·; · � v : ∀α::κa. τr, then v = Λα::κa. eb.

� Complicated by typing derivations that end with:

Δ;Γ � e : τ τ ≡ τ ′ Δ � τ ′ :: �
Δ;Γ � e : τ ′

(just like with subtyping and subsumption).
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Definitional Equivalence and Parallel Reduction

Parallel Reduction of τ to τ ′:

τ � τ ′

τ � τ

τa1 � τa2 τr1 � τr2

τa1 → τr1 � τa2 → τr2

τr1 � τr2

∀α::κa. τr1 � ∀α::κa. τr2

τb1 � τb2

λα::κa. τb1 � λα::κa. τb2

τf1 � τf2 τa1 � τa2

τf1 τa1 � τf2 τa2

τb � τ ′
b τa � τ ′

a

(λα::κa. τb) τa � τ ′
b[α/τ ′

a]

A more “computational” relation.
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Definitional Equivalence and Parallel Reduction

Key properties:
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Definitional Equivalence and Parallel Reduction

Key properties:

� Transitive and symmetric closure of parallel reduction
and type equivalence coincide:
� τ ��∗ τ ′ iff τ ≡ τ ′
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Definitional Equivalence and Parallel Reduction

Key properties:

� Transitive and symmetric closure of parallel reduction
and type equivalence coincide:
� τ ��∗ τ ′ iff τ ≡ τ ′

� Parallel reduction has the Church-Rosser property:
� If τ �∗ τ1 and τ �∗ τ2,

then there exists τ ′ such that τ1 �∗ τ ′ and τ2 �∗ τ ′
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Key properties:

� Transitive and symmetric closure of parallel reduction
and type equivalence coincide:
� τ ��∗ τ ′ iff τ ≡ τ ′

� Parallel reduction has the Church-Rosser property:
� If τ �∗ τ1 and τ �∗ τ2,

then there exists τ ′ such that τ1 �∗ τ ′ and τ2 �∗ τ ′

� Equivalent types share a common reduct:
� If τ1 ≡ τ2, then there exists τ ′ such that τ1 �∗ τ ′ and τ2 �∗ τ ′
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Definitional Equivalence and Parallel Reduction

Key properties:

� Transitive and symmetric closure of parallel reduction
and type equivalence coincide:
� τ ��∗ τ ′ iff τ ≡ τ ′

� Parallel reduction has the Church-Rosser property:
� If τ �∗ τ1 and τ �∗ τ2,

then there exists τ ′ such that τ1 �∗ τ ′ and τ2 �∗ τ ′

� Equivalent types share a common reduct:
� If τ1 ≡ τ2, then there exists τ ′ such that τ1 �∗ τ ′ and τ2 �∗ τ ′

� Reduction preserves shapes:
� If int �∗ τ ′, then τ ′ = int
� If τa → τr �∗ τ ′, then τ ′ = τ ′

a → τ ′
r and τa �∗ τ ′

a and τr �∗ τ ′
r

� If ∀α::κa. τr �∗ τ ′, then τ ′ = ∀α::κa. τ
′
r and τr �∗ τ ′

r
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Canonical Forms

If ·; · � v : τa → τr, then v = λx:τa. eb.
Proof:
By cases on the form of v:
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Canonical Forms

If ·; · � v : τa → τr, then v = λx:τa. eb.
Proof:
By cases on the form of v:
� v = λx:τa. eb.

We have that v = λx:τa. eb.
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Canonical Forms

If ·; · � v : τa → τr, then v = λx:τa. eb.
Proof:
By cases on the form of v:
� v = c.

Derivation of ·; · � v : τa → τr must be of the form:
.
.
.

·; · � c : int int ≡ τ1

·; · � c : τ1

.

.

.
·; · � c : τn−1 τn−1 ≡ τn

·; · � c : τn τn ≡ τa → τr

·; · � c : τa → τr

Therefore, we can construct the derivation int ≡ τa → τr.
We can find a common reduct: int �∗ τ † and τa → τr �∗ τ †.
Reduction preserves shape: int �∗ τ † implies τ † = int.
Reduction preserves shape: τa → τr �∗ τ † implies τ † = τ ′

a → τ ′
r.

But, τ † = int and τ † = τ ′
a → τ ′

r is a contradiction.
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Canonical Forms

If ·; · � v : τa → τr, then v = λx:τa. eb.
Proof:
By cases on the form of v:
� v = Λα::κa. eb.

Derivation of ·; · � v : τa → τr must be of the form:
.
.
.

·; · � Λα::κa. eb : ∀α::κa. τz ∀α::κa. τz ≡ τ1

·; · � Λα::κa. eb : τ1

.

.

.
·; · � Λα::κa. eb : τn−1 τn−1 ≡ τn

·; · � Λα::κa. eb : τn τn ≡ τa → τr

·; · � Λα::κa. eb : τa → τr

Therefore, we can construct the derivation ∀α::κa. τz ≡ τa → τr.
We can find a common reduct: ∀α::κa. τz �∗ τ † and τa → τr �∗ τ †.
Reduction preserves shape: ∀α::κa. τz �∗ τ † implies τ † = ∀α::κa. τ

′
z.

Reduction preserves shape: τa → τr �∗ τ † implies τ † = τ ′
a → τ ′

r.
But, τ † = ∀α::κa. τ

′
z and τ † = τ ′

a → τ ′
r is a contradiction.
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Metatheory

System Fω is type safe.

Where was the Δ � τ :: κ judgement used in the proof?
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Metatheory

System Fω is type safe.

Where was the Δ � τ :: κ judgement used in the proof?
In Type Substitution lemmas, but only in an inessential way.
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Metatheory

System Fω is type safe.

Where was the Δ � τ :: κ judgement used in the proof?
In Type Substitution lemmas, but only in an inessential way.

After weeks of thinking about type systems, kinding seems natural;
but kinding is not required for type safety!
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System Fω without Kinds / System F with Type-Level Abstraction and Application

e ::= c | x | λx:τ . e | e e | Λα. e | e [τ ]
v ::= c | λx:τ . e | Λα. e
τ ::= int | τ → τ | α | ∀α. τ | λα. τ | τ τ

Γ ::= · | Γ, x:τ
Δ ::= · | Δ, α
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System Fω without Kinds / System F with Type-Level Abstraction and Application

e ::= c | x | λx:τ . e | e e | Λα. e | e [τ ]
v ::= c | λx:τ . e | Λα. e
τ ::= int | τ → τ | α | ∀α. τ | λα. τ | τ τ

Γ ::= · | Γ, x:τ
Δ ::= · | Δ, α

e →cbv e′

(λx: τ . eb) va →cbv eb[va/x]

ef →cbv e′
f

ef ea →cbv e′
f ea

ea →cbv e′
a

vf ea →cbv vf e′
a

(Λα. eb) [τa] →cbv eb[τa/α]

ef →cbv e′
f

ef [τa] →cbv e′
f [τa]
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System Fω without Kinds / System F with Type-Level Abstraction and Application

e ::= c | x | λx:τ . e | e e | Λα. e | e [τ ]
v ::= c | λx:τ . e | Λα. e
τ ::= int | τ → τ | α | ∀α. τ | λα. τ | τ τ

Γ ::= · | Γ, x:τ
Δ ::= · | Δ, α

Δ � τ :: �

Δ � int :: �
Δ � τa :: � Δ � τr :: �

Δ � τa → τr :: �

α ∈ Δ

Δ � α :: �
Δ, α � τr :: �
Δ � ∀α. τr :: �

Δ, α � τb :: �
Δ � λα. τb :: �

Δ � τf :: � Δ � τa :: �
Δ � τf τa :: �

Check that free type variables of τ are in Δ, but nothing else.
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System Fω without Kinds / System F with Type-Level Abstraction and Application

e ::= c | x | λx:τ . e | e e | Λα. e | e [τ ]
v ::= c | λx:τ . e | Λα. e
τ ::= int | τ → τ | α | ∀α. τ | λα. τ | τ τ

Γ ::= · | Γ, x:τ
Δ ::= · | Δ, α

τ ≡ τ ′

τ ≡ τ

τ2 ≡ τ1

τ1 ≡ τ2

τ1 ≡ τ2 τ2 ≡ τ3

τ1 ≡ τ3

τa1 ≡ τa2 τr1 ≡ τr2

τa1 → τr1 ≡ τa2 → τr2

τr1 ≡ τr2

∀α. τr1 ≡ ∀α. τr2

τb1 ≡ τb2

λα. τb1 ≡ λα. τb2

τf1 ≡ τf2 τa1 ≡ τa2

τf1 τa1 ≡ τf2 τa2

(λα. τb) τa ≡ τb[α/τa]
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System Fω without Kinds / System F with Type-Level Abstraction and Application

e ::= c | x | λx:τ . e | e e | Λα. e | e [τ ]
v ::= c | λx:τ . e | Λα. e
τ ::= int | τ → τ | α | ∀α. τ | λα. τ | τ τ

Γ ::= · | Γ, x:τ
Δ ::= · | Δ, α

Δ;Γ � e : τ

Δ;Γ � c : int

Γ(x) = τ

Δ;Γ � x : τ

Δ � τa :: � Δ;Γ, x : τa � eb : τr

Δ;Γ � λx:τa. eb : τa → τr

Δ;Γ � ef : τa → τr Δ;Γ � ea : τa

Δ;Γ � ef ea : τr

Δ, α; Γ � eb : τr

Δ;Γ � Λα. eb : ∀α. τr

Δ;Γ � ef : ∀α. τr Δ � τa :: �
Δ;Γ � ef [τa] : τr[τa/α]

Δ; Γ � e : τ τ ≡ τ ′

Δ;Γ � e : τ ′
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System Fω without Kinds / System F with Type-Level Abstraction and Application

This language is type safe.
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System Fω without Kinds / System F with Type-Level Abstraction and Application

This language is type safe.

� Preservation:
Induction on typing derivation, using substitution lemmas:
� Term Substitution:

if Δ1,Δ2; Γ1, x : τx,Γ2 � e1 : τ and Δ1; Γ1 � e2 : τx,
then Δ1,Δ2; Γ1,Γ2 � e1[e2/x] : τ .

� Type Substitution:
if Δ1, α,Δ2 � τ1 :: � and Δ1 � τ2 :: �,
then Δ1,Δ2 � τ1[τ2/α] :: �.

� Type Substitution:
if τ1 ≡ τ2, then τ1[τ/α] ≡ τ2[τ/α].

� Type Substitution:
if Δ1, α,Δ2; Γ1,Γ2 � e1 : τ and Δ1 � τ2 :: �,
then Δ1,Δ2; Γ1,Γ2[τ2/α] � e1[τ2/α] : τ .

� All straightforward inductions, using various weakening and exchange lemmas.
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System Fω without Kinds / System F with Type-Level Abstraction and Application

This language is type safe.

� Progress:
Induction on typing derivation, using canonical form lemmas:
� If ·; · � v : int, then v = c.
� If ·; · � v : τa → τr, then v = λx:τa. eb.
� If ·; · � v : ∀α. τr, then v = Λα. eb.

� Using parallel reduction relation.
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Why Kinds?

Why aren’t kinds required for type safety?
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Why Kinds?

Why aren’t kinds required for type safety?

Recall statement of type safety:

If ·; · � e : τ , then e does not get stuck.
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Why Kinds?

Why aren’t kinds required for type safety?

Recall statement of type safety:

If ·; · � e : τ , then e does not get stuck.

The typing derivation ·; · � e : τ
includes definitional-equivalence sub-derivations τ ≡ τ ′,
which are explicit evidence that τ and τ ′ are the same.

� E.g., to show that the “natural” type of the function expression
in an application is equivalent to an arrow type:

...

Δ;Γ � ef : τf

...

τf ≡ τa → τr

Δ;Γ � ef : τa → τr

...

Δ;Γ � ea : τa

Δ;Γ � ef ea : τr
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Why Kinds?

Why aren’t kinds required for type safety?

Recall statement of type safety:

If ·; · � e : τ , then e does not get stuck.

The typing derivation ·; · � e : τ
includes definitional-equivalence sub-derivations τ ≡ τ ′,
which are explicit evidence that τ and τ ′ are the same.

Definitional equivalence (τ ≡ τ ′) and parallel reduction (τ � τ ′)
do not require well-kinded types
(although they preserve the kinds of well-kinded types).

� E.g., (λα. α → α) (int int) ≡ (int int) → (int int)
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Why Kinds?

Why aren’t kinds required for type safety?

Recall statement of type safety:

If ·; · � e : τ , then e does not get stuck.

The typing derivation ·; · � e : τ
includes definitional-equivalence sub-derivations τ ≡ τ ′,
which are explicit evidence that τ and τ ′ are the same.

Definitional equivalence (τ ≡ τ ′) and parallel reduction (τ � τ ′)
do not require well-kinded types
(although they preserve the kinds of well-kinded types).

Type (and kind) erasure means that “wrong/bad/meaningless” types
do not affect run-time behavior.

� Ill-kinded types can’t make well-typed terms get stuck.
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Why Kinds?

Kinds aren’t for type safety:

� Because a typing derivation (even with ill-kinded types),
carries enough evidence to guarantee that expressions don’t get stuck.
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Why Kinds?

Kinds aren’t for type safety:

� Because a typing derivation (even with ill-kinded types),
carries enough evidence to guarantee that expressions don’t get stuck.

Kinds are for type checking:

� Because programmers write programs, not typing derivations.
� Because type checkers are algorithms.
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Why Kinds?

Kinds are for type checking:

� Because programmers write programs, not typing derivations.

� Because type checkers are algorithms.
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Why Kinds?

Kinds are for type checking:

� Because programmers write programs, not typing derivations.

� Because type checkers are algorithms.

Recall the statement of type checking:

Given Δ, Γ, and e, does there exist τ such that Δ;Γ � e : τ .
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Why Kinds?

Kinds are for type checking:

� Because programmers write programs, not typing derivations.

� Because type checkers are algorithms.

Recall the statement of type checking:

Given Δ, Γ, and e, does there exist τ such that Δ;Γ � e : τ .

Two issues:

� Δ;Γ � e : τ τ ≡ τ ′ Δ � τ ′ :: �

Δ;Γ � e : τ ′ is a non-syntax-directed rule

� τ ≡ τ ′ is a non-syntax-directed relation

One non-issue:

� Δ � τ :: κ is a syntax-directed relation (STLC “one level up”)
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Type Checking for System Fω

Remove non-syntax-directed rules and relations:

Δ;Γ � e : τ

Δ;Γ � c : int

Γ(x) = τ

Δ;Γ � x : τ

Δ � τa :: � Δ;Γ, x : τa � eb : τr

Δ;Γ � λx:τa. eb : τa → τr

Δ, α::κa; Γ � eb : τr

Δ;Γ � Λα. eb : ∀α::κa. τr

Δ;Γ � ef : τf τf �⇓ τ ′
f τ ′

f = τ ′
fa → τ ′

fr

Δ;Γ � ea : τa τa �⇓ τ ′
a τ ′

fa = τ ′
a

Δ;Γ � ef ea : τ ′
fr

Δ;Γ � ef : τf τf �⇓ τ ′
f τ ′

f = ∀α::κfa. τfr

Δ � τa :: κa κfa = κa

Δ;Γ � ef [τa] : τfr[τa/α]

Matthew Fluet CS-XXX 2012, Lecture 27 29

Type Checking for System Fω

Kinds are for type checking.

Given Δ, Γ, and e, does there exist τ such that Δ;Γ � e : τ .

Metatheory for kind system:
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Type Checking for System Fω

Kinds are for type checking.

Given Δ, Γ, and e, does there exist τ such that Δ;Γ � e : τ .

Metatheory for kind system:
� Well-kinded types don’t get stuck.

� If Δ � τ :: κ and τ �∗ τ ′,
then either τ ′ is in (weak-head) normal form (i.e., a type-level “value”)
or τ ′ � τ ′′.

� Proofs by Progress and Preservation on kinding and parallel reduction derivations.
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Type Checking for System Fω

Kinds are for type checking.

Given Δ, Γ, and e, does there exist τ such that Δ;Γ � e : τ .

Metatheory for kind system:
� Well-kinded types don’t get stuck.

� If Δ � τ :: κ and τ �∗ τ ′,
then either τ ′ is in (weak-head) normal form (i.e., a type-level “value”)
or τ ′ � τ ′′.

� Proofs by Progress and Preservation on kinding and parallel reduction derivations.

� But, irrelevant for type checking of expressions.
If τf �∗ τ ′

f “gets stuck” at a type τ ′
f that is not an arrow type,

then the application typing rule does not apply
and a typing derivation does not exist.
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Type Checking for System Fω

Kinds are for type checking.

Given Δ, Γ, and e, does there exist τ such that Δ;Γ � e : τ .

Metatheory for kind system:
� Well-kinded types don’t get stuck.

� If Δ � τ :: κ and τ �∗ τ ′,
then either τ ′ is in (weak-head) normal form (i.e., a type-level “value”)
or τ ′ � τ ′′.

� But, irrelevant for type checking of expressions.
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Type Checking for System Fω

Kinds are for type checking.

Given Δ, Γ, and e, does there exist τ such that Δ;Γ � e : τ .

Metatheory for kind system:
� Well-kinded types don’t get stuck.

� If Δ � τ :: κ and τ �∗ τ ′,
then either τ ′ is in (weak-head) normal form (i.e., a type-level “value”)
or τ ′ � τ ′′.

� But, irrelevant for type checking of expressions.

� Well-kinded types terminate.
� If Δ � τ :: κ, then there exists τ ′ such that τ �⇓ τ ′.
� Proof is similar to that of termination of STLC.
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Type Checking for System Fω

Kinds are for type checking.

Given Δ, Γ, and e, does there exist τ such that Δ;Γ � e : τ .

Metatheory for kind system:
� Well-kinded types don’t get stuck.

� If Δ � τ :: κ and τ �∗ τ ′,
then either τ ′ is in (weak-head) normal form (i.e., a type-level “value”)
or τ ′ � τ ′′.

� But, irrelevant for type checking of expressions.

� Well-kinded types terminate.
� If Δ � τ :: κ, then there exists τ ′ such that τ �⇓ τ ′.
� Proof is similar to that of termination of STLC.

Type checking for System Fω is decidable.
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Going Further

This is just the tip of an iceberg.
� Pure type systems

� Why stop at three levels of expressions (terms, types, and kinds)?
� Allow abstraction and application at the level of kinds,

and introduce sorts to classify kinds.
� Why stop at four levels of expressions?
� . . .
� “For programming languages, however, three levels have proved sufficient.”
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