CS-XXX: Graduate Programming Languages

Lecture 27 — Higher-Order Polymorphism

Matthew Fluet
2012

Looking back, looking forward

Have defined System F.

> Metatheory (what properties does it have)

» What (else) is it good for

» How/why ML is more restrictive and implicit

> Recursive types (also use type variables, but differently)
» Existential types (dual to universal types)

Next:

» Type operators and type-level “computations”

Matthew Fluet CS-XXX 2012, Lecture 27

System F with Recursive and Existential Types

e claz|Ax:iT.e|ee|

Aa.e|e[r]|

packg,,. (7, e) | unpack e as (c, ) ine |

rollye. +(€) | unroll(e)

v = c|Ax:T.e| Aa. e|packg,, (7T,v) | rollua. +(v)

’

(Az: 7. ep) Va —>cpy eblva/z]

€f *cbv elf

7
ef ea —cpy €f €a

’
€a —*cbv €a

ef ~cbv e}

ef [Tal =y €f [Tal

(Ac. ep) [Ta] = cpy eblTa/a]

’
€a —*cby €a

7
Packzq. +(Tw;€a) —>cpy Packza. +(Tw, )

’
€a —*cby €a

unpack eq as (c, ) in e —¢p, unpack el as (o, @) in ep

unpack packg g+ (Tw, va) as (@, @) in ep —cpy €p[Tw/a][va/z]

’
€a —*cbv €a

unroll(eq) —cpy unroll(el) unroll(rollya. +(va)) —>cby Va

Matthew Fluet CS-XXX 2012, Lecture 27

—
Vf €a “Fcbv Vf €a

System F with Recursive and Existential Types

I'(z) =1

AT - c:int AsThHa:T

AbFT1q AjT,z:7q b ep:Tr AsThefp:Ta -7 AT Heq

i Ta

AT F Azitg. ep : Tq — T AT Fef eq:

A,a;T - ep : ™

AT hep:Va.m, Ab7g
AT - Aa. ep : Vo

AT Fep [ra] 2 Trlra/a]

AT F eq i T[Tw/a] ATk eq:3a. T  A,ouT,air - ep: T

AF T

AT F packgy. o (Tws €q) : Ja. T AT F unpack eq as (o, @) in ep & T

AT k- eq & T[(pa. 7)/al
AT F rollua. »(eq) : po. T

AT - eq : pa. T
AT - unroll(eg) : T[(ne. 7)/al

Matthew Fluet CS-XXX 2012, Lecture 27

Goal

Understand what this interface means and why it matters:

type 'a list

val empty : 'a list

val cons : 'a -> 'a list -> 'a list

val unlist : 'a list -> ('a * 'a list) option
val size : 'a list -> int

val map ('a -=> 'b) -> 'a list -> 'b list

Story so far:

» Recursive types to define list data structure

» Universal types to keep element type abstract in library
» Existential types to keep list type abstract in client

But, “cheated” when abstracting the list type in client:
considered just intlist.

Matthew Fluet CS-XXX 2012, Lecture 27

(Integer) List Library with 3

List library is an existential package:

pack(p&. unit + (int * &), list_library)
as 3L. {empty : L;
cons :int > L — L;
unlist : L — unit + (int * L);
map : (int — int) - L — L;

The witness type is integer lists: p&. unit + (int * £).
The existential type variable L represents integer lists.

List operations are monomorphic in element type (int).

The map function only allows mapping integer lists to integer lists.

Matthew Fluet CS-XXX 2012, Lecture 27




(Polymorphic?) List Library with V/3
List library is a type abstraction that yields an existential package:

Aa. pack(pé. unit + (a * £), list_library)
as 3L. {empty : L;
cons:a — L — L;
unlist : L — unit 4+ (a = L);
map: (o - o) - L — L;

The witness type is « lists: p€. unit 4+ (a * £).
The existential type variable L represents « lists.

List operations are monomorphic in element type (a).

The map function only allows mapping « lists to « lists.

Matthew Fluet CS-XXX 2012, Lecture 27

Type Abbreviations and Type Operators

Reasonable enough to provide list type as a (parametric) type abbreviation:
La = pé&. unit+ (a *§)

> replace occurrences of L 7 in programs

with (p€. unit + (a * £))[7/a]

Gives an informal notion of functions at the type-level.

But, doesn't help with with list library,
because this exposes the definition of list type.

» How “modular” and “safe” are libraries built from cpp macros?

Matthew Fluet CS-XXX 2012, Lecture 27

Type Abbreviations and Type Operators

Instead, provide list type as a type operator:

» a function from types to types

L = Aa. pé. unit + (a * §)

Gives a formal notion of functions at the type-level.
» abstraction and application at the type-level
» equivalence of type-level expressions

» well-formedness of type-level expressions
List library will be an existential package that hides a type operator,

(rather than a type).

Matthew Fluet CS-XXX 2012, Lecture 27

Type-level Expressions

Abstraction and application at the type level
makes it possible to write the same type with different syntax.

int — bool int — Id bool Id int — bool Id int — Id bool

Id (int — bool) Id (Id (int — bool))

Matthew Fluet CS-XXX 2012, Lecture 27 10

Type-level Expressions

Abstraction and application at the type level
makes it possible to write the same type with different syntax.

int — bool int — Id bool Id int — bool

Id (int — bool) Id (Id (int — bool))

Require a precise definition of when two types are the same:

(Aa. 1) Ta = [/ Ta]

Matthew Fluet CS-XXX 2012, Lecture 27

Id int — Id bool

10

Type-level Expressions

Abstraction and application at the type level
makes it possible to write the same type with different syntax.

int — bool int — Id bool Id int — bool Id int — Id bool

Id (int — bool) Id (Id (int — bool))

Require a typing rule to exploit types that are the same:

AsTHe: T r=7
A;THe: 7’

Matthew Fluet CS-XXX 2012, Lecture 27

10




Type-level Expressions

Abstraction and application at the type level

int — bool int — Id bool Id int — bool

Id (int — bool) Id (Id (int — bool))

Admits “wrong/bad/meaningless’ types:

. bool int (I1d bool) int bool (Id int)

Matthew Fluet CS-XXX 2012, Lecture 27

makes it possible to write the same type with different syntax.

Id int — Id bool

10

Type-level Expressions

Abstraction and application at the type level
makes it possible to write the same type with different syntax.

Id

Aa. «

int — bool int — Id bool Id int — bool

Id (int — bool) Id (Id (int — bool))

Require a “type system” for types:

AFTp i kg = Ky Al 714

Al Ty Tq it Ky

P Kq

Matthew Fluet CS-XXX 2012, Lecture 27

Id int — Id bool

10

Terms, Types, and Kinds, Oh My

Matthew Fluet CS-XXX 2012, Lecture 27

11

Terms, Types and Kinds, Oh My

cle|Ax:T.e|ee| Aok, e | e [T]

Terms: c| Ax:T. e | Aazik. e

atomic values (e.g., ¢) and operations (eg., e + e)
compound values (eg., (v,v)) and operations (eg., e.1)
value abstraction and application

type abstraction and application

classified by types (but not all terms have a type)

vyvYyvVvyYyy

Matthew Fluet CS-XXX 2012, Lecture 27

11

Terms, Types and Kinds, Oh My

= cl|lz| Azt e|ee| Aank. e e [T]
Terms:
= c|Ax:T.e| Aaik. e
> atomic values (eg. ¢) and operations (e.g., e + e)
» compound values (eg., (v,v)) and operations (eg., e.1)
> value abstraction and application
> type abstraction and application
>

classified by types (but not all terms have a type)

Types: 7 == int|7 > 7|a|Va:k. 7| Aak. 7| T T

> atomic types (eg, int) classify the terms that evaluate to atomic values

» compound types (eg., = * 7) classify the terms that evaluate to compound values
» function types 7 — T classify the terms that evaluate to value abstractions

> universal types Va. T classify the terms that evaluate to type abstractions

> type abstraction and application

> type abstractions do not classify terms,
but can be applied to type arguments
to form types that do classify terms

> classified by kinds (but not all types have a kind)

Matthew Fluet CS-XXX 2012, Lecture 27

11

Terms, Types, and Kinds, Oh My

Types:

T

= int|7T—>7|a|Vak. 7| Aauk. T | T T

> atomic types (eg, int) classify the terms that evaluate to atomic values

» compound types (eg., = * 7) classify the terms that evaluate to compound values
» function types 7 — T classify the terms that evaluate to value abstractions

> universal types Va. 7 classify the terms that evaluate to type abstractions

» type abstraction and application

> type abstractions do not classify terms,
but can be applied to type arguments
to form types that do classify terms

> classified by kinds (but not all types have a kind)

Matthew Fluet

CS-XXX 2012, Lecture 27

11




Terms, Types, and Kinds, Oh My

Types: 7 u= int|7—>7|a|Vauk. 7| Aak. 7| T T

> atomic types (e.g., int) classify the terms that evaluate to atomic values

» compound types (eg., T * 7) classify the terms that evaluate to compound values
» function types 7 — T classify the terms that evaluate to value abstractions
>

universal types Va. 7 classify the terms that evaluate to type abstractions

v

type abstraction and application
> type abstractions do not classify terms,
but can be applied to type arguments
to form types that do classify terms
> classified by kinds (but not all types have a kind)
Kinds Kk == x|k=k
» kind of proper types x classify
the types (that are the same as the types) that classify terms

» arrow kinds kK = K classify
the types (that are the same as the types) that are type abstractions

Kind Examples

Matthew Fluet CS-XXX 2012, Lecture 27 11 Matthew Fluet CS-XXX 2012, Lecture 27 12
Kind Examples Kind Examples
> % >
» the kind of proper types » the kind of proper types
» Bool, Bool — Bool, ... » Bool, Bool — Bool, ...
> ok = %
> the kind of (unary) type operators
> List, Maybe, ...
Matthew Fluet CS-XXX 2012, Lecture 27 12 Matthew Fluet CS-XXX 2012, Lecture 27 12

Kind Examples

>
the kind of proper types

Bool, Bool — Bool, Maybe Bool, Maybe Bool — Maybe Bool, ...
= *x

the kind of (unary) type operators
List, Maybe, ...

L2 A"

v
L2 A"

Matthew Fluet CS-XXX 2012, Lecture 27 12

Kind Examples

>

» the kind of proper types

> Bool, Bool — Bool, Maybe Bool, Maybe Bool — Maybe Bool, ...
> ok =

> the kind of (unary) type operators

> List, Maybe, ...
> ok = ok = %

> the kind of (binary) type operators

» Either, Map, ...

Matthew Fluet CS-XXX 2012, Lecture 27

12




Kind Examples

>
the kind of proper types

Bool, Bool — Bool, Maybe Bool, Maybe Bool — Maybe Bool, ...
= %

the kind of (unary) type operators

List, Maybe, Map Int, Either (List Bool), ...

= %=k

the kind of (binary) type operators

Either, Map, ...

v
YV % YV OV %

v
L2 A"

Matthew Fluet CS-XXX 2012, Lecture 27

12

Kind Examples

>

the kind of proper types
Bool, Bool — Bool, Maybe Bool, Maybe Bool — Maybe Bool, ...
= %
the kind of (unary) type operators
List, Maybe, Map Int, Either (List Bool), ...
=, = %
the kind of (binary) type operators

» Either, Map, ...
> (x = %) = %

» the kind of higher-order type operators
taking unary type operators to proper types

v
YV % VOV %

v
A

Matthew Fluet CS-XXX 2012, Lecture 27 12

Kind Examples

>
» the kind of proper types
> Bool, Bool — Bool, Maybe Bool, Maybe Bool — Maybe Bool, ...
> k= %
> the kind of (unary) type operators
> List, Maybe, Map Int, Either (List Bool), ...
R E L
> the kind of (binary) type operators
» Either, Map, ...
> (x = %) =
» the kind of higher-order type operators
taking unary type operators to proper types
> 777,
> (x=> %) = x=> %

» the kind of higher-order type operators
taking unary type operators to unary type operators
> MaybeT, ListT, ...

Matthew Fluet CS-XXX 2012, Lecture 27

12

Kind Examples

>

» the kind of proper types

> Bool, Bool — Bool, Maybe Bool, Maybe Bool — Maybe Bool, ...
> ok = %

> the kind of (unary) type operators

> List, Maybe, Map Int, Either (List Bool), ListT Maybe, ...
>k = ok = %

> the kind of (binary) type operators

» Either, Map, ...
> (x = %) = %

» the kind of higher-order type operators

taking unary type operators to proper types

> 77,

> (x=> %) = x=> %

» the kind of higher-order type operators
taking unary type operators to unary type operators
» MaybeT, ListT, ...

Matthew Fluet CS-XXX 2012, Lecture 27 12

System F,,: Syntax

e = cl|lz|Ar:iT.e|ee| Aa:k. e | e [T]
v u= c|AxT.e| Aok, e
r = .|I,a:7
T u= int| 7T —>7|a|Vauk. T | Aak. T | T T
A = | Aazk
K = x| K=k
New things:

» Types: type abstraction and type application
» Kinds: the “types”’ of types

> %: kind of proper types

> Ko = K, kind of type operators

Matthew Fluet CS-XXX 2012, Lecture 27

13

System F,,: Operational Semantics

Small-step, call-by-value (CBV), left-to-right operational semantics:

’

/
€f —cbv €r

ef €a —chy e} eq

(Az: 7. ep) Vo —cpy €b[va/T]

/
€a —chy €a

Vf €q —>chy VF €5 (Aa::kg. ep) [Ta] = cpy €blTa/a]

€f —cby e’f
es [Ta] —cby e’f [l

» Unchanged! All of the new action is at the type-level.

Matthew Fluet CS-XXX 2012, Lecture 27 14




System F,,: Type System, part 1

In the context A the type 7 has kind k:

System F,,: Type System, part 1

In the context A the type 7 has kind k:

Al 71q 5t % Al 1% Al 1q 5t % Al 10
A Fint i % AbFTqg — Tp it % A Fint :: x AbF Ty — Tp it x
A(a) =k Ay Ko B 1o x A(a) =k A, Ko B 1o x
AFa:k A FVYVaikg. Tp it x AFa::k A FVaikg. Tp it x
A, it Kg T it Ky Al Tyt Kg = Ky Al Ty i Ky A, i Kg T it Ky Al Ty Kg = Ky AF Tq 5t Kg
AF Aaiikg. Ty it Kg = Ky ATy Tq it Ky AF Aaiikg. Ty it Kg = Ky ATy Tq it Ky
Should look familiar: Should look familiar:
the typing rules of the Simply-Typed Lambda Calculus “one level up”
Matthew Fluet CS-XXX 2012, Lecture 27 15 Matthew Fluet CS-XXX 2012, Lecture 27 15
System F,,: Type System, part 2 System F,,: Type System, part 2
Definitional Equivalence of T and 7/: Definitional Equivalence of T and 7/:
Te=T1 L= T2 T2 = T3 T2=ET =2 T2=7T8
T=T T = T2 T = T3 T=T T = T2 T = T3
Tal = Ta2 Trl = Tr2 Trl = Tr2 Tal = Ta2 Trl1 = Tr2 Trl = Tr2
Tal —> Trl = Taz2 — Tr2 Vaiikg. Tr1 = Vaiikg. Tro Tal —> Trl = Taz — Tr2 Vaiikg. Tr1 = Vaiikg. Tro
Tbl = Tb2 Tf1 = Tf2 Tal = Ta2 Tbl = Tb2 Tf1 = Tf2 Tal = Ta2
AQiiKg. Thl = AQiiKg. Th2 Tf1 Tal = Tf2 Ta2 AQiiKg. ol = AQiiKg. Tp2 Tf1 Tal = Tf2 Ta2

(Aoikg. ) Ta = To[a/T4]

Should look familiar:

Matthew Fluet CS-XXX 2012, Lecture 27

16

(Aazikg. Ty) Ta = Tola/Ta)

Should look familiar:
the full reduction rules of the Lambda Calculus “one level up”

Matthew Fluet CS-XXX 2012, Lecture 27

16

System F,,: Type System, part 3
In the contexts A and T the expression e has type T:

L(x) =1

AT Fc:int AsTHa: T

AsT Fep: Vaiikg. Tr

Ay ke T'Hep:
AT F Aa. ep : Vaiikg. T A;T ey [Ta] : Tr[Ta/a]
A;ThHe:T r=7' A7 x
AT He:1’

Matthew Fluet CS-XXX 2012, Lecture 27

AF 7q 1t % AT,z :1q b ep:Tr A;T Fefp:Ta — Tr A;T - eq: Ta
A;T F Axitg. ep : Tq — Tr A;T Hefeq:Tr
Al Tq it Kg

System F,,: Type System, part 3
In the contexts A and T the expression e has type T:

L(x) =71

A;T Fe:int AsT-a:T

A;T Feyp: Vaiikg. Tr

kasT' Fep: T
AT & ef [Ta] 2 Tr[Ta/]

A, oz
AT F Aa. ep : Vaiikg. Tr

ATl

—
T=T

A;THe:T
AT he: T’

Syntax and type system easily extended with recursive and existential

types.

CS-XXX 2012, Lecture 27

Al 1q it % AT,z :1q b ep:Tr A;T Fef:Ta— Tr A;T Feq:Ta
A;T F Axitg. ep : Tq — Tr A;T Hefeq:Tr
Al Tq it Kg

17

17 Matthew Fluet




Polymorphic List Library with higher-order 3

List library is an existential package:

pack (Aaik. p€ik. unit + (a * £), list_library)
as JL::x = *. {empty : Va:ix. L o
cons : Vaiix.a > L a — L o
unlist : Va::x. L o — unit 4+ (o * L «);
map : Va::x. VBik. (¢ > 3) > La — L B;

The witness type operator is poly.lists: Ac:ik. p€:ix. unit + (o * £).
The existential type operator variable L represents poly. lists.

List operations are polymorphic in element type.

The map function only allows mapping « lists to 3 lists.

Matthew Fluet CS-XXX 2012, Lecture 27

18

Other Kinds of Kinds

Kinding systems for checking and tracking properties of type expressions:
> Record kinds

> records at the type-level; define systems of mutually recursive types
» Polymorphic kinds

» kind abstraction and application in types; System F “one level up”
» Dependent kinds

» dependent types “one level up”
» Row kinds

> describe “pieces” of record types for record polymorphism
» Power kinds

» alternative presentation of subtyping
» Singleton kinds

» formalize module systems with type sharing

Matthew Fluet CS-XXX 2012, Lecture 27 19

Metatheory

System F,, is type safe.

Matthew Fluet CS-XXX 2012, Lecture 27

Metatheory

System F,, is type safe.

» Preservation:
Induction on typing derivation, using substitution lemmas:
» Term Substitution:
if Ay, Ags Ty, @t 7, o er:mand ATy Fen 7y,
then A1, Ag; T, T2 - erfex/x] : 7.
» Type Substitution:
if A1, ik, Ao 71 it kand Ay F 72 i Ke,
then A]_,Az [ T]_[Tg/a] K.
» Type Substitution:
if 71 = 72, then 71 [17/a] = m2[T/a].
» Type Substitution:
if A1, aike, A3 T, T'o ey :7and Ay F 72 i Kq,
then A1, Ag; T, Ta[m2/a] F ei[m2/al : T.

> All straightforward inductions, using various weakening and exchange lemmas.

Matthew Fluet CS-XXX 2012, Lecture 27 20

Metatheory

System F,, is type safe.

> Progress:
Induction on typing derivation, using canonical form lemmas:
> If ;- o :int, then v = c.
> If 5 v 71 = T, then v = AziT,. €.
> If 5o v Vasikg. T, then v = Aaikg. €p.

» Complicated by typing derivations that end with:

AsThHe:T AF T %

[
T=T

AsTHe: 7’

(just like with subtyping and subsumption).

Matthew Fluet CS-XXX 2012, Lecture 27

Definitional Equivalence and Parallel Reduction

Parallel Reduction of T to 7/:

T=ST

Tal = Ta2 Tr1 = Tr2

Tal —> Tr1 = Ta2 —> Tr2

Trl = Tr2

Vaike. Tr1 = Vaiikg. Tr2

Tbl = Tb2 Tf1 = Tf2 Tal = Ta2

AQiiKg. Tl = AQ:iKg. Th2 Tf1 Tal = Tf2 Ta2

’ ’
T = Tb Ta = Ta

Aa:ika. ) Ta = Tola/T0]

A more “computational” relation.

Matthew Fluet CS-XXX 2012, Lecture 27 21




Definitional Equivalence and Parallel Reduction

Key properties:

Matthew Fluet CS-XXX 2012, Lecture 27

Definitional Equivalence and Parallel Reduction
Key properties:

» Transitive and symmetric closure of parallel reduction
and type equivalence coincide:

rrerTiffr=1'

Matthew Fluet CS-XXX 2012, Lecture 27

22

Definitional Equivalence and Parallel Reduction

Key properties:

» Transitive and symmetric closure of parallel reduction
and type equivalence coincide:

T & iffr =1
» Parallel reduction has the Church-Rosser property:
» If 7 =* 1 and 7 =* 15,
then there exists 7/ such that 7y =* 7/ and 75 =* 7/

Matthew Fluet CS-XXX 2012, Lecture 27

Definitional Equivalence and Parallel Reduction
Key properties:
» Transitive and symmetric closure of parallel reduction
and type equivalence coincide:
rrerriffr=1'
» Parallel reduction has the Church-Rosser property:
» If 7 =* 1 and 7 =* 19,
then there exists 7/ such that 7y =* 7/ and 7 =* 7/
» Equivalent types share a common reduct:

> If 71 = T2, then there exists 7/ such that 7y =* 7/ and 7 =* 7/

Matthew Fluet CS-XXX 2012, Lecture 27

Definitional Equivalence and Parallel Reduction
Key properties:
» Transitive and symmetric closure of parallel reduction
and type equivalence coincide:
rrerriffr=1'
» Parallel reduction has the Church-Rosser property:
» If 7 =* 1 and 7 =* 15,
then there exists 7/ such that 7y =* 7/ and 7 =* 7/
» Equivalent types share a common reduct:
» If 7y = 79, then there exists 7/ such that 71 =* 7/ and 7 =* 7/
» Reduction preserves shapes:
> Ifint =* 7/, then 7/ = int
»fry = 1 2* 7 then ! =7, = 7/ and 7, 2* 7, and 7, 2% 7]
> If Vasikg. 7 =* 7/, then 7/ = Vauikg. 7/ and 7. =* 7/

Matthew Fluet CS-XXX 2012, Lecture 27

Canonical Forms

If 5« Fv:T1g = 70, then v = Azi1y. €p.

Proof:
By cases on the form of v:

Matthew Fluet CS-XXX 2012, Lecture 27




Canonical Forms

If 5+ Fwv:71y — 70, then v = Ax:i7,. €p.
Proof:

By cases on the form of v:

> V= AX:Tq. €p.
We have that v = Axz:74. €p.

Matthew Fluet CS-XXX 2012, Lecture 27

Canonical Forms

If 5+ Fwv:71e — 70, then v = Ax:i7,. €p.
Proof:
By cases on the form of v:
> v=c.
Derivation of +;+ - v : T — 7 must be of the form:

int int = 7

ek erT

ek erThp g Tn—1=Tn

RN Tn = Ta — Tr

ek eciTe = T
Therefore, we can construct the derivation int = 74, — 7.
We can find a common reduct: int =* 77 and 74 — 7 =* 7.
Reduction preserves shape: int =* 71 implies 77 = int.
Reduction preserves shape: 74 — 7 =* 71 implies 77 = 7, — 7/,
But, 77 = int and 71 = 7, — 7/ is a contradiction.

Matthew Fluet CS-XXX 2012, Lecture 27

23

Canonical Forms

If 5. Fv:T1qg = 70, then v = Azi1y. €p.
Proof:

By cases on the form of v:

> v = Aa:i:Kkg. €p.

Derivation of +;+ - v : T — 7 must be of the form:

ek Aacikg. ep : Vaiikg. T2

Vaiikg. Tz = T1
e Aaiikg. ep T
e Aaiikg. ep t T Tn—1 = Tn
e Aaiikg. ep i Th Tn = Ta —> Tr
5 Aaiikg. ep 1 T — T

Therefore, we can construct the derivation Va:ikg. T2 = Ta — Tr.

We can find a common reduct: Vaiikg. 7 =* 77 and 74 — 7 =* 71
Reduction preserves shape: Vouikg. 7= =* 71 implies 71 = Vauika. 72
Reduction preserves shape: 7a — 7 =* 71 implies 71 = 72, — 7.

But, 71 = Vauikg. 72 and 71 = 72 — 7/ is a contradiction.

Matthew Fluet CS-XXX 2012, Lecture 27

Metatheory

System F,, is type safe.

Where was the A - 7 :: k judgement used in the proof?

Matthew Fluet CS-XXX 2012, Lecture 27

Metatheory

System F,, is type safe.

Where was the A + 7 :: K judgement used in the proof?
In Type Substitution lemmas, but only in an inessential way.

Matthew Fluet CS-XXX 2012, Lecture 27

Metatheory

System F,, is type safe.

Where was the A + 7 :: K judgement used in the proof?
In Type Substitution lemmas, but only in an inessential way.

After weeks of thinking about type systems, kinding seems natural;
but kinding is not required for type safety!

Matthew Fluet CS-XXX 2012, Lecture 27




System F,, without Kinds / System F with Type-Level Abstraction and Application

cle| Azt .e|ee| Aa.e| e [T]

e =
r | Ty
v c|lAz:T.e| Aa. e A I A’ix‘r
T u= int|T—=>7|a|Va.T|Aa.T|TT ’
Matthew Fluet CS-XXX 2012, Lecture 27 25

System F,, without Kinds / System F with Type-Level Abstraction and Application

e = clz|Ax:iT.e|ee|Aa.e|e|T] r N
v u= c|Az:T.e| Aa. e A | A, a
T u= int|T—>7|a|Va.T|Aa.T|TT ’

’

(Azx: T. ep) va —cpy €b[va/x]

’ ’
€fr —*cbv ©f €a —*chy €a

’
€f €a —rchy €f €a

’
Vf €qa —)va Vf €q

€r —*cbv ef
er [Ta] = cpy e [a]

(Ac. ep) [Ta] = chy eblTa/]

Matthew Fluet CS-XXX 2012, Lecture 27 25

System F,, without Kinds / System F with Type-Level Abstraction and Application

cle|dx:T.e|ee| Aa.e|e|T]

e
v c| Azt e | Aa. e
T = int|T—>7|a|Va.T|Aa. T | TT
ATV
Al 7142V A1V
AFint:: v Al T =7V
a€ A A,ab TV
AoV AFVa. 1 2V
Aya b1 vV AbFTp Vv Al T1q VvV

AFAa. 1V Al Ty Te iV

Check that free type variables of 7 are in A, but nothing else.

Matthew Fluet CS-XXX 2012, Lecture 27 25

System F,, without Kinds / System F with Type-Level Abstraction and Application

e u= clxz|Ax:T.e|ee|Aa.e]|e]T]
r == -|T,z:7
v = c|Az:T.e| Aa. e
. A = - |A«a
T = int|T—>7|a|Va.T|Ae. T | TT
T2 = T1 T = T2 T2 = T3
T=T TL = T2 T1L=T3
Tal = Ta2 Tr1 = Tr2 Tr1 = Tr2
Tal = Tr1 = Ta2 — Tr2 Va. 11 = Va. Tr2
Tbl = Tb2 TflL = Tf2 Tal = Ta2
Ad. Tp1 = . To2 Tf1 Tal = Tf2 Ta2
(Aaw. T) Ta = To[t/Ta]
Matthew Fluet CS-XXX 2012, Lecture 27 25

System F,, without Kinds / System F with Type-Level Abstraction and Application

cle| Azt .e|ee| Aa.e| e [T]

e u=
r 2= .|
v c|Ax:T.e| Aa. e A e IA’ZT
T u= int|Tt=>7|a|Va.T|A.T|TT B ’
L(x) =1
AT Fece:int AT a7

A;T -ef:Tq — Tr AT Feq:Ta
A;T - efeq: Tr

Al 1q 2V
AT - Aximq. ep : Ta — Tr

As;T,x:1q Fep:p

A,oT Fep: 1
AT+ Aa. ep : Vo 1

A;T Fef:Va. mr Al 1 2V
AT & ef [1a] 2 Tr[Ta/]

AsThHe:T =7

AT He: 7’

Matthew Fluet CS-XXX 2012, Lecture 27 25

System F,, without Kinds / System F with Type-Level Abstraction and Application

This language is type safe.

Matthew Fluet CS-XXX 2012, Lecture 27 26




System F,, without Kinds / System F with Type-Level Abstraction and Application

This language is type safe.

» Preservation:
Induction on typing derivation, using substitution lemmas:
» Term Substitution:
if Ay, Ags Ty, @ T, Ta e :mand ATy Fes 7y,
then Al,Az;Fl,rg = 61[62/113] LT
» Type Substitution:
if Aj,a, Ao 71 2 vV and A F 1o 0V,
then A1, Ag b 1112/ :: V.
» Type Substitution:
if 71 = 72, then 71 [17/a] = m2[T/a].
» Type Substitution:
ifAl,a,Az;Fl,F2 = e : T and Al [ T2 & \/,
then AI,Az;Fl,rz[Tz/a] = 61[7’2/&] Hie

> All straightforward inductions, using various weakening and exchange lemmas.

Matthew Fluet CS-XXX 2012, Lecture 27 26

System F,, without Kinds / System F with Type-Level Abstraction and Application

This language is type safe.

» Progress:
Induction on typing derivation, using canonical form lemmas:
> If ;- o :int, then v = c.
> If 5o Fv:Te — T, then v = Ax:i7,. €p.
> If 5. Fv:Va. 1., then v = Aa. ep.

> Using parallel reduction relation.

Matthew Fluet CS-XXX 2012, Lecture 27 26

Why Kinds?

Why aren't kinds required for type safety?

Matthew Fluet CS-XXX 2012, Lecture 27 27

Why Kinds?
Why aren’t kinds required for type safety?
Recall statement of type safety:

If ;- e: 7, then e does not get stuck.

Matthew Fluet CS-XXX 2012, Lecture 27 27

Why Kinds?
Why aren't kinds required for type safety?
Recall statement of type safety:
If ;- e: 7, then e does not get stuck.

The typing derivation ;- e : T
includes definitional-equivalence sub-derivations 7 = 7/,
which are explicit evidence that 7 and 7/ are the same.

» E.g., to show that the “natural” type of the function expression
in an application is equivalent to an arrow type:

A;T Fep:Typ
A;T Hef:Ta — Tr
A;T Hefeq:Tr

TfETa—>T»,-

AT Feq: Ta

Matthew Fluet CS-XXX 2012, Lecture 27 27

Why Kinds?
Why aren't kinds required for type safety?
Recall statement of type safety:
If ;- e: 7, then e does not get stuck.

The typing derivation ;- e : T
includes definitional-equivalence sub-derivations 7 = 7/,
which are explicit evidence that 7 and 7/ are the same.

Definitional equivalence (7 = 7’) and parallel reduction (7 = 77)
do not require well-kinded types
(although they preserve the kinds of well-kinded types).

» Eg., (Aa. a — a) (int int) = (int int) — (int int)

Matthew Fluet CS-XXX 2012, Lecture 27 27




Why Kinds?
Why aren't kinds required for type safety?

Recall statement of type safety:

If -5« e: 7, then e does not get stuck.

The typing derivation «;- e : 7
includes definitional-equivalence sub-derivations 7 = 7/,
which are explicit evidence that 7 and 7/ are the same.

Definitional equivalence (7 = 7’) and parallel reduction (7 = 77)
do not require well-kinded types

(although they preserve the kinds of well-kinded types).

Type (and kind) erasure means that “wrong/bad/meaningless” types
do not affect run-time behavior.

> lll-kinded types can't make well-typed terms get stuck.

Matthew Fluet CS-XXX 2012, Lecture 27

Why Kinds?

Kinds aren't for type safety:

» Because a typing derivation (even with ill-kinded types),
carries enough evidence to guarantee that expressions don't get stuck.

Matthew Fluet CS-XXX 2012, Lecture 27

28

Why Kinds?

Kinds aren't for type safety:
> Because a typing derivation (even with ill-kinded types),

carries enough evidence to guarantee that expressions don't get stuck.
Kinds are for type checking:

» Because programmers write programs, not typing derivations.
» Because type checkers are algorithms.

Matthew Fluet CS-XXX 2012, Lecture 27

Why Kinds?
Kinds are for type checking:

» Because programmers write programs, not typing derivations.
» Because type checkers are algorithms.

Matthew Fluet CS-XXX 2012, Lecture 27

Why Kinds?
Kinds are for type checking:

» Because programmers write programs, not typing derivations.
» Because type checkers are algorithms.

Recall the statement of type checking:

Given A, T, and e, does there exist 7 such that AsT' e : 7.

Matthew Fluet

CS-XXX 2012, Lecture 27

Why Kinds?

Kinds are for type checking:

> Because programmers write programs, not typing derivations.
» Because type checkers are algorithms.

Recall the statement of type checking:

Given A, T, and e, does there exist 7 such that AsT' e : 7.

Two issues:
AsTHe:T =17

AsTHe: 7

AT
>

is a non-syntax-directed rule

» 7 = 7/ is a non-syntax-directed relation
One non-issue:

» A b Tt k is a syntax-directed relation (STLC “one level up”)

Matthew Fluet CS-XXX 2012, Lecture 27




Type Checking for System F,

Remove non-syntax-directed rules and relations:

I'(z) =1

A;T Fec:int AsTHa T

AF Tq it % AsT,x:71a-ep:Tr A,a::ke; T Fep:

AT F Axitg. €p t Ta — Tr AT FH Ao ey : Vaiikg. Tr

AsT Hep:Ty Ty ENS ‘r}
A;T Feq: Ta TGSUT(,L
AsT ey eq: Thy

’ ’ ’
Tf = Tfa —> Tr

o
Tfa = Ta

AsT Fep: 7y e T T = VauiKfa. Ter
Al Tq it Ka Kfa = Ka
AsT ey [1a] 2 Tor[Ta/]

Matthew Fluet CS-XXX 2012, Lecture 27

Type Checking for System F,,
Kinds are for type checking.

Given A, T, and e, does there exist 7 such that AsT' e : 7.

Metatheory for kind system:

Matthew Fluet CS-XXX 2012, Lecture 27

30

Type Checking for System F,
Kinds are for type checking.

Given A, T', and e, does there exist 7 such that A;T' e : 7.

Metatheory for kind system:
> Well-kinded types don't get stuck.
» fAFT:kand T =% 7/,
then either 7/ is in (weak-head) normal form (i.e., a type-level “value™)
or /= 1.

> Proofs by Progress and Preservation on kinding and parallel reduction derivations.

Matthew Fluet CS-XXX 2012, Lecture 27

30

Type Checking for System F,
Kinds are for type checking.
Given A, T, and e, does there exist 7 such that AsT' e : 7.

Metatheory for kind system:
» Well-kinded types don't get stuck.
» fAFT:kand T =% 7/,
then either 7/ is in (weak-head) normal form (i.e., a type-level “value™)
or ' = 1.
> Proofs by Progress and Preservation on kinding and parallel reduction derivations.
> But, irrelevant for type checking of expressions.
If 77 =* T; “gets stuck” at a type 7} that is not an arrow type,
then the application typing rule does not apply
and a typing derivation does not exist.

Matthew Fluet CS-XXX 2012, Lecture 27

30

Type Checking for System F,,
Kinds are for type checking.

Given A, T', and e, does there exist 7 such that As;T' F e : 7.

Metatheory for kind system:
> Well-kinded types don't get stuck.
» fAFT:kand T =% 7/,
then either 7/ is in (weak-head) normal form (i.e., a type-level “value™)
or ' = 71",
> But, irrelevant for type checking of expressions.

Matthew Fluet CS-XXX 2012, Lecture 27

30

Type Checking for System F,

Kinds are for type checking.

Given A, T', and e, does there exist 7 such that As;T' e : 7.

Metatheory for kind system:
> Well-kinded types don't get stuck.
» f AT kand T 2% 7/,
then either 7/ is in (weak-head) normal form (i.e., a type-level “value™)
or /= 7.
> But, irrelevant for type checking of expressions.
> Well-kinded types terminate.
» If A b 7 :: K, then there exists 7/ such that 7 =¥ 77.
> Proof is similar to that of termination of STLC.

Matthew Fluet CS-XXX 2012, Lecture 27

30




Type Checking for System F,

Kinds are for type checking.

Given A, T, and e, does there exist 7 such that AsT' e : 7.

Metatheory for kind system:
» Well-kinded types don't get stuck.
» fAFT:kand T =* 7/,
then either 7/ is in (weak-head) normal form (i.e., a type-level “value")
ort/ = 1.
> But, irrelevant for type checking of expressions.
» Well-kinded types terminate.
» If A F 7 :: K, then there exists 7/ such that 7 =¥ 7/,
> Proof is similar to that of termination of STLC.

Type checking for System F,, is decidable.

Matthew Fluet CS-XXX 2012, Lecture 27

30

Going Further

This is just the tip of an iceberg.
> Pure type systems

> Why stop at three levels of expressions (terms, types, and kinds)?
» Allow abstraction and application at the level of kinds,

and introduce sorts to classify kinds.

Why stop at four levels of expressions?

“For programming languages, however, three levels have proved sufficient.”

Matthew Fluet CS-XXX 2012, Lecture 27

&l




