
CS-XXX: Graduate Programming Languages

Lecture 6 — Little Trusted Languages; Equivalence

Dan Grossman
2012

Looking back, looking forward

This is the last lecture using IMP (hooray!). Done:

I Abstract syntax

I Operational semantics (large-step and small-step)

I Semantic properties of (sets of) programs

I “Pseudo-denotational” semantics

Now:

I Packet-filter languages and other examples

I Equivalence of programs in a semantics

I Equivalence of different semantics

Next lecture: Local variables, lambda-calculus

Dan Grossman CS-XXX 2012, Lecture 6 2

Packet Filters

A very simple view of packet filters:

I Some bits come in off the wire

I Some application(s) want the “packet” and some do not
(e.g., port number)

I For safety, only the O/S can access the wire

I For extensibility, the applications accept/reject packets

Conventional solution goes to user-space for every packet and app
that wants (any) packets

Faster solution: Run app-written filters in kernel-space

Dan Grossman CS-XXX 2012, Lecture 6 3

What we need

Now the O/S writer is defining the packet-filter language!

Properties we wish of (untrusted) filters:

1. Do not corrupt kernel data structures

2. Terminate (within a time bound)

3. Run fast (the whole point)

Should we download some C/assembly code? (Get 1 of 3)

Should we make up a language and “hope” it has these properties?

Dan Grossman CS-XXX 2012, Lecture 6 4

Language-based approaches

1. Interpret a language

+ clean operational semantics, + portable, - may be slow (+
filter-specific optimizations), - unusual interface

2. Translate a language into C/assembly

+ clean denotational semantics, + employ existing optimizers,
- upfront cost, - unusual interface

3. Require a conservative subset of C/assembly

+ normal interface, - too conservative w/o help

IMP has taught us about (1) and (2) — we’ll get to (3)

Dan Grossman CS-XXX 2012, Lecture 6 5

A General Pattern

Packet filters move the code to the data rather than data to the
code

General reasons: performance, security, other?

Other examples:

I Query languages

I Active networks

I Client-side web scripts (Javascript)

Dan Grossman CS-XXX 2012, Lecture 6 6

Equivalence motivation

I Program equivalence (we change the program):
I code optimizer
I code maintainer

I Semantics equivalence (we change the language):
I interpreter optimizer
I language designer

I (prove properties for equivalent semantics with easier proof)

Note: Proofs may seem easy with the right semantics and lemmas

I (almost never start off with right semantics and lemmas)

Note: Small-step operational semantics often has harder proofs,
but models more intesting things

Dan Grossman CS-XXX 2012, Lecture 6 7

What is equivalence?

Equivalence depends on what is observable!

I Partial I/O equivalence (if terminates, same ans)
I while 1 skip equivalent to everything
I not transitive

I Total I/O equivalence (same termination behavior, same ans)
I Total heap equivalence (same termination behavior, same

heaps)
I All (almost all?) variables have the same value

I Equivalence plus complexity bounds
I Is O(2nn

) really equivalent to O(n)?
I Is “runs within 10ms of each other” important?

I Syntactic equivalence (perhaps with renaming)
I Too strict to be interesting?

In PL, equivalence most often means total I/O equivalence

Dan Grossman CS-XXX 2012, Lecture 6 8

What is equivalence?

Equivalence depends on what is observable!

I Partial I/O equivalence (if terminates, same ans)

I while 1 skip equivalent to everything
I not transitive

I Total I/O equivalence (same termination behavior, same ans)
I Total heap equivalence (same termination behavior, same

heaps)
I All (almost all?) variables have the same value

I Equivalence plus complexity bounds
I Is O(2nn

) really equivalent to O(n)?
I Is “runs within 10ms of each other” important?

I Syntactic equivalence (perhaps with renaming)
I Too strict to be interesting?

In PL, equivalence most often means total I/O equivalence

Dan Grossman CS-XXX 2012, Lecture 6 8

What is equivalence?

Equivalence depends on what is observable!

I Partial I/O equivalence (if terminates, same ans)
I while 1 skip equivalent to everything

I not transitive

I Total I/O equivalence (same termination behavior, same ans)
I Total heap equivalence (same termination behavior, same

heaps)
I All (almost all?) variables have the same value

I Equivalence plus complexity bounds
I Is O(2nn

) really equivalent to O(n)?
I Is “runs within 10ms of each other” important?

I Syntactic equivalence (perhaps with renaming)
I Too strict to be interesting?

In PL, equivalence most often means total I/O equivalence

Dan Grossman CS-XXX 2012, Lecture 6 8

What is equivalence?

Equivalence depends on what is observable!

I Partial I/O equivalence (if terminates, same ans)
I while 1 skip equivalent to everything
I not transitive

I Total I/O equivalence (same termination behavior, same ans)
I Total heap equivalence (same termination behavior, same

heaps)
I All (almost all?) variables have the same value

I Equivalence plus complexity bounds
I Is O(2nn

) really equivalent to O(n)?
I Is “runs within 10ms of each other” important?

I Syntactic equivalence (perhaps with renaming)
I Too strict to be interesting?

In PL, equivalence most often means total I/O equivalence

Dan Grossman CS-XXX 2012, Lecture 6 8

What is equivalence?

Equivalence depends on what is observable!

I Partial I/O equivalence (if terminates, same ans)
I while 1 skip equivalent to everything
I not transitive

I Total I/O equivalence (same termination behavior, same ans)

I Total heap equivalence (same termination behavior, same
heaps)

I All (almost all?) variables have the same value

I Equivalence plus complexity bounds
I Is O(2nn

) really equivalent to O(n)?
I Is “runs within 10ms of each other” important?

I Syntactic equivalence (perhaps with renaming)
I Too strict to be interesting?

In PL, equivalence most often means total I/O equivalence

Dan Grossman CS-XXX 2012, Lecture 6 8

What is equivalence?

Equivalence depends on what is observable!

I Partial I/O equivalence (if terminates, same ans)
I while 1 skip equivalent to everything
I not transitive

I Total I/O equivalence (same termination behavior, same ans)
I Total heap equivalence (same termination behavior, same

heaps)
I All (almost all?) variables have the same value

I Equivalence plus complexity bounds
I Is O(2nn

) really equivalent to O(n)?
I Is “runs within 10ms of each other” important?

I Syntactic equivalence (perhaps with renaming)
I Too strict to be interesting?

In PL, equivalence most often means total I/O equivalence

Dan Grossman CS-XXX 2012, Lecture 6 8

What is equivalence?

Equivalence depends on what is observable!

I Partial I/O equivalence (if terminates, same ans)
I while 1 skip equivalent to everything
I not transitive

I Total I/O equivalence (same termination behavior, same ans)
I Total heap equivalence (same termination behavior, same

heaps)
I All (almost all?) variables have the same value

I Equivalence plus complexity bounds
I Is O(2nn

) really equivalent to O(n)?
I Is “runs within 10ms of each other” important?

I Syntactic equivalence (perhaps with renaming)
I Too strict to be interesting?

In PL, equivalence most often means total I/O equivalence

Dan Grossman CS-XXX 2012, Lecture 6 8

What is equivalence?

Equivalence depends on what is observable!

I Partial I/O equivalence (if terminates, same ans)
I while 1 skip equivalent to everything
I not transitive

I Total I/O equivalence (same termination behavior, same ans)
I Total heap equivalence (same termination behavior, same

heaps)
I All (almost all?) variables have the same value

I Equivalence plus complexity bounds
I Is O(2nn

) really equivalent to O(n)?
I Is “runs within 10ms of each other” important?

I Syntactic equivalence (perhaps with renaming)
I Too strict to be interesting?

In PL, equivalence most often means total I/O equivalence

Dan Grossman CS-XXX 2012, Lecture 6 8

What is equivalence?

Equivalence depends on what is observable!

I Partial I/O equivalence (if terminates, same ans)
I while 1 skip equivalent to everything
I not transitive

I Total I/O equivalence (same termination behavior, same ans)
I Total heap equivalence (same termination behavior, same

heaps)
I All (almost all?) variables have the same value

I Equivalence plus complexity bounds
I Is O(2nn

) really equivalent to O(n)?
I Is “runs within 10ms of each other” important?

I Syntactic equivalence (perhaps with renaming)
I Too strict to be interesting?

In PL, equivalence most often means total I/O equivalence

Dan Grossman CS-XXX 2012, Lecture 6 8

Program Example: Strength Reduction

Motivation: Strength reduction

I A common compiler optimization due to architecture issues

Theorem: H ; e ∗ 2 ⇓ c if and only if H ; e + e ⇓ c

Proof sketch:

I Prove separately for each direction

I Invert the assumed derivation, use hypotheses plus a little
math to derive what we need

I Hmm, doesn’t use induction. That’s because this theorem
isn’t very useful...

Dan Grossman CS-XXX 2012, Lecture 6 9

Program Example: Strength Reduction

Motivation: Strength reduction

I A common compiler optimization due to architecture issues

Theorem: H ; e ∗ 2 ⇓ c if and only if H ; e + e ⇓ c

Proof sketch:

I Prove separately for each direction

I Invert the assumed derivation, use hypotheses plus a little
math to derive what we need

I Hmm, doesn’t use induction. That’s because this theorem
isn’t very useful...

Dan Grossman CS-XXX 2012, Lecture 6 9

Program Example: Strength Reduction

Motivation: Strength reduction

I A common compiler optimization due to architecture issues

Theorem: H ; e ∗ 2 ⇓ c if and only if H ; e + e ⇓ c

Proof sketch:

I Prove separately for each direction

I Invert the assumed derivation, use hypotheses plus a little
math to derive what we need

I Hmm, doesn’t use induction. That’s because this theorem
isn’t very useful...

Dan Grossman CS-XXX 2012, Lecture 6 9

Program Example: Strength Reduction

Motivation: Strength reduction

I A common compiler optimization due to architecture issues

Theorem: H ; e ∗ 2 ⇓ c if and only if H ; e + e ⇓ c

Proof sketch:

I Prove separately for each direction

I Invert the assumed derivation, use hypotheses plus a little
math to derive what we need

I Hmm, doesn’t use induction. That’s because this theorem
isn’t very useful...

Dan Grossman CS-XXX 2012, Lecture 6 9

Program Example: Nested Strength Reduction

Theorem: If e′ has a subexpression of the form e ∗ 2,
then H ; e′ ⇓ c′ if and only if H ; e′′ ⇓ c′

where e′′ is e′ with e ∗ 2 replaced with e + e

First some useful metanotation:

C ::= [·] | C + e | e + C | C ∗ e | e ∗ C

C[e] is “C with e in the hole” (inductive definition of “stapling”)

Crisper statement of theorem:
H ; C[e ∗ 2] ⇓ c′ if and only if H ; C[e + e] ⇓ c′

Proof sketch: By induction on structure (“syntax height”) of C

I The base case (C = [·]) follows from our previous proof

I The rest is a long, tedious, (and instructive!) induction

Dan Grossman CS-XXX 2012, Lecture 6 10

Program Example: Nested Strength Reduction

Theorem: If e′ has a subexpression of the form e ∗ 2,
then H ; e′ ⇓ c′ if and only if H ; e′′ ⇓ c′

where e′′ is e′ with e ∗ 2 replaced with e + e

First some useful metanotation:

C ::= [·] | C + e | e + C | C ∗ e | e ∗ C

C[e] is “C with e in the hole” (inductive definition of “stapling”)

Crisper statement of theorem:
H ; C[e ∗ 2] ⇓ c′ if and only if H ; C[e + e] ⇓ c′

Proof sketch: By induction on structure (“syntax height”) of C

I The base case (C = [·]) follows from our previous proof

I The rest is a long, tedious, (and instructive!) induction

Dan Grossman CS-XXX 2012, Lecture 6 10

Program Example: Nested Strength Reduction

Theorem: If e′ has a subexpression of the form e ∗ 2,
then H ; e′ ⇓ c′ if and only if H ; e′′ ⇓ c′

where e′′ is e′ with e ∗ 2 replaced with e + e

First some useful metanotation:

C ::= [·] | C + e | e + C | C ∗ e | e ∗ C

C[e] is “C with e in the hole” (inductive definition of “stapling”)

Crisper statement of theorem:
H ; C[e ∗ 2] ⇓ c′ if and only if H ; C[e + e] ⇓ c′

Proof sketch: By induction on structure (“syntax height”) of C

I The base case (C = [·]) follows from our previous proof

I The rest is a long, tedious, (and instructive!) induction

Dan Grossman CS-XXX 2012, Lecture 6 10

Proof reuse

As we cannot emphasize enough, proving is just like programming

The proof of nested strength reduction had nothing to do with
e ∗ 2 and e + e except in the base case where we used our
previous theorem

A much more useful theorem would parameterize over the base
case so that we could get the “nested X” theorem for any
appropriate X:

If (H ; e1 ⇓ c if and only if H ; e2 ⇓ c),
then (H ; C[e1] ⇓ c′ if and only if H ; C[e2] ⇓ c′)

The proof is identical except the base case is “by assumption”

Dan Grossman CS-XXX 2012, Lecture 6 11

Small-step program equivalence

These sort of proofs also work with small-step semantics (e.g., our
IMP statements), but tend to be more cumbersome, even to state.

Example: The statement-sequence operator is associative. That is,

(a) For all n, if H ; s1; (s2; s3) →n H ′ ; skip then there exist
H ′′ and n′ such that H ; (s1; s2); s3 →n′

H ′′ ; skip and
H ′′(ans) = H ′(ans).

(b) If for all n there exist H ′ and s′ such that
H ; s1; (s2; s3) →n H ′ ; s′, then for all n there exist H ′′

and s′′ such that H ; (s1; s2); s3 →n H ′′ ; s′′.

(Proof needs a much stronger induction hypothesis.)

One way to avoid it: Prove large-step and small-step semantics
equivalent, then prove program equivalences in whichever is easier.

Dan Grossman CS-XXX 2012, Lecture 6 12

Language Equivalence Example

IMP w/o multiply large-step:

const

H ; c ⇓ c

var

H ; x ⇓ H(x)

add
H ; e1 ⇓ c1 H ; e2 ⇓ c2

H ; e1 + e2 ⇓ c1+c2

IMP w/o multiply small-step:

svar

H; x→ H(x)

sadd

H; c1 + c2 → c1+c2

sleft
H; e1 → e′1

H; e1 + e2 → e′1 + e2

sright
H; e2 → e′2

H; e1 + e2 → e1 + e′2

Theorem: Semantics are equivalent: H ; e ⇓ c if and only if H; e→∗ c

Proof: We prove the two directions separately...

Dan Grossman CS-XXX 2012, Lecture 6 13

Proof, part 1

First assume H ; e ⇓ c and show ∃n. H; e→n c

Lemma (prove it!): If H; e→n e′, then H; e1 + e→n e1 + e′

and H; e + e2 →n e′ + e2.

I Proof by induction on n

I Inductive case uses sleft and sright

Given the lemma, prove by induction on derivation of H ; e ⇓ c

I const: Derivation with const implies e = c, and we can
derive H; c→0 c

I var: Derivation with var implies e = x for some x where
H(x) = c, so derive H; e→1 c with svar

I add: ...

Dan Grossman CS-XXX 2012, Lecture 6 14

Proof, part 1

First assume H ; e ⇓ c and show ∃n. H; e→n c

Lemma (prove it!): If H; e→n e′, then H; e1 + e→n e1 + e′

and H; e + e2 →n e′ + e2.

I Proof by induction on n

I Inductive case uses sleft and sright

Given the lemma, prove by induction on derivation of H ; e ⇓ c

I const: Derivation with const implies e = c, and we can
derive H; c→0 c

I var: Derivation with var implies e = x for some x where
H(x) = c, so derive H; e→1 c with svar

I add: ...

Dan Grossman CS-XXX 2012, Lecture 6 14

Proof, part 1

First assume H ; e ⇓ c and show ∃n. H; e→n c

Lemma (prove it!): If H; e→n e′, then H; e1 + e→n e1 + e′

and H; e + e2 →n e′ + e2.

I Proof by induction on n

I Inductive case uses sleft and sright

Given the lemma, prove by induction on derivation of H ; e ⇓ c

I const: Derivation with const implies e = c, and we can
derive H; c→0 c

I var: Derivation with var implies e = x for some x where
H(x) = c, so derive H; e→1 c with svar

I add: ...

Dan Grossman CS-XXX 2012, Lecture 6 14

Proof, part 1

First assume H ; e ⇓ c and show ∃n. H; e→n c

Lemma (prove it!): If H; e→n e′, then H; e1 + e→n e1 + e′

and H; e + e2 →n e′ + e2.

I Proof by induction on n

I Inductive case uses sleft and sright

Given the lemma, prove by induction on derivation of H ; e ⇓ c

I const: Derivation with const implies e = c, and we can
derive H; c→0 c

I var: Derivation with var implies e = x for some x where
H(x) = c, so derive H; e→1 c with svar

I add: ...

Dan Grossman CS-XXX 2012, Lecture 6 14

Proof, part 1

First assume H ; e ⇓ c and show ∃n. H; e→n c

Lemma (prove it!): If H; e→n e′, then H; e1 + e→n e1 + e′

and H; e + e2 →n e′ + e2.

I Proof by induction on n

I Inductive case uses sleft and sright

Given the lemma, prove by induction on derivation of H ; e ⇓ c

I const: Derivation with const implies e = c, and we can
derive H; c→0 c

I var: Derivation with var implies e = x for some x where
H(x) = c, so derive H; e→1 c with svar

I add: ...

Dan Grossman CS-XXX 2012, Lecture 6 14

Proof, part 1

First assume H ; e ⇓ c and show ∃n. H; e→n c

Lemma (prove it!): If H; e→n e′, then H; e1 + e→n e1 + e′

and H; e + e2 →n e′ + e2.

I Proof by induction on n

I Inductive case uses sleft and sright

Given the lemma, prove by induction on derivation of H ; e ⇓ c

I const: Derivation with const implies e = c, and we can
derive H; c→0 c

I var: Derivation with var implies e = x for some x where
H(x) = c, so derive H; e→1 c with svar

I add: ...

Dan Grossman CS-XXX 2012, Lecture 6 14

Part 1, continued

First assume H ; e ⇓ c and show ∃n. H; e→n c

Lemma (prove it!): If H; e→n e′, then H; e1 + e→n e1 + e′

and H; e + e2 →n e′ + e2.

Given the lemma, prove by induction on derivation of H ; e ⇓ c

I ...

I add: Derivation with add implies e = e1 + e2, c = c1+c2,
H ; e1 ⇓ c1, and H ; e2 ⇓ c2 for some e1, e2, c1, c2.

By induction (twice), ∃n1, n2. H; e1 →n1 c1 and
H; e2 →n2 c2.
So by our lemma H; e1 + e2 →n1 c1 + e2 and
H; c1 + e2 →n2 c1 + c2.
By sadd H; c1 + c2 → c1+c2.
So H; e1 + e2 →n1+n2+1 c.

Dan Grossman CS-XXX 2012, Lecture 6 15

Part 1, continued

First assume H ; e ⇓ c and show ∃n. H; e→n c

Lemma (prove it!): If H; e→n e′, then H; e1 + e→n e1 + e′

and H; e + e2 →n e′ + e2.

Given the lemma, prove by induction on derivation of H ; e ⇓ c

I ...

I add: Derivation with add implies e = e1 + e2, c = c1+c2,
H ; e1 ⇓ c1, and H ; e2 ⇓ c2 for some e1, e2, c1, c2.
By induction (twice), ∃n1, n2. H; e1 →n1 c1 and
H; e2 →n2 c2.

So by our lemma H; e1 + e2 →n1 c1 + e2 and
H; c1 + e2 →n2 c1 + c2.
By sadd H; c1 + c2 → c1+c2.
So H; e1 + e2 →n1+n2+1 c.

Dan Grossman CS-XXX 2012, Lecture 6 15

Part 1, continued

First assume H ; e ⇓ c and show ∃n. H; e→n c

Lemma (prove it!): If H; e→n e′, then H; e1 + e→n e1 + e′

and H; e + e2 →n e′ + e2.

Given the lemma, prove by induction on derivation of H ; e ⇓ c

I ...

I add: Derivation with add implies e = e1 + e2, c = c1+c2,
H ; e1 ⇓ c1, and H ; e2 ⇓ c2 for some e1, e2, c1, c2.
By induction (twice), ∃n1, n2. H; e1 →n1 c1 and
H; e2 →n2 c2.
So by our lemma H; e1 + e2 →n1 c1 + e2 and
H; c1 + e2 →n2 c1 + c2.

By sadd H; c1 + c2 → c1+c2.
So H; e1 + e2 →n1+n2+1 c.

Dan Grossman CS-XXX 2012, Lecture 6 15

Part 1, continued

First assume H ; e ⇓ c and show ∃n. H; e→n c

Lemma (prove it!): If H; e→n e′, then H; e1 + e→n e1 + e′

and H; e + e2 →n e′ + e2.

Given the lemma, prove by induction on derivation of H ; e ⇓ c

I ...

I add: Derivation with add implies e = e1 + e2, c = c1+c2,
H ; e1 ⇓ c1, and H ; e2 ⇓ c2 for some e1, e2, c1, c2.
By induction (twice), ∃n1, n2. H; e1 →n1 c1 and
H; e2 →n2 c2.
So by our lemma H; e1 + e2 →n1 c1 + e2 and
H; c1 + e2 →n2 c1 + c2.
By sadd H; c1 + c2 → c1+c2.

So H; e1 + e2 →n1+n2+1 c.

Dan Grossman CS-XXX 2012, Lecture 6 15

Part 1, continued

First assume H ; e ⇓ c and show ∃n. H; e→n c

Lemma (prove it!): If H; e→n e′, then H; e1 + e→n e1 + e′

and H; e + e2 →n e′ + e2.

Given the lemma, prove by induction on derivation of H ; e ⇓ c

I ...

I add: Derivation with add implies e = e1 + e2, c = c1+c2,
H ; e1 ⇓ c1, and H ; e2 ⇓ c2 for some e1, e2, c1, c2.
By induction (twice), ∃n1, n2. H; e1 →n1 c1 and
H; e2 →n2 c2.
So by our lemma H; e1 + e2 →n1 c1 + e2 and
H; c1 + e2 →n2 c1 + c2.
By sadd H; c1 + c2 → c1+c2.
So H; e1 + e2 →n1+n2+1 c.

Dan Grossman CS-XXX 2012, Lecture 6 15

Proof, part 2

Now assume ∃n. H; e→n c and show H ; e ⇓ c.

Proof by induction on n:

I n = 0: e is c and const lets us derive H ; c ⇓ c

I n > 0: (Clever: break into first step and remaining ones)
∃e′. H; e→ e′ and H; e′ →n−1 c.
By induction H ; e′ ⇓ c.
So this lemma suffices: If H; e→ e′ and H ; e′ ⇓ c, then
H ; e ⇓ c.

Prove the lemma by induction on derivation of H; e→ e′:

I svar: ...

I sadd: ...

I sleft: ...

I sright: ...

Dan Grossman CS-XXX 2012, Lecture 6 16

Proof, part 2

Now assume ∃n. H; e→n c and show H ; e ⇓ c.

Proof by induction on n:

I n = 0: e is c and const lets us derive H ; c ⇓ c

I n > 0: (Clever: break into first step and remaining ones)
∃e′. H; e→ e′ and H; e′ →n−1 c.
By induction H ; e′ ⇓ c.
So this lemma suffices: If H; e→ e′ and H ; e′ ⇓ c, then
H ; e ⇓ c.

Prove the lemma by induction on derivation of H; e→ e′:

I svar: ...

I sadd: ...

I sleft: ...

I sright: ...

Dan Grossman CS-XXX 2012, Lecture 6 16

Proof, part 2

Now assume ∃n. H; e→n c and show H ; e ⇓ c.

Proof by induction on n:

I n = 0: e is c and const lets us derive H ; c ⇓ c

I n > 0: (Clever: break into first step and remaining ones)
∃e′. H; e→ e′ and H; e′ →n−1 c.
By induction H ; e′ ⇓ c.
So this lemma suffices: If H; e→ e′ and H ; e′ ⇓ c, then
H ; e ⇓ c.

Prove the lemma by induction on derivation of H; e→ e′:

I svar: ...

I sadd: ...

I sleft: ...

I sright: ...

Dan Grossman CS-XXX 2012, Lecture 6 16

Proof, part 2

Now assume ∃n. H; e→n c and show H ; e ⇓ c.

Proof by induction on n:

I n = 0: e is c and const lets us derive H ; c ⇓ c

I n > 0: (Clever: break into first step and remaining ones)
∃e′. H; e→ e′ and H; e′ →n−1 c.

By induction H ; e′ ⇓ c.
So this lemma suffices: If H; e→ e′ and H ; e′ ⇓ c, then
H ; e ⇓ c.

Prove the lemma by induction on derivation of H; e→ e′:

I svar: ...

I sadd: ...

I sleft: ...

I sright: ...

Dan Grossman CS-XXX 2012, Lecture 6 16

Proof, part 2

Now assume ∃n. H; e→n c and show H ; e ⇓ c.

Proof by induction on n:

I n = 0: e is c and const lets us derive H ; c ⇓ c

I n > 0: (Clever: break into first step and remaining ones)
∃e′. H; e→ e′ and H; e′ →n−1 c.
By induction H ; e′ ⇓ c.

So this lemma suffices: If H; e→ e′ and H ; e′ ⇓ c, then
H ; e ⇓ c.

Prove the lemma by induction on derivation of H; e→ e′:

I svar: ...

I sadd: ...

I sleft: ...

I sright: ...

Dan Grossman CS-XXX 2012, Lecture 6 16

Proof, part 2

Now assume ∃n. H; e→n c and show H ; e ⇓ c.

Proof by induction on n:

I n = 0: e is c and const lets us derive H ; c ⇓ c

I n > 0: (Clever: break into first step and remaining ones)
∃e′. H; e→ e′ and H; e′ →n−1 c.
By induction H ; e′ ⇓ c.
So this lemma suffices: If H; e→ e′ and H ; e′ ⇓ c, then
H ; e ⇓ c.

Prove the lemma by induction on derivation of H; e→ e′:

I svar: ...

I sadd: ...

I sleft: ...

I sright: ...

Dan Grossman CS-XXX 2012, Lecture 6 16

Proof, part 2

Now assume ∃n. H; e→n c and show H ; e ⇓ c.

Proof by induction on n:

I n = 0: e is c and const lets us derive H ; c ⇓ c

I n > 0: (Clever: break into first step and remaining ones)
∃e′. H; e→ e′ and H; e′ →n−1 c.
By induction H ; e′ ⇓ c.
So this lemma suffices: If H; e→ e′ and H ; e′ ⇓ c, then
H ; e ⇓ c.

Prove the lemma by induction on derivation of H; e→ e′:

I svar: ...

I sadd: ...

I sleft: ...

I sright: ...

Dan Grossman CS-XXX 2012, Lecture 6 16

Part 2, key lemma

Lemma: If H; e→ e′ and H ; e′ ⇓ c, then H ; e ⇓ c.

Prove the lemma by induction on derivation of H; e→ e′:

I svar: Derivation with svar implies e is some x and
e′ = H(x) = c, so derive, by var, H ; x ⇓ H(x).

I sadd: Derivation with sadd implies e is some c1 + c2 and
e′ = c1+c2 = c, so derive, by add and two const,
H ; c1 + c2 ⇓ c1+c2.

I sleft: Derivation with sleft implies e = e1 + e2 and
e′ = e′1 + e2 and H; e1 → e′1 for some e1, e2, e

′
1.

Since e′ = e′1 + e2 inverting assumption H ; e′ ⇓ c gives
H ; e′1 ⇓ c1, H ; e2 ⇓ c2 and c = c1+c2.
Applying the induction hypothesis to H; e1 → e′1 and
H ; e′1 ⇓ c1 gives H ; e1 ⇓ c1.
So use add, H ; e1 ⇓ c1, and H ; e2 ⇓ c2 to derive
H ; e1 + e2 ⇓ c1+c2.

I sright: Analogous to sleft

Dan Grossman CS-XXX 2012, Lecture 6 17

Part 2, key lemma

Lemma: If H; e→ e′ and H ; e′ ⇓ c, then H ; e ⇓ c.

Prove the lemma by induction on derivation of H; e→ e′:
I svar: Derivation with svar implies e is some x and

e′ = H(x) = c, so derive, by var, H ; x ⇓ H(x).

I sadd: Derivation with sadd implies e is some c1 + c2 and
e′ = c1+c2 = c, so derive, by add and two const,
H ; c1 + c2 ⇓ c1+c2.

I sleft: Derivation with sleft implies e = e1 + e2 and
e′ = e′1 + e2 and H; e1 → e′1 for some e1, e2, e

′
1.

Since e′ = e′1 + e2 inverting assumption H ; e′ ⇓ c gives
H ; e′1 ⇓ c1, H ; e2 ⇓ c2 and c = c1+c2.
Applying the induction hypothesis to H; e1 → e′1 and
H ; e′1 ⇓ c1 gives H ; e1 ⇓ c1.
So use add, H ; e1 ⇓ c1, and H ; e2 ⇓ c2 to derive
H ; e1 + e2 ⇓ c1+c2.

I sright: Analogous to sleft

Dan Grossman CS-XXX 2012, Lecture 6 17

Part 2, key lemma

Lemma: If H; e→ e′ and H ; e′ ⇓ c, then H ; e ⇓ c.

Prove the lemma by induction on derivation of H; e→ e′:
I svar: Derivation with svar implies e is some x and

e′ = H(x) = c, so derive, by var, H ; x ⇓ H(x).
I sadd: Derivation with sadd implies e is some c1 + c2 and

e′ = c1+c2 = c, so derive, by add and two const,
H ; c1 + c2 ⇓ c1+c2.

I sleft: Derivation with sleft implies e = e1 + e2 and
e′ = e′1 + e2 and H; e1 → e′1 for some e1, e2, e

′
1.

Since e′ = e′1 + e2 inverting assumption H ; e′ ⇓ c gives
H ; e′1 ⇓ c1, H ; e2 ⇓ c2 and c = c1+c2.
Applying the induction hypothesis to H; e1 → e′1 and
H ; e′1 ⇓ c1 gives H ; e1 ⇓ c1.
So use add, H ; e1 ⇓ c1, and H ; e2 ⇓ c2 to derive
H ; e1 + e2 ⇓ c1+c2.

I sright: Analogous to sleft

Dan Grossman CS-XXX 2012, Lecture 6 17

Part 2, key lemma

Lemma: If H; e→ e′ and H ; e′ ⇓ c, then H ; e ⇓ c.

Prove the lemma by induction on derivation of H; e→ e′:
I svar: Derivation with svar implies e is some x and

e′ = H(x) = c, so derive, by var, H ; x ⇓ H(x).
I sadd: Derivation with sadd implies e is some c1 + c2 and

e′ = c1+c2 = c, so derive, by add and two const,
H ; c1 + c2 ⇓ c1+c2.

I sleft: Derivation with sleft implies e = e1 + e2 and
e′ = e′1 + e2 and H; e1 → e′1 for some e1, e2, e

′
1.

Since e′ = e′1 + e2 inverting assumption H ; e′ ⇓ c gives
H ; e′1 ⇓ c1, H ; e2 ⇓ c2 and c = c1+c2.
Applying the induction hypothesis to H; e1 → e′1 and
H ; e′1 ⇓ c1 gives H ; e1 ⇓ c1.
So use add, H ; e1 ⇓ c1, and H ; e2 ⇓ c2 to derive
H ; e1 + e2 ⇓ c1+c2.

I sright: Analogous to sleft

Dan Grossman CS-XXX 2012, Lecture 6 17

Part 2, key lemma

Lemma: If H; e→ e′ and H ; e′ ⇓ c, then H ; e ⇓ c.

Prove the lemma by induction on derivation of H; e→ e′:
I svar: Derivation with svar implies e is some x and

e′ = H(x) = c, so derive, by var, H ; x ⇓ H(x).
I sadd: Derivation with sadd implies e is some c1 + c2 and

e′ = c1+c2 = c, so derive, by add and two const,
H ; c1 + c2 ⇓ c1+c2.

I sleft: Derivation with sleft implies e = e1 + e2 and
e′ = e′1 + e2 and H; e1 → e′1 for some e1, e2, e

′
1.

Since e′ = e′1 + e2 inverting assumption H ; e′ ⇓ c gives
H ; e′1 ⇓ c1, H ; e2 ⇓ c2 and c = c1+c2.

Applying the induction hypothesis to H; e1 → e′1 and
H ; e′1 ⇓ c1 gives H ; e1 ⇓ c1.
So use add, H ; e1 ⇓ c1, and H ; e2 ⇓ c2 to derive
H ; e1 + e2 ⇓ c1+c2.

I sright: Analogous to sleft

Dan Grossman CS-XXX 2012, Lecture 6 17

Part 2, key lemma

Lemma: If H; e→ e′ and H ; e′ ⇓ c, then H ; e ⇓ c.

Prove the lemma by induction on derivation of H; e→ e′:
I svar: Derivation with svar implies e is some x and

e′ = H(x) = c, so derive, by var, H ; x ⇓ H(x).
I sadd: Derivation with sadd implies e is some c1 + c2 and

e′ = c1+c2 = c, so derive, by add and two const,
H ; c1 + c2 ⇓ c1+c2.

I sleft: Derivation with sleft implies e = e1 + e2 and
e′ = e′1 + e2 and H; e1 → e′1 for some e1, e2, e

′
1.

Since e′ = e′1 + e2 inverting assumption H ; e′ ⇓ c gives
H ; e′1 ⇓ c1, H ; e2 ⇓ c2 and c = c1+c2.
Applying the induction hypothesis to H; e1 → e′1 and
H ; e′1 ⇓ c1 gives H ; e1 ⇓ c1.

So use add, H ; e1 ⇓ c1, and H ; e2 ⇓ c2 to derive
H ; e1 + e2 ⇓ c1+c2.

I sright: Analogous to sleft

Dan Grossman CS-XXX 2012, Lecture 6 17

Part 2, key lemma

Lemma: If H; e→ e′ and H ; e′ ⇓ c, then H ; e ⇓ c.

Prove the lemma by induction on derivation of H; e→ e′:
I svar: Derivation with svar implies e is some x and

e′ = H(x) = c, so derive, by var, H ; x ⇓ H(x).
I sadd: Derivation with sadd implies e is some c1 + c2 and

e′ = c1+c2 = c, so derive, by add and two const,
H ; c1 + c2 ⇓ c1+c2.

I sleft: Derivation with sleft implies e = e1 + e2 and
e′ = e′1 + e2 and H; e1 → e′1 for some e1, e2, e

′
1.

Since e′ = e′1 + e2 inverting assumption H ; e′ ⇓ c gives
H ; e′1 ⇓ c1, H ; e2 ⇓ c2 and c = c1+c2.
Applying the induction hypothesis to H; e1 → e′1 and
H ; e′1 ⇓ c1 gives H ; e1 ⇓ c1.
So use add, H ; e1 ⇓ c1, and H ; e2 ⇓ c2 to derive
H ; e1 + e2 ⇓ c1+c2.

I sright: Analogous to sleft

Dan Grossman CS-XXX 2012, Lecture 6 17

Part 2, key lemma

Lemma: If H; e→ e′ and H ; e′ ⇓ c, then H ; e ⇓ c.

Prove the lemma by induction on derivation of H; e→ e′:
I svar: Derivation with svar implies e is some x and

e′ = H(x) = c, so derive, by var, H ; x ⇓ H(x).
I sadd: Derivation with sadd implies e is some c1 + c2 and

e′ = c1+c2 = c, so derive, by add and two const,
H ; c1 + c2 ⇓ c1+c2.

I sleft: Derivation with sleft implies e = e1 + e2 and
e′ = e′1 + e2 and H; e1 → e′1 for some e1, e2, e

′
1.

Since e′ = e′1 + e2 inverting assumption H ; e′ ⇓ c gives
H ; e′1 ⇓ c1, H ; e2 ⇓ c2 and c = c1+c2.
Applying the induction hypothesis to H; e1 → e′1 and
H ; e′1 ⇓ c1 gives H ; e1 ⇓ c1.
So use add, H ; e1 ⇓ c1, and H ; e2 ⇓ c2 to derive
H ; e1 + e2 ⇓ c1+c2.

I sright: Analogous to sleft
Dan Grossman CS-XXX 2012, Lecture 6 17

The cool part, redux

Step through the sleft case more visually:

By assumption, we must have derivations that look like this:

H; e1 → e′1
H; e1 + e2 → e′1 + e2

H ; e′1 ⇓ c1 H ; e2 ⇓ c2

H ; e′1 + e2 ⇓ c1+c2

Grab the hypothesis from the left and the left hypothesis from the
right and use induction to get H ; e1 ⇓ c1.

Now go grab the one hypothesis we haven’t used yet and combine
it with our inductive result to derive our answer:

H ; e1 ⇓ c1 H ; e2 ⇓ c2

H ; e1 + e2 ⇓ c1+c2

Dan Grossman CS-XXX 2012, Lecture 6 18

A nice payoff

Theorem: The small-step semantics is deterministic:
if H; e→∗ c1 and H; e→∗ c2, then c1 = c2

Not obvious (see sleft and sright), nor do I know a direct proof

I Given (((1 + 2) + (3 + 4)) + (5 + 6)) + (7 + 8) there are
many execution sequences, which all produce 36 but with
different intermediate expressions

Proof:

I Large-step evaluation is deterministic (easy induction proof)

I Small-step and and large-step are equivalent (just proved that)

I So small-step is deterministic

I Convince yourself a deterministic and a nondeterministic
semantics cannot be equivalent

Dan Grossman CS-XXX 2012, Lecture 6 19

A nice payoff

Theorem: The small-step semantics is deterministic:
if H; e→∗ c1 and H; e→∗ c2, then c1 = c2

Not obvious (see sleft and sright), nor do I know a direct proof

I Given (((1 + 2) + (3 + 4)) + (5 + 6)) + (7 + 8) there are
many execution sequences, which all produce 36 but with
different intermediate expressions

Proof:

I Large-step evaluation is deterministic (easy induction proof)

I Small-step and and large-step are equivalent (just proved that)

I So small-step is deterministic

I Convince yourself a deterministic and a nondeterministic
semantics cannot be equivalent

Dan Grossman CS-XXX 2012, Lecture 6 19

A nice payoff

Theorem: The small-step semantics is deterministic:
if H; e→∗ c1 and H; e→∗ c2, then c1 = c2

Not obvious (see sleft and sright), nor do I know a direct proof

I Given (((1 + 2) + (3 + 4)) + (5 + 6)) + (7 + 8) there are
many execution sequences, which all produce 36 but with
different intermediate expressions

Proof:

I Large-step evaluation is deterministic (easy induction proof)

I Small-step and and large-step are equivalent (just proved that)

I So small-step is deterministic

I Convince yourself a deterministic and a nondeterministic
semantics cannot be equivalent

Dan Grossman CS-XXX 2012, Lecture 6 19

Conclusions

I Equivalence is a subtle concept

I Proofs “seem obvious” only when the definitions are right

I Some other language-equivalence claims:

Replace while rule with

H ; e ⇓ c c ≤ 0

H ; while e s→ H ; skip

H ; e ⇓ c c > 0

H ; while e s→ H ; s;while e s

Equivalent to our original language

Change syntax of heap and replace assign and var rules with

H ; x := e→ H,x 7→ e ; skip

H ; H(x) ⇓ c

H ; x ⇓ c

NOT equivalent to our original language

Dan Grossman CS-XXX 2012, Lecture 6 20

Conclusions

I Equivalence is a subtle concept

I Proofs “seem obvious” only when the definitions are right

I Some other language-equivalence claims:

Replace while rule with

H ; e ⇓ c c ≤ 0

H ; while e s→ H ; skip

H ; e ⇓ c c > 0

H ; while e s→ H ; s;while e s

Equivalent to our original language

Change syntax of heap and replace assign and var rules with

H ; x := e→ H,x 7→ e ; skip

H ; H(x) ⇓ c

H ; x ⇓ c

NOT equivalent to our original language

Dan Grossman CS-XXX 2012, Lecture 6 20

Conclusions

I Equivalence is a subtle concept

I Proofs “seem obvious” only when the definitions are right

I Some other language-equivalence claims:

Replace while rule with

H ; e ⇓ c c ≤ 0

H ; while e s→ H ; skip

H ; e ⇓ c c > 0

H ; while e s→ H ; s;while e s

Equivalent to our original language

Change syntax of heap and replace assign and var rules with

H ; x := e→ H,x 7→ e ; skip

H ; H(x) ⇓ c

H ; x ⇓ c

NOT equivalent to our original language

Dan Grossman CS-XXX 2012, Lecture 6 20

Conclusions

I Equivalence is a subtle concept

I Proofs “seem obvious” only when the definitions are right

I Some other language-equivalence claims:

Replace while rule with

H ; e ⇓ c c ≤ 0

H ; while e s→ H ; skip

H ; e ⇓ c c > 0

H ; while e s→ H ; s;while e s

Equivalent to our original language

Change syntax of heap and replace assign and var rules with

H ; x := e→ H,x 7→ e ; skip

H ; H(x) ⇓ c

H ; x ⇓ c

NOT equivalent to our original language

Dan Grossman CS-XXX 2012, Lecture 6 20

Conclusions

I Equivalence is a subtle concept

I Proofs “seem obvious” only when the definitions are right

I Some other language-equivalence claims:

Replace while rule with

H ; e ⇓ c c ≤ 0

H ; while e s→ H ; skip

H ; e ⇓ c c > 0

H ; while e s→ H ; s;while e s

Equivalent to our original language

Change syntax of heap and replace assign and var rules with

H ; x := e→ H,x 7→ e ; skip

H ; H(x) ⇓ c

H ; x ⇓ c

NOT equivalent to our original language

Dan Grossman CS-XXX 2012, Lecture 6 20

