
A Sophomoric Introduction to Shared-Memory

Parallelism and Concurrency

Lecture 1

Introduction to Multithreading & Fork-Join Parallelism

Steve Wolfman, based on work by Dan Grossman

LICENSE: This file is licensed under a Creative Commons Attribution 3.0 Unported License; see

 http://creativecommons.org/licenses/by/3.0/. The materials were developed by Steve Wolfman, Alan Hu, and Dan Grossman.

Why Parallelism?

2 Sophomoric Parallelism and Concurrency, Lecture 1

Photo by The Planet, CC BY-SA 2.0

Why not Parallelism?

3 Sophomoric Parallelism and Concurrency, Lecture 1

Photo by The Planet, CC BY-SA 2.0

Concurrency problems were certainly not

the only problem here… nonetheless, it’s

hard to reason correctly about programs

with concurrency.

Moral: Rely as much as possible on high-

quality pre-made solutions (libraries).

Photo from case study by William Frey, CC BY 3.0

Learning Goals

By the end of this unit, you should be able to:

• Distinguish between parallelism—improving performance by

exploiting multiple processors—and concurrency—managing

simultaneous access to shared resources.

• Explain and justify the task-based (vs. thread-based) approach

to parallelism. (Include asymptotic analysis of the approach and

its practical considerations, like "bottoming out" at a reasonable

level.)

4 Sophomoric Parallelism and Concurrency, Lecture 1

Outline

• History and Motivation

• Parallelism and Concurrency Intro

• Counting Matches

– Parallelizing

– Better, more general parallelizing

5 Sophomoric Parallelism and Concurrency, Lecture 1

6

Chart by Wikimedia user: Wgsimon

Creative Commons Attribution-Share Alike 3.0 Unported

What happens as the

transistor count goes up?

7

Chart by Wikimedia user: Wgsimon

Creative Commons Attribution-Share Alike 3.0 Unported

(zoomed in)

(Sparc T3 micrograph

from Oracle; 16 cores.)

(Goodbye to) Sequential Programming

One thing happens at a time.

The next thing to happen is “my” next instruction.

Removing these assumptions creates challenges & opportunities:

– How can we get more work done per unit time (throughput)?

– How do we divide work among threads of execution

and coordinate (synchronize) among them?

– How do we support multiple threads operating on data

simultaneously (concurrent access)?

– How do we do all this in a principled way?

(Algorithms and data structures, of course!)

8 Sophomoric Parallelism and Concurrency, Lecture 1

What to do with multiple processors?

• Run multiple totally different programs at the same time

(Already doing that, but with time-slicing.)

• Do multiple things at once in one program

– Requires rethinking everything from asymptotic complexity to

how to implement data-structure operations

9 Sophomoric Parallelism and Concurrency, Lecture 1

Outline

• History and Motivation

• Parallelism and Concurrency Intro

• Counting Matches

– Parallelizing

– Better, more general parallelizing

10 Sophomoric Parallelism and Concurrency, Lecture 1

KP Duty: Peeling Potatoes, Parallelism

How long does it take a person to peel one potato? Say: 15s

How long does it take a person to peel 10,000 potatoes?

~2500 min = ~42hrs = ~one week full-time.

How long would it take 100 people with 100 potato peelers to peel

10,000 potatoes?

11 Sophomoric Parallelism and Concurrency, Lecture 1

KP Duty: Peeling Potatoes, Parallelism

How long does it take a person to peel one potato? Say: 15s

How long does it take a person to peel 10,000 potatoes?

~2500 min = ~42hrs = ~one week full-time.

How long would it take 100 people with 100 potato peelers to peel

10,000 potatoes?

12 Sophomoric Parallelism and Concurrency, Lecture 1

Parallelism: using extra resources to

solve a problem faster.

Note: these definitions of “parallelism” and

“concurrency” are not yet standard but the

perspective is essential to avoid confusion!

Parallelism Example

Parallelism: Use extra computational resources to solve a problem

faster (increasing throughput via simultaneous execution)

Pseudocode for counting matches

– Bad style for reasons we’ll see, but may get roughly 4x speedup

13 Sophomoric Parallelism and Concurrency, Lecture 1

int cm_parallel(int arr[], int len, int target){
 res = new int[4];
 FORALL(i=0; i < 4; i++) { //parallel iterations
 res[i] = count_matches(arr + i*len/4,
 (i+1)*len/4 – i*len/4,
 target);
 }
 return res[0]+res[1]+res[2]+res[3];
}
int count_matches(int arr[], int len, int target)

{
 // normal sequential code to count matches of
 // target.
}

KP Duty: Peeling Potatoes, Concurrency

How long does it take a person to peel one potato? Say: 15s

How long does it take a person to peel 10,000 potatoes?

~2500 min = ~42hrs = ~one week full-time.

How long would it take 4 people with 3 potato peelers to peel

10,000 potatoes?

14 Sophomoric Parallelism and Concurrency, Lecture 1

KP Duty: Peeling Potatoes, Concurrency

How long does it take a person to peel one potato? Say: 15s

How long does it take a person to peel 10,000 potatoes?

~2500 min = ~42hrs = ~one week full-time.

How long would it take 4 people with 3 potato peelers to peel

10,000 potatoes?

15 Sophomoric Parallelism and Concurrency, Lecture 1

Concurrency: Correctly and efficiently

manage access to shared resources

(Better example: Lots of cooks in one

kitchen, but only 4 stove burners.

Want to allow access to all 4 burners,

but not cause spills or incorrect

burner settings.) Note: these definitions of “parallelism” and

“concurrency” are not yet standard but the

perspective is essential to avoid confusion!

Concurrency Example

Concurrency: Correctly and efficiently manage access to shared

resources (from multiple possibly-simultaneous clients)

Pseudocode for a shared chaining hashtable

– Prevent bad interleavings (correctness)

– But allow some concurrent access (performance)

16 Sophomoric Parallelism and Concurrency, Lecture 1

template <typename K, typename V>
class Hashtable<K,V> {
 …
 void insert(K key, V value) {
 int bucket = …;
 prevent-other-inserts/lookups in table[bucket]
 do the insertion
 re-enable access to table[bucket]
 }
 V lookup(K key) {
 (like insert, but can allow concurrent
 lookups to same bucket)
 }
}

Will return to this in a few lectures!

OLD Memory Model

17 Sophomoric Parallelism and Concurrency, Lecture 1

…

pc=…

The Stack

The Heap

Local variables

Control flow info

Dynamically

allocated

data.

(pc = program counter, address of current instruction)

Shared Memory Model

We assume (and C++11 specifies) shared memory w/explicit threads

NEW story:

18 Sophomoric Parallelism and Concurrency, Lecture 1

The Heap

Dynamically

allocated

data.

…

pc=…

…

 pc=…

…

 pc=…

…

PER THREAD:

Local variables

Control flow info

A Stack

A Stack

A Stack

Note: we can share local variables by sharing pointers to their locations.

Other models

We will focus on shared memory, but you should know several

other models exist and have their own advantages

• Message-passing: Each thread has its own collection of objects.

Communication is via explicitly sending/receiving messages

– Cooks working in separate kitchens, mail around ingredients

• Dataflow: Programmers write programs in terms of a DAG.

 A node executes after all of its predecessors in the graph

– Cooks wait to be handed results of previous steps

• Data parallelism: Have primitives for things like “apply function

to every element of an array in parallel”

19 Sophomoric Parallelism and Concurrency, Lecture 1

Note: our parallelism solution will have a “dataflow feel” to it.

Outline

• History and Motivation

• Parallelism and Concurrency Intro

• Counting Matches

– Parallelizing

– Better, more general parallelizing

20 Sophomoric Parallelism and Concurrency, Lecture 1

Problem: Count Matches of a Target

• How many times does the number 3 appear?

21 Sophomoric Parallelism and Concurrency, Lecture 1

3 5 9 3 2 0 4 6 1 3

// Basic sequential version.
int count_matches(int array[], int len, int target) {
 int matches = 0;
 for (int i = 0; i < len; i++) {
 if (array[i] == target)
 matches++;
 }
 return matches;
}

How can we take advantage of parallelism?

First attempt (wrong.. but grab the code!)

22 Sophomoric Parallelism and Concurrency, Lecture 1

void cmp_helper(int * result, int array[],
 int lo, int hi, int target) {
 *result = count_matches(array + lo, hi - lo, target);
}

int cm_parallel(int array[], int len, int target) {
 int divs = 4;

 std::thread workers[divs];
 int results[divs];
 for (int d = 0; d < divs; d++)
 workers[d] = std::thread(&cmp_helper,
 &results[d], array, (d*len)/divisions,
 ((d+1)*len)/divisions, target);

 int matches = 0;
 for (int d = 0; d < divs; d++)
 matches += results[d];

 return matches;
}

Notice: we use a pointer to shared memory to communicate across threads!

BE CAREFUL sharing memory!

Shared Memory: Data Races

23 Sophomoric Parallelism and Concurrency, Lecture 1

void cmp_helper(int * result, int array[],
 int lo, int hi, int target) {
 *result = count_matches(array + lo, hi - lo, target);
}

int cm_parallel(int array[], int len, int target) {
 int divs = 4;

 std::thread workers[divs];
 int results[divs];
 for (int d = 0; d < divs; d++)
 workers[d] = std::thread(&cmp_helper,
 &results[d], array, (d*len)/divisions,
 ((d+1)*len)/divisions, target);

 int matches = 0;
 for (int d = 0; d < divs; d++)
 matches += results[d];

 return matches;
}

Race condition: What happens if one thread tries to write to a

memory location while another reads (or multiple try to write)?

KABOOM (possibly silently!)

Shared Memory and Scope/Lifetime

24 Sophomoric Parallelism and Concurrency, Lecture 1

void cmp_helper(int * result, int array[],
 int lo, int hi, int target) {
 *result = count_matches(array + lo, hi - lo, target);
}

int cm_parallel(int array[], int len, int target) {
 int divs = 4;

 std::thread workers[divs];
 int results[divs];
 for (int d = 0; d < divs; d++)
 workers[d] = std::thread(&cmp_helper,
 &results[d], array, (d*len)/divisions,
 ((d+1)*len)/divisions, target);

 int matches = 0;
 for (int d = 0; d < divs; d++)
 matches += results[d];

 return matches;
}

Scope problems: What happens if the child thread is still using the

variable when it is deallocated (goes out of scope) in the parent?

KABOOM (possibly silently??)

Run the Code!

25 Sophomoric Parallelism and Concurrency, Lecture 1

void cmp_helper(int * result, int array[],
 int lo, int hi, int target) {
 *result = count_matches(array + lo, hi - lo, target);
}

int cm_parallel(int array[], int len, int target) {
 int divs = 4;

 std::thread workers[divs];
 int results[divs];
 for (int d = 0; d < divs; d++)
 workers[d] = std::thread(&cmp_helper,
 &results[d], array, (d*len)/divisions,
 ((d+1)*len)/divisions, target);

 int matches = 0;
 for (int d = 0; d < divs; d++)
 matches += results[d];

 return matches;
}

Now, let’s run it.

KABOOM! What happens, and how do we fix it?

Fork/Join Parallelism

std::thread defines methods you could not implement on your own

– The constructor calls its argument in a new thread (forks)

26 Sophomoric Parallelism and Concurrency, Lecture 1

Fork/Join Parallelism

std::thread defines methods you could not implement on your own

– The constructor calls its argument in a new thread (forks)

27 Sophomoric Parallelism and Concurrency, Lecture 1

fork!

Fork/Join Parallelism

std::thread defines methods you could not implement on your own

– The constructor calls its argument in a new thread (forks)

28 Sophomoric Parallelism and Concurrency, Lecture 1

fork!

Fork/Join Parallelism

std::thread defines methods you could not implement on your own

– The constructor calls its argument in a new thread (forks)

29 Sophomoric Parallelism and Concurrency, Lecture 1

Fork/Join Parallelism

std::thread defines methods you could not implement on your own

– The constructor calls its argument in a new thread (forks)

– join blocks until/unless the receiver is done executing

(i.e., its constructor’s argument function returns)

30 Sophomoric Parallelism and Concurrency, Lecture 1

join!

Fork/Join Parallelism

std::thread defines methods you could not implement on your own

– The constructor calls its argument in a new thread (forks)

– join blocks until/unless the receiver is done executing

(i.e., its constructor’s argument function returns)

31 Sophomoric Parallelism and Concurrency, Lecture 1

join!
This thread is

stuck until the

other one finishes.

Fork/Join Parallelism

std::thread defines methods you could not implement on your own

– The constructor calls its argument in a new thread (forks)

– join blocks until/unless the receiver is done executing

(i.e., its constructor’s argument function returns)

32 Sophomoric Parallelism and Concurrency, Lecture 1

join! This thread could already be

done (joins immediately) or

could run for a long time.

Join

std::thread defines methods you could not implement on your own

– The constructor calls its argument in a new thread (forks)

– join blocks until/unless the receiver is done executing

(i.e., its constructor’s argument function returns)

33 Sophomoric Parallelism and Concurrency, Lecture 1

And now the thread proceeds normally.

a fork

a join

Second attempt (patched!)

34 Sophomoric Parallelism and Concurrency, Lecture 1

int cm_parallel(int array[], int len, int target) {
 int divs = 4;

 std::thread workers[divs];
 int results[divs];
 for (int d = 0; d < divs; d++)
 workers[d] = std::thread(&cmp_helper, &results[d],
 array, (d*len)/divisions, ((d+1)*len)/divisions,
 target);

 int matches = 0;
 for (int d = 0; d < divs; d++) {
 workers[d].join();
 matches += results[d];
 }

 return matches;
}

Outline

• History and Motivation

• Parallelism and Concurrency Intro

• Counting Matches

– Parallelizing

– Better, more general parallelizing

35 Sophomoric Parallelism and Concurrency, Lecture 1

Success! Are we done?

Answer these:

– What happens if I run my code on an old-fashioned one-core

machine?

– What happens if I run my code on a machine with more

cores in the future?

(Done? Think about how to fix it and do so in the code.)

36 Sophomoric Parallelism and Concurrency, Lecture 1

Chopping (a Bit) Too Fine

37 Sophomoric Parallelism and Concurrency, Lecture 1

12

secs

of

work

3s

We thought there were 4

processors available.

3s

3s

3s

But there’s only 3.

Result?

Chopping Just Right

38 Sophomoric Parallelism and Concurrency, Lecture 1

4s

We thought there were 3

processors available. And there are.

Result?

4s

4s

12

secs

of

work

Success! Are we done?

Answer these:

– What happens if I run my code on an old-fashioned one-core

machine?

– What happens if I run my code on a machine with more

cores in the future?

– Let’s fix these!

 (Note: std::thread::hardware_concurrency() and omp_get_num_procs().)

39 Sophomoric Parallelism and Concurrency, Lecture 1

Success! Are we done?

Answer this:

– Might your performance vary as the whole class tries

problems, depending on when you start your run?

(Done? Think about how to fix it and do so in the code.)

40 Sophomoric Parallelism and Concurrency, Lecture 1

Is there a “Just Right”?

41 Sophomoric Parallelism and Concurrency, Lecture 1

We thought there were 3

processors available. And there are.

Result?

4s

4s

4s

12

secs

of

work

I’m

busy.

I’m

busy.

Chopping So Fine It’s Like Sand or Water

42 Sophomoric Parallelism and Concurrency, Lecture 1

We chopped into 10,000

pieces. And there are a few processors.

Result?

…

…

(of course, we can’t predict the busy times!)

I’m

busy.

12

secs

of

work

I’m

busy.

Success! Are we done?

Answer this:

– Might your performance vary as the whole class tries

problems, depending on when you start your run?

Let’s fix this!

43 Sophomoric Parallelism and Concurrency, Lecture 1

Analyzing Performance

44 Sophomoric Parallelism and Concurrency, Lecture 1

void cmp_helper(int * result, int array[],
 int lo, int hi, int target) {
 *result = count_matches(array + lo, hi - lo, target);
}

int cm_parallel(int array[], int len, int target) {
 int divs = len;

 std::thread workers[divs];
 int results[divs];
 for (int d = 0; d < divs; d++)
 workers[d] = std::thread(&cmp_helper,
 &results[d], array, (d*len)/divisions,
 ((d+1)*len)/divisions, target);

 int matches = 0;
 for (int d = 0; d < divs; d++)
 matches += results[d];

 return matches;
}

It’s Asymptotic Analysis Time! (n == len, # of processors = )

How long does dividing up/recombining the work take?

Yes, this is silly.

We’ll justify later.

Analyzing Performance

45 Sophomoric Parallelism and Concurrency, Lecture 1

void cmp_helper(int * result, int array[],
 int lo, int hi, int target) {
 *result = count_matches(array + lo, hi - lo, target);
}

int cm_parallel(int array[], int len, int target) {
 int divs = len;

 std::thread workers[divs];
 int results[divs];
 for (int d = 0; d < divs; d++)
 workers[d] = std::thread(&cmp_helper,
 &results[d], array, (d*len)/divisions,
 ((d+1)*len)/divisions, target);

 int matches = 0;
 for (int d = 0; d < divs; d++)
 matches += results[d];

 return matches;
}

How long does doing the work take? (n == len, # of processors = )

(With n threads, how much work does each one do?)

Analyzing Performance

46 Sophomoric Parallelism and Concurrency, Lecture 1

void cmp_helper(int * result, int array[],
 int lo, int hi, int target) {
 *result = count_matches(array + lo, hi - lo, target);
}

int cm_parallel(int array[], int len, int target) {
 int divs = len;

 std::thread workers[divs];
 int results[divs];
 for (int d = 0; d < divs; d++)
 workers[d] = std::thread(&cmp_helper,
 &results[d], array, (d*len)/divisions,
 ((d+1)*len)/divisions, target);

 int matches = 0;
 for (int d = 0; d < divs; d++)
 matches += results[d];

 return matches;
}

Time  Θ(n) with an infinite number of processors?

That sucks!

Zombies Seeking Help

A group of (non-CSist) zombies wants your help infecting the living.

Each time a zombie bites a human, it gets to transfer a program.

The new zombie in town has the humans line up and bites each in

line, transferring the program: Do nothing except say “Eat Brains!!”

Analysis?

How do they do better?

47 Sophomoric Parallelism and Concurrency, Lecture 1

 Asymptotic analysis

was so much easier

with a brain!

A better idea

The zombie apocalypse is straightforward using divide-and-conquer

48 Sophomoric Parallelism and Concurrency, Lecture 1

+ + + + + + + +

+ + + +

+ +

+

Note: the natural way to code it is to fork two tasks, join them, and get results.

But… the natural zombie way is to bite one human and then each “recurse”.

(As is so often true, the zombie way is better.)

Divide-and-Conquer Style Code
(doesn’t work in general... more on that later)

49 Sophomoric Parallelism and Concurrency, Lecture 1

void cmp_helper(int * result, int array[],
 int lo, int hi, int target) {
 if (len <= 1) {
 *result = count_matches(array + lo, hi-lo, target);
 return;
 }

 int left, right;
 int mid = lo + (hi-lo)/2;
 std::thread child(&cmp_helper, &left, array, lo,
 mid, target);
 cmp_helper(&right, array, mid, hi, target);
 child.join();

 return left + right;
}

int cm_parallel(int array[], int len, int target) {
 int result;
 cmp_helper(&result, array, 0, len, target);
 return result;
}

Analysis of D&C Style Code

50 Sophomoric Parallelism and Concurrency, Lecture 1

void cmp_helper(int * result, int array[],
 int lo, int hi, int target) {
 if (len <= 1) {
 *result = count_matches(array + lo, hi-lo, target);
 return;
 }

 int left, right;
 int mid = lo + (hi-lo)/2;
 std::thread child(&cmp_helper, &left, array, lo,
 mid, target);
 cmp_helper(&right, array, mid, hi, target);
 child.join();

 return left + right;
}

int cm_parallel(int array[], int len, int target) {
 int result;
 cmp_helper(&result, array, 0, len, target);
 return result;
}

It’s Asymptotic Analysis Time! (n == len, # of processors = )

How long does dividing up/recombining the work take? Um…?

Easier Visualization for the Analysis

How long does the tree take to run…

…with an infinite number of processors?

(n is the width of the array)

51 Sophomoric Parallelism and Concurrency, Lecture 1

+ + + + + + + +

+ + + +

+ +

+

Analysis of D&C Style Code

52 Sophomoric Parallelism and Concurrency, Lecture 1

void cmp_helper(int * result, int array[],
 int lo, int hi, int target) {
 if (len <= 1) {
 *result = count_matches(array + lo, hi-lo, target);
 return;
 }

 int left, right;
 int mid = lo + (hi-lo)/2;
 std::thread child(&cmp_helper, &left, array, lo,
 mid, target);
 cmp_helper(&right, array, mid, hi, target);
 child.join();

 return left + right;
}

int cm_parallel(int array[], int len, int target) {
 int result;
 cmp_helper(&result, array, 0, len, target);
 return result;
}

How long does doing the work take? (n == len, # of processors = )

(With n threads, how much work does each one do?)

Analysis of D&C Style Code

53 Sophomoric Parallelism and Concurrency, Lecture 1

void cmp_helper(int * result, int array[],
 int lo, int hi, int target) {
 if (len <= 1) {
 *result = count_matches(array + lo, hi-lo, target);
 return;
 }

 int left, right;
 int mid = lo + (hi-lo)/2;
 std::thread child(&cmp_helper, &left, array, lo,
 mid, target);
 cmp_helper(&right, array, mid, hi, target);
 child.join();

 return left + right;
}

int cm_parallel(int array[], int len, int target) {
 int result;
 cmp_helper(&result, array, 0, len, target);
 return result;
}

Time  Θ(lg n) with an infinite number of processors.

Exponentially faster than our Θ(n) solution! Yay!

 So… why doesn’t the code work?

Chopping Too Fine Again

54 Sophomoric Parallelism and Concurrency, Lecture 1

1

2

s

e

c

s

o

f

w

o

r

k

We chopped into n pieces

(n == array length). Result?

…

…

KP Duty: Peeling Potatoes,

Parallelism Remainder

How long does it take a person to peel one potato? Say: 15s

How long does it take a person to peel 10,000 potatoes?

~2500 min = ~42hrs = ~one week full-time.

How long would it take 100 people with 100 potato peelers to peel

10,000 potatoes?

55 Sophomoric Parallelism and Concurrency, Lecture 1

KP Duty: Peeling Potatoes,

Parallelism Problem

How long does it take a person to peel one potato? Say: 15s

How long does it take a person to peel 10,000 potatoes?

~2500 min = ~42hrs = ~one week full-time.

How long would it take 10,000 people with 10,000 potato peelers to

peel 10,000 potatoes… if we use the “linear”

solution for dividing work up?

If we use the divide-and-conquer solution?

56 Sophomoric Parallelism and Concurrency, Lecture 1

Being realistic

Creating one thread per element is way too expensive.

So, we use a library where we create “tasks” (“bite-sized” pieces of

work) that the library assigns to a “reasonable” number of threads.

57 Sophomoric Parallelism and Concurrency, Lecture 1

Being realistic

Creating one thread per element is way too expensive.

So, we use a library where we create “tasks” (“bite-sized” pieces of

work) that the library assigns to a “reasonable” number of threads.

But… creating one task per element still too expensive.

So, we use a sequential cutoff, typically ~500-1000. (This is like

switching from quicksort to insertion sort for small subproblems.)

58 Sophomoric Parallelism and Concurrency, Lecture 1

Note: we’re still chopping into Θ(n)

pieces, just not into n pieces.

Being realistic: Exercise

How much does a sequential cutoff help?

With 1,000,000,000 (~230) elements in the array and a cutoff of 1:

About how many tasks do we create?

With 1,000,000,000 elements in the array and a cutoff of 16 (a

ridiculously small cutoff): About how many tasks do we create?

What percentage of the tasks do we eliminate with our cutoff?

59 Sophomoric Parallelism and Concurrency, Lecture 1

That library, finally

• C++11’s threads are usually too “heavyweight” (implementation

dependent).

• OpenMP 3.0’s main contribution was to meet the needs of divide-

and-conquer fork-join parallelism

– Available in recent g++’s.

– See provided code and notes for details.

– Efficient implementation is a fascinating but advanced topic!

60 Sophomoric Parallelism and Concurrency, Lecture 1

Learning Goals

By the end of this unit, you should be able to:

• Distinguish between parallelism—improving performance by

exploiting multiple processors—and concurrency—managing

simultaneous access to shared resources.

• Explain and justify the task-based (vs. thread-based) approach

to parallelism. (Include asymptotic analysis of the approach and

its practical considerations, like "bottoming out" at a reasonable

level.)

61 Sophomoric Parallelism and Concurrency, Lecture 1

P.S. We promised we’d justify

assuming # processors = .

Next lecture!

Outline

• History and Motivation

• Parallelism and Concurrency Intro

• Counting Matches

– Parallelizing

– Better, more general parallelizing

– Bonus code and parallelism issue!

62 Sophomoric Parallelism and Concurrency, Lecture 1

Example: final version

63 Sophomoric Parallelism and Concurrency, Lecture 1

int cmp_helper(int array[], int len, int target) {
 const int SEQUENTIAL_CUTOFF = 1000;
 if (len <= SEQUENTIAL_CUTOFF)
 return count_matches(array, len, target);

 int left, right;
#pragma omp task untied shared(left)
 left = cmp_helper(array, len/2, target);
 right = cmp_helper(array+len/2, len-(len/2), target);
#pragma omp taskwait

 return left + right;
}

int cm_parallel(int array[], int len, int target) {
 int result;

#pragma omp parallel
#pragma omp single
 result = cmp_helper(array, len, target);

 return result;
}

Side Note: Load Imbalance

Does each “bite-sized piece of work” take the same time to run:

 When counting matches?

 When counting the number of prime numbers in the array?

Compare the impact of different runtimes on the “chop up perfectly by

the number of processors” approach vs. “chop up super-fine”.

