

Multithreading (Pretty) Early for Everyone:

Parallelism & Concurrency in 2nd-Year Data-Structures

Dan Grossman

University of Washington

SIGCSE 2011, Workshop 19

http://www.cs.washington.edu/homes/djg/teachingMaterials/

Executive Summary

Ready-to-use parallelism/concurrency in data-structures

• 2.5-week unit with reading notes, slides, homeworks, a Java

project, sample exam questions

• 1st taught at Washington Spring 2010

– Taught every term; 4 different instructors so far

• If you can teach balanced trees and graph algorithms,

then you can teach this

Valuable approach and place-in-curriculum for an introduction

• Programmer’s view (not the OS or HW implementation)

• Focus on shared memory

• Basic parallel algorithms and analysis

• Basic synchronization and mutual exclusion

March 11, 2011 2 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

Different audiences

Persona #1: I hear multicore is important, but I’m skeptical I can do

something meaningful and low-maintenance in a low-level course.

And would my colleagues go along?

March 11, 2011 3 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

I had you in mind from Day 1

– The concepts have to be timeless and straightforward

– 3 weeks maximum, as part of an existing course

– No fancy hardware / software assumed

– Free, modifiable course materials

– Not advocating a revolution

Naturally, adapt material to personal style, local circumstances

Different audiences

Persona #2: Multicore is everything. We need to revamp the entire

curriculum. All courses need to assume parallel throughout.

March 11, 2011 4 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

To avoid unhappiness, remember:

– The choir never understands why the pews aren’t more full

– This is an introduction, easy to append more

• “This is important” not “Other stuff isn’t”

– Essential foundations before an upper-level course on

parallelism, OS, networking, graphics, etc.

– Material required in 1st 2 years is a zero-sum game

• I wouldn’t cut more other stuff from our curriculum

Tonight: A whirlwind tour!

• Context: What I mean by “in data structures”

• Introductions: Name, rank, and serial number , plus

– 1-3 terms, concepts, ideas related to parallelism/concurrency

• Distinguishing parallelism and concurrency

• Parallelism with Java’s ForkJoin Framework – and try it out

• Asymptotic analysis of parallel algorithms

• Fancier parallel algorithms

• Synchronization and mutual exclusion

– Locks, programming guidelines, memory-consistency

models, condition variables, …

• Review: The N main concepts & why they fit in data structures

March 11, 2011 5 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

Why the 300-level?

CS1+2:

• Loops, recursion,

objects, trees

• < 25% CS majors

• Late CS2 maybe

Senior year:

• Too late

• Too specialized

• Too redundant

– Rely on

concepts

throughout

March 11, 2011 6 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

CS1

CS2

“300-level”

“400-level”

capstone

design

Prob/Stats

P vs. NP

Data

Structures

Discrete

Math ++

Hw/Sw

Interface Hardware

Design

Big

Data

Prog.

 Languages

required

CS required

CompE required

Software

Design

Systems

Prog.

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 7

(Note: reality slightly

more complex)

recommended

UW’s 300-level (10-week quarters)

Data Structures: Old vs. New

 Old and new: 20 lectures

Big-Oh, Algorithm Analysis

Binary Heaps (Priority Qs)

AVL Trees

B Trees

Hashing

Sorting

Graph Traversals

Topological Sort

Shortest Paths

Minimum Spanning Trees

Amortization

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 8

Data Structures: Old vs. New

 Old and new: 20 lectures

Big-Oh, Algorithm Analysis

Binary Heaps (Priority Qs)

AVL Trees

B Trees

Hashing

Sorting

Graph Traversals

Topological Sort

Shortest Paths

Minimum Spanning Trees

Amortization

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

 Removed: 7-8 lectures

D-heaps

Leftist heaps

Skew heaps

Binomial queues

Network flow

Splay trees 

Disjoint sets 

Hack job on NP (moves elsewhere)

9

Introductions

• Introductions: Name, rank, and serial number , plus

– 1-2 terms, concepts, ideas related to parallelism/concurrency

I’ll go first:

 “locks”

 “speedup”

March 11, 2011 10 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

Tonight

• Context: What I mean by “in data structures”

• Introductions: Name, rank, and serial number , plus

– 1-2 terms, concepts, ideas related to parallelism/concurrency

• Distinguishing parallelism and concurrency

• Parallelism with Java’s ForkJoin Framework – and try it out

• Asymptotic analysis of parallel algorithms

• Fancier parallel algorithms

• Synchronization and mutual exclusion

– Locks, programming guidelines, memory-consistency

models, condition variables, …

• Review: The N main concepts & why they fit in data structures

March 11, 2011 11 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

A key distinction

Parallelism:

 Use extra computational resources to solve a problem faster

March 11, 2011 12 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

resources
Concurrency:

 Correctly and efficiently manage access to shared resources

requests

work

resource

Note: Terms not standard, but becoming more so

– Distinction is paramount

An analogy

CS1: A program is like a recipe for a cook

– One cook who does one thing at a time! (Sequential)

Parallelism:

– Have lots of potatoes to slice?

– Hire helpers, hand out potatoes and knives

– But too many chefs and you spend all your time coordinating

Concurrency:

– Lots of cooks making different things, but only 4 stove burners

– Want to allow access to the burners, but not cause spills or

incorrect burner settings

March 11, 2011 13 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

Parallelism Example

Parallelism:

 Use extra computational resources to solve a problem faster

Pseudocode for array sum

14 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

int sum(int[] arr){
 res = new int[4];
 len = arr.length;
 FORALL(i=0; i < 4; i++) { //parallel iterations
 res[i] = sumRange(arr, i*len/4, (i+1)*len/4);
 }
 return res[0]+res[1]+res[2]+res[3];
}

int sumRange(int[] arr, int lo, int hi) {
 result = 0;
 for(j=lo; j < hi; j++)
 result += arr[j];
 return result;
}

March 11, 2011

Concurrency Example

Concurrency:

 Correctly and efficiently manage access to shared resources

Pseudocode for a shared chaining hashtable

– Prevent bad interleavings but allow some concurrent access

15 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

class Hashtable<K,V> {
 …
 void insert(K key, V value) {
 int bucket = …;
 prevent-other-inserts/lookups in table[bucket];
 do the insertion
 re-enable access to arr[bucket];
 }
 V lookup(K key) {
 (like insert, but can allow concurrent
 lookups to same bucket)
 }
}

March 11, 2011

Activity

For each introduction term, pick one:

A. (Almost all) about parallelism

B. (Almost all) about concurrency

C. Equally related to both

D. Unsure

March 11, 2011 16 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

Why parallelism first

• Structured, shared-nothing parallelism is easier to reason about

– Synchronization is easy

– Race conditions just don’t show up much

– Focus on algorithms

• After comfortable with threads, deal with mutual exclusion,

interleavings, etc.

– Focus on thread-safe APIs rather than algorithms

• Yes, in reality, parallelism and concurrency co-mingle

– In a 2nd-year course, emphasize the difference

– Many separate curriculum topics co-mingle in practice

March 11, 2011 17 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

A Programming Model

To write parallel programs, need a way for threads (broadly

construed) to communicate and coordinate

Approaches I barely mention – a full course would cover them

• Message-passing: Each thread has its own collection of objects.

Communication via explicitly sending/receiving messages

– Cooks working in separate kitchens, mail around ingredients

• Dataflow: Programmers write programs in terms of a DAG.

A node executes after all of its predecessors in the graph

– Cooks wait to be handed results of previous steps

• Data parallelism: Primitives for things like “apply function to

every element of an array in parallel”

March 11, 2011 18 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

Shared memory

March 11, 2011 19 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

…

pc=…

…

 pc=…

…

 pc=…

…

Unshared:

locals and

control

Shared:

objects and

static fields

Threads each have own unshared call stack and current statement

– (pc for “program counter”)
– local variables are numbers, null, or heap references

Any objects can be shared, but most are not

Why just shared memory

• 1 model enough for 3-week introduction

– Could add more given more time

• Previous slide is all students need to “get it”

• Fits best with rest of course

– Asymptotics, trees, hashtables, etc.

• Fits best with Java

Note: Not claiming it’s the best model

March 11, 2011 20 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

Our needs

A way to:

– Create threads

– Share objects among threads

– Coordinate: threads wait for each other to finish something

In class: I show Java threads (java.lang.Thread) and then why

they are less than ideal for parallel programming

– If create 10,000 at once, JVM won’t handle it well

Tonight: To save time, skip to ForkJoin tasks

– A Java 7 library available for Java 6

– Similar libraries available for C++, C#, …

– Use “real” Java threads for concurrency (later)

March 11, 2011 21 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

Tonight

• Context: What I mean by “in data structures”

• Introductions

• Distinguishing parallelism and concurrency

• Parallelism with Java’s ForkJoin Framework – and try it out

• Asymptotic analysis of parallel algorithms

• Fancier parallel algorithms

• Synchronization and mutual exclusion

– Locks, programming guidelines, memory-consistency

models, condition variables, …

• Review: The N main concepts & why they fit in data structures

March 11, 2011 22 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

Canonical example: array sum

March 11, 2011 23 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

• Sum elements of a large array

• Idea: Have 4 simultaneous tasks each sum 1/4 the array

– Warning: Inferior first approach

 ans0 ans1 ans2 ans3

 +

 ans

– Create 4 special objects, assigned a portion of the work

– Call fork() on each object to actually run it in parallel

– Wait for each object to finish using join()

– Sum 4 answers for the final result

First attempt, part 1

March 11, 2011 24 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

class SumThread extends RecursiveAction {

 int lo; // arguments
 int hi;
 int[] arr;

 int ans = 0; // result

 SumThread(int[] a, int l, int h) {
 lo=l; hi=h; arr=a;
 }

 public void compute(){//override must have this type
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 }
}

First attempt, continued (wrong!)

March 11, 2011 25 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

class SumThread extends RecursiveAction {
 int lo, int hi, int[] arr; // arguments
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }
 public void compute(){ … }
}

int sum(int[] arr){
 SumThread[] ts = new SumThread[4];

 int len = arr.length; // do parallel computations
 for(int i=0; i < 4; i++){
 ts[i] = new SumThread(arr, i*len/4, (i+1)*len/4);
 ts[i].fork(); // fork not compute
 }

 int ans = 0; // combine results
 for(int i=0; i < 4; i++)
 ans += ts[i].ans;
 return ans;
}

2nd attempt: almost right (but still inferior)

March 11, 2011 26 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

class SumThread extends RecursiveAction {
 int lo, int hi, int[] arr; // arguments
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }
 public void compute(){ … }
}

int sum(int[] arr){
 int len = arr.length;
 int ans = 0;
 SumThread[] ts = new SumThread[4];
 for(int i=0; i < 4; i++){// do parallel computations
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
 ts[i].fork(); // fork not compute
 }
 for(int i=0; i < 4; i++) { // combine results
 ts[i].join(); // wait for helper to finish!
 ans += ts[i].ans;
 }
 return ans;
}

The primitives

Needed “magic” library for things we can’t implement ourselves:

• fork method of RecursiveAction calls compute()

in a new thread/task

– Calling compute directly is a plain-old method call

• join method of RecursiveAction blocks its caller

until/unless the receiver is done executing (its compute returns)

– Must wait to read the ans field

• Example so far is “right in spirit”

– But doesn’t enter the library correctly (won’t work yet)

• Fix after learning better approach

March 11, 2011 27 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

Shared memory?

March 11, 2011 28 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

• Fork-join programs (thankfully) don’t require much focus on

sharing memory among threads

• Memory is shared

– lo, hi, arr fields written by “main” thread, read by helpers

– ans field written by helpers, read by “main” thread

• Must avoid data races

– For this kind of parallelism, join suffices

– For concurrency, learn about locks

A better approach

Several reasons why this is a poor parallel algorithm

1. Want code to be reusable and efficient across platforms

– “Forward-portable” as core count grows

– So at the very least, parameterize by the number of threads

March 11, 2011 29 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

int sum(int[] arr, int numThreads){
 SumThread[] ts = new SumThread[numThreads];
 int subLen = arr.length / numThreads;
 …
}

A better approach

2. Want to use (only) processors “available to you now”

– Not used by other programs or threads in your program

• Maybe caller is also using parallelism

• Available cores change even while your threads run

– If you have 3 processors available and using 3 threads
would take time X, then creating 4 threads would take time

1.5X

March 11, 2011 30 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

A better approach

3. Though unlikely for sum, in general different subproblems may

take significantly different amounts of time

– Example: Apply method f to every array element, but

maybe f is much slower for some data items

• Example: Is a large integer prime?

– Leads to load imbalance

March 11, 2011 31 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

A Better Approach

The counterintuitive(?) solution to all these problems is to use lots of

tasks, far more than the number of processors

– But will require changing our algorithm

32 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

 ans0 ans1 … ansN

 ans

1. Forward-portable: Lots of helpers each doing a small piece

2. Processors available: Hand out “work chunks” as you go

3. Load imbalance: No problem if slow thread scheduled early enough

• Variation probably small anyway if pieces of work are small

March 11, 2011

Naïve algorithm is poor

Suppose we create 1 thread to process every 1000 elements

33 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

int sum(int[] arr){
 …
 int numThreads = arr.length / 1000;
 SumThread[] ts = new SumThread[numThreads];
 …
}

Then combining results will have arr.length / 1000 additions

to do – still linear in size of array

In fact, if we create 1 thread for every 1 element, we recreate a

sequential algorithm

March 11, 2011

A better idea

Straightforward to implement using divide-and-conquer

– Parallelism for the recursive calls

– Will write all our parallel algorithms in this style

– Asymptotic exponential speedup “with enough processors”

34 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

+ + + + + + + +

+ + + +

+ +

+

March 11, 2011

Divide-and-conquer to the rescue!

The key is to do the result-combining in parallel as well

– And using recursive divide-and-conquer makes this natural

– Easier to write and more efficient asymptotically!

35 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

class SumThread extends RecursiveAction {
 int lo; int hi; int[] arr; // arguments
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }

 public void compute(){
 if(hi - lo < SEQUENTIAL_CUTOFF) // around 1000
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 else {
 SumThread left = new SumThread(arr,lo,(hi+lo)/2);
 SumThread right= new SumThread(arr,(hi+lo)/2,hi);
 left.fork();
 right.fork();
 left.join(); // don’t move this up a line – why?
 right.join();
 ans = left.ans + right.ans;
 }
 }
}

March 11, 2011

Sequential cut-offs

• Cutting off last 10 levels of recursion saves > 99% of task-

creation overhead

• Exactly like having quicksort switch to insertion sort for small

subproblems!

March 11, 2011 36 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

+ + + + + + + +

+ + + +

+ +

+

Finishing the story

Need to start the recursion for the entire array

– Slightly awkward boilerplate to “enter the library”

– Can’t just call compute directly 

March 11, 2011 37 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

static final ForkJoinPool fjPool = new ForkJoinPool();

static int sum(int[] arr){
 return fjPool.invoke(new SumThread(arr,0,arr.length));
}

– Create 1 pool for whole program

– Start recursion by passing invoke an object

• invoke calls the object’s compute and returns the result

(I use recitation section to go over this stuff)

Improving our example

Two final changes to our example:

• For style, instead of an ans field:

– Subclass RecursiveTask<Ans> (e.g., Integer)

– compute method now returns an Ans (e.g., Integer)

– join returns what task’s compute returns

• For performance, don’t have each task do nothing but create

two other tasks and add results

– Create one other task and do the other half yourself

– Makes a surprisingly large difference

March 11, 2011 38 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

Final version

March 11, 2011 39 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

class SumThread extends RecursiveTask<Integer> {
 int lo; int hi; int[] arr; // arguments
 SumThread(int[] a, int l, int h) { … }
 public Integer compute(){
 if(hi - lo < SEQUENTIAL_CUTOFF)
 int ans = 0;
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 return ans;
 } else {
 SumThread left = new SumThread(arr,lo,(hi+lo)/2);
 SumThread right= new SumThread(arr,(hi+lo)/2,hi);
 left.fork();
 int rightAns = right.compute();
 int leftAns = left.join(); // don’t move up!
 return leftAns + rightAns;
 }
 }
 static int sum(int[] arr){
 return fjPool.invoke(new SumThread(arr,0,arr.length));
 }
}

Reductions and Maps

• Array-sum is a reduction

– Single answer from collection via associative operator

– (max, count, leftmost, rightmost, average, …)

• Even simpler is a map

– Compute new collection independently from elements

• Or update in place (standard trade-offs)

– Example: Increment all array elements

• These two patterns are the workhorses of parallel programming

– Pedagogically, have students write them out N times rather

than use map and reduce primitives

– To save time tonight, I’m trying informal code templates

• In provided Java files (and next two slides)

March 11, 2011 40 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

Reduction template for arrays

March 11, 2011 41 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

class MyClass extends RecursiveTask<AnsType> {
 int lo; int hi; ArrayType[] arr;
 SumThread(ArrayType[]a,int l,int h){lo=l;hi=h;arr=a;}
 public AnsType compute(){
 if(hi - lo < SEQUENTIAL_CUTOFF)
 // sequential algorithm
 return ans;
 } else {
 MyClass left = new MyClass(arr,lo,(hi+lo)/2);
 MyClass right= new MyClass(arr,(hi+lo)/2,hi);
 left.fork();
 AnsType rightAns = right.compute();
 AnsType leftAns = left.join();
 return // combine leftAns and RightAns
 }
 }
 static int SEQUENTIAL_CUTOFF = 1000;
 static AnsType myAlgorithm(ArrayType[] arr){
 ForkJoinPool pool = Main.fjPool;
 return pool.invoke(new MyClass(arr,0,arr.length));
 }
}

Map template for arrays (update-in-place)

March 11, 2011 42 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

class MyClass extends RecursiveAction {
 int lo; int hi; ArrayType[] arr;
 SumThread(int[] a, int l, int h){lo=l; hi=h; arr=a;}
 public void compute(){
 if(hi - lo < SEQUENTIAL_CUTOFF)
 // sequential algorithm
 } else {
 MyClass left = new MyClass(arr,lo,(hi+lo)/2);
 MyClass right= new MyClass(arr,(hi+lo)/2,hi);
 left.fork();
 right.compute();
 left.join();
 }
 }
 static int SEQUENTIAL_CUTOFF = 1000;
 static void myAlgorithm(ArrayType[] arr){
 ForkJoinPool pool = Main.fjPool;
 pool.invoke(new MyClass(arr,0,arr.length));
 }
}

Exercises

See handout and Java files for more details

Reductions over a String[]

• Easier: Leftmost String starting with ’S’ (null for none)

• Easier: Index of leftmost String starting with ’S’ (-1 for none)

• More Challenging: Second-to-left String starting with ’S’

• Even More Challenging: kth-from-left String starting with ’S’

Maps over a String[]

• Easier: Replace every String starting with ’S’ with "[redacted]"

• More Challenging: Take as parameter an object with a method
taking and returning a String; apply method to each element

March 11, 2011 43 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

Break

March 11, 2011 44 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

Where are we

• Students really can write maps and reductions over arrays

– Trees, 2D arrays easy too

– Easier for homework than during a workshop

• Remaining parallelism topics (necessarily brief tonight)

– Asymptotic analysis (great fit in course)

– Amdahl’s Law (incredibly important and sobering)

– 2-3 non-trivial algorithms (just like with graphs!)

• Then concurrency

– Locks and how to use them

– Other topics as time permits

March 11, 2011 45 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

Work and Span

Let TP be the running time if there are P processors available

Two key measures of running time

• Work: How long it would take 1 processor = T1

– Just “sequentialize” the recursive forking

• Span: How long it would take infinity processors = T

– The longest dependence-chain

– Example: O(log n) for summing an array since > n/2

processors is no additional help

– Also called “critical path length” or “computational depth”

46 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) March 11, 2011

The DAG

• Can treat execution as a (conceptual) DAG where nodes cannot

start until predecessors finish

• A general model, but our fork-join reductions look like this, where

each node is O(1):

47 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

divide

combine

results

March 11, 2011

Connecting to performance

• Work = T1 = sum of run-time of all nodes in the DAG

– That lonely processor does everything

– Any topological sort is a legal execution

– O(n) for simple maps and reductions

• Span = T = sum of run-time of all nodes on the most-expensive

path in the DAG

– An infinite army can do everything that is ready to be done,

but still has to wait for earlier results

– O(log n) for simple maps and reductions

Parallel algorithms is about decreasing span without

increasing work too much

48 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) March 11, 2011

Finish the story: thanks ForkJoin library!

• So we know T1 and T  but we want TP (e.g., P=4)

• (Ignoring caching issues), TP can’t beat

– T1 / P why not?

– T  why not?

• So an asymptotically optimal execution would be:

TP = O((T1 / P) + T )

– First term dominates for small P, second for large P

• The ForkJoin Framework gives an expected-time guarantee of

asymptotically optimal! (It flips coins when scheduling)

– How? For an advanced course (few need to know)

– Assumes your base cases are small-ish and balanced

49 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) March 11, 2011

Now the bad news

March 11, 2011 50 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

• So far: analyze parallel programs in terms of work and span

• In practice, typically have parts of programs that parallelize well…

– Such as maps/reduces over arrays and trees

…and parts that don’t parallelize at all

– Reading a linked list, getting input, doing computations where

each needs the previous step, etc.

– “Nine women can’t make a baby in one month”

Amdahl’s Law (mostly bad news)

Let the work (time to run on 1 processor) be 1 unit time

Let S be the portion of the execution that can’t be parallelized

Then:

T1 = S + (1-S) = 1

Suppose we get perfect linear speedup on the parallel portion

Then:

TP = S + (1-S)/P

So the overall speedup with P processors is (Amdahl’s Law):

T1 / TP = 1 / (S + (1-S)/P)

51 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) March 11, 2011

Why such bad news

 T1 / TP = 1 / (S + (1-S)/P)

• Suppose 33% of a program is sequential

– Then a billion processors won’t give a speedup over 3

• Suppose you miss the good old days (1980-2005) where 12ish

years was long enough to get 100x speedup

– Now suppose in 12 years, clock speed is the same but you

get 256 processors instead of 1

– For 256 processors to get at least 100x speedup, we need

 100  1 / (S + (1-S)/256)

 Which means S  .0061 (i.e., 99.4% perfectly parallelizable)

Homework problem: Depressing plots with a spreadsheet!!

52 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) March 11, 2011

All is not lost

Amdahl’s Law is a bummer!

– But it doesn’t mean additional processors are worthless

• Can find new parallel algorithms

– Some things that seem sequential are actually parallelizable

• Can change the problem we’re solving or do new things

– Example: Video games use tons of parallel processors

• They are not rendering 10-year-old graphics faster

• They are rendering more beautiful(?) monsters

53 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) March 11, 2011

Moore and Amdahl

• Moore’s “Law” is an observation about the progress of the

semiconductor industry

– Transistor density doubles roughly every 18 months

• Amdahl’s Law is a mathematical theorem

– Diminishing returns of adding more processors

– Fits beautifully in data structures!

• Both are incredibly important in designing computer systems

54 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) March 11, 2011

Tonight: A whirlwind tour!

• Context: What I mean by “in data structures”

• Introductions: Name, rank, and serial number , plus

– 1-3 terms, concepts, ideas related to parallelism/concurrency

• Distinguishing parallelism and concurrency

• Parallelism with Java’s ForkJoin Framework – and try it out

• Asymptotic analysis of parallel algorithms

• Fancier parallel algorithms

• Synchronization and mutual exclusion

– Locks, programming guidelines, memory-consistency

models, condition variables, …

• Review: The N main concepts & why they fit in data structures

March 11, 2011 55 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

The prefix-sum problem

Given int[] input, produce int[] output where output[i]

is the sum of input[0]+input[1]+…+input[i]

Sequential can be a CS1 exam problem:

56 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

int[] prefix_sum(int[] input){
 int[] output = new int[input.length];
 output[0] = input[0];
 for(int i=1; i < input.length; i++)
 output[i] = output[i-1]+input[i];
 return output;

}

Does not appear parallelizable

– Work: O(n), Span: O(n)

– This algorithm is sequential, but a different algorithm has
Work: O(n), Span: O(log n)

March 11, 2011

Example

57 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

input

output

6 4 16 10 16 14 2 8

range 0,8

sum

fromleft

range 0,4

sum

fromleft

range 4,8

sum

fromleft

range 6,8

sum

fromleft

range 4,6

sum

fromleft

range 2,4

sum

fromleft

range 0,2

sum

fromleft

r 0,1

s

f

r 1,2

s

f

r 2,3

s

f

r 3,4

s

f

r 4,5

s

f

r 5,6

s

f

r 6,7

s

f

r 7,8

s

f
6 4 16 10 16 14 2 8

10 26 30 10

36 40

76

March 11, 2011

Example

58 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

range 0,8

sum

fromleft

range 0,4

sum

fromleft

range 4,8

sum

fromleft

range 6,8

sum

fromleft

range 4,6

sum

fromleft

range 2,4

sum

fromleft

range 0,2

sum

fromleft

r 0,1

s

f

r 1,2

s

f

r 2,3

s

f

r 3,4

s

f

r 4,5

s

f

r 5,6

s

f

r 6,7

s

f

r 7,8

s

f
6 4 16 10 16 14 2 8

10 26 30 10

36 40

76

0

0

0

0

36

10 36 66 6 26 52 68

10 66

36

March 11, 2011

Pack

[Non-standard terminology]

Given an array input, produce an array output containing only

elements such that f(elt) is true

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

 f: is elt > 10

 output [17, 11, 13, 19, 24]

Parallelizable?

– Finding elements for the output is easy

– But getting them in the right place seems hard

59 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) March 11, 2011

Parallel prefix to the rescue

1. Parallel map to compute a bit-vector for true elements

input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector

 bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output

 output [17, 11, 13, 19, 24]

60 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

output = new array of size bitsum[n-1]

FORALL(i=1; i < input.length; i++){

 if(bits[i]==1)

 output[bitsum[i]-1] = input[i];

}

March 11, 2011

Keep Layering

• In turn, pack is the key piece for a parallel variant of quicksort

with a very good span

– Parallelize the partition, not just the recursive calls

• In any case, the point is to show very useful, very non-obvious

parallel algorithms

– Just as Dijkstra’s shortest-paths is a very useful, very non-

obvious sequential algorithm

March 11, 2011 61 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

Mini-Break Before

Concurrency?

March 11, 2011 62 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

Tonight: A whirlwind tour!

• Context: What I mean by “in data structures”

• Introductions: Name, rank, and serial number , plus

– 1-3 terms, concepts, ideas related to parallelism/concurrency

• Distinguishing parallelism and concurrency

• Parallelism with Java’s ForkJoin Framework – and try it out

• Asymptotic analysis of parallel algorithms

• Fancier parallel algorithms

• Synchronization and mutual exclusion

– Locks, programming guidelines, memory-consistency

models, condition variables, …

• Review: The N main concepts & why they fit in data structures

March 11, 2011 63 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

A warning

Workshop time-allotment misleading:

Teaching interleaving, race conditions, locks, etc. takes a lot of time

• Switch mindset: Loosely coordinated threads, occasionally accessing

shared data

• More difficult for students than parallelism

• Slightly more than half the lecture time

The good news:

 Basic data structures (stacks, queues, hashtables) provide

 canonical examples

– Leave to O/S course scheduling, fairness, context-switching, …

March 11, 2011 64 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

Canonical example

Correct code in a single-threaded world

65 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

class BankAccount {

 private int balance = 0;

 void setBalance(int x) { balance = x; }

 int getBalance() { return balance; }

 void withdraw(int amount) {

 int b = getBalance();

 if(amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b – amount);

 }

 … // other operations like deposit, etc.

}

March 11, 2011

A bad interleaving

Interleaved withdraw(100) calls on the same account

– Assume initial balance 150

66 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

int b = getBalance();

if(amount > b)

 throw new …;

setBalance(b – amount);

int b = getBalance();

if(amount > b)

 throw new …;

setBalance(b – amount);

Thread 1 Thread 2

T
im

e

Negative balance –

unhappy bank

March 11, 2011

What next

1. Try to fix without locks: it won’t work!

2. Explain locks as an ADT in pseudocode:

– new: make a new lock

– acquire(lk): blocks if this lock is already currently “held”

• Once “not held”, makes lock “held”

– release(lk): makes this lock “not held”

• if >= 1 threads are blocked on it, exactly 1 will acquire it

3. Explain re-entrant locks as an extended ADT

– acquire and release manage a counter for “same thread”

4. Java’s convenient synchronized statement

– Every object is a lock

– synchronized methods as a shorthand

March 11, 2011 67 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

Java version #1 (correct but non-idiomatic)

68 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

class BankAccount {

 private int balance = 0;

 private Object lk = new Object();

 void setBalance(int x)

 { synchronized (lk) { balance = x; } }

 int getBalance()

 { synchronized (lk) { return balance; } }

 void withdraw(int amount) {

 synchronized (lk) {

 int b = getBalance();

 if(amount > b)

 throw …

 setBalance(b – amount);

 }

 }

 // deposit also uses synchronized(lk)

}

March 11, 2011

Java version #2

69 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

class BankAccount {

 private int balance = 0;

 int getBalance()

 { synchronized (this){ return balance; } }

 void setBalance(int x)

 { synchronized (this){ balance = x; } }

 void withdraw(int amount) {

 synchronized (this) {

 int b = getBalance();

 if(amount > b)

 throw …

 setBalance(b – amount);

 }

 }

 // deposit also uses synchronized(this)

}

March 11, 2011

Java version #3 (final version)

70 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

class BankAccount {

 private int balance = 0;

 synchronized int getBalance()

 { return balance; }

 synchronized void setBalance(int x)

 { balance = x; }

 synchronized void withdraw(int amount) {

 int b = getBalance();

 if(amount > b)

 throw …

 setBalance(b – amount);

 }

 // deposit also uses synchronized

}

March 11, 2011

Key points from example

• All methods must use the same lock

• But different instances can/should use different locks

– More concurrency

– Okay because methods only access instance’s fields

• Second version exposes lock to clients

– Surprisingly, good style so client can make larger

synchronized operations

March 11, 2011 71 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

Another example: Stacks

March 11, 2011 72 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

class Stack<E> {

 … // state used by isEmpty, push, pop

 synchronized boolean isEmpty() { … }

 synchronized void push(E val) { … }

 synchronized E pop() {

 if(isEmpty())

 throw new StackEmptyException();

 …

 }

 E peek() { // this is wrong

 E ans = pop();

 push(ans);

 return ans;

 }

}

Data race vs. Bad Interleaving

This point is not well-understood by most teachers & programmers

– Please read the notes about this

The (poor) term “race condition” can refer to two different things

resulting from lack of synchronization:

1. Data races: Simultaneous read/write or write/write of the same

memory location

– This is (for mortals) always an error, due to compiler & HW

– Stack example has no data races

2. Bad interleavings: Despite lack of data races, exposing bad

intermediate state

– “Bad” depends on your specification

– Stack example has lots of these…

March 11, 2011 73 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

peek and isEmpty

• Property we want: If there has been a push and no pop, then

isEmpty returns false

• With peek as written, property can be violated – how?

74 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

E ans = pop();

push(ans);

return ans;

push(x)

boolean b = isEmpty()

T
im

e

Thread 2 Thread 1 (peek)

March 11, 2011

Activity?

• Property we want: Values are returned from pop in LIFO order

• With peek as written, property can be violated – how?

75 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

E ans = pop();

push(ans);

return ans;

push(x)

push(y)

E e = pop()

T
im

e

Thread 2 Thread 1 (peek)

Given enough practice,

students get good at finding

bad interleavings – an essential

reasoning skill for concurrency

March 11, 2011

Time for another?

• Property we want: peek doesn’t throw an exception if number of

pushes exceeds number of pops

• With peek as written, property can be violated – how?

76 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

E ans = pop();

push(ans);

return ans;

T
im

e

Thread 2

E ans = pop();

push(ans);

return ans;

Thread 1 (peek)

March 11, 2011

Then what?

• Finding errors is easier than avoiding them!

– So far: Gave them a chainsaw without a safety manual 

• So I spend most of a lecture on programming guidelines

– Avoid mutating shared memory

– Simple and consistent locking protocols

– Start with coarse-grained locking

– Use libraries for shared data structures

– …

This is all new to them and I don’t think they get it

– But hopefully they go back to the slides and reading notes

during their internships!

March 11, 2011 77 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

Lastly

Three more things are part of a proper introduction:

• Deadlock: Too much synchronization instead of too little

• Reader/writer locks: Dictionaries are a great example

– Key concept: read/read sharing is okay

• Passive waiting:

– A queue for transferring work

• An empty or full queue is not an error; it means wait

– Avoid busy waiting with condition variables

– Alas, condition variables, especially in Java, are very hard to

use correctly, but I show them anyway

• Taking a blocking-queue as a primitive and building on

top of it might work better

March 11, 2011 78 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

Tonight: A whirlwind tour!

• Context: What I mean by “in data structures”

• Introductions: Name, rank, and serial number , plus

– 1-3 terms, concepts, ideas related to parallelism/concurrency

• Distinguishing parallelism and concurrency

• Parallelism with Java’s ForkJoin Framework – and try it out

• Asymptotic analysis of parallel algorithms

• Fancier parallel algorithms

• Synchronization and mutual exclusion

– Locks, programming guidelines, memory-consistency

models, condition variables, …

• Review: The N main concepts & why they fit in data structures

March 11, 2011 79 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

Conclusions: Main Concepts

• Parallelism vs. concurrency

• Parallelism

– Reductions vs. maps vs. fancy algorithms

– Divide-and-conquer using fork-join

– Work vs. span

– Amdahl’s Law

• Concurrency

– The need for synchronization

– Data races (always wrong) vs. bad interleavings

– Guidelines for programming with locks

– Deadlock

– Passive waiting

March 11, 2011 80 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

Conclusions: Meta

Why in a data structures course:

Parallelism:

– Same kind of obvious and non-obvious algorithms

– Basic asymptotic analysis, including Amdahl’s Law

– Balanced trees have logarithmic height (divide-and-conquer)

– More useful than skew heaps and network flow

Concurrency

– Making an ADT thread-safe requires thinking about what

intermediate states are exposed

– Stacks, queues, and dictionaries are key shared resources

You can do this! (2 of the 3 instructors after me had no experience

with parallelism/concurrency, just as I had to re-learn AVL trees)

 March 11, 2011 81 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

What I have

http://www.cs.washington.edu/homes/djg/teachingMaterials/

• 8 hours of Powerpoint

• 65 pages of reading notes

• A cool (?) programming project (hang around after for a demo?)

• Sample homeworks and exam

Also: Eagerness to answer your questions

Also: No problem with you modifying, adapting, etc.

Also: I’d be delighted to foster an informal community

March 11, 2011 82 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

Feedback?

Your turn:

– What of this would you use?

– What are the barriers you face or concerns you have?

– What do you think is missing?

Separate question: Feedback on the workshop and its focus

 March 11, 2011 83 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

