Multithreading (Pretty) Early for Everyone:
Parallelism & Concurrency in 2nd-Year Data-Structures

Dan Grossman

University of Washington
SIGCSE 2011, Workshop 19

http://www.cs.washington.edu/homes/djg/teachingMaterials/

Executive Summary

Ready-to-use parallelism/concurrency in data-structures

« 2.5-week unit with reading notes, slides, homeworks, a Java
project, sample exam guestions

« 1sttaught at Washington Spring 2010
— Taught every term; 4 different instructors so far

* If you can teach balanced trees and graph algorithms,
then you can teach this

Valuable approach and place-in-curriculum for an introduction

* Programmer’s view (not the OS or HW implementation)
« Focus on shared memory

« Basic parallel algorithms and analysis

« Basic synchronization and mutual exclusion

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

2

Different audiences

Persona #1: | hear multicore is important, but I'm skeptical | can do
something meaningful and low-maintenance in a low-level course.
And would my colleagues go along?

| had you in mind from Day 1
— The concepts have to be timeless and straightforward
— 3 weeks maximum, as part of an existing course
— No fancy hardware / software assumed
— Free, modifiable course materials
— Not advocating a revolution

Naturally, adapt material to personal style, local circumstances

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

3

Different audiences

Persona #2: Multicore is everything. We need to revamp the entire
curriculum. All courses need to assume parallel throughout.

To avoid unhappiness, remember:
— The choir never understands why the pews aren’t more full
— This is an introduction, easy to append more
« “This is important” not “Other stuff isn’t”

— Essential foundations before an upper-level course on
parallelism, OS, networking, graphics, etc.

— Material required in 1st 2 years is a zero-sum game
* | wouldn’t cut more other stuff from our curriculum

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 4

Tonight: A whirlwind tour!

Context: What | mean by “in data structures”
Introductions: Name, rank, and serial number ©, plus
— 1-3 terms, concepts, ideas related to parallelism/concurrency

Distinguishing parallelism and concurrency
Parallelism with Java’s ForkJoin Framework — and try it out

Asymptotic analysis of parallel algorithms
Fancier parallel algorithms

Synchronization and mutual exclusion

— Locks, programming guidelines, memory-consistency
models, condition variables, ...

Review: The N main concepts & why they fit in data structures

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 5

Why the 300-level?

CS1+2:

* Loops, recursion,
objects, trees

« < 25% CS majors
« Late CS2 maybe

“300-level”

Senior year:
 Too late
 Too specialized
 Too redundant

— Rely on
concepts
throughout

“400-level”

capstone
design

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 6

UW’s 300-level (10-week guarters)

Software
Design

Big
Data

Systems
Prog.
Prog.
Language

Discrete
Math ++

Prob/Stats
P vs. NP

Hw/Sw
Interface

Hardware
Design

required

CSrequired

CompE required

recommended

(Note: reality slightly
more complex)

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 7

Data Structures: Old vs. New

Old and new: 20 lectures
Big-Oh, Algorithm Analysis
Binary Heaps (Priority Qs)
AVL Trees
B Trees
Hashing
Sorting
Graph Traversals
Topological Sort
Shortest Paths
Minimum Spanning Trees
Amortization

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

Data Structures: Old vs. New

Old and new: 20 lectures Removed: 7-8 lectures
D-heaps
Leftist heaps
Skew heaps
Binomial queues
Network flow
Splay trees ®
Disjoint sets ®
Hack job on NP (moves elsewhere)

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 9

Introductions

* Introductions: Name, rank, and serial number ©, plus
— 1-2 terms, concepts, ideas related to parallelism/concurrency

I'll go first:

“locks”
“speedup”

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 10

Tonight

Context: What | mean by “in data structures”
Introductions: Name, rank, and serial number ©, plus
— 1-2 terms, concepts, ideas related to parallelism/concurrency

Distinguishing parallelism and concurrency
Parallelism with Java’s ForkJoin Framework — and try it out

Asymptotic analysis of parallel algorithms
Fancier parallel algorithms

Synchronization and mutual exclusion

— Locks, programming guidelines, memory-consistency
models, condition variables, ...

Review: The N main concepts & why they fit in data structures

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 11

A key distinction

Parallelism:
Use extra computational resources to solve a problem faster

work

AN

resources
Concurrency:

Correctly and efficiently manage access to shared resources

requests

N/

resource

Note: Terms not standard, but becoming more so
— Distinction is paramount

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 12

An analogy

CS1: A program is like a recipe for a cook
— One cook who does one thing at a time! (Sequential)

Parallelism:
— Have lots of potatoes to slice?
— Hire helpers, hand out potatoes and knives
— But too many chefs and you spend all your time coordinating

Concurrency:
— Lots of cooks making different things, but only 4 stove burners

— Want to allow access to the burners, but not cause spills or
Incorrect burner settings

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 13

Parallelism Example

Parallelism:
Use extra computational resources to solve a problem faster

Pseudocode for array sum

int sum(int[] arr) {
res = new int[4];
len = arr.length;
FORALL (i=0; i < 4; i++) { //parallel iterations
res[i] = sumRange (arr, i*len/4, (i+l)*1len/4);
}

return res[0]+res[l]+res[2]+res[3];

}

int sumRange (int[] arr, int lo, int hi) {
result = 0;
for(j=lo; j < hi; j++)
result += arr[j];
return result;

}

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 14

Concurrency Example

Concurrency:
Correctly and efficiently manage access to shared resources

Pseudocode for a shared chaining hashtable
— Prevent bad interleavings but allow some concurrent access

class Hashtable<K,V> {

v01d insert (K key, V value) {
int bucket = ..;
prevent-other-inserts/lookups in table[bucket],
do the insertion
re-enable access to arr[bucket];,

}
V lookup (K key) ({

(like insert, but can allow concurrent
lookups to same bucket)

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 15

Activity

For each introduction term, pick one:
A. (Almost all) about parallelism
B. (Almost all) about concurrency

C. Equally related to both
D. Unsure

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 16

Why parallelism first

Structured, shared-nothing parallelism is easier to reason about
— Synchronization is easy

— Race conditions just don’t show up much

— Focus on algorithms

After comfortable with threads, deal with mutual exclusion,
Interleavings, etc.

— Focus on thread-safe APIs rather than algorithms

Yes, in reality, parallelism and concurrency co-mingle
— In a 2"9%-year course, emphasize the difference
— Many separate curriculum topics co-mingle in practice

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 17

A Programming Model

To write parallel programs, need a way for threads (broadly
construed) to communicate and coordinate

Approaches | barely mention — a full course would cover them

« Message-passing: Each thread has its own collection of objects.
Communication via explicitly sending/receiving messages

— Cooks working in separate kitchens, mail around ingredients

- Dataflow: Programmers write programs in terms of a DAG.
A node executes after all of its predecessors in the graph

— Cooks wait to be handed results of previous steps

- Data parallelism: Primitives for things like “apply function to
every element of an array in parallel”

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 18

Shared memory

Threads each have own unshared call stack and current statement
— (pc for “program counter”)
— local variables are numbers, null, or heap references

Any objects can be shared, but most are not

Shared:
objects and
static fields

Unshared:
locals and
control

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 19

Why just shared memory

1 model enough for 3-week introduction
— Could add more given more time

Previous slide is all students need to “get it”

Fits best with rest of course
— Asymptotics, trees, hashtables, etc.

Fits best with Java

Note: Not claiming it’s the best model

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 20

Our needs

A way to:
— Create threads
— Share objects among threads
— Coordinate: threads wait for each other to finish something

In class: | show Java threads (java.lang.Thread) and then why
they are less than ideal for parallel programming

— |If create 10,000 at once, JVM won’t handle it well

Tonight: To save time, skip to ForkJoin tasks
— A Java 7 library available for Java 6
— Similar libraries available for C++, C#, ...
— Use “real” Java threads for concurrency (later)

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 21

Tonight

« Context: What | mean by “in data structures”
* Introductions

« Distinguishing parallelism and concurrency
« Parallelism with Java’'s ForkJoin Framework — and try it out

« Asymptotic analysis of parallel algorithms
« Fancier parallel algorithms

« Synchronization and mutual exclusion

— Locks, programming guidelines, memory-consistency
models, condition variables, ...

Review: The N main concepts & why they fit in data structures

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 22

Canonical example: array sum

« Sum elements of a large array
* |dea: Have 4 simultaneous tasks each sum 1/4 the array
— Warning: Inferior first approach

EEEEEEEEERRREEEEEERENEENEERRENEEEEERENNNNEERRNNEED
-

ans(ansl ans2 ans3

\\+ /
ans

— Create 4 special objects, assigned a portion of the work

— Call fork () on each object to actually run it in parallel

— Wait for each object to finish using join ()

— Sum 4 answers for the final result

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 23

First attempt, part 1

class SumThread extends RecursiveAction {

int lo; // arguments
int hi;
int[] arr;

int ans = 0; // result

SumThread (int[] a, int 1, int h) {
lo=1l; hi=h; arr=a;
}

public void compute () {//override must have this type
for(int i=lo; 1 < hi; i++)
ans += arr[i];

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 24

First attempt, continued (wrong!)

class SumThread extends RecursiveAction {
int lo, int hi, int[] arr; // arguments
int ans = 0; // result
SumThread (int[] a, int 1, int h) { .. }
public void compute(){ .. }

}

int sum(int[] arr) {
SumThread[] ts = new SumThread[4];

int len = arr.length; // do parallel computations
for (int i=0; i < 4; i++) {
ts[i] = new SumThread(arr, i*len/4, (i+l)*len/4);
ts[i] .fork(); // fork not compute
}

int ans = 0; // combine results
for(int 1=0; i < 4; i++)

ans += ts[i] .ans;
return ans;

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 25

2nd attempt: almost right (but still inferior)

class SumThread extends RecursiveAction {
int lo, int hi, int[] arr; // arguments
int ans = 0; // result
SumThread (int[] a, int 1, int h) { .. }
public void compute(){ .. }

}

int sum(int[] arr) {

int len = arr.length;

int ans = 0;

SumThread[] ts = new SumThread[4];

for(int i=0; i < 4; i++){// do parallel computations
ts[i] = new SumThread(arr,i*len/4, (i+l) *len/4);
ts[i] .fork(); // fork not compute

}

for(int i=0; i < 4; i++) { // combine results
ts[i] .join(); // wait for helper to finish!
ans += ts[i].ans;

}

return ans;

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 26

The primitives

Needed “magic” library for things we can’t implement ourselves:

« fork method of RecursiveAction calls compute ()
In a new thread/task

— Calling compute directly is a plain-old method call

¢ join method of RecursiveAction blocks its caller
until/lunless the receiver is done executing (its compute returns)

— Must wait to read the ans field

« Example so faris “right in spirit”
— But doesn’t enter the library correctly (won’t work yet)
« Fix after learning better approach

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 27

Shared memory?

» Fork-join programs (thankfully) don’t require much focus on
sharing memory among threads

« Memory is shared
- lo, hi, arr fields written by “main” thread, read by helpers

— ans field written by helpers, read by “main” thread

 Must avoid data races
— For this kind of parallelism, join suffices

— For concurrency, learn about locks

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 28

A better approach

Several reasons why this is a poor parallel algorithm

1. Want code to be reusable and efficient across platforms
— “Forward-portable” as core count grows
— So at the very least, parameterize by the number of threads

int sum(int[] arr, int numThreads) {
SumThread[] ts = new SumThread[numThreads];
int sublLen = arr.length / numThreads;

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 29

A better approach

2. Want to use (only) processors “available to you now”

— Not used by other programs or threads in your program
 Maybe caller is also using parallelism
« Avalilable cores change even while your threads run

— If you have 3 processors available and using 3 threads
would take time X, then creating 4 threads would take time
1.5X

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 30

A better approach

3. Though unlikely for sum, in general different subproblems may
take significantly different amounts of time

— Example: Apply method £ to every array element, but
maybe £ is much slower for some data items

« Example: Is a large integer prime?

— Leads to load imbalance

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 31

A Better Approach

The counterintuitive(?) solution to all these problems is to use lots of
tasks, far more than the number of processors

— But will require changing our algorithm

Forward-portable: Lots of helpers each doing a small piece
Processors available: Hand out “work chunks” as you go

Load imbalance: No problem if slow thread scheduled early enough
« Variation probably small anyway if pieces of work are small

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 32

Nalve algorithm is poor

Suppose we create 1 thread to process every 1000 elements

int sum(int[] arr) {

Int numThreads
SumThread|[] ts

-

arr.length / 1000;
new SumThread[numThreads] ;

Then combining results will have arr.length / 1000 additions
to do — still linear in size of array

In fact, if we create 1 thread for every 1 element, we recreate a
sequential algorithm

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 33

A better idea

ENEENEENEERENNERNEEREANERENRENNERNENRENNRREANER
TV T
+\+/+ +\+/+
-

Straightforward to implement using divide-and-conquer
— Parallelism for the recursive calls
— Will write all our parallel algorithms in this style
— Asymptotic exponential speedup “with enough processors”

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 34

Divide-and-conquer to the rescue!

class SumThread extends RecursiveAction {
int lo; int hi; int[] arr; // arguments
int ans = 0; // result
SumThread (int[] a, int 1, int h) { .. }

public void compute () {

if(hi - lo < SEQUENTIAL CUTOFF) // around 1000

for(int i=lo; i < hi; i++)
ans += arr|[i];

else {
SumThread left = new SumThread(arr,lo, (hi+lo)/2);
SumThread right= new SumThread(arr, (hi+lo)/2,hi);
left.fork () ;
right. fork() ;
left.join(); // don’t move this up a line - why?
right.join() ;
ans = left.ans + right.ans;

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 35

Sequential cut-offs

« Cutting off last 10 levels of recursion saves > 99% of task-
creation overhead

« Exactly like having quicksort switch to insertion sort for small
subproblems!

EEEENNNEEEEENNEEEEEENNNEEREENEEEEEENNNEEERENNEEE
N AVAVAVEVATE S
+\+/+ +\+/+
=S

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 36

Finishing the story

Need to start the recursion for the entire array

— Slightly awkward boilerplate to “enter the library”
— Can't just call compute directly ®

static final ForkJoinPool fjPool = new ForkJoinPool () ;

static int sum(int[] arr) {
return fjPool.invoke (new SumThread(arr,0,arr.length));
}

— Create 1 pool for whole program
— Start recursion by passing invoke an object
« invoke calls the object’'s compute and returns the result

(I use recitation section to go over this stuff)

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 37

Improving our example

Two final changes to our example:

» For style, instead of an ans field:
— Subclass RecursiveTask<Ans> (e.g., Integer)
- compute method now returns an Ans (e.g., Integer)
— join returns what task’s compute returns

* For performance, don’t have each task do nothing but create
two other tasks and add results

— Create one other task and do the other half yourself
— Makes a surprisingly large difference

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 38

Final version

class SumThread extends RecursiveTask<Integer> {
int lo; int hi; int[] arr; // arguments
SumThread (int[] a, int 1, int h) { .. }
public Integer compute(){
if (hi - lo < SEQUENTIAL CUTOFF)
int ans = 0;
for(int i=lo; i < hi; i++)
ans += arr|[i];
return ans;
} else {
SumThread left = new SumThread(arr,lo, (hi+lo)/2);
SumThread right= new SumThread(arr, (hi+lo)/2,hi);
left.fork () ;
int rightAns = right. compute()
int leftAns = left.join(); // don’t move up!
return leftAns + rightAns;

}
}

static int sum(int[] arr) {
return fjPool.invoke (new SumThread(arr,0,arr.length));
}

}

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 39

Reductions and Maps

« Array-sum is a reduction
— Single answer from collection via associative operator
— (max, count, leftmost, rightmost, average, ...)

« Even simpleris a map
— Compute new collection independently from elements
* Or update in place (standard trade-offs)
— Example: Increment all array elements

* These two patterns are the workhorses of parallel programming

— Pedagogically, have students write them out N times rather
than use map and reduce primitives

— To save time tonight, I'm trying informal code templates
* In provided Java files (and next two slides)

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 40

Reduction template for arrays

class MyClass extends RecursiveTask<AnsType> {
int lo; int hi; ArrayType[] arr;
SumThread (ArrayType[]a,int 1,int h) {lo=1l;hi=h;arr=a;}
public AnsType compute () {
if(hi - lo < SEQUENTIAL CUTOFF)
// sequential algorithm
return ans;

} else {
MyClass left = new MyClass(arr,lo, (hi+lo)/2);

MyClass right= new MyClass (arr, (hi+lo)/2,hi) ;
left.fork () ;
AnsType rightAns = right.compute() ;

AnsType leftAns = left.join();
return // combine leftAns and RightAns

}

}
static int SEQUENTIAL CUTOFF = 1000;

static AnsType myAlgorithm (ArrayType[] arr) {
ForkJoinPool pool = Main.fjPool;
return pool.invoke (new MyClass (arr,0,arr.length));

}
}

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 41

Map template for arrays (update-in-place)

class MyClass extends RecursiveAction {
int lo; int hi; ArrayType[] arr;
SumThread (int[] a, int 1, int h){lo=1l; hi=h; arr=a;}
public void compute () {
if(hi - lo < SEQUENTIAL CUTOFF)
// sequential algorithm
} else {
MyClass left = new MyClass(arr,lo, (hi+lo)/2);
MyClass right= new MyClass (arr, (hi+lo)/2,hi) ;
left.fork () ;
right.compute() ;
left.join() ;
}

}
static int SEQUENTIAL CUTOFF = 1000;

static void myAlgorithm (ArrayType[] arr) {
ForkJoinPool pool = Main.fjPool;
pool.invoke (new MyClass (arr,0,arr.length));

}

}

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 42

Exercises

See handout and Java files for more detalls

Reductions over a String][]

« Easier: Leftmost String starting with 'S’ (null for none)

« Easier: Index of leftmost String starting with S’ (-1 for none)
* More Challenging: Second-to-left String starting with 7 S’

« Even More Challenging: k"-from-left String starting with ’ S’

Maps over a String][]
« Easier: Replace every String starting with ’ S’ with " [redacted] "

 More Challenging: Take as parameter an object with a method
taking and returning a String; apply method to each element

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 43

Break

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 44

Where are we

« Students really can write maps and reductions over arrays
— Trees, 2D arrays easy too
— Easier for homework than during a workshop

 Remaining parallelism topics (necessarily brief tonight)
— Asymptotic analysis (great fit in course)
— Amdahl’s Law (incredibly important and sobering)
— 2-3 non-trivial algorithms (just like with graphs!)

« Then concurrency
— Locks and how to use them
— Other topics as time permits

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

45

Work and Span

Let T, be the running time if there are P processors available
Two key measures of running time

- Work: How long it would take 1 processor =T,
— Just “sequentialize” the recursive forking

- Span: How long it would take infinity processors = T,
— The longest dependence-chain

— Example: O(1og n) for summing an array since > n/2
processors is no additional help

— Also called “critical path length” or “computational depth”

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 46

The DAG

Can treat execution as a (conceptual) DAG where nodes cannot
start until predecessors finish
A general model, but our fork-join reductions look like this, where

each node is O(l»

divide

+

combine
results

—9

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 47

Connecting to performance

* Work =T, = sum of run-time of all nodes in the DAG
— That lonely processor does everything
— Any topological sort is a legal execution
— O(n) for simple maps and reductions

 Span =T_ = sum of run-time of all nodes on the most-expensive
path in the DAG

— An infinite army can do everything that is ready to be done,
but still has to wait for earlier results

— O(1log n) for simple maps and reductions

Parallel algorithms is about decreasing span without
Increasing work too much

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 48

Finish the story: thanks ForkJoin library!

So we know T, and T , but we want T, (e.g., P=4)

* (Ignoring caching issues), T, can’t beat
— T,/P why not?
- T why not?

« So an asymptotically optimal execution would be:
To = O((T,/P) +T)

— First term dominates for small P, second for large P

« The ForkJoin Framework gives an expected-time guarantee of
asymptotically optimal! (It flips coins when scheduling)

— How? For an advanced course (few need to know)
— Assumes your base cases are small-ish and balanced

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 49

Now the bad news

« So far: analyze parallel programs in terms of work and span

* In practice, typically have parts of programs that parallelize well...
— Such as maps/reduces over arrays and trees
...and parts that don’t parallelize at all

— Reading a linked list, getting input, doing computations where
each needs the previous step, etc.

— “Nine women can’t make a baby in one month”

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 50

Amdahl’s Law (mostly bad news)

Let the work (time to run on 1 processor) be 1 unit time
Let S be the portion of the execution that can’t be parallelized

Then:
T,=5+(1-5)=1

Suppose we get perfect linear speedup on the parallel portion

Then:
To =S+ (1-S)/P

So the overall speedup with P processors is (Amdahl’s Law):

T,/To =1/(S+ (1-S)/P)

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 51

Why such bad news

T,/ Tp =1/(S + (1-S)/P)

« Suppose 33% of a program is seguential
— Then a billion processors won't give a speedup over 3

* Suppose you miss the good old days (1980-2005) where 12ish
years was long enough to get 100x speedup

— Now suppose in 12 years, clock speed is the same but you
get 256 processors instead of 1

— For 256 processors to get at least 100x speedup, we need
100<1/(S + (1-S)/256)
Which means S <£.0061 (i.e., 99.4% perfectly parallelizable)

Homework problem: Depressing plots with a spreadsheet!!

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 52

All Is not lost

Amdahl’s Law is a bummer!
— But it doesn’t mean additional processors are worthless

« Can find new parallel algorithms
— Some things that seem sequential are actually parallelizable

« Can change the problem we’re solving or do new things
— Example: Video games use tons of parallel processors
« They are not rendering 10-year-old graphics faster
« They are rendering more beautiful(?) monsters

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 53

Moore and Amdahl

T L

* Moore’s “Law” is an observation about the progress of the
semiconductor industry

— Transistor density doubles roughly every 18 months

« Amdahl’s Law is a mathematical theorem
— Diminishing returns of adding more processors
— Fits beautifully in data structures!

« Both are incredibly important in designing computer systems

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 54

Tonight: A whirlwind tour!

Context: What | mean by “in data structures”
Introductions: Name, rank, and serial number ©, plus
— 1-3 terms, concepts, ideas related to parallelism/concurrency

Distinguishing parallelism and concurrency
Parallelism with Java’s ForkJoin Framework — and try it out

Asymptotic analysis of parallel algorithms
Fancier parallel algorithms

Synchronization and mutual exclusion

— Locks, programming guidelines, memory-consistency
models, condition variables, ...

Review: The N main concepts & why they fit in data structures

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 55

The prefix-sum problem

Given int[] input, produce int[] output where output[i]
IS the sum of input[0]+input[1l]+. +input[i]

Sequential can be a CS1 exam problem:

int[] prefix sum(int[] input) {
int[] output = new int[input.length];
output[0] = input[0];
for(int i=1; i < input.length; i++)
output[i] = output[i-1]+input[i];
return output;

}

Does not appear parallelizable
— Work: O(n), Span: O(n)

— This algorithm is sequential, but a different algorithm has
Work: O(n), Span: O(log n)

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 56

Example

input

output

March 11, 2011

range 0,8
sum 76
‘(///////’//’frornleft \\\\\\\\\i
range 04 range 4,8
sum 36 sum
fromleft fromleft
range 0,2 range 24 range 4,6 range 6,8
sum 10 sum 26 sum 30 sum 10
fromleft fromleft fromleft fromleft
r 01 ||lr 1,2 ||r 23 ||r 3,4 ||lr 45 ||r 56 ||r 6,7 ||r 7,8
S 6 S 4 S 16 ||S 10 (|S 16 ||S 14 ||S 2 S 8
f f f f f f f f
6 4 16 10 16 14 2 8

Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

S7

range 0,8
Example sum 76
/fromleft 0 \
range 04 range 4,8
sum 36 sum 40
fromleft O fromleft 36
range 0,2 range 24 range 4,6 range 6,8
sum 10 sum 26 sum 30 sum 10
fromleft O fromleft 10 fromleft 36 fromleft 66
r 01 ||lr 1,2 ||r 23 ||r 3,4 ||lr 45 ||r 56 ||r 6,7 ||r 7,8
S 6 S 4 S 16 [|S 10 [|S 16 ||S 14 ||s 2 S 8
f O f ©6 f 10 ||f 26 ||f 36 |[|[f 52 ||[f 66 ||f 68
input 6 4 16 10 16 14 2 8
output 6 10 26 36 52 66 68 76

March 11, 2011

Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 58

Pack

[Non-standard terminology]

Given an array input, produce an array output containing only
elements such that £ (elt) IS true

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
f: is elt > 10
output [17, 11, 13, 19, 24]

Parallelizable?
— Finding elements for the output is easy
— But getting them in the right place seems hard

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 59

Parallel prefix to the rescue

1. Parallel map to compute a bit-vector for true elements
input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits ., o, o, o0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector
bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output
output [17, 11, 13, 19, 24]

output = new array of size bitsum[n-1]
FORALL(i=1; i < input.length; i++) {
if (bits[i]==1)
output[bitsum[i]-1] = input[i];
}

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 60

Keep Layering

* Inturn, pack is the key piece for a parallel variant of quicksort
with a very good span

— Parallelize the partition, not just the recursive calls

* Inany case, the point is to show very useful, very non-obvious
parallel algorithms

— Just as Dijkstra’s shortest-paths is a very useful, very non-
obvious sequential algorithm

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 61

Mini-Break Before
Concurrency?

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 62

Tonight: A whirlwind tour!

Context: What | mean by “in data structures”
Introductions: Name, rank, and serial number ©, plus
— 1-3 terms, concepts, ideas related to parallelism/concurrency

Distinguishing parallelism and concurrency
Parallelism with Java’s ForkJoin Framework — and try it out

Asymptotic analysis of parallel algorithms
Fancier parallel algorithms

Synchronization and mutual exclusion

— Locks, programming guidelines, memory-consistency
models, condition variables, ...

Review: The N main concepts & why they fit in data structures

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 63

A warning

Workshop time-allotment misleading:

Teaching interleaving, race conditions, locks, etc. takes a lot of time

« Switch mindset: Loosely coordinated threads, occasionally accessing
shared data

« More difficult for students than parallelism
« Slightly more than half the lecture time

The good news:
Basic data structures (stacks, queues, hashtables) provide
canonical examples
— Leave to O/S course scheduling, fairness, context-switching, ...

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 64

Canonical example

Correct code Iin a single-threaded world

class BankAccount {

private int balance = 0;
void setBalance (int x) { balance = x; }
int getBalance() { return balance; }

void withdraw(int amount) {

int b = getBalance() ;
if (amount > b)

throw new WithdrawToolargeException() ;
setBalance (b — amount) ;

. // other operations like deposit, etc.

March 11, 2011

Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

65

A bad interleaving

Interleaved withdraw (100) calls on the same account
— Assume initial balance 150

Thread 1 Thread 2
int b = getBalance() ;
int b = getBalance() ;
if (amount > b)
throw new ..;

)
£ setBalance (b - amount) ;
= if (amount > b)
throw new ...;
setBalance (b — amount) ;
v Negative balance —

unhappy bank

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 66

What next

1. Try to fix without locks: it won't work!

2. Explain locks as an ADT in pseudocode:
- new. mMmake a new lock

— acquire (1k): blocks if this lock is already currently “held”

 Once “not held”, makes lock “held”
— release (1k): makes this lock “not held”

« if >= 1 threads are blocked on it, exactly 1 will acquire it

3. Explain re-entrant locks as an extended ADT
— acquire and release manage a counter for “same thread”

4. Java's convenient synchronized statement

— Every object is a lock
- synchronized methods as a shorthand

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 67

Java version #1 (correct but non-idiomatic)

class BankAccount {
private int balance = 0;
private Object 1k = new Object();
void setBalance (int x)
{ synchronized (lk) { balance = x; } }
int getBalance()
{ synchronized (lk) { return balance; } }
void withdraw(int amount) {
synchronized (lk) {
int b = getBalance() ;
if (amount > b)
throw ..
setBalance (b - amount) ;

}
}

// deposit also uses synchronized(1lk)

}

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 68

Java version #2

class BankAccount {
private int balance = 0;
int getBalance()
{ synchronized (this){ return balance; } }
void setBalance (int x)
{ synchronized (this){ balance = x; } }
void withdraw(int amount) {
synchronized (this) ({
int b = getBalance() ;
if (amount > b)
throw ..
setBalance (b - amount) ;

}
}

// deposit also uses synchronized(this)

}

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 69

Java version #3 (final version)

class BankAccount {

private int balance = 0;
synchronized int getBalance ()

{ return balance; }
synchronized void setBalance (int x)

{ balance = x; }
synchronized void withdraw(int amount) {

int b = getBalance() ;
if (amount > b)
throw ..
setBalance (b - amount) ;

}

// deposit also uses synchronized

}

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 70

Key points from example

 All methods must use the same lock

» But different instances can/should use different locks

— More concurrency
— Okay because methods only access instance’s fields

« Second version exposes lock to clients

— Surprisingly, good style so client can make larger
synchronized operations

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

71

Another example: Stacks

class Stack<E> {
.. // state used by isEmpty, push, pop
synchronized boolean isEmpty() { .. }
synchronized void push(E wval) { .. }
synchronized E pop () {
if (isEmpty ())
throw new StackEmptyException() ;

}
E peek() { // this is wrong

E ans = pop();
push (ans) ;
return ans;

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

72

Data race vs. Bad Interleaving

This point is not well-understood by most teachers & programmers
— Please read the notes about this

The (poor) term “race condition” can refer to two different things
resulting from lack of synchronization:

1. Data races: Simultaneous read/write or write/write of the same
memory location

— This is ¢rmoraisy @always an error, due to compiler & HW
— Stack example has no data races

2. Bad interleavings: Despite lack of data races, exposing bad
Intermediate state

— “Bad” depends on your specification
— Stack example has lots of these...

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 73

peek and iIsEmpty

* Property we want: If there has been a push and no pop, then
isEmpty returns false

« With peek as written, property can be violated — how?

Thread 1 (peek) Thread 2
E ans = pop(); push (x)

4&_—-—————boolean b = isEmpty ()

push (ans) ;

Time

return ans;

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 74

Activity?

* Property we want: Values are returned from pop in LIFO order

* With peek as written, property can be violated — how?

Thread 1 (peek) Thread 2
E ans = pop(); push (x)
push (y)

push (ans) ; E e = pop()

Time

return ans;

Given enough practice,
v students get good at finding
bad interleavings — an essential
reasoning skill for concurrency

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 75

Time for another?

* Property we want: peek doesn’t throw an exception if number of

pushes exceeds number of pops

« With peek as written, property can be violated — how?

Thread 1 (peek) Thread 2
E ans = pop(); E ans = pop();
CIEJ push (ans) ; push (ans) ;
=
return ans; return ans;

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

76

Then what?

* Finding errors is easier than avoiding them!
— So far: Gave them a chainsaw without a safety manual ©

« So | spend most of a lecture on programming guidelines
— Avoid mutating shared memory
— Simple and consistent locking protocols
— Start with coarse-grained locking
— Use libraries for shared data structures

This is all new to them and | don’t think they get it

— But hopefully they go back to the slides and reading notes
during their internships!

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 77

Lastly

Three more things are part of a proper introduction:

« Deadlock: Too much synchronization instead of too little

« Reader/writer locks: Dictionaries are a great example
— Key concept: read/read sharing is okay

« Passive waiting:
— A gueue for transferring work
« An empty or full queue is not an error; it means wait
— Avoid busy waiting with condition variables

— Alas, condition variables, especially in Java, are very hard to
use correctly, but | show them anyway

« Taking a blocking-queue as a primitive and building on
top of it might work better

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 78

Tonight: A whirlwind tour!

Context: What | mean by “in data structures”
Introductions: Name, rank, and serial number ©, plus
— 1-3 terms, concepts, ideas related to parallelism/concurrency

Distinguishing parallelism and concurrency
Parallelism with Java’s ForkJoin Framework — and try it out

Asymptotic analysis of parallel algorithms
Fancier parallel algorithms

Synchronization and mutual exclusion

— Locks, programming guidelines, memory-consistency
models, condition variables, ...

Review: The N main concepts & why they fit in data structures

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 79

Conclusions: Main Concepts

« Parallelism vs. concurrency

 Parallelism

— Reductions vs. maps vs. fancy algorithms
— Divide-and-conquer using fork-join
— Work vs. span

— Amdahl’s

« Concurrency
— The need

Law

for synchronization

— Data races (always wrong) vs. bad interleavings
— Guidelines for programming with locks

— Deadlock

— Passive waiting

March 11, 2011

Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19)

80

Conclusions: Meta

Why in a data structures course:

Parallelism:
— Same kind of obvious and non-obvious algorithms
— Basic asymptotic analysis, including Amdahl’'s Law
— Balanced trees have logarithmic height (divide-and-conquer)
— More useful than skew heaps and network flow

Concurrency

— Making an ADT thread-safe requires thinking about what
Intermediate states are exposed

— Stacks, queues, and dictionaries are key shared resources

You can do this! (2 of the 3 instructors after me had no experience
with parallelism/concurrency, just as | had to re-learn AVL trees)

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 81

What | have

http://www.cs.washington.edu/homes/djg/teachingMaterials/

* 8 hours of Powerpoint

* 65 pages of reading notes

« A cool (?) programming project (hang around after for a demo?)
« Sample homeworks and exam

Also: Eagerness to answer your questions

Also: No problem with you modifying, adapting, etc.

Also: I'd be delighted to foster an informal community

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 82

Feedback?

Your turn:
— What of this would you use?
— What are the barriers you face or concerns you have?

— What do you think is missing?

Separate question: Feedback on the workshop and its focus

March 11, 2011 Parallelism/Concurrency in Data Structures (SIGCSE Workshop 19) 83

