
c©Copyright 2014

Benjamin P. Wood

Software and Hardware Support for Data-Race Exceptions

Benjamin P. Wood

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2014

Reading Committee:

Dan Grossman, Chair

Luis Ceze, Chair

Zachary Tatlock

Program Authorized to Offer Degree:
Computer Science & Engineering

University of Washington

Abstract

Software and Hardware Support for Data-Race Exceptions

Benjamin P. Wood

Co-Chairs of the Supervisory Committee:
Associate Professor Dan Grossman
Computer Science & Engineering

Associate Professor Luis Ceze
Computer Science & Engineering

Some researchers have proposed data-race exceptions to mitigate the ill effects of data races

in shared-memory multithreaded programs. Data-race exceptions make every data race an

explicit fail-stop error at run-time. Implementing data-race exceptions naturally requires

accurate dynamic data-race detection with low performance overhead, yet existing data-

race detectors compromise either accuracy or performance. Hardware data-race detectors

solutions are fast, but inaccurate. Accurate software data-race detectors slow execution

by several times. This dissertation presents three new systems to bring accurate and fast

language-level data-race exceptions closer to feasibility.

Race Detection in Software and Hardware (RADISH) accelerates an accurate software

data-race detection algorithm by mapping common cases to highly-optimized hardware

support. By falling back to software support in rare cases, RADISH maintains full accuracy

for low-level programs while achieving good performance. We show RADISH’s accuracy via

its equivalence to a canonical accurate software algorithm for data-race detection.

Low-level Abstractable Race Detection (LARD) virtualizes accurate low-level data-race

detectors, such as RADISH, to support accurate data-race detection for high-level languages.

Experimental evaluation shows that existing low-level data-race detectors are inaccurate on

high-level programs in practice, while our LARD implementation is accurate and preserves

the performance of the low-level data-race detector.

Fast Instrumentation Bias (FIB) is a cooperative synchronization protocol designed

to reduce the overheads of pure-software accurate dynamic data-race detection. Analysis

barriers—the code inserted before each memory access in the program to check and update

analysis metadata—may execute concurrently. If barriers are not atomic, they may fail to

detect true data races. Existing implementations either allow non-atomic barriers, sacrificing

guaranteed accuracy, or employ pessimistic synchronization to ensure barrier atomicity and

analysis accuracy. FIB exploits analysis invariants to guarantee barrier atomicity with no

synchronization in the common case, at the cost of expensive synchronization in rare cases.

Experimental evaluation shows that FIB is faster than a highly optimized conventional

implementation of barrier atomicity on several benchmarks and slower on others, varying

with the rate of updates to shared data. Conservative dynamic thread-escape analysis can

lower overheads of both implementations while maintaining accuracy.

Table of Contents

Page

Table of Contents . i

List of Figures . vii

List of Tables . ix

Acknowledgments . x

Chapter 1: Introduction . 1

1.1 Data races are exceptional. 2

1.2 Problem: Accurate language-level data-race detection is slow. 3

1.2.1 Fast hardware-supported data-race detection is inaccurate. 4

1.2.2 Low-level data-race detection is inaccurate on high-level languages. . . 4

1.2.3 Software data-race detectors use costly defensive synchronization. . . . 5

1.3 Dissertation Goals and Contributions . 6

1.3.1 RADISH: Accurate and Fast Race Detection in Software and Hardware
(Chapter 3) . 6

1.3.2 LARD: Low-level Abstractable Race Detection (Chapter 4) 7

1.3.3 FIB: Fast Instrumentation Bias for Pure-Software Data-Race Detection
(Chapter 5) . 8

1.4 Publication and Collaboration . 9

Chapter 2: Foundations and Related Work . 10

2.1 Data Races . 10

2.1.1 The Happens-Before Relation and Data Races 11

2.1.2 Data Races and Higher-Level Properties of Program Executions . . . 12

2.2 Accurate Dynamic Data-Race Detection . 12

i

2.2.1 Vector Clocks . 12

2.2.1.1 Synchronization tracking . 13

2.2.1.2 Access tracking and checking 16

2.2.1.3 Variants . 17

2.2.2 Alternative Happens-Before Representations 18

2.2.3 First-Race Accuracy . 18

2.2.4 Data-Race Exceptions . 20

2.2.5 Performance . 20

2.3 Conservative Data-Race Detection . 21

2.3.1 Lock Sets . 22

2.3.2 Generalization to Other Executions 22

2.4 Precise Data-Race Detection . 23

2.4.1 Data Races that Violate Sequential Consistency 23

2.4.2 Other Precise Techniques . 24

2.5 Best-Effort Data-Race Detection and Other Tools 25

2.6 Static Data-Race Detection . 26

Chapter 3: RADISH: Accurate and Fast Race Detection in Software and Hardware 28

3.1 Introduction . 28

3.2 The RADISH System . 29

3.2.1 Intuition . 29

3.2.2 The RADISH Architecture . 31

3.2.3 RADISH Metadata . 32

3.2.3.1 In-Hardware Status . 34

3.2.3.2 Local Permissions . 34

3.2.4 Maintaining In-Hardware Status and Local Permissions 35

3.2.4.1 Maintaining In-Hardware Status 35

3.2.4.2 Maintaining Local Permissions 36

3.2.5 RADISH Checks . 37

3.2.6 The RADISH Software Interface . 38

3.2.7 An Example Trace . 40

3.3 Equivalence to Canonical Vector-Clock Data-Race Detector 42

3.3.1 State . 42

3.3.2 No Cache Evictions, No Context Switches, No Optimizations 43

3.3.2.1 Synchronization Tracking . 43

ii

3.3.2.2 Access Tracking and Checking 43

3.3.3 Cache Evictions . 44

3.3.4 Context Switches . 45

3.3.5 In-Hardware Status . 45

3.3.6 Local Permissions . 46

3.3.6.1 Proof: Local Checks Suffice for Permitted Accesses 47

3.3.6.2 Proof: Local Updates Suffice for Permitted Accesses 48

3.4 Related Work . 49

3.5 Conclusions . 51

Chapter 4: LARD: Low-Level Abstractable Race Detection 52

4.1 Introduction . 52

4.1.1 Low-Level Data Races 6= Language-Level Data Races 53

4.1.2 Low-Level Detection of Language-Level Data Races 54

4.1.3 LARD Implementation and Evaluation 55

4.1.4 Contributions and Outline . 55

4.2 Low-Level Abstractable Race Detection . 56

4.2.1 Memory Access . 57

4.2.2 Synchronization . 59

4.2.3 Memory Allocation . 59

4.2.4 Memory Movement . 61

4.2.5 Thread Identity . 62

4.2.6 Sufficiency . 63

4.2.7 Generality . 64

4.3 Implementation . 65

4.3.1 The LARDx86 ISA . 65

4.3.2 The LARDISH Hardware Data-Race Detector 67

4.3.3 The Jikes LARDVM Java Virtual Machine 69

4.3.3.1 Memory Tracking . 69

4.3.3.2 Thread Identity and Synchronization 70

4.3.3.3 Memory Management and Mapping 70

4.3.3.4 Extent of Changes to Jikes RVM 71

4.3.4 Extensions for Accuracy Analysis . 71

4.4 Evaluation . 72

4.4.1 False Data Races and Missed Data Races 73

iii

4.4.2 Impacts of LARD Extensions . 75

4.4.3 Jikes LARDVM Performance on LARDISH 78

4.4.4 Jikes LARDVM Performance on x86 78

4.5 Related Work . 79

4.5.1 Virtualization and Language Semantics 79

4.5.2 Compensation for Translation Artifacts 80

4.6 Conclusions . 82

Chapter 5: FIB: Fast Instrumentation Bias . 83

5.1 Introduction . 83

5.1.1 Barrier Atomicity and Barrier-Access Ordering 85

5.1.2 Pessimistic Barrier Atomicity . 86

5.1.3 Cooperative Barrier Atomicity with FIB 87

5.1.4 Contributions and Outline . 88

5.2 FastTrack . 89

5.2.1 Access History . 90

5.2.2 Invariants . 91

5.2.3 Barriers . 91

5.2.3.1 Write Barrier . 92

5.2.3.2 Read Barrier . 94

5.3 The FIB Protocol . 96

5.3.1 Notation . 96

5.3.2 Ownership States . 97

5.3.3 State Transition Overview . 99

5.3.4 Local Transitions . 101

5.3.4.1 Exclusive Writes and Reads 102

5.3.4.2 Shared Reads . 102

5.3.4.3 Optimizations . 105

5.3.5 Single-Conflict Transitions . 107

5.3.5.1 Request Dispatch and Response Handling 107

5.3.5.2 Check and Transfer . 110

5.3.5.3 Queue Processing and Response 113

5.3.6 Multiple-Conflict Transitions . 115

5.3.6.1 Interaction with Fence Transitions 119

5.3.6.2 Alternatives . 120

iv

5.3.7 Progress Guarantee . 121

5.4 Extensions . 122

5.4.1 Dynamic Thread-Escape Analysis . 122

5.4.1.1 Filtering Access Barriers . 122

5.4.1.2 Filtering Synchronization Instrumentation 125

5.4.2 Ownership State Initialization . 126

5.4.2.1 CAS for Initial Ownership 126

5.4.2.2 Indirect Initial Ownership via Thread-Escape Analysis . . . 126

5.5 Implementation . 127

5.5.1 Common Metadata and Instrumentation 128

5.5.1.1 Metadata . 128

5.5.1.2 Instrumentation . 129

5.5.2 FastTrack Implementations . 130

5.5.3 FIB Communication Infrastructure . 131

5.5.4 Dynamic Thread-Escape Analysis . 132

5.6 Evaluation . 132

5.6.1 Environment . 132

5.6.2 Performance and Profiling Results . 133

5.6.3 Discussion . 134

5.6.3.1 Fib versus Cas . 138

5.6.3.2 Dynamic Thread-Escape Analysis 139

5.6.3.3 Scalability and Other Pessimistic Implementations 140

5.7 Related Work . 141

5.7.1 Biased Locking . 142

5.7.2 Coherence, Permissions, and Protections 142

5.7.3 Object Race Detection and Octet . 143

5.7.4 Dynamic Thread-Escape Analysis . 144

5.8 Limitations . 145

5.8.1 Sensitivity to Serialized Sharing . 146

5.8.1.1 FIB versus Octet . 146

5.8.2 Starvation of Atomic Lookup-and-Enqueue 148

5.8.3 Dynamic Thread-Escape Analysis . 148

5.9 Future Work . 149

5.9.1 Refined Ownership States . 149

5.9.1.1 Write- and Read-Exclusive States 149

v

5.9.1.2 Independent or Bulk Transitions 150

5.9.2 Adaptive Synchronization Selection . 151

5.9.3 Reprivatization for Data-Race Detection 151

5.9.3.1 Unsound Reprivatization . 152

5.9.3.2 Sound Reprivatization . 153

5.10 Conclusions . 154

Chapter 6: Conclusions and Next Steps . 155

6.1 Summary of Conclusions . 155

6.2 Racing Onward: Limitations and Future Work 157

References . 159

vi

List of Figures

Figure Number Page

2.1 Syntax of execution traces . 11

2.2 Vector-clock data-race detector metadata . 13

2.3 Vector-clock data-race detector . 14

3.1 Overview of the RADISH processor core. State added by RADISH is shaded. . 31

3.2 RADISH’s in-cache metadata format. Local permissions have 3 possible val-
ues, and in-hardware status 4 values, so we use 4 bits to represent the 12
combinations. 6 bits are left for each clock; we discuss rollover issues in [38]. . 32

3.3 Mapping from data to metadata addresses for a single processor. Each
processor uses a distinct portion of the physical address space. 33

3.4 In-hardware status is downgraded when metadata is evicted from the last-level
cache. 35

3.5 Flowchart describing when and how RADISH performs data-race checks for
each memory access. 37

4.1 A näıve low-level data-race detector reports false data races and misses true
data races in Java programs. Solid arrows are happens-before edges observed
by the data-race detector. Each example contains three views of the same
execution. 58

4.2 The LARD environment. 65

4.3 Execution time overhead of Jikes LARDVM normalized to unmodified Jikes
RVM, both run on native x86. 79

5.1 Lost access history updates lead to a missed data race in an unsynchronized
software data-race detector. 84

5.2 FastTrack metadata . 92

5.3 High-level view of modified FastTrack barriers. 93

5.4 FIB analysis metadata. 97

5.5 FIB write barrier. 103

vii

5.6 FIB read barrier. 104

5.7 Specializations of the Exclusive cases of local FIB barriers. 106

5.8 FIB request dispatch and response handling in communicating barriers. . . . 108

5.9 FIB check-and-transfer handling. 111

5.10 FIB request processing at yield points. 113

5.11 FIB write barrier case for Shared state. 116

5.12 A missed data race due to escape-filtering must be preceded by a detected
race on escape. 124

5.13 Execution times of data-race detector implementations normalized to Base
Jikes RVM. 135

5.14 Scalability of Base Jikes RVM and FastTrack implementations. 137

5.15 Execution times of Base, Unsync, Cas, and Fib, normalized to Cas. 138

5.16 Unsound reprivatization in TRaDe may miss true data races. 152

viii

List of Tables

Table Number Page

3.1 An example trace showing how RADISH metadata is updated. Empty cells
indicate the value is the same as in the cell above. The local component of
each core’s vector clock is underlined. 41

4.1 The LARD interface. 57

4.2 Accuracy of LARD vs. FastTrack and a näıve low-level data-race detector. . . 74

4.3 False or missed data races with individual LARD extensions disabled. 76

5.1 Summary of FIB ownership state transitions 99

5.2 FIB ownership state transitions in practice. 136

ix

Acknowledgments1

The work described in this dissertation was undertaken with several collaborators. Joe

Devietti led the RADISH project, where he and I enjoyed a 2-to-1 adviser-to-student ratio

working with Karin Strauss, our advisers Luis Ceze and Dan Grossman, and Shaz Qadeer.

The breadth of experience and insight represented in this group was exciting, as was

publishing a paper at a computer architecture conference that referred to a companion

technical report with proofs, sketchy as they may have been. On the LARD project, Dan and

Luis offered great support, repeatedly championing an idea I worried was too obvious. On

the FIB project, Dan and I have benefited from the insights and experience of collaborators

Man Cao and Mike Bond, who designed and engineered Octet, the most related prior work.

More broadly, in six years at UW CSE, I have interacted with a host of insightful

individuals who made me the computer scientist I am today.

My advisers Dan Grossman and Luis Ceze brought complementary perspectives to their

co-advising that helped build the signature Sampa culture of cross-stack thinking while

supporting the goals of the individual students they advised. They proved patient in their

attempts to focus a student perpetually distracted by unrelated pursuits, and reacted with

easygoing laughter (and occasional delight) when said student poked fun at them and the

grad school experience. Dan, with his knack for the right mix of rigor, clarity, and a little

humor, influenced the way I think and communicate (even if I still wave my hands a bit too

often), whether for research or teaching. Luis, with his seemingly unbounded and unbridled

enthusiasm, threw more inspired and zany ideas at me than I could dodge, eventually turning

1The section’s title is an acronym describing the peculiar genre known as dissertation acknowledgments:
Awkwardly cooing key names or w(e)arily listing each due gratitude makes effusive notes turn sappy.

x

me from ignoring hardware to dabbling occasionally in computer architecture. I must also

thank Dan for an ancillary benefit of his advising: His foresight in taking a couple “long

walks” in his college days ensured that he and Luis were not only on board when I decided

to disappear to walk for a few months, but piloted a version of the LARD paper through

author response and resubmission so I could keep walking.

I also benefited from mentorship by other faculty during my time at UW. Gaetano

Borriello offered mentorship and support in my steps from CSE 351 TA to instructor to

faculty job applicant and beyond. At my talks at UW, Mark Oskin always asked big

questions that I never quite understood, but that have later deepened my own understanding

of my research. Zach Tatlock offered enthusiastic support and fresh insights on presentation,

especially in hasty preparation for job talks. I somehow conned him into serving on my

committee during his first year as a professor. Scott Hauck served as graduate school

representative at my general exam despite the peculiar proposed completion schedule and

Nick Boechler stepped in for my final exam on short notice to help solve a difficult set of

schedule constraints. Hal Perkins shared candid discussions on teaching careers.

Sebastian Burckhardt, along with Daan Leijen and Manuel Fähndrich, exposed me to

new perspectives, insights, and values in research, during a brief stint at Microsoft Research.

Steve Freund played a major role in my entry into computer science research and grad

school. My first research project was on dynamic data-race detection with him seven years

ago. (Apparently my fascination by this topic remains.) Steve’s relaxed mentorship on

points from academic life balance to research detail has been invaluable ever since.

Lindsay Michimoto was a source of wisdom, administrative magic, and encouragement

throughout grad school. I remained blissfully ignorant of grad school finance due to Lindsay,

Mel Kadenko, Julie Svendsen, Lisa Merlin, Joel Cohn, Jan Harrison, and others, while

enjoying the support of a departmental Anne Dinning and Michael Wolfe Fellowship and an

ARCS Foundation Fellowship.

The students of Sampa made collaboration a blast. Joe Devietti and I had a knack for

xi

writing papers that took program committees at least a few tries to appreciate.2 Maybe

this is because we consistently omitted our best ideas, like representing 9 states in 3 bits

via an enchanting theory of half-bits, or deploying the title, DR. DISH TOWEL: Data-Race

Detection In Software and Hardware That’s always On With Excellent Latency. Brandon

Lucia’s creative enthusiasm and shared enjoyment of terrible puns kept me on my toes.

Without Adrian Sampson’s level-headed and insightful assistance, my first conference paper

would not have happened so smoothly. I later learned a lot from Adrian’s ability to deliver

compelling and clear presentations. Jacob Nelson’s masterful management of our group

infrastructure saved me countless headaches. Discussions with Jacob and Nick Hunt revealed

reassuring shared perspectives on some peculiarities of the value systems of academia. Hadi

Esmaeilzadeh demonstrated that a brilliant researcher could be downright friendly. Finally,

post-Sampa-meeting afternoon diversions with Brandon, Adrian, Joe, Jacob, Tom Bergan,

Emily Fortuna, Brandon Myers, and Brandon Holt made possible our finest and most

impactful publications, appearing at the prestigious UW CSE Potentially Computer Science

Conference, along with other shenanigans.

I enjoyed formative interactions with UW undergraduates. Cody Schroeder and Kristian

Lieberg provided an enjoyable summer lesson in advising undergraduate research. Working

with my CSE 351 class in summer 2013 reminded me how much I enjoy teaching.

Outside the department, Tom and Fran were consistent adventure companions, great

friends, and providers of balanced perspective on the relative importance of grad school and

life. Trips with Nick opened up new modes of self-powered travel in the mountains.

Finally, the constant support of my family played an enormous role in bringing me to

graduate school in the first place and encouraging me to succeed on my own terms.

2Technically, we have not yet established an upper bound.

xii

1

Chapter 1

Introduction

Software is used to solve inherently concurrent problems at all scales, from power grid control

to finance and from vehicle control to medical devices. Building reliable software demands

programming models and tools that support transparent reasoning and strong guarantees

about the execution of programs. Shared-memory multithreading is a programming model for

concurrency and parallelism that has seen heavy use in mainstream programming languages,

despite suffering several pitfalls arising from the implicit sharing of memory. The rapid

adoption of multicore processors in machines from servers to phones has increased the use of

shared-memory multithreading while simultaneously exacerbating its problems. Threads

can interact through shared memory in subtle, timing-dependent ways that lead to errors,

such as data races, whose unpredictable outcomes make them difficult to find, understand,

and eliminate.

Despite great strides over the past few decades in research to improve the reliability

of shared-memory multithreaded programs, a number of factors have deterred solutions

from reaching real-world success: problems of scale and precision have defeated some static

program analysis tools; the inertia of mainstream languages or incompatibility with legacy

code has slowed adoption of new programming models and language advances; high execution

time overheads have discouraged the use of run-time error-detection tools. This dissertation

focuses on challenges impeding widely-deployed, accurate, and automatic detection of data

races in shared-memory multithreaded programs at run-time.

2

1.1 Data races are exceptional.

A data race in a shared-memory multithreaded program is a pair of memory accesses to the

same shared-memory location by different threads, where at least one of the two accesses

is a write and no synchronization orders the two accesses. The accesses may execute in

either order, yielding unpredictable program state. Intuitively: a read racing with a write

may return the location’s old or newly written value; the final value stored in a location

when two writes race may be either of the newly written values. Data races notoriously

result in problematic and confusing errors. The silent, unpredictable resolution of data races

hurts reproducibility when testing and debugging and can play a part in other more complex

shared-memory errors such as violations of atomicity or determinism. Furthermore, while

the memory consistency models of modern mainstream programming languages [20, 76]

guarantee that programs free of data races execute with the intuitive semantics of sequential

consistency [3, 69], they make weak or no guarantees about the execution of programs with

data races. Optimizations in modern compilers and multiprocessor architectures can interact

with data races to result in unintuitive, program executions where in-order interleavings of

the operations of multiple threads are insufficient to reason about all possible executions.

Some researchers have proposed data-race exceptions to mitigate the ill effects of data

races by making every data race an explicit fail-stop error at run-time [2, 27, 46, 73, 78]:

on at least one access in a pair of racing accesses, raise an exception instead of executing

the access. Under this model, data races become obvious at run-time and execution never

reaches a racing access nor its ill effects. Early and explicit failure is arguably more useful to

programmers than silently continuing execution. Data-race exceptions thus aid debugging

and promote the treatment of data races as errors that must be fixed, rather than low-priority

issues to ignore until obviously problematic. Furthermore, many analyses of higher-level

properties of multithreaded programs, such as determinism [94] and atomicity checking [56],

rely on data-race freedom or must perform data-race detection as part of the analysis.

Data-race exceptions also simplify semantics in programming languages. In a semantics

where data races are the only source of sequential consistency violations, raising an exception

instead of allowing a data race suffices to avoid violations of sequential consistency.

3

1.2 Problem: Accurate language-level data-race detection is slow.

Implementing data-race exceptions naturally requires accurate dynamic data-race detection.

An accurate dynamic data-race detector admits an execution (or a single access within

that execution) if and only if it is data-race-free; it reports a data race if and only if a

data race truly occurs in that execution. Much of the data-race detection literature uses

the terms sound and complete to describe the two conditions for what we term accuracy,

although application of these terms in the literature differs based on the perceived purpose

of a data-race detector. This dissertation takes the positive purpose to verify that executions

are data-race-free, and thus admit executions if and only if they are data-race-free, analogous

to a type checker whose purpose is to admit only type-safe programs. A sound dynamic

data-race detector admits an execution only if it is data-race-free. A complete dynamic

data-race detector admits an execution if it is data-race-free.1

We use data-race detection to refer to dynamic data-race detection throughout this

dissertation unless otherwise noted. We also assume synchronous (or on-the-fly) dynamic

data-race detection, with data races reported immediately before one of the two racing

accesses, as opposed to asynchronous or post-mortem data-race detectors which may report

data races later or analyze a log to identify data-races after program execution is complete.

Implementing accurate dynamic data-race detection is challenging. Most techniques

sacrifice guarantees of accuracy, potentially missing true data races or reporting false data

races, or they incur heavy performance overhead. Previous hardware data-race detectors

(e.g., [83, 103, 143]) are inaccurate and unsuitable for data-race exceptions. While recent

advances have made significant improvements to the performance of accurate dynamic

software data-race detection, data-race exception support does not yet have performance

suitable for production settings. FastTrack, the state of the art algorithm for pure-software

dynamic data-race detection, is accurate on high-level programs, but may cause programs

to run roughly an order of magnitude slower than under native execution [52, 55]. As is,

1Some other work aims to find executions that contain data races, where sound means reporting an
execution only if it contains a data race and complete means reporting an execution if it contains a data
race. We do not use these definitions.

4

neither hardware support nor pure-software dynamic data-race detection suffices to support

accurate and fast data-race exceptions. This dissertation addresses three specific accuracy

and performance problems that make data-race exceptions infeasible to date.

1.2.1 Fast hardware-supported data-race detection is inaccurate.

Hardware-supported data-race detectors are attractive for being fast and general, especially

when applied to support data-race exceptions. Hardware can optimize common cases of

an analysis to achieve much faster performance than pure software data-race detection

implementations. Furthermore, by building in data-race detection at a low level in the

system implementation stack, a hardware data-race detector can be reused across many

software systems. The core performance- and correctness-critical components can be designed

and implemented once and reused across systems. Unfortunately, previous work on hardware

data-race detectors has produced only best-effort implementations whose accuracy is limited

by fixed-size hardware resources or fundamentally inaccurate detection algorithms [73, 78,

82, 83, 103, 104, 143]. While many of these hardware-supported data-race detector designs

have achieved very low performance overheads, none has achieved fast and fully accurate

data-race detection prior to the work described in this dissertation. Fast, hardware-supported

data-race exceptions have thus remained infeasible.

1.2.2 Low-level data-race detection is inaccurate on high-level languages.

Recent proposals for low-level dynamic data-race detection, including our work in Chapter 3

to address the problem of §1.2.1, have full accuracy for low-level programs and improved

performance. An accurate low-level data-race detector analyzes virtual memory accesses in

the instruction set architecture (ISA) and stores access history for virtual memory locations,

reporting data races in this abstraction accurately. Low-level implementation allows for (1)

hardware optimization of common cases and (2) reuse of fast data-race detection mechanisms

by many software systems.

Näıvely, one might run a high-level language implementation like a Java virtual machine

(JVM) on hardware with low-level data-race detection support to implement language-level

5

data-race exceptions in the Java program. By language-level data race, we mean a data race

between accesses in the high-level language memory abstraction. Unfortunately, neither

low-level data races nor language-level data races subsumes the other. Thus a low-level

race detector can report false data races and miss true data races for programs written in

high-level languages.

Current hardware data-race detectors are designed to reason only about ISA-level

programs and their data races. They cannot reason about data races in higher-level

execution abstractions when non-trivial translation is involved. The mismatch between

modern sophisticated language implementations and näıve hardware data-race detectors

bars a large population of high-level language programs from the benefits of fast, accurate,

and general hardware-supported data-race detection.

1.2.3 Software data-race detectors use costly defensive synchronization.

A dynamic data-race detector must protect its analysis metadata against data races in

the analysis target. A software dynamic data-race detector stores its analysis metadata in

shared memory. In general, the data-race detector may read and write metadata for memory

location x as part of a barrier immediately before every program access to location x. If two

program accesses to x are concurrent, even if they do not conflict (i.e., even if both accesses

are reads), metadata accesses will also be concurrent. The data-race detector must avoid ill

effects of potential metadata races to ensure consistent and correct analysis results.

Pessimistic enforcement of analysis metadata consistency can be quite expensive. Profiling

experiments in [38] suggest that synchronization to ensure metadata consistency accounts for

20%-90% of the overhead of the FastTrack [52] data-race detector on a suite of multithreaded

benchmarks. The literature has generally assumed this problematic detail away as a mere

artifact of implementation and not an interesting algorithmic feature. In fact, some real

data-race detector implementations make no guarantee to avoid metadata races. When using

data-race detection for debugging, this is often sufficient, as metadata consistency is rarely

compromised in practice. This approach clearly does not suffice for data-race exceptions,

where absolute accuracy guarantees are needed, but it does suggest an opportunity to exploit

6

the rareness of problematic conflicts.

1.3 Dissertation Goals and Contributions

The goal of this dissertation is to design and evaluate techniques that reduce the overheads of

accurate and fast data-race exceptions for high-level shared-memory multithreaded languages.

Towards that goal, this dissertation offers three primary contributions in three areas of

dynamic data-race detection: race detection in software and hardware, low-level abstractable

race detection, and fast instrumentation bias.

1.3.1 RADISH: Accurate and Fast Race Detection in Software and Hardware

(Chapter 3)

Race Detection in Software and Hardware (RADISH) is a hybrid software-hardware data-race

detector that is both accurate on ISA-level programs and fast.

Hypothesis: A hybrid software-hardware system can exploit the accuracy of software

data-race detectors and the performance of hardware support to build a hybrid data-race

detector that is both accurate and fast. The flexible bounds of software implementation can

maintain accuracy in all cases of analysis, while hardware support can reduce or eliminate

latency for common cases.

Contributions

• We present the design of RADISH, a hybrid software-hardware data-race detector that

retains the full accuracy of a software data-race detector while optimizing its common

cases with fast hardware support. RADISH is the first hardware-supported data-race

detector that is fully accurate on ISA-level programs.

• We show the accuracy of RADISH by its equivalence to a canonical vector-clock data-race

detection algorithm.

7

1.3.2 LARD: Low-level Abstractable Race Detection (Chapter 4)

Low-level Abstractable Race Detection (LARD) virtualizes low-level dynamic data-race detec-

tion support to detect language-level data races in high-level programming languages.

Hypothesis: Hardware or other low-level implementations can enable fast and general

support for accurate language-level data-race detection in high-level languages, yet current

low-level solutions are accurate for ISA-level programs at best, and inaccurate for programs

written in high-level languages.

Contributions:

• We present the first full explanation of how translation of a program from a high-

level language to a low-level machine abstraction affects the primitives involved in

the definition of a data race, and why low-level data-race detectors are incorrect for

high-level programs as a result. We synthesize various issues encountered in earlier

data-race detector implementations as well as issues not previously considered.

• We design low-level abstractable race detection (LARD), a simple interface for low-level

data-race detectors and language implementations that virtualizes accurate low-level

data-race detectors, allowing the construction of an accurate language-level data-race

detector using a low-level data-race detector. We compare our approach to earlier

systems that have addressed individual issues with low-level data-race detection.

• We implement our approach for Java, coupling a simulated hardware-supported ISA-

level dynamic data-race detector and a modified Jikes RVM [8] Java virtual machine

through a version of the x86 ISA extended with LARD primitives.

• We evaluate our implementation’s accuracy, comparing against FastTrack [52], a näıve

low-level data-race detector similar to our RADISH hybrid software-hardware data-race

detector [38], and various partial implementations of LARD. We find that, in practice,

näıve ISA-level data-race detectors suffer from false and missed data-races for Java

programs, but LARD does not.

8

• We present cursory evaluation of our implementation’s performance via simulation and

via execution of the software component alone on real conventional hardware, finding

that hardware support for language-level data-race detection is likely to provide good

performance, similar to the performance of hardware-supported accurate ISA-level

data-race detection.

1.3.3 FIB: Fast Instrumentation Bias for Pure-Software Data-Race Detection

(Chapter 5)

Fast Instrumentation Bias (FIB) aims to reduce the cost of data-race checks in pure-software

dynamic data-race detectors by using cooperative synchronization to protect metadata.

Hypothesis: Performance overheads of pure-software accurate dynamic data-race detection

can be reduced by replacing pessimistic metadata synchronization with instrumentation bias,

a form of cooperative metadata synchronization based on thread ownership information

already implicitly encoded by data-race detection metadata.

Contributions:

• We present Fast Instrumentation Bias (FIB), an algorithm for accurate data-race

detection that avoids harmful metadata races with no synchronization in common

cases, at the cost of expensive synchronization in rare cases.

• We apply conservative dynamic thread-escape analysis as a pre-filter for data-race

detection and show how it maintains accuracy.

• We implement FIB for Java programs in the Jikes RVM [8] Java virtual machine.

• We evaluate the overall performance of multithreaded Java applications on our pro-

totype implementation as well as unsynchronized and pessimistically synchronized

implementations of FastTrack [52], finding that FIB is 13-21% faster than the fastest

conventionally synchronized implementation on 4 benchmarks, 0-7% slower on three

benchmarks, and 45-260% slower on three benchmarks. We profile the distribution of

9

intended common and rare cases in practice, finding that poor performance in FIB is

linked to relatively high rates of FIB’s expensive slow paths.

• We discuss limitations of FIB as described in this dissertation, and propose future

improvements.

1.4 Publication and Collaboration

Chapter 3 covers the design and accuracy of the RADISH data-race detector, published in the

proceedings of the 39th International Symposium on Computer Architecture [38] with an

accompanying technical report [39]. Joe Devietti led the RADISH project, in collaboration

with this author, Karin Strauss, Luis Ceze, and Dan Grossman. Joe is responsible for a

majority of the design and the full evaluation in [38]. Chapter 3 focuses on the accuracy

guarantees of RADISH’s optimizations, where the author’s contributions were focused, and

reproduces enough of the design of RADISH from [38] to support this discussion. System

detail, simulation, and evaluation are covered in [38]. The correctness discussion in this

chapter supersedes previously published versions.

Chapter 4 was published in the proceedings of the 19th International Conference on

Architectural Support for Programming Languages and Operating Systems [137]. The LARD

project was led by the author, in collaboration with Dan Grossman and Luis Ceze. This

dissertation makes minor changes to the original paper to consolidate some background and

related work.

Chapter 5 covers unpublished work led by the author in collaboration with Man Cao,

Mike Bond, and Dan Grossman. We plan to extend and publish this work in a future paper

to supersede this presentation. Implementation of the base dynamic thread-escape analysis

used in §5.4.1 and some related insights are due to Man and Mike. Specifically, the author’s

original proposal for accurately filtering data-race checks to non-escaped objects required

the current epoch to be recorded as the last read and last write for all access histories in an

object when that object is about to escape, which is sound and complete under the first-race

guarantee. Man and Mike observed that it is also sound under the first-race guarantee to

make no updates to an access history upon escape, as described in §5.4.1.1.

10

Chapter 2

Foundations and Related Work

In this chapter, we first present foundations of data races (§2.1) and techniques for accurate

dynamic data race detection (§2.2). Then, we discuss other approaches to data-race detection

that are not suited for data-race exceptions because they may report false data races (§2.3),

miss true data races (§2.4), or both (§2.5), as well other issues in data-race detection.

We briefly survey static techniques for data-race detection (§2.6). Previous work related

specifically to RADISH, LARD, and FIB is presented in §3.4, §4.5, and §5.7, respectively.

2.1 Data Races

We consider program execution traces (T) expressed as sequences of operations (a, b) of

threads (t, u), using syntax shown in Figure 2.1. Reads (rd(t, x, v)) and writes (wr(t, x, v))

by a thread, t, load and store values, v, in memory locations, x. Synchronization operations,

include thread t forking a new thread u (fork(t, u)), thread t joining an existing thread u by

blocking until thread u’s final operation has completed (join(t, u)), and thread t acquiring

(acq(t, l)) or releasing (rel(t, l)) a lock.1 We omit the standard formal semantics of the

execution of traces and additional types of synchronization. Previous work [46, 52] covers

these omissions using similar syntax.

1We assume sequential consistency. Although this breaks down in the presence of a data race, it does so
only after the first race [5]. We discuss sequential consistency in §2.1.2, data-race detectors focused on
sequential consistency violations in §2.4.1, and the first-race guarantee in §2.2.3.

11

Memory Location x Lock m Thread ID t, u Value v

Operation a, b ::= wr(t, x, v) | rd(t, x, v) | acq(t, l) | rel(t, l) | fork(t, u) | join(t, u)

Trace T ::= · | T, a

Figure 2.1: Syntax of execution traces

2.1.1 The Happens-Before Relation and Data Races

The happens-before relation (
hb−→T) is a strict partial order over operations in trace T ,

composed of the transitive closure over program order (
po−→T), the order of operations within

each thread in the, and synchronization order (
so−→T), the ordering between synchronization

operations in different threads [68]. Program order is straightforward: if operation a of

thread t precedes operation b of thread t in trace T , then a
po−→T b. Synchronization order is

defined as follows:

• If thread t forks thread u at operation a in T and operation b is the first operation of

thread u in T , then a
so−→T b.

2

• If operation a is the last operation of thread u in T and thread t joins thread u at

operation b later in T , then a
so−→T b.

• If thread t releases lock l at operation a in T and thread u acquires lock l at operation

b later in T , then a
so−→T b.

A data race is a pair of concurrent, conflicting memory accesses [91]. Two distinct operations

a and b are concurrent in trace T if and only if they are not ordered by the happens-before

relation (neither a
hb−→T b nor b

hb−→T a). Two accesses conflict if they access the same

2We assume b follows a in T . The execution semantics of traces get stuck at operation b if it does not
follow operation a in T .

12

location and at least one of the accesses is a write. More detailed characterizations of data

races may be found in [88, 91].

2.1.2 Data Races and Higher-Level Properties of Program Executions

Data races are a fundamental type of error in shared-memory multithreaded programs.

Data races are closely linked to several other properties of such programs. Relaxed memory

consistency models for programming languages [20, 21, 76] and hardware [3–5] generally

guarantee sequential consistency [69] given data-race-freedom, but in executions with data

races, a weaker (or undefined) semantics applies. Thus programmers cannot reason about

data races in terms of simple in-order interleavings of the operations of threads in general.

Data races and data-race-freedom also factor in other higher-level properties (and their

analyses) such as atomicity (e.g., [56, 119]) and determinism (e.g., [11, 37, 94]).

2.2 Accurate Dynamic Data-Race Detection

All accurate data-race detectors track the happens-before relation to check if pairs of

conflicting accesses are concurrent, and thus racing.

2.2.1 Vector Clocks

This dissertation considers data-race detectors derived from a canonical algorithm using

vector clocks [49, 80] to track the happens-before order induced by synchronization and

recording a history of accesses to each location to determine if a current access is concurrent

with any previous conflicting accesses. We present the base algorithm (formalized in more

detail in [10]), followed by discussion of many variants in the literature.

A vector clock, v, contains an integer logical clock, c, for each thread, indexed by thread.

Vector clocks represent frontiers in logical time. Under the formulation of the happens-before

relation as a directed acyclic graph, vector clocks summarize information about a vertex

representing an operation by a thread and this vertex’s most recent predecessors from each

other thread.

Figure 2.2 shows the canonical vector-clock data-race detection algorithm as a judgment

13

Clock c ∈ N
Vector Clock v ::= · | v, t 7→ c
Thread VCs C ::= · | C, t 7→ v

Lock VCs L ::= · | L,m 7→ v
Last Reads R ::= · | R, x 7→ v
Last Writes W ::= · | W,x 7→ v

Detector State (C;L;R;W)

Figure 2.2: Vector-clock data-race detector metadata

(C;L;R;W)
a

==⇒VC (C ′;L′;R′;W ′) on the data-race detector state, shown in Figure 2.2, and

a program operation. Program and heap constraints are imposed by an external judgment

(not shown here) that uses this judgment for data-race detection over traces. Stuck-ness

indicates a data race. We describe synchronization tracking in §2.2.1.1 and access tracking

and checking in §2.2.1.2.

2.2.1.1 Synchronization tracking

To track the happens-before order, the vector-clock data-race detector maintains:

• a vector clock, Ct, for each thread t, representing the last logical time in each thread

that happens before the current logical time in this thread. The tth entry in thread t’s

vector clock is its local time: Ct(t).

• a vector clock, Ll, for each lock l, representing the last logical time in each thread that

happens before the last release of the lock l.

The main thread’s vector clock starts with a local time of 1 and all other vector clocks

initially hold exclusively zero entries: Ct(t) = 1 ∧ ∀u 6= t, Ct(u) = 0. Vector clocks are

updated on the execution of synchronization operations in a program trace as follows:

• vc fork: When thread t forks thread u, thread u’s vector clock is initialized with

a copy of thread t’s current vector clock. Afterwards, both threads’ local clocks are

incremented.

14

(C;L;R;W)
a

==⇒VC (C ′;L′;R′;W ′)

Synchronization tracking:

vc fork
v = Ct, t 7→ Ct(t) + 1 v′ = Ct, u 7→ 1

(C;L;R;W)
fork(t,u)

======⇒VC (C, t 7→ v, u 7→ v′;L;R;W)

vc join
v = Ct t Cu

(C;L;R;W)
join(t,u)

======⇒VC (C, t 7→ v;L;R;W)

vc release
v = Ct, t 7→ Ct(t) + 1 v′ = Ct t Lm

(C;L;R;W)
rel(t,l)

=====⇒VC (C, t 7→ v;L,m 7→ v′;R;W)

vc acquire

v = Ct t Lm

(C;L;R;W)
acq(t,l)

=====⇒VC (C, t 7→ v;L;R;W)

Access checking:

vc read
Wx v Ct v = Rx, t 7→ Ct(t)

(C;L;R;W)
rd(t,x,v)

======⇒VC (C;L;R, x 7→ v;W)

vc write
Wx v Ct Rx v Ct v = Wx, t 7→ Ct(t)

(C;L;R;W)
wr(t,x,v)

======⇒VC (C;L;R;W,x 7→ v)

Figure 2.3: Vector-clock data-race detector

15

This represents the fact that the fork operation, and all operations that happen before

it, happen before all operations in thread u, but later operations of the two threads

are concurrent with each other unless more synchronization is performed.

• vc join: When thread t joins on thread u, thread t’s vector clock is updated to be

the entry-wise maximum (t) of the current vector clocks of threads t and u.

This represents the fact that all operations in thread u happen before all operations in

thread t at and after the join.

• vc release: When thread t releases lock l, lock l’s vector clock is updated to the

entry-wise maximum of the vector clocks of thread t and lock l. (Note this maximum

is always equivalent to thread t’s vector clock, since lock l’s vector clock was merged

into thread t’s vector clock on the preceding acquire, and no other thread may have

released the lock since.)

This represents the fact that all operations that happen before the thread t’s release of

lock l will also happen before any later acquisitions of lock l.

• vc acquire: When thread t acquires lock l, thread t’s vector clock is updated to be

the pairwise maximum of the current vector clocks of thread t and lock l.

This represents the fact that all operations that happen before the last release of

lock l also happen before thread t’s acquisition of the lock and all of thread t’s later

operations.

Other types of synchronization are handled similarly. Outgoing synchronization (e.g., lock

release) merges from the performing thread’s vector clock into some other vector clock,

representing the source of some happens-before edge that may later be completed when a

thread performs incoming synchronization on the same target (analogous to a message sent

in Lamport’s formalism [68]), and then advances the thread’s local time to show that later

operations did not happen before this outgoing synchronization. Incoming synchronization

(e.g., lock acquire) merges some other vector clock into the performing thread’s vector clock,

16

representing the destination of a happens-before edge (analogous to a message received in

Lamport’s formalism).

2.2.1.2 Access tracking and checking

For each memory location, an access history records the logical times of accesses to that

location. The logical time of each subsequent access is checked against these previous accesses

to determine whether they are conflicting and concurrent, thus racing. More specifically, for

a location, x, the access history records:

• a set of last reads, Rx, encoded as a vector clock, where each thread’s entry records

the local time of that thread’s last read access to the associated location.

• a set of last writes, Wx, encoded as a vector clock, where each thread’s entry records

the local time of that thread’s last write access to the associated location.

Initially, all last writes and reads are set to 0. When a memory access is executed, it is first

checked against the access history. If it does not race with previous accesses, it is recorded.

The check and access history update for an access are assumed to happen atomically with

the access itself. The checks are as follows:

• vc read: On a read access, rd(t, x, v), to x by thread t, for any thread u 6= t, if thread

t has not synchronized with thread u since thread u’s last write to x (Wx(u) > Ct(u))

then this access races with thread u’s last write to x. We express this in Figure 2.3

with the element-wise vector-clock happens-before operator v. If no race is detected,

then replace thread t’s last read for x with thread t’s current local time and allow the

access.

• vc write: On a write access, wr(t, x, v), to x by thread t, perform the same check as

for the read case. Additionally, for any thread u 6= t, if thread t has not synchronized

with thread u since thread u’s last read of x (Rx(u) > Ct(u)) then this access races with

thread u’s last read of x. We express these checks in Figure 2.3 with the element-wise

vector-clock happens-before operator v. If no race is detected, then replace thread t’s

last write for x with thread t’s current local time and allow the access.

17

2.2.1.3 Variants

Similar algorithms have appeared in much work on data-race (or access-anomaly) detec-

tion [40, 41, 63, 93, 101, 111, 116].

An important optimization of the vector-clock algorithm for data-race detection is to store

information about only a single last write instead of a vector clock recording information

about the last write from each thread [40]. Write accesses to a location must be totally

ordered by the happens-before relation in data-race-free executions, thus the set of last

writes encoded by the vector clock is redundant. By exploiting the guarantee that accuracy

survives until the first data race (or the assumption that an access that races with previous

accesses is never recorded in an access history), it is safe to store only the globally most

recent write (§2.2.3). Since the single recorded last write therefore must happen after all

previous writes to be recorded, an access that happens after this last write also transitively

happens after these previous writes. This optimization lowers the space requirements for

last-writes storage from linear in the number of threads to constant, for a single last write.

It also reduces the cost of a checks for read accesses from linear in the number of threads

to constant, since read checks compare against only a single last write. The complexity of

checks for writes remains linear in the number of threads due to the last reads vector clock,

but reads are more common than writes.

TRaDe [33] optimizes the vector-clock data-race detection algorithm with accordion

clocks [35], an alternative vector clock representation that elides unused entries. Our RADISH

data-race detector, described in Chapter 3 and in [38], is an optimized hybrid software-

hardware implementation of the vector-clock algorithm. FastTrack [52] also optimizes

the vector-clock algorithm. It employs the single last-write optimization and a similar

optimization that allows storage of a single last read in the common case when reads to

a location by different threads happens-before ordered. Although such ordering is not

guaranteed, it occurs, for example, whenever there exists a lock l that is always held when

accessing a memory location x. The use of such locking disciplines is common in practice.

Storing a single last read instead of a vector clock of last reads when possible saves space

and allows write checks to execute in constant time in the common case and time linear in

18

the number of threads in the rare case. We discuss FastTrack further in §5.2.

2.2.2 Alternative Happens-Before Representations

Goldilocks [46] is an accurate dynamic data-race detector that uses an extended lockset3 for

each memory location. After an access, this set initially holds the thread responsible for

that access. When a thread in the set performs outgoing synchronization on some target

(e.g., releases a lock), that target is added to the set. When a thread performs incoming

synchronization on a target in the set (e.g., acquires a lock in the set), that thread is added

to the set. A thread is allowed to access the location if that thread is in the location’s

set. Goldilocks keeps separate sets for reads and writes, analogous to the last reads and

last writes in the canonical algorithm above. These extended locksets encode the subset of

the happens-before relation that is descended from the last access to the memory location

they track—in other words, the nodes in the happens-before graph that are reachable from

the last access. To support this analysis, which potentially requires updating all sets on

every synchronization operation, the Goldilocks implementation does lazy processing of

synchronization operations, maintaining a history of synchronization operations and only

forcing the update of the set for a location upon a new access to that location.

2.2.3 First-Race Accuracy

The accurate algorithms for dynamic data-race detection described above are technically

accurate for a given memory location only through the first data race on that location or the

first race in the execution, a consideration discussed starting with earlier work on dynamic

data-race detection and throughout the literature [10, 32, 52, 82, 90, 91].

The first-race rule is necessitated by the fact that none of these algorithms stores the

complete history of accesses. Instead, they store a set of accesses with the invariant that

all earlier accesses not in the set happen before at least one of the accesses in the set.4

3The meaning of Goldilocks’ locksets is different than that of those in the lockset algorithm for data-race
detection, discussed in §2.3.1.

4The actual invariant is stronger, as is its use: all earlier writes not represented in the write set happen
before all writes represented in the write set and all reads represented in the the read set; all earlier reads
not represented in the read set happen before at least one read represented in the read set and are not

19

Thus by the transitivity of happens-before, if all accesses in the set happen before some new

access, then all earlier accesses happen before the new access. Real implementations, like

the algorithms above, bound the size of the set based on the number threads (or a constant:

1). On data-race-free accesses, replacing an old access in the set with a new access that

dominates it is safe: the invariant is maintained. However, replacing an access in the set with

a racing access can break that invariant. Even though this first race has been reported, later

racing accesses may appear to be data-race-free under the assumption that the invariant

holds. An alternative for racing accesses is to report the race and let execution continue,

but do not store the racing access. This clearly breaks the invariant as well, as the access is

never recorded and future accesses that race with it will appear not to race. However, if the

racing access is neither executed nor recorded, as with data-race exceptions, the invariant is

maintained.

There are a few reasons why the first-race rule—and an even weaker guarantee to catch

only the first race in the entire execution (not the first race per location in the execution)—

is acceptable. For example, later data races may occur as a result of earlier data races.

General dynamic data-race detection, the problem of finding all data races in an execution

that are feasible independent of other data races in the execution, has been shown to be

NP-hard [88, 91]. Choi and Min built a system to detect race frontiers, the first race

in each process, in the context of reproducing data races [32]. In most relaxed memory

models, the first race in an execution indicates the first possible end to the sequentially

consistent execution prefix; reasoning beyond the first data race also requires consideration

of non-sequentially consistent traces, not supported by most data-race detectors [5]. This

is the foundation for a variation on data-race exceptions that raises an exception on all

data races that violate sequential consistency (and potentially on more data races), but not

necessarily on all data races [73, 78].

Most importantly for this dissertation, data-race exceptions make the first-race distinction

moot: racing accesses are never actually executed, so there is never a first race or the

accompanying compromise of accuracy, only races that would have been and accurate reports

concurrent with any write represented in the write set. Not all earlier reads are ordered with respect to all
reads represented in the read set.

20

thereof. In fact, the first data race exception in each thread should correspond to Choi and

Min’s race frontiers [32].

2.2.4 Data-Race Exceptions

Data-race exceptions prevent data races and their effects from occurring by guaranteeing to

raise an exception immediately before (i.e., instead of) at least one of the two accesses in a

data race. Typically, we think of raising an exception on exactly the second in time of the two

accesses. However, allowing the exception to be raised on either or both of the accesses affords

greater implementation flexibility and does not necessarily force serialization of concurrent

accesses for analysis. Additional relaxations of the timing of exception delivery may offer

more implementation alternatives. Regardless, we assume precise exception delivery.

Elmas, et al. [46], were the first to propose data-race exceptions and their benefits for

mitigating the ill effects of data races. Other researchers have proposed or supported this

idea and variants thereof [2, 27, 73, 78]. Specifically, exceptions for the subset of data races

that induce sequential consistency violations are sufficient to simplify the memory consistency

model in a way that avoids reasoning about non-sequentially consistent executions [73, 78].

A memory model with accurate data-race exceptions is stronger than the Java and C/C++

memory models, guaranteeing data-race freedom, or an exception, on each memory access.

Data-race freedom still guarantees sequential consistency, and data-race-free programs never

generate data-race exceptions. Full data-race exceptions provide this benefit, along with

additional debugging benefits and support for other analyses that depend on data-race

detection as a sub-analysis (e.g., [56]) or require data-race freedom (e.g., [94]). We have

previously examined potential uses of recoverable data-race exceptions in designing new

algorithms for synchronization or run-time systems [136].

2.2.5 Performance

Dynamic data-race detectors developed in industry have integrated lockset (§2.3.1) and

happens-before algorithms, although they are generally heavyweight, running tens or hun-

dreds of times slower than normal execution without data-race detection [61, 62, 84, 117, 125].

21

We do not discuss performance of inaccurate data-race detectors in depth as they are not

suitable for our needs. Accurate data-race detectors have long had heavy performance

overhead, but recent innovations have driven it down. Nonetheless, performance remains

infeasible for always-on deployment.

The original Goldilocks implementation reports normalized run-times of 1-18× those

of native execution, with most benchmarks under 5 or 6× in an interpreting JVM [46].

Using static data-race detection to elide checks helps reduce the overheads further. Results

from [52] largely corroborate these results for the same implementation, but show that this

implementation does have pathologically bad performance on some additional benchmarks

(likely due to accommodations for its lazy updates of access histories). Slowdowns for an

implementation of Goldilocks in the RoadRunner [54] dynamic analysis framework (via

bytecode instrumentation on a JIT-compiling JVM) range from a few times to 77× [52]. An

implementation of the DJIT+ algorithm [63] (an optimization of the vector-clock algorithm

described in §2.2.1) in the same framework averages overheads of 20×, and FastTrack

averages 8.5× [52]. Newer results for FastTrack show overheads averaging 7.5× alone and

5.7× after removal of redundant checks with RedCard [55].

Simulation results for the hardware-supported RADISH data-race detector show slowdowns

between unnoticeable and as high as 3×, with most under about 2× [38]. Asynchronous checks

(leading to imprecise exceptions) allow RADISH to use other cores and achieve overheads

under about 2.25×, with most under 1.5×. Wester, et al., use uniparallelism [127, 128] to

parallelize the execution of data-race detection logic [135] in a way that allows the elision of

defensive analysis synchronization, achieving small reductions in overhead for happens-before

and lockset race detectors. Given more cores than the target program, their system can

reduce data-race detection overheads roughly proportionately to the number of cores.

2.3 Conservative Data-Race Detection

Conservative data-race detectors never miss true data races, but do report false data races.

Safety guarantees come at the expense of false warnings.

22

2.3.1 Lock Sets

The lockset algorithm for data-race detection assumes that data races are prevented by

protecting every memory location with at least one lock that will be held by the accessing

thread during every access to that location. Static [51], software dynamic [115], and hardware

dynamic [143] analyses use lockset-based data-race detection. The basic algorithm checks

the single-protecting-lock invariant by intersecting the sets of locks held at each access to a

location. If this intersection ever becomes empty for a location, a data race is reported. This

algorithm is sound—it never allows a racing access—but it is not complete—it disallows

some non-racing accesses, because there exist well-synchronized programs that do not follow

the single-protecting-lock pattern. On the other hand, lockset-based data-race detectors

can report some data races that may be possible in other executions but did not occur

in the observed execution. Not all lockset data-race reports indicate feasible data races,

however. Generalization beyond the current execution can be useful in some settings, but

for data-race exceptions, the desired semantics are to report exactly those data races present

in the current execution.

RaceTrack [141] and MultiRace [101] use hybrids of happens-before and lockset to improve

precision over lockset, though they do not achieve full accuracy.

2.3.2 Generalization to Other Executions

Other dynamic data-race detectors have refined the tendency of the lockset algorithm to

generalize to other executions in more principled ways.

Smaragdakis, et al., design an offline dynamic data-race detector that detects races

with respect to causal precedence, a weaker ordering than happens-before that encodes

constraints on whether operations must have happened in a particular order, as opposed to

simply happening in said order due to scheduling decisions [121]. Their detector discovers

causal-precedence races by analyzing a single concrete execution trace in polynomial time.

AccuLock [140] is a hybrid approach that uses happens-before reasoning for all non-lock

synchronization and a modified lockset algorithm to track the effects of lock synchronization.

Like a dynamic lockset data-race detector, it generalizes beyond the observed thread schedule

23

to report data races possible in other thread schedules, but reports fewer infeasible data races

than a pure lockset algorithm, due to its reasoning about other forms of synchronization

besides locks.

2.4 Precise Data-Race Detection

Precise data-race detectors never report false data races, but may miss true data races.

A number of dynamic data-race detectors employ optimizations that reduce performance

overheads at the cost of missing some data races, while never reporting false data races. While

these performance optimizations may be useful—and occasional missed races acceptable—

in testing and debugging or in detecting a principled subset of data races, implementing

data-race exceptions requires detecting all data races, rendering these techniques unsuitable.

2.4.1 Data Races that Violate Sequential Consistency

In the presence of memory access reorderings by the compiler or hardware, data races may

let programs observe states of memory that correspond to no simple sequential interleaving

of threads, violating sequential consistency [3, 4, 69]. The Java [76] and C/C++ [20]

memory models both guarantee sequential consistency given data-race freedom, but if a data

race occurs, a much weaker—-or undefined—semantics applies [2, 21]. Even if sequential

consistency is preserved [73, 78], data races retain their unpredictable outcomes and can still

contribute to other concurrency errors such as atomicity violations or determinism violations.

Under memory consistency models where data-race-freedom implies sequential consistency,

violations of sequential consistency are possible when data races occur. Some data-race

detectors have focused on detecting at least these sequential consistency-violating data races

and raising an exception upon detection [73, 78, 120]. They provide a memory consistency

semantics of sequential consistency or exception, which bans the least intuitive effects of

data races. However, these systems do not detect all data races, which are still important

for a number of other analyses and for debugging alone.

24

2.4.2 Other Precise Techniques

A number of other techniques for data-race detection are precise or complete (they allow all

data-race-free accesses) but unsound (they allow some racing accesses).

Precise sampling dynamic data-race detectors, such as LiteRace [77], Pacer [22], SOS [72],

and IFRit [45], perform data-race checks on a sample of accesses, rather than all accesses,

with the goal of reporting some data races while reducing overheads. These sampling

data-race detectors all guarantee not to report false data races, but they may miss true data

races.

SOS [72] also optimistically identifies stationary memory locations, those locations that

are not read-only in the language, but are observationally read-only in practice. For such

fields, full data-race detection may be disabled, since read operations never race with one

another. However, the algorithm for tracking stationary status is not fully sound, so some

data races may be missed.

IFRit [45] uses an alternative algorithm for detecting data races that does not track

the happens-before relation explicitly. An interference-free region is a region of a thread’s

execution including an access to a memory location and extending backwards to the most

recent lock acquire (or other incoming synchronization) and forwards to the first lock release

(or other outgoing synchronization) [43]. IFRit detects when interference-free regions for a

single location in different threads overlap in real time. If at least one of these overlapping,

conflicting regions includes a write to the location, then a data race has occurred. Since

the regions overlap, the first outgoing synchronization after the access in one region cannot

possibly have preceded the last incoming synchronization before the access in the other

region.

Unsound dynamic thread-escape analysis, as used in Eraser [92, 115] and often used to

filter analyses in the RoadRunner dynamic analysis framework [54], can lower the overheads

of accurate data-race detectors by eliding full data-race detection analysis on accesses to

memory locations that have thus far been accessed by only one thread, but it sacrifices

soundness, losing the ability to determine whether the first conflicting access is concurrent or

not. Since no access history is recorded in thread-local mode, it is too late to construct this

25

history upon the first access by a second thread, so an analysis simply trusts that the first

thread-escaping access does not race. We discuss conservative reachability-based dynamic

thread-escape analysis as an accurate filter for data-race detection in §5.4.1.

2.5 Best-Effort Data-Race Detection and Other Tools

Model-checking may use an approximate abstraction of synchronization [60], leading to

imprecision, or use the precise happens-before relation [64] when exploring feasible executions,

but regardless, it will detect races only within the limited state-space it explores.

Some static [47], hybrid static-dynamic [30, 93, 105] and dynamic [48, 118, 141] data-race

detectors are optimized for speed and heuristic usefulness of reports at the cost of some

missed data races and false data races, via static heuristics [47], sampling or hardware

performance counters and watchpoints [48, 118], and other approaches. Best-effort hybrid

static-dynamic approaches are discussed further with static analyses in §2.6.

We consider data races at the granularity of atomic units of data, e.g., fields in Java.

However, some previous software race detectors uses object-granularity race detection as a less

expensive approximation of true data-race detection [130]. General object-granularity race

detection reports races on neither a superset nor a subset of accesses where an accurate data-

race detector reports data races. Due to effects analogous to false sharing, object granularity

tracking leads to both false data races and missed true data races. RaceTrack [141] is a

dynamic data-race detector that begins with object-granularity detection and refines to field

granularity once an object race is detected. Octet [23], a framework to support certain

concurrency analyses, uses object-granularity tracking of inter-thread dependences as a filter

for client analysis checks, and is thus suited for analyses that tolerate this false sharing

gracefully. We discuss Octet further in §5.7. Hardware can make race detection or other

analyses at the cache-line granularity much more efficient by observing cache coherence

events or tracking state per cache line [38, 58, 82, 85, 110]. Data-race exceptions do not

tolerate the inaccuracy of coarse-grained object or cache-line race detection. Finer-grained

state must be maintained to maintain full accuracy (as in [38]).

Much work has focused on data-race detection for specific program structures such as

26

nested fork-join programs (e.g., [81]) and Cilk programs [28], event-based programs [109],

parallel loop programs [7, 106], distributed memory systems or partitioned global address-

space programs [63, 97, 98], as well as non-shared-memory message-passing environments [34,

89]. While synchronous online—or on-the-fly—data-race detection is required for data-race

exceptions, several offline or post-mortem analysis techniques record information about a

program execution and use it to detect data races after the fact [5, 31, 111], sometimes

employing sampling [66, 118].

Early work focused on distinguishing independently feasible data races from data races

dependent on others [88, 90]. More recent tools aim to distinguish data races that have

observable ill effects from those that appear to be benign [65, 87], although such tools

should make judgments only for particular compiled versions of programs. Legal compiler

transformations may cause data races that seem benign at the source level—or that are indeed

benign in a particular compilation of the program—to become harmful [19]. Dynamic analysis

has been used to perturb worst-case legal behavior under language memory consistency

models to expose unlikely but possible harmful effects of data races [53]. Other systems seek

to survive the ill effects of data races via redundant execution [129], privatizing updates

during critical sections [108], or letting programmers write after-the-fact execution filters to

be applied to running programs [139].

2.6 Static Data-Race Detection

Restricted programming models [9, 15, 17, 57] or type systems [1, 24, 25, 51, 59, 79, 134] can

statically prohibit programs with data races, completely avoiding the overheads of dynamic

data-race detection, but they do so conservatively, prohibiting some valid data-race-free

programs. Other static data-race detectors approximate possible run-time behaviors of

general multithreaded programs with pointer analysis, symbolic execution, or other static

abstractions of thread interactions [60, 86, 102, 124, 132]. In practice, an unsound escape

hatch is usually provided to work around conservative analyses [57, 132]. These analyses are

generally, but not always, conservative (e.g., [132] may miss some races in rare cases).

When combined with dynamic analyses, conservative static analyses may prove some

27

dynamic checks unnecessary, while the dynamic analysis can ensure precision even where

the static analysis is conservative. Static thread-escape analysis has been used to elide

unnecessary synchronization and can be used similarly to elide data-race checks on provably

thread-local data [6, 29, 71, 112, 114]. Some data-race detectors have used more general static

race detection analyses such as may-happen-in-parallel analysis as filters to elide dynamic

checks of accesses [30, 93, 105, 131]. More recent work includes analysis to identify and

remove provably redundant dynamic checks [55]. In theory, a hybrid static-dynamic approach

supports fully accurate dynamic data-race detection with reduced run-time costs (as in [55]),

but some hybrid static-dynamic analyses still sacrifice full accuracy (e.g., [30, 105]).

28

Chapter 3

RADISH:

Accurate and Fast Race Detection in Software and Hardware

Chapter 3 covers the design and accuracy of the RADISH data-race detector, published in

the proceedings of the 39th International Symposium on Computer Architecture [38] with

an accompanying technical report [39]. Chapter 3 focuses on the accuracy guarantees of

RADISH’s optimizations, where the author’s contributions were focused, and reproduces

enough of the design of RADISH from [38] to support this discussion. System detail, simulation,

and evaluation are covered in [38]. The correctness discussion in this chapter supersedes

previously published versions.

3.1 Introduction

RADISH is a hybrid software-hardware data-race detector that is sound (missing no data races)

and complete (reporting no false data races) with performance suitable for many deployment

environments. RADISH is the first data-race detector to achieve this combination of accuracy

and performance. RADISH optimizes the vector-clock algorithm for happens-before data-race

detection (§2.2.1) by storing a useful subset of data-race detection metadata on-chip in a

hardware-managed format. This on-chip metadata allows most data-race checks to occur

completely in hardware with low latency. A simple software layer is responsible for persisting

metadata when it overflows hardware resources, and for using this metadata to check for

data races when hardware metadata is insufficient.

To help reduce the number of data-race checks that it must perform, RADISH uses cache

coherence to detect when threads share data. To maintain accurate data-race detection at the

29

byte level, RADISH augments coherence messages with per-byte access history information,

but requires no changes to the actual coherence protocol. To keep hardware complexity

modest, the only additions to each core are a small amount of state and logic for fast SIMD-

style vector-clock computations. Crucially, and unlike many previous hardware proposals,

the design of the timing-sensitive cache hierarchy is entirely unchanged by RADISH and

there is no dedicated hardware storage for per-address data-race detection metadata. While

on-chip and managed by hardware, per-address metadata is stored in dynamically allocated

cache lines that share the cache data array with regular data. Thus there is no wasted

hardware storage capacity when running programs that do not require dynamic data-race

detection (e.g., due to data-race-free programming models). Furthermore, RADISH can

leverage type-safe languages to reduce overheads further.

The remainder of this chapter is organized as follows: §3.2 describes the RADISH algorithm

along with its hardware and software components. §3.3 shows the equivalence of RADISH

and the canonical software vector-clock data-race detection algorithm. §3.4 discusses related

work and §3.5 concludes.

3.2 The RADISH System

This section discusses the intuition behind RADISH. Then, we describe what RADISH adds to

a conventional processor design (§3.2.2), the metadata that RADISH uses (§3.2.3 and §3.2.4),

the operations RADISH performs at each memory access (§3.2.5), and the RADISH software

layer (§3.2.6). We conclude with a short example of RADISH’s operation (§3.2.7).

3.2.1 Intuition

The intuition behind RADISH’s hybrid hardware-software approach to data-race detection

is to start with a software vector-clock data-race detector and map its most heavily used

operations and metadata to hardware as frequently as possible. RADISH leverages three

basic observations to accomplish this: (1) nearly all the work that a data-race detector must

do occurs in response to coherence traffic, so the RADISH mechanisms are rarely activated

outside these high-latency events; (2) the spatial and temporal locality exhibited by memory

30

references extends to the metadata necessary for data-race detection, so the existing cache

hierarchy can be used to accelerate metadata accesses; and (3) there is temporal locality in

the data referenced by concurrently scheduled threads, so while RADISH caches metadata

only for co-scheduled threads this is often sufficient to handle data-race checks completely in

hardware.

We start from the vector-clock algorithm described in §2.2.1 and map parts of it into

hardware structures as follows. Each core keeps a portion of its currently scheduled thread

t’s local vector clock Ct on chip, with an entry for each other actively executing thread.

Thus, the size of this partial vector clock is bounded by the number of cores. When thread

t accesses byte x and needs to access the metadata for x, t’s entries Rx(t) and Wx(t) in

the last-reads and last-write vector clocks for x are stored as metadata in the cache data

array itself, using space otherwise available for data, but obviating the need for dedicated

storage. Moreover, locations that can be proven data-race-free (e.g., local variables) require

no metadata, freeing cache capacity for other data or metadata. Lock vector clocks (Ll) are

handled purely in software since they are accessed infrequently.

RADISH stores only the vector clocks for actively executing threads, and only a subset of

read and write vector clocks for these threads, on the chip. Since this is only a subset of the

full metadata needed for data-race detection on-chip, it is crucial to know when it is possible

to reason soundly about data races from this partial view and when the full metadata is

required. We solve this problem with three insights:

• We maintain in-hardware status information for each location x that is cached on-chip,

summarizing the number and type (read or write) of x’s last reads and last writes that

are cached in hardware.

• We rely on software to virtualize limited hardware resources, by storing and providing

access to metadata upon last-level cache evictions and context switches.

• We memoize the result of data-race checks using local permissions. This is particu-

larly helpful for data-race checks performed in software, because they are expensive

31

C
PU

L1$

L2$

base offset
Local logical clock

counter
Per-core vector clock

(64bit)
...

RADISH logic

clock table...

VC logic (⊔,⊑)

...

evicted metadata
line buffer

Figure 3.1: Overview of the RADISH processor core. State added by RADISH is shaded.

and require metadata not resident in hardware caches. Memoizing their results as

permissions helps avoid repeated expensive checks.

The rest of this section explains in detail how RADISH implements these solutions.

3.2.2 The RADISH Architecture

RADISH makes only minimal changes to a conventional bus-based chip-multiprocessor

architecture. Figure 3.1 shows the additional state added by RADISH with shaded blocks.

A per-core vector clock contains a 64-bit clock for each processor in the system, including

the local processor. The clock table manages the vector-clock values used by hardware; for

efficiency, RADISH employs a reference-counting scheme that we describe in [38]. Finally,

the RADISH logic implements the RADISH algorithm, including the vector-clock operations

union (t) and happens-before (v), which can take advantage of SIMD parallelism. RADISH

provides atomicity for each memory access, including its corresponding metadata access

and data-race check, by detecting concurrent remote data accesses to the same location.

Any such remote access must be the result of a data race. This mechanism uses RADISH’s

existing precise byte-level communication tracking.

Crucially, RADISH does not change the structure or timing of any portion of the cache

hierarchy. Metadata is stored in the caches just like regular data is, and competes for

cache capacity just like regular data does. This design choice ensures the critical path

latency of cache hits is unchanged, and also ensures that the processor runs with full cache

capacity when RADISH is disabled if data-race detection is not wanted for an application.

32

read clock write clock

lo
ca

l
pe

rm
s

in
-h

w
st

at
us

6 bits 6 bits4 bits

2 bytes

Figure 3.2: RADISH’s in-cache metadata format. Local permissions have 3 possible values,
and in-hardware status 4 values, so we use 4 bits to represent the 12 combinations. 6 bits
are left for each clock; we discuss rollover issues in [38].

As metadata is allocated dynamically, any static information about data-race freedom can

reduce RADISH’s space and run-time overheads even further.

3.2.3 RADISH Metadata

RADISH maintains metadata for each location of virtual memory (discussed below), as well

as the per-core partial vector clock mentioned previously. This per-core vector clock is

accessible to software, as synchronization operations must read and write it. The vector

clocks associated with synchronization objects are accessed relatively infrequently and thus

can be managed by a RADISH-aware synchronization library.

RADISH uses hardware to cache a subset of the full metadata needed for data-race

detection, and uses software to persist vector clock entries when they are evicted from the

cache hierarchy. There can thus be two versions of any given entry of a vector clock—one

in hardware and another in software. There are no version conflicts because hardware is

always most up-to-date. §3.3 shows that RADISH’s two vector clock versions can always be

reconciled to the values a conventional vector clock data-race detector maintains.

RADISH maintains metadata for each byte in memory, since that is the finest granularity at

which a program may access memory, according to modern memory models [20, 76], though

RADISH can exploit type safety guarantees to soundly coarsen the metadata granularity for

improved performance [38]. Without reliable information on data element size, tracking

accesses with metadata for, e.g., every 2 bytes could find false data races if two threads

33

m
d

D

data metadata unallocated
metadata

lin
e

D

expanded

compactrace-free

m
d

A

physical address space

lin
e

A
lin

e
B

lin
e

C

m
d

B...

X

...

Figure 3.3: Mapping from data to metadata addresses for a single processor. Each processor
uses a distinct portion of the physical address space.

concurrently write to the two different bytes.

The RADISH metadata for a byte of data consumes a total of 2 bytes of space (Figure 3.2),

though a more compact 1:1 encoding is possible by leveraging type safety guarantees [38]. 2

bytes of metadata per byte of data admits a simple mapping from data to metadata: the

location of the metadata for address x is located at address base+ 2x, where base is chosen

not to overlap with regular program data (Figure 3.3). Metadata addresses are special

physical addresses that only ever reside in the cache tag arrays—hardware’s metadata does

not occupy any physical memory, as that would be redundant with software’s representation.

The metadata for a cache line’s worth of data is split across two cache lines (as with cache

lines A and D). These two metadata lines need not reside in the cache at the same time—

metadata is fetched on demand based on the corresponding data being accessed. Other lines

may use the compact metadata encoding (B) or may not need metadata at all (C) courtesy

of a previous static analysis. The “holes” in the data-to-metadata mapping are unallocated

and never fetched into the cache, making room for other useful (meta)data.

Each processor uses a distinct region of the physical address space for metadata. We

can efficiently encode the fact that a line contains metadata, and also the processor p to

which the metadata belongs, by stealing some high-order bits from the physical address.

This ownership information allows metadata to live in shared caches. Upon eviction from

34

the last-level cache, metadata is stored by software, which uses its own opaque format that

occupies virtual memory just like regular program data. Software-controlled metadata is

never touched by hardware, so its format can be tuned to a particular run-time system,

programming model, or even application, for maximum efficiency.

In addition to read and write clocks, the RADISH metadata consists of two additional

pieces of state (Figure 3.2): in-hardware status and local permissions. This additional

metadata is crucial for getting the most leverage from the metadata cached in hardware, so

as to avoid consulting software in common cases.

3.2.3.1 In-Hardware Status

In-hardware status encodes how much of the metadata for a given location resides in hardware.

The status can be one of the following:

• Everything indicates that the metadata recording all last reads and the last write to

the location is in cache.

• LastWrite indicates that the metadata recording the last write to a location is in

cache.

• AllLastReads indicates that the metadata recording all last reads of a location are

in cache.

• InSoftware indicates that software must be consulted to determine the most recent

accesses for this location.

RADISH uses in-hardware status information to determine when a cache fill or data-race

check, which would otherwise require consulting software, can in fact be done entirely in

hardware.

3.2.3.2 Local Permissions

Local permissions specify actions that the local thread can perform on a location that will

definitely not result in a data race and thus do not require a data-race check. The allowed

35

AllLast
Reads LastWrite

InSoftware

Everything
evict

valid read
evict

valid write

evict
valid read

evict
valid write

evict
valid
read

Figure 3.4: In-hardware status is downgraded when metadata is evicted from the last-level
cache.

actions are encoded as permissions: a thread has Write, Read or None permissions to

a location. Write > Read > None. Local permissions act as a filter, guaranteeing that

no data-race check is necessary if local permissions allow an access. This allows RADISH

to avoid performing a data-race check (whether in software or fully in hardware) on every

memory access. Permissions violations may or may not be the result of an actual data race;

additional work is required to disambiguate these cases.

3.2.4 Maintaining In-Hardware Status and Local Permissions

Metadata lines are not subject to the normal coherence protocol, but are instead updated

on evictions of remote metadata lines, when local permissions are violated, and whenever

coherence events occur on their associated data line. This latter property allows many

metadata updates to piggy-back on regular coherence messages; metadata evictions and

local permissions violations are the only sources of extra inter-processor communication in

RADISH.

3.2.4.1 Maintaining In-Hardware Status

On a data-race-free write, the in-hardware status for the bytes being written is set to

Everything, because all earlier accesses happen before this write, so future checks need only

36

consider the new last write. The Everything status propagates via coherence messages to

subsequent reads and writes of x, and is only demoted when metadata for one of these reads

or writes to x is evicted, as detailed in Figure 3.4. Note a valid write clock is never evicted

while the status is AllLastReads: since the valid last write a was already evicted, another

write a′ would need to occur, but a′ would have reset the status back to Everything. The

in-hardware status can also be set on reads, if the read triggers a software vector-clock

check that loads new metadata into hardware. If the check reveals that thread t is the sole

last reader of a location x since the last write, then t’s read means the in-hardware status

can now be set to AllLastReads (if the state was InSoftware) or Everything (if the

state was LastWrite). In RADISH, metadata evictions from the last-level cache require a

broadcast to downgrade in-hardware status appropriately, but this cost can be masked by

the L2 miss that triggered the last-level cache eviction.

3.2.4.2 Maintaining Local Permissions

Local permissions are set for each byte x in a line when it is brought into t’s cache, by

broadcasting (concurrently with the fill) to gather the last accesses to x by other scheduled

threads. Thread t then checks its happens-before relation with these remote accesses. Thread

t gets Write permission for x if t’s current logical time happens after the last write to x

and all last reads of x (i.e., Wx v Ct and Rx v Ct), Read if t’s current logical time happens

after the last write to x but not all last reads of x (i.e., Wx v Ct and Rx 6v Ct), and None

otherwise. In-hardware status determines whether the on-chip metadata suffices to attempt

each of these checks. If byte x has insufficient in-hardware metadata, RADISH sets None

permission for x; this is conservative but cheaper than consulting software to get a precise

result, as t may never access x.

When a remote thread u performs a read or write of x, we need to update t’s local

permission for x to maintain its guarantee. If u does a write to x, we must downgrade t’s

permission on x to None. If u does a read, then t’s permission must be downgraded to Read

as well, since t’s current logical time no longer happens after all last accesses to x, making a

write unsafe. If t’s permission for x was previously None, it is unchanged—downgrading

never increases permissions. It is sound to perform downgrades only on coherence events

37

metadata for
x in t's $?

permissions
check no race

get permissions
from other $'s

hardware
race check

raise
exception

software
race checkunsure

not okno no race

race

no race

ok
thread t

accesses
memory

location x

yesrace-free
insn or
page?

no

yes

Figure 3.5: Flowchart describing when and how RADISH performs data-race checks for
each memory access.

and cache fills as shown in §3.3.6.

3.2.5 RADISH Checks

Data-race checks in RADISH are a 3-stage process: a permissions check, a hardware data-race

check, and a software data-race check (Figure 3.5). First, a thread t accesses a memory

location x. The load or store instruction may be marked statically as data-race-free (e.g.,

a compiler may tag accesses to non-escaping local variables), or the location accessed may

reside on a page tagged as containing only data-race-free locations (e.g., thread-local storage);

in these cases no further work is necessary. Otherwise, we consult t’s metadata for x; if the

metadata is not in the local processor’s cache it is fetched from other caches or software

(§3.2.6).

Once thread t’s metadata for location x is in cache, the first step of a RADISH data-race

check is a permissions check: if local permissions allow the access, no further data-race

checking is necessary. The last read or last write clock for t must be updated if it is older than

t’s current logical clock, but this update can happen locally. A hardware data-race check

is performed if the permissions do not allow the access to proceed. A hardware data-race

check consults the precise read/write clock values from other caches, together with the local

in-hardware status metadata, to determine if the access to x is data-race-free. Specifically, a

38

read operation a is data-race-free if (1) a happens after some last-read operation b (since b

must happen after the last write to x or a data race would have been detected on one of

those previous accesses) or (2) the in-hardware status for x is LastWrite and a happens

after the last write. A write operation w is data-race-free if the in-hardware status for x is

Everything and w happens after the last write and all last reads.

Depending on the amount of state available in hardware, the outcome of the hardware

data-race check may be that (1) there definitely is a data race, (2) there definitely is not a

data race, or (3) there might be a data race, e.g., there is no data race with respect to the

in-cache data, but the in-hardware status is InSoftware so there is additional relevant

information in software. A software data-race check is required only in case (3). To

exploit spatial locality and amortize the overhead of invoking the software handler, the

software check preemptively sets local permissions for all metadata in the metadata line `

that contains the metadata for x.

3.2.6 The RADISH Software Interface

For RADISH, the system’s synchronization library must be modified to update the per-

core vector clocks on synchronization operations, and to maintain a vector clock with

each synchronization object. There are also software handlers for data-race checks and

metadata evictions. The data-race check handler is called on a memory operation when

hardware does not have enough information to prove data-race freedom. The data-race

check handler may be called synchronously or asynchronously. The eviction handler is called

when metadata is displaced and may be executed asynchronously with respect to memory

operations. Thus, these handlers may execute on any available processor.

A software data-race check handler is passed, via registers, the physical address px

of the location x that triggered the check, as well as the current hardware entries for the

read/write vector clocks of x. The physical address px is used to index the variable map:

the central software data structure used by the RADISH software layer. The variable map

contains a mapping from physical addresses (of data) to software metadata (e.g., read/write

vector-clock pairs). Physical addresses are used because they are convenient identifiers—since

39

caches are physically tagged, when evicting a metadata cache line we identify it with its

physical address to avoid any need for reverse translation. These physical addresses do not

allow the program unmediated access to physical memory. When the OS migrates physical

pages, the variable map must be updated accordingly, but a physically-indexed map keeps

the common case fast.

A software data-race check merges the hardware read/write vector clock entries with

the values from software (obtained from the variable map) to obtain up-to-date read/write

vector clocks (Rx and Wx in §2.2.1). Similarly, the entries from the per-core partial vector

clock (accessible via new instructions) are used to obtain the up-to-date thread’s vector

clock (Ct). Once hardware and software values are merged, the standard happens-before

data-race check occurs. A signal may be raised to indicate that a data race has occurred.

To amortize the cost of invoking software, software data-race checks verify the data-race

freedom of a single memory access, but update hardware metadata for all locations in the

cache line with metadata from software and set the in-hardware status for each location

where software information is imported into hardware.

The eviction handler is called whenever a metadata line is evicted from the last-level

cache. This handler is invoked with the physical address p of the data corresponding to the

metadata being evicted; p is used to index the variable map described previously. To process

metadata evictions asynchronously, evicted metadata lines are placed into a hardware buffer.

The eviction handler reads from this buffer via special load instructions and updates the

variable map with the hardware values.

In RADISH, the software metadata representation is opaque to hardware, allowing software

to freely optimize its metadata representation, e.g., to save space [35, 52] or to leverage

structured parallelism [81]. A software-managed metadata format also admits compatibility

with compacting garbage collectors that move objects in memory. (See also related issues

in §4.2.4.)

On a context switch, per-core partial vector clocks must be flushed into software, and

all per-core clocks need to be updated to replace entries for the descheduled thread with

entries for the incoming thread. The evicted metadata line buffer can be cleared lazily, as

entries are tagged with their owner thread. The crucial issue is dealing with metadata lines

40

belonging to the descheduled thread, as they can occupy several MB of state. We observe

that software can conservatively approximate when its metadata is stale (i.e., when there

exists metadata in hardware that is more up-to-date) by setting a “potentially stale” bit

whenever a software check occurs (as a check must occur on the very first access to a location,

which brings metadata into hardware), and clearing this bit when sufficient metadata has

been evicted.

Using software’s conservative approximation of hardware state, metadata lines can be

flushed eagerly or lazily. The eager approach uses software to flush these lines immediately

at the context switch, bringing all software metadata up-to-date. Alternatively, flushing can

be done lazily. At the cost of stealing extra unused bits from the physical address space,

each thread ID can be allocated a region within the metadata space of a processor. Thread

IDs can be reused across processes: as metadata lives in the physical address space, the same

thread ID in two different processes will be isolated if the processes are isolated.1 When

asked to perform a data-race check, software determines if its metadata is potentially stale,

and flushes a superset of the necessary entries (even for descheduled threads) from hardware

caches.

3.2.7 An Example Trace

We now show RADISH’s operation on a short trace of instructions. Table 3.1 shows how

hardware metadata (local permissions, read/write vector clock entries, per-core vector clocks,

and in-hardware status) and software metadata (only read/write vector clocks are shown

for simplicity) are updated in response to various events. For simplicity, events for a single

location x are shown. There are three threads, but only threads 0 and 1 are scheduled (on

processors p0 and p1, respectively).

Initially, there is no metadata cached in hardware. p0’s load triggers a software data-

race check, because the in-hardware status InSoftware indicates that there is insufficient

information in hardware to check the access. The software check brings information about

1If processes share memory, then shared regions must be flushed whenever a new process is scheduled. The
physical address space could be shrunk further to accommodate process IDs, but the overhead (combined
with thread IDs) is likely to be too great.

41

Event Software p0 running thread 0 p1 running thread 1 In-hardware
reads writes MSI perm read write VC MSI perm read write VC status

(initial) 7,0,0 2,0,0 9,4 6,5 InSoftware
p0 read S W 9 2 Everything
p1 read W S R 5 0
p0 release 10,4
p1 acquire 9,5
p1 write I N 0 0 M W 0 5
p0 evict md -
p1 evict md 0,0,0 0,5,0 - InSoftware

Table 3.1: An example trace showing how RADISH metadata is updated. Empty cells
indicate the value is the same as in the cell above. The local component of each core’s vector
clock is underlined.

p0’s previous write at time 2 into hardware; combined with p0’s read there is now complete

information about x in hardware and the in-hardware status is upgraded to Everything.

Furthermore, p0 obtains Write permissions on x because p0 can soundly read or write x

without the need for further data-race checks. Next, p1 performs a read that, due to the

current in-hardware status, can be checked without consulting software. Note that p1 gets

Read permissions, as it can perform further reads of x without racing, but p0 retains its

Write permissions (though an immediate write by p0 would race). However, since p0 has

the cache line containing x in Shared state, it cannot actually write to x without triggering

a coherence message. This message will downgrade p0’s local permissions to Read, so the

permissions check will fail and trigger a deeper check that will catch the data-race.

Next, synchronization occurs from p0 to p1, which updates both processors’ vector clocks.

Then p1 performs a write, which is well-synchronized with both the last write (by p0) and

the last read (also by p0). p1’s write downgrades the local permissions for p0, and clears all

other hardware read/write clocks. Since p0’s clocks have been reset, the read/write vector

clocks in software do not change when p0 evicts the metadata for x. Software’s metadata is

stale, but is brought up-to-date with p1’s eviction.

42

3.3 Equivalence to Canonical Vector-Clock Data-Race Detector

In this section, we show the soundness and completeness of RADISH via its equivalence to

the canonical accurate vector-clock data-race detection algorithm (§2.2.1). We first show

how RADISH’s hybrid hardware and software metadata is equivalent to the metadata stored

by a vector-clock data-race detector (§3.3.1). Next, we show how RADISH preserves this

equivalence at each step in execution and thus reports the same data races, starting with a

simple version of RADISH with no cache evictions (unbounded caches), no context switches,

and no optimizations (§3.3.2), and progressively adding cache evictions (§3.3.3), context

switches (§3.3.4), in-hardware status (§3.3.5), and local permissions (§3.3.6), showing that

each maintains equivalence.

3.3.1 State

RADISH stores the full vector-clock data-race detector state (C,L,R,W) (as introduced in

§2.2.1) as a hybrid of hardware metadata (C,R,W) and software metadata (C,L,R,W).

We use the following notation throughout:

Ct(u) is thread u’s entry in thread t’s on-chip vector clock.

Rx(t) and Wx(t) are byte x’s last-read and last-write clocks in thread t’s cached metadata.

Ct(u) is thread u’s entry in thread t’s software vector clock.

Ll(t) is thread t’s entry in lock l’s software vector clock.

Rx(t) and Wx(t) are thread t’s entries in byte x’s last-reads and last-write software vector clocks.

RADISH’s hybrid state (equivalent to the full vector-clock data-race detector state) is the

43

software state, with elements overridden by hardware state where available as follows:

Ct = if t ∈ Dom(C) then Ct else Ct

Ll = Ll

Rx(t) = if t ∈ Dom(Rx) then Rx(t) else Rx(t)

Wx(t) = if t ∈ Dom(Wx) then Wx(t) else Wx(t)

The initial states of the vector-clock data-race detector and RADISH are equivalent under

this mapping: RADISH has no metadata in hardware.

3.3.2 No Cache Evictions, No Context Switches, No Optimizations

We first consider a simple RADISH machine with unbounded caches (and hence no evictions

of hardware metadata), no context switches, and no in-hardware status or local permissions.

3.3.2.1 Synchronization Tracking

When a thread t is forked and scheduled onto a core, 0 entries are stored in Ct for all running

threads and Ct(t) is set to 1. A 0 entry for thread t is stored in the hardware vector clock of

each running thread u: ∀ scheduled u,Cu(t) = Cu(t).

When synchronization tracking updates thread vector clocks, it updates entries in C.

Since all running threads remain scheduled onto a core and each core’s vector clock Ct has

space for entries of all cores, C contains the full vector clocks for all threads that have ever

run in this execution. Entries in C remain at their initial values. Lock vector clocks are

managed purely in software. Other operations have no effect on thread or lock vector clocks.

Thus, under the derivation above, the RADISH thread (C) and lock (L) vector clocks remain

equivalent to those of the canonical detector (C, L) through the execution.

3.3.2.2 Access Tracking and Checking

On an access to address x by thread t, metadata for address x is loaded into cache from

software if it is not already in cache. The hardware last-read and last-write clocks Rx(t)

and Wx(t) are initialized from t’s entries Rx(t) and Wx(t) in the software last-reads and

44

last-write vector clocks. Once metadata is in hardware, it overrides software metadata. Stale

software metadata is never observed. Without cache evictions, we never need to persist

hardware metadata back to software metadata, so software metadata remains empty.

On every memory access to x by t, we perform the Wx v Ct hardware check and, for

writes, the Rx v Ct hardware check from the vector-clock data-race detector. Without

context switches or cache evictions, we are guaranteed that all non-zero last-reads and last-

write metadata are in hardware, since only running threads may have previously accessed

any memory locations and the last reads and last writes have not been evicted from cache.

Thus these hardware checks, identical to the checks in the canonical algorithm, operate over

equivalent metadata and therefore return equivalent results.

On a data-race-free write by thread t, we set the hardware metadata clocks Rx(u) and

Wx(u) to zero for all threads u that have x’s metadata in cache. For those threads u that do

not have x’s metadata in cache, the entries in the software vector clocks Rx(u) and Wx(u)

are all ready zero, since no metadata is ever persisted back from hardware to software in this

version, so we do not zero them explicitly. This is equivalent to zeroing all entries in full

vector clocks Rx and Wx, since hardware metadata always overrides software metadata when

deriving the full state. We set the hardware metadata Rx(t) or Wx(t) when thread t does

a data-race-free read or write, respectively, which is equivalent to setting Rx(t) or Wx(t),

since t’s metadata for x is in cache and overrides any software metadata in Rx(t) or Wx(t).

Other operations (e.g., synchronization) have no effect on access history metadata. Thus

RADISH and the canonical algorithm perform equivalent data-race checks and updates on

equivalent access history state, preserving the equivalence of access history state through

the execution.

3.3.3 Cache Evictions

With the possibility of cache evictions, we cannot rely on all non-zero metadata being

permanently resident in hardware. Hardware metadata entries Rx(t) and Wx(t) must be

stored back to software vector clock entries Rx(t) and Wx(t) when evicted from cache.

Data-race checks must run over the combined hardware-software state. Metadata updates

45

are still made directly in hardware alone. Synchronization tracking is unaffected by cache

evictions.

Data-race checks now use the full state derivation, using software access history metadata

with any existing hardware metadata overriding the corresponding software entries, so we

must show that hardware metadata entries are never older than the the software entries

they override. Since software access history metadata is updated from hardware metadata

only upon that hardware metadata’s eviction and updates to hardware metadata discard

older last writes or last reads only when they happen before the newer recorded accesses,

this holds. Likewise, since hardware metadata is always persisted to software on eviction, no

updates to hardware metadata are ever lost at eviction. It is straightforward to see how the

combined RADISH state still remains equivalent to the canonical algorithm’s state across

accesses and metadata cache evictions.

3.3.4 Context Switches

Context switches require flushing RADISH’s hardware metadata somewhat like a TLB

shootdown, although unlike TLB entries, RADISH’s in-hardware metadata can be newer than

its software metadata, so the hardware metadata must be persisted back to the software

layer in the general case. See §3.2.6 and [38] for additional discussion. RADISH’s behavior

for eagerly handled context switches is a special case of that for cache eviction, as discussed

in §3.3.3, so it clearly maintains equivalence. Lazily handled context switches tag metadata

in lower-level caches and persist them to software later, on eviction, examining the thread

tag to assign them to the proper owners in the software representation. Metadata lookups

in lower-level caches likewise examine this tag to properly distinguish metadata of different

threads that have been scheduled to the same processor.

3.3.5 In-Hardware Status

In order to allow some data-race checks to skip examining software metadata without also

missing some data races, in-hardware status (§3.2.3.1 and §3.2.4.1) must allow a pure-

hardware data-race check only if a combined hardware-software check would not detect a

46

data race.

Assuming in-hardware status does not overstate what parts of an address’s metadata

are fully in-hardware (by the definitions in §3.2.3.1), it serves as a safe filter for software

data-race checks. When checking a read, ordering with the last write must be established. If

the in-hardware status for x is LastWrite or Everything, the read check may proceed

in hardware without loading additional metadata from software. When checking a write,

ordering with the last write and all last reads must be established. If the in-hardware status

for x is Everything the the check may proceed without loading additional metadata from

software. If the in-hardware status in either case does not suffice, the full metadata Wx and

(for writes) Rx must be assembled from what is in hardware and what is in software.

It is straightforward to see that in-hardware status is downgraded on evictions of metadata

and upgraded on successful checks or cache fills as detailed in §3.2.4.1 and Figure 3.4.

Whenever metadata containing a last read or last write of address x is evicted, x’s in-

hardware status is downgraded so future checks on address x see that either the last write

or some last reads are not present in hardware. Checks loading metadata from software or

changing the set of last writes/reads may upgrade the status if they introduce (or eliminate)

missing pieces of metadata in hardware.

3.3.6 Local Permissions

Local permissions must preserve two invariants: If local permissions allow an access then:

Local checks suffice: The access cannot result in a data race with an earlier or

simultaneous access. In other words, if local permissions allow an access then a full data-race

check on that access would succeed. If other threads’ permissions are downgraded accordingly

whenever one thread performs a memory operation, this invariant holds. It is also sufficient

to downgrade permissions only on coherence events, which we demonstrate here.

Local updates suffice: Necessary metadata updates are limited to the executing

thread’s last read and last write. In other words, no metadata updates are required outside

the metadata present in the checking thread’s cache.

These two invariants together guarantee that each access check and update resolved by

47

local permissions is equivalent to the check and update of the full data-race check.

3.3.6.1 Proof: Local Checks Suffice for Permitted Accesses

We characterize a coherence event on data line ` initiated because of a memory access a

by thread t in a program trace T as a set e(`) = {a} ∪ {eu(`) | u 6= t} of events in each

other thread that occur atomically (and thus consecutively) immediately preceding a in T .

(Operations a in traces T have implicit sequencing identifiers to distinguish syntactically

identical but dynamically distinct operations. We elide them to reduce clutter.) For each

thread u, eu(`) happens after all events a by thread u that precede eu(`) in T and eu(`)

happens before all events b by thread u that follow eu(`) in T . We attribute an update of

u’s permissions for an address x during e(`) to eu(`) if u 6= t, or to a for thread t.

Let ` be a data line containing x, let b be a memory operation on x by thread t in

program trace T , let d be the last event that precedes—or is—b in T on which t’s local

permission for x is set, and let a 6= b be an access to x that conflicts with b (at least one

of a or b is a write) and precedes b in T . It suffices to show that if d sets permissions that

allow b then a must happen before b.

The proof is by contradiction. Suppose d sets permission p for t on x that allows b, where

a does not happen before b. Then p must be Read or Write to allow b. For all vector

clocks v ∈ {Ct, Rx,Wx}, let vf denote their values immediately preceding event f .

If d is a memory operation, then it performs a full check showing W d
x v Cd

t and, if

d sets Write, that Rd
x v Cd

t . If d = b, then clearly a must happen before b since it is

represented in W d
x or Rd

x. This is a contradiction. Otherwise, by program order, d happens

before b, and W d
x v Cb

t in both cases and Rd
x v Cb

t in the Write case. Since a does not

happen before b, then a must follow d in T . Also, at d, t must have ` in non-invalid state. If

a = wr(u, x, β) then there must be some coherence event e(`) in T between d and a to give

u line ` in modified state, where et(`) would downgrade t’s permission on x to None, so d is

not the last event to set t’s permission on x before b, which is a contradiction. Otherwise,

a = rd(u, x, β), b = wr(t, x, β), and d must set Write if b is to be allowed. Then there must

be some coherence event e(`) in T between a and b to give u line ` in modified state, where

et(`) would set t’s permission based on whether a happens before b. Thus if a does not

48

happen before b, then et(`) sets t’s permission on x to None and b violates this permission,

which is a contradiction.

If d is a coherence event et(`), then it must downgrade t’s permission on x from Write

to Read, as set at some prior memory operation f by t, where W f
x v Cf

t and Rf
x v Cf

t .

The downgrade must be due to a remote read operation, thus Rb
x has changed from Rf

x and

possibly from Rd
x if more remote reads g follow the one that generated the coherence event,

however the last-write vector clock has not changed as a result of the read. Any difference

between W d
x and W b

x may only be due to writes by t, otherwise some coherence event would

have downgraded t’s permission on x to None. Writes by t are ordered by program order

with b, so in either case, it will be true that W b
x v Cb

t . For t’s Read permission on x to

allow b, b must be a read operation, so the data-race check would pass if we ran it now (at

event b), so a must happen before b, which is a contradiction. Thus, in all cases, if d sets

permissions that allow b then a must happen before b. Local permissions are sound even

when downgraded only on coherence actions.

3.3.6.2 Proof: Local Updates Suffice for Permitted Accesses

Updates to access history on accesses to x by thread t that are allowed by local permissions

must not require updates outside Wx(t) and Rx(t). This includes in-hardware status

downgrades: accesses allowed by local permissions must not require in-hardware status

downgrades for x. In-hardware status upgrades are never required for soundness; it is always

safe to do a combined hardware-software check instead of a hardware check.

Reads of x by thread t update Rx(t) only. Reads to x allowed by local permissions never

cause eviction of metadata for x, so they do not downgrade in-hardware status. Although

in-hardware status upgrades are never required, they would never be possible on reads

allowed by local permissions. Upgrades on reads occur only after consulting the software

handler, which is not invoked if local permissions allow the access.

Writes to x by thread t update Wx(t). While the canonical vector-clock algorithm

may zero Rx(u) ∀u and Wx(t) ∀u 6= t as an optimization, this is not necessary to preserve

soundness. Thus writes to x allowed by local permissions can proceed with updates to at

most Rx(t) Wx(t).

49

Nonetheless, on a system that zeroes other last reads and last writes on a new write, when

a write is allowed by local permissions, it is guaranteed that ∀u 6= t, Rx(u) = 0 ∧Wx(t) = 0.

For the write to be allowed by local permissions, it must be the case that local Write

permission was set on some previous write by thread t that was not allowed by local

permissions, at which time Rx(u) ∀u and Wx(t) ∀u 6= t were set to zero. The fact that the

current write is allowed by local permissions guarantees that no other thread has accessed

x since this previous permission-setting, metadata-zeroing write and it remains true that

∀u 6=, Rx(u) = 0 ∧Wx(t) = 0. Thread t may have performed an intervening read, updating

Rx(t), but an update to Rx(t) is allowed.

Writes set in-hardware status to Everything, which may be an upgrade, but never a

downgrade. As discussed above, in-hardware status upgrades may always be omitted soundly.

Nonetheless, in-hardware status is already Everything if all writes not allowed by local

permissions set in-hardware status to Everything. By the same reasoning that showed

zeroing persists from the previous write not allowed by local permissions, this previous

permission-setting write must also have set Everything status which persists through this

access. In-hardware status is only downgraded by evictions of metadata. Given that this

access was allowed by local permissions, no other threads have accessed x since the last

permission-setting write to x by t. Thus the only non-zero metadata for x belongs to t. If t’s

metadata for x was evicted to cause an in-hardware status downgrade, then local permission

would also have been cleared and this access would not be allowed by local permissions,

which is a contradiction.

3.4 Related Work

We now discuss other related work on hardware support for dynamic data-race detection.

Conflict Exceptions [73] and DRFx [78] are especially related to RADISH. They generate

exceptions only for data races that may violate sequential consistency in data-race-free

models. DRFx uses a hardware buffer of memory locations accessed between fences and

coherence event monitoring that checks for conflicts with addresses in the buffer. Conflict

Exceptions keeps pre-assigned byte-level access bits per cache line and sets aside memory

50

space to keep access bits for out-of-cache data. Both proposals have large dedicated hardware

structures: Conflict Exceptions adds 50% cache overhead, and DRFx adds 10KB of hardware

state. The HardBound system [36] also leverages the idea of storing metadata in the cache

data array, to provide memory safety for C programs. Aikido [95] uses dynamic binary

rewriting and hardware memory protection to efficiently detect shared data, accelerating

dynamic analyses such as data-race detection.

Min and Choi [82] developed a limited form of happens-before data-race detection using

coherence events for programs with structured parallelism. SigRace [83] uses signatures

to accelerate data-race checks; it employs a checkpoint/rollback mechanism to re-execute

when a conflict is detected to prune some false positives. Still, SigRace can report false data

races due to signature imprecision and granularity of access monitoring, as well as missed

data races due to limited buffer space for checkpoint/rollback. CORD [103] approximates

happens-before data-race detection using per-word vector clocks (fixed metadata) for in-

cache data only, leading to both unsoundness and potential incompleteness. ReEnact [104]

uses thread-level speculation mechanisms to detect data races and potentially recover from

them via checkpoint/rollback. ReEnact can report false data races due to word-granularity

tracking and can miss data races due to finite hardware resources.

HARD [143] is a hardware-based implementation of the lockset algorithm that uses Bloom

filters per cache line to encode which locks should be held when accessing the corresponding

data. While locking-discipline violation detection is very useful for debugging, it is imprecise

for many acceptable programming idioms.

ECMon [85] proposes exposing cache coherence events to software as a primitive for

several program monitoring and control techniques. ECMon has a subset of the support

that RADISH offers, as we need hardware for byte-level metadata tracking and vector-clock

comparisons, since trapping to software for every metadata update and every vector-clock

computation would be prohibitively expensive.

51

3.5 Conclusions

Our work on RADISH showed that accurate hardware-supported data-race detection is feasible

by using hardware support to optimize common cases of a full, accurate software data-race

detector, while retaining software support to handle the rare cases that are a poor fit for

fixed hardware resources but necessary for full accuracy. We showed the accuracy RADISH

by its equivalence to the canonical vector-clock algorithm. The prospect of an accurate, fast,

and general hardware-supported data-race detector is promising, but RADISH’s accuracy

remains limited to ISA-level programs. We address this problem in the next chapter.

52

Chapter 4

LARD:

Low-Level Abstractable Race Detection

Low-level Abstractable Race Detection (LARD) virtualizes low-level dynamic data-race detec-

tion to detect language-level data races. This chapter presents work originally published in the

proceedings of the 19th International Conference on Architectural Support for Programming

Languages and Operating Systems [137].

4.1 Introduction

Recent proposals for low-level dynamic data-race detection have full accuracy and improved

performance. RADISH (Chapter 3 and [38]) uses a mix of software and hardware support for

data-race detection fast enough for many deployment situations. Aikido [95] uses hypervisor

support and page-protection to accelerate software analyses. These are low-level data-race

detectors: they analyze virtual memory accesses in the instruction set architecture (ISA)

and store access history for virtual memory locations.

Low-level—and specifically hardware—support can improve performance and acceler-

ate checking in common cases where no data-sharing occurs. These systems exploit the fact

that memory accesses can be tracked efficiently with hardware or hypervisor support and are

much more frequent than synchronization operations. They can also implement the critical

core of data-race detection logic once in a general, reusable, low-level mechanism. Although

a low-level mechanism alone is insufficient for language-level data-race detection, it can

reduce the complexity of high-performance data-race detection in a language implementation.

Our implementation of LARD (§4.3) shows that the engineering required is feasible for a

53

system as complex as a JVM. For unmanaged targets like C programs, it is simpler.

Näıvely, one might run an unmodified low-level dynamic data-race detector “underneath”

a high-level language implementation like a Java virtual machine (JVM) to detect language-

level data races in the Java program. By language-level data race, we mean a data race

between accesses in the high-level language memory abstraction. This work focuses on

detecting these (and only these) data races.

We present the first full treatment of why an unmodified low-level data-race detector

does not work to detect language-level data races. We then develop extensions to low-level

data-race detection and high-level language implementations to remove all sources of missed

data races and false data races. Finally, we implement and evaluate a prototype hardware-

based dynamic data-race detector for Java, showing that our extensions enable accurate

data-race detection for high-level languages using general low-level hardware support.

4.1.1 Low-Level Data Races 6= Language-Level Data Races

Neither low-level data races nor language-level data races subsumes the other. Some low-level

(e.g. x86) data races are not language-level (e.g., Java) data races and some language-level

data races are not low-level data races. Thus a low-level data-race detector reports false data

races and misses true data races for programs written in high-level languages.

Consider a Java program running on a JVM on a multicore processor with data-race

detection that analyzes all memory loads and stores for data races. The Java abstraction

of execution, with field accesses and lock operations, is fundamentally different from the

low-level abstraction of instructions accessing virtual memory, as analyzed by the data-race

detector. Two broad features of the translation cause false and missed language-level data

races for low-level data-race detectors.

First, low-level executions contain instructions not derived from equivalent—or any—

operations of the language-level execution. Memory accesses and synchronization in implicit

JVM services like garbage collection are not derived from explicit operations of a Java program.

Some low-level memory accesses implement language-level synchronization operations.

Second, language-level semantics of low-level resources change during execution. The

54

allocator or garbage collector reuses memory or moves objects in memory. By analyzing

accesses to a single virtual memory location reused by the JVM to store distinct Java objects,

a data-race detector can report false data races. By analyzing distinct virtual memory

locations when a single Java object has moved, the detector can miss true data races. If

a threading implementation multiplexes language-level threads on low-level threads, two

operations of the same low-level thread do not necessarily belong to the same language-level

thread, and vice versa, leading to false or missed data races subject to thread placement.

4.1.2 Low-Level Detection of Language-Level Data Races

This work’s main contribution is low-level abstractable race detection (LARD), an extended

low-level data-race detector interface that lets run-time systems and compilers communicate

a language-level view of execution in sufficient detail. The extensions are minimal: they let

run-time systems and compilers (1) mark language-level memory accesses and synchronization

operations explicitly for analysis, leaving system operations unanalyzed, (2) report changes

in the language-level/low-level memory mapping due to memory reuse and movement, and

(3) report language-level thread identity. The low-level data-race detector then analyzes

only the memory accesses and synchronization operations of the language-level program and

updates its state according to changes in memory allocation to reflect the language-level

memory abstraction.

LARD allows data-race detectors for high-level languages to harness the performance and

generality of low-level detection mechanisms while maintaining accuracy. The focus of this

work is a simple execution stack consisting of a language run-time running on hardware,

but the design generalizes to a range of dual-level execution environments such as operating

systems and hypervisors.

To the best of our knowledge, this work presents the first design for virtualizing data-race

detection. Earlier exclusively low-level or language-level data-race detectors (e.g., RADISH

(Chapter 3), Helgrind [125], and FastTrack [52]) have support for marking custom synchro-

nization routines to avoid false data races on these accesses and track their synchronization

effects. Low-level detection of language-level data races requires similar support, but may

55

also need to distinguish the semantics of such operations based on context.

Some C data-race detectors (e.g., [118, 125]) treat allocation specially to help reduce

false data races and some JVM data-race detectors work around object movement to avoid

missed data races (e.g., [30, 105]), but these previous efforts have focused mainly on ad

hoc reduction of imprecision in fundamentally imprecise data-race detection algorithms

implemented at a single level of abstraction. In this work, we characterize the effects of the

language-level/low-level translation on data-race detection in depth and develop a unified

approach to eliminate all missed and all false data races, achieving accurate language-level

data-race detection in high-level programs using low-level data-race detectors.

4.1.3 LARD Implementation and Evaluation

To evaluate the feasibility of low-level abstractable race detection, we implemented an accurate

data-race detector for Java using LARD. Our implementation includes two independent

systems, communicating only via LARDx86, an extension of the x86 ISA with flags to

mark memory access instructions explicitly to be checked for data races and instructions

to report synchronization, memory reuse, movement, and thread identity. We simulated

an accurate, low-level, mostly-hardware, dynamic data-race detector based on RADISH

(Chapter 3 and [38]), and extended to support LARDx86. We modified Jikes RVM [8] to

emit data-race-checked accesses for application code and unchecked accesses for JVM code,

report synchronization events in application code, and report memory reuse and movement

events in the JVM. Our results show that our extensions are necessary and sufficient to

avoid false and missed data races in practice.

4.1.4 Contributions and Outline

• We explain why low-level data-race detectors are incorrect for high-level programs

(§4.2), synthesizing disparate issues encountered in prior contexts [30, 105, 118, 136].

• We design low-level abstractable race detection (LARD), a simple interface for low-level

data-race detectors and language implementations that enables accurate language-level

56

data-race detection using a low-level data-race detector, and compare our approach to

some prior systems (§4.2).

• We implement our approach for Java, coupling a simulated hardware-supported ISA-

level dynamic data-race detector and a modified Jikes RVM through a version of the

x86 ISA extended with LARD primitives (§4.3).

• We evaluate our implementation’s accuracy, comparing against FastTrack [52], a

näıve low-level data-race detector similar to RADISH (Chapter 3), and various partial

implementations of LARD, finding that, in practice, näıve ISA-level data-race detectors

suffer from false and missed data races for Java programs, but LARD does not (§4.4).

Finally, we discuss more related work (§4.5) and conclude (§4.6).

4.2 Low-Level Abstractable Race Detection

Low-level abstractable race detection (LARD) extends the interface and functionality of

low-level data-race detectors to abstract (i.e., virtualize) data-race detection to high-level

execution environments. The key idea is to preserve relevant information from language-

level operations in the low-level execution. LARD requires cooperation from the high-level

language implementation and the low-level data-race detector to implement two types of

extensions: (1) distinguish between source operations and run-time system operations; and

(2) maintain the mutable mappings from language-level memory to low-level memory and

from language-level threads to low-level threads.

We explain LARD by examining the five fundamental operations where relevant differences

arise between language-level and low-level views of execution: memory access (§4.2.1),

synchronization (§4.2.2), memory allocation (§4.2.3), memory movement (§4.2.4), and thread

mapping (§4.2.5). For each operation, we show how information lost in translation can cause

missed or false data races. Then we extend the low-level data-race detector interface to retain

sufficient language-level information. Table 4.1 summarizes the five interface extensions.

Finally, we argue that LARD’s five extensions are sufficient to virtualize general low-level

57

Operation Prevents Translation Issue
(un)tracked access false data races program vs. system
(un)tracked sync. missed data races program vs. system
clear history false data races memory reuse
move history missed data races memory movement
set thread identity false and missed data races thread scheduling

Table 4.1: The LARD interface.

data-race detection for use by language implementations (§4.2.6) and discuss how LARD’s

design principles generalize to other environments (§4.2.7).

We focus on Java programs executed by a modern JVM on hardware that detects

ISA-level data races, although we believe that these five issues arise in any setting where

data-race detection is implemented at a significantly different abstraction level than the

source program. Others have previously identified or mitigated some of these issues. (We

discuss related work inline and in §4.5.) However, we believe our research is the first to

consider the full set of techniques needed to virtualize data-race detection.

4.2.1 Memory Access

JVM execution contains both memory accesses compiled from explicit field and array accesses

in Java programs and accesses in the JVM itself. Observing the latter may cause the detector

to report data races involving at least one JVM access. These are false Java data races

because they involve access outside the Java program and its execution abstraction.

Rule 1 The data-race detector should check only accesses explicit in the source program for

data races.

Examples The implementation of locks, for example, is necessarily lock-free, using memory

reads and writes plus hardware synchronization primitives like fences and atomic compare-

and-swap. These memory operations may race, but are chosen carefully with respect to the

hardware memory model to ensure correct behavior regardless. The need to ignore these

synchronization races is well-understood.

58

Thread 1 Thread 2

Ti
m

e

this.n++

this.n++

Thread 1 Thread 2
0x8c.n++

0x8c.n++

wait for world

stop the world
pause
for GC

resume
after GC

GC...
resume world

Java View JVM View

C

D

C

D

Thread 1 Thread 2
inc [0x8c]

inc [0x8c]

sync in

...
sync out

sync in

...
sync out

Race Detector View

C

D

§3.2: missed data race due to JVM synchronization

Thread 1

o.x = y

Thread 1 GC Thread

0x8c.x = y

ref = 0x8c.x
if ref != null...

concurrent
heap traversal...

Java View JVM View

B B

A

Thread 1 Thread 2
Race Detector View

[0x8c+4] = r1 B

r4 = [0x8c+4]
test r4...

A

§3.1: false data race with JVM memory access

Thread 1 Thread 2

Ti
m

e

ref.x = this
ref = new R()

ref.x = this
ref = new R()

Thread 1 Thread 2

0xd4.x = 0xf8
allocate 0xd4

GC: collect 0xd4

0xd4.x = 0xa0
allocate 0xd4

Java View JVM View

E E

FF

Thread 1 Thread 2

[0xd4] = 0xf8

[0xd4] = 0xa0

Race Detector View

E

F

§3.3: false data race due to memory reuse

Thread 1 Thread 2

this.n++

this.n++

Java View
Thread 1 Thread 2

inc [0x8c]

inc [0xbc]

GC: move object
at 0x8c to 0xbc

Race Detector View

G

H

G

H

JVM View
Thread 1 Thread 2

0x8c.n++

0xbc.n++

G

H

§3.4: missed data race due to object movement
Ti

m
e

Ti
m

e

Figure 4.1: A näıve low-level data-race detector reports false data races and misses true
data races in Java programs. Solid arrows are happens-before edges observed by the data-race
detector. Each example contains three views of the same execution.

Consider JVM accesses to the Java heap. A concurrent mark-sweep garbage collector,

for example, traverses the heap while Java threads continue to mutate it, compensating in a

safe, algorithm-specific way, for the data races that are bound to result. Figure 4.1 shows

an example: A GC thread reads o.x (stored in memory at address 0x8c+4) at A during a

concurrent heap traversal. A low-level data-race detector will report a data race with this

read on Thread 1’s later write at B.

Since data-race detector access histories typically store only the last write by any thread

and last read by each thread, a false data race can overwrite history necessary in the future

to detect a true data race with a previous program access.

Extension It is natural to distinguish source-program and run-time system accesses with

explicit tracked and untracked access instructions. Both have the conventional functionality

of memory accesses. The low-level data-race detector analyzes tracked accesses only.

59

4.2.2 Synchronization

Witnessing implicit JVM synchronization where no Java synchronization exists can cause the

data-race detector to miss true data races in the Java program: the racing accesses appear

well-ordered to the low-level data-race detector. A data-race detector that observes all

synchronization never misses a data race that may cause a sequential consistency violation,

because it only misses data races due to extra synchronization, but it can miss other

problematic data races.

Rule 2 The data-race detector should analyze only synchronization explicit in the source

program.

Example Consider the upper left example in Figure 4.1, which shows views of the same

multithreaded execution at the Java, JVM implementation, and low-level data-race detector

levels of abstraction. In the Java view, Threads 1 and 2 both increment the n field of the

same object at C and D, respectively. Neither thread synchronizes, so the accesses race.

A low-level data-race detector misses this data race if a stop-the-world garbage collection

occurs between the two accesses. If the data-race detector witnesses the global barrier

synchronization, accesses C and D appear well-ordered. This Java data race is not a low-level

data race in this execution, due to this JVM synchronization, but it could be in another

execution depending on the timing of garbage collection.

Extension Accurate ISA-level dynamic data-race detectors such as RADISH (Chapter 3)

provide primitives for synchronization libraries to report happens-before effects of synchroniza-

tion to the data-race detector. This approach is easily adaptable for LARD: synchronization

reports should be issued only for synchronization operations explicit in the source program.

4.2.3 Memory Allocation

Without knowledge that a low-level memory location has been reused to store a new, distinct

language-level memory object, a low-level data-race detector may report false data races

between accesses to the new and old language-level occupants.

60

Rule 3 The data-race detector should clear access histories of low-level memory locations

atomically with collection or freeing of their language-level occupants.

Example Consider the example in the lower left of Figure 4.1. In the Java view, Thread 1

allocates an R object then writes to its x field at E. Later, Thread 2 allocates a distinct R

object then writes to its x field at F. Clearly these Java accesses to fields of distinct objects

cannot race, but a low-level data-race detector may report a data race between the writes

at E and F if the memory manager reuses the same memory to store these two objects and

threads accessing these objects do not synchronize, as shown in Figure 4.1. The data-race

detector ignores memory accesses and synchronization in the garbage collector, per Rules 1

and 2, and reports a data race on the concurrent, conflicting writes to address 0xd4.

Extension Synchronization in the memory manager that makes reuse of memory across

threads must not be observed by the data-race detector, since it could also hide true data

races in the Java program (§4.2.2). In the C/C++ memory model [26], freeing a location

happens before a later allocation of the same memory location, but the ordering applies only

to accesses to that memory location.

We choose to clear low-level data-race detector access histories on deallocation. Thus

newly allocated low-level memory locations appear fresh to the data-race detector whether

or not they have been accessed before. This approach matches the language-level memory

abstraction and is safe given memory safety, making it valid for managed environments

and well-behaved C/C++ programs. It is the responsibility of the data-race detector to

clear access histories when requested. The run-time system must use this support to ensure

it clears access histories of a memory location before reallocating it. Helgrind [125] and

RACEZ [118], two data-race detectors for C programs, take a similar approach, treating

malloc/free specially. Helgrind additionally provides C preprocessor macros to mark custom

allocation routines to help reduce false data-race reports.

61

4.2.4 Memory Movement

Some garbage collectors move language-level memory objects in low-level memory during

collection to defragment the heap. Movement is not part of the language-level memory

abstraction. Collectors update all references to moved objects to maintain a consistent heap.

Without knowing a language-level memory object has moved, a low-level data-race detector

may miss true data races between accesses at the object’s old and new low-level memory

locations. Choi, et al., briefly identified (but did not solve) one aspect of this problem

in [30], §3.3. Similar issues arise for an operating system or hypervisor running above a

physical-memory data-race detector when remapping virtual-memory pages.

Rule 4 When the run-time system moves a language-level object from one low-level memory

location to another, the data-race detector should move the corresponding access histories

along with the objects.

Example Consider the example execution in the lower right of Figure 4.1, in which two

Java threads increment the n field of the same Java object, with no synchronization. Clearly,

this is a Java data race. However, garbage collection is triggered after Thread 1 increments n

at G but before Thread 2 does at H and the garbage collector moves shared object at address

0x8c to address 0xbc. The low-level data-race detector ignores accesses and synchronization

by the collector, as it should. Because the object moves, the two threads access different

low-level memory locations and the data-race detector misses a true Java data race.

Extension Moving a language-level object in low-level memory may be a non-atomic

operation, requiring copying the contents of several low-level memory locations. Some

concurrent copying collectors (e.g., [100]) may begin movement operations optimistically,

abort midway, or copy a single low-level memory location multiple times to support continued

non-blocking access by program threads during object movement. Since object movement

is rarely implemented by a single, atomic, low-level operation and clearing access history

is already required to support memory allocation, it is natural to add a primitive to copy

the access history for one low-level memory location to another. Once the language-level

62

object is fully copied, the old copy can be deallocated, at which point its access history is

cleared. Garbage collectors already ensure that the movement of data appears atomic; it

is also their responsibility to ensure that they request access history movement from the

low-level data-race detector in a way that ensures access history is moved atomically with

program data. Neither the run-time system nor the data-race detector can accomplish this

alone.

An alternative is to use logical addresses for data-race detection analysis so it is resilient

to movement [105], but this adds a logical address lookup indirection to the critical path of

memory accesses, along with the cost of managing available unique identifiers. For low-level

data-race detectors, each tracked memory instruction in the ISA would need to take an

extra logical address argument. TLB-like hardware support to cache the low-level to logical

address mapping could speed the lookup at the cost of lengthening the critical path for cache

accesses, which is unmodified in hardware data-race detectors such as RADISH (Chapter 3),

and would require shootdown on object movement anyway. While reporting movement

has overheads to copy access histories, data-race-checked memory accesses occur far more

frequently than object movement. We choose reporting movement (copying) as a less invasive

and higher-performance option.

4.2.5 Thread Identity

Some threading implementations (e.g., user-level threads or work-stealing schedulers) multi-

plex a set of language-level threads on a fixed set of low-level (kernel or hardware) threads.

Without knowledge of this mapping, a low-level data-race detector may report false data

races between accesses in a single language-level thread or miss true data races between

accesses in distinct language-level threads.

Rule 5 The data-race detector should use language-level thread identities in its analysis.

Example When two language threads execute conflicting accesses without synchronization,

they clearly race. However, if they execute their accesses while scheduled on the same kernel

thread (at different times), the low-level data-race detector observes two accesses by the

63

same kernel thread and misses a true data race. When a single language thread executes

multiple accesses to the same location, it cannot race with itself, but if these accesses are

executed while it is scheduled on distinct kernel threads (at different times), the low-level

data-race detector observes conflicting accesses between distinct kernel threads and may

report a false data race.1

Extension We take an approach similar to object movement, reporting a new thread

identity whenever a threading system schedules a language-level thread onto a low-level

thread. The low-level data-race detector uses this thread identity for all operations of the

low-level thread until the next such report.

4.2.6 Sufficiency

Data races—and accurate algorithms for their detection—are defined in terms of memory,

synchronization, and threads. Program translation must affect one of these features to affect

post-translation data-race detection. To derive the set of translation issues affecting data-race

detection, we enumerated all differences introduced in the language-to-ISA translation that

interact with these features, to the best of our knowledge, finding that only the issues in

§4.2.1-4.2.5 affect data-race detection. The five extensions described above ensure data-race

detection is performed only on language-level memory and synchronization operations (§4.2.1,

§4.2.2) and on the language’s abstractions of memory (§4.2.3, §4.2.4) and thread identity

(§4.2.5). While each issue and extension is fairly simple, it is their composition that allows

data-race detection to virtualize. We believe our research is the first to consider the full set

of techniques needed to virtualize data-race detection. This perspective was essential for

guiding our implementation and evaluation.

LARD’s effectiveness depends on the contract between the low-level data-race detector and

the language implementation; it does not free the language implementation from reasoning

about all details of data-race detection. It is up to the language implementation to ensure

that its use of the LARD primitives meets its particular semantics. For example, garbage

1We assume the data-race detector ignores synchronization involved in the context-switching of language
threads, as it should.

64

collectors are responsible for ensuring that primitives like access history clearing and copying

appear atomic with respect to memory accesses by program threads.

The language implementation is also responsible for compilation choices. For example,

some compiler optimizations allowed by the Java [76] and C/C++ [20] memory models may

remove data races from the original program, but none introduce data races where they did

not exist. Roach-motel reordering allows the movement of memory operations into—but

not out of—critical sections [133]. As a result, the access may now be well-ordered when it

would have raced if the transformation was not applied. We do not consider this a missed

data race. It is explicitly allowable behavior in the language memory model and, unlike with

the issues above, the program can never manifest this data race as compiled. If the language

implementers do consider this a missed data race, they must choose compiler optimizations

appropriately. Regardless, this is the language implementer’s choice and is an issue common

to dynamic data-race detectors implemented at all levels of abstraction, not just low-level

data-race detection for high-level languages.

4.2.7 Generality

This work has focused on a simple execution stack consisting of a language implementation

runinning on hardware with accurate data-race detection support. We believe the design

principles of LARD also apply to other environments involving translation between two

abstractions of shared-memory multithreading. For example, consider the implementation

of a C-level data-race detector using hypervisor support or a hardware data-race detector

that reasons in terms of physical (not virtual) memory addresses. The intervening virtual

memory layer provides an abstraction of memory by translating down to the hypervisor

or hardware below in ways manifesting the five issues discussed above. Virtual memory

paging, for example, exemplifies the same issues raised by automated memory management.

A task-based programming model implemented with work-stealing [16] on top of a shared-

memory multithreaded language needs to handle the scheduling of tasks on threads and the

synchronization introduced by a work-stealing system.

65

LARDx86

Jikes LardVM

Accuracy
AnalysisLARDISH

gcc + libc

Extended ISA

Low-Level
Abstractable

Race Detectors

Language

Implementations

C programJava program

...

...

...

Figure 4.2: The LARD environment.

4.3 Implementation

To validate the efficacy and feasibility of low-level detection of language-level data races, we

implemented a data-race detector for Java using a low-level data-race detector and a Java

virtual machine that communicate through the LARD interface. This section describes four

parts of our implementation (bold items in Figure 4.2): LARDx86 (§4.3.1) is an extension of

the x86 ISA with LARD primitives. LARDISH (§4.3.2) is a simulated hardware implementation

of LARDx86 that performs accurate, LARD-aware, data-race detection derived from the

RADISH (Chapter 3) hardware-based data-race detector. Jikes LARDVM (§4.3.3) is a Java

virtual machine that runs on LARDx86 and implements accurate Java data-race detection

using the LARDx86 primitives. We also extended these three parts for fine-grained accuracy

evaluation of LARD and näıve low-level data-race detectors (§4.3.4).

4.3.1 The LARDx86 ISA

LARDx86 extends the x86 ISA to provide a LARD interface between software run-time

systems and low-level vector-clock data-race detectors. To support the tasks described in

§4.2, LARDx86 extends the x86 ISA with Tracked accesses, a Thread instruction to report

thread identity, WriteVC and ReadVC instructions to report synchronization, and ClearHistory

and CopyHistory to manipulate access histories.

66

ISA Extensions for Memory Access and Synchronization Explicit Tracked memory

access instructions, distinguished by separate opcodes or a prefix, have the usual semantics

of memory accesses, but are additionally checked for data races by the low-level data-race

detector. Untracked accesses are never checked. The low-level data-race detector must

store a vector clock for each thread internally, representing the most recent event from each

thread that happens before the current event of this thread. It is used when checking Tracked

accesses for data races. The run-time system must track ordering effects of synchronization

using vector clocks, using the ReadVC and WriteVC instructions to read and write entries in

the low-level data-race detector’s per-thread vector clocks.

Alternatively, the run-time system could report synchronization on a particular memory

object (e.g., lock), leaving storage and tracking of all vector clocks to the low-level data-

race detector. This hides vector clocks from the run-time system, but is best suited for

locks or barriers. Additional purpose-built instructions would be necessary to support

synchronization operations that also atomically manipulate data, such as language-level

atomic CAS operations or Java’s volatile field accesses (§4.3.3). Since the semantics of

synchronization is best understood in its implementation (i.e., above the ISA), exposing

vector clocks is more flexible and ultimately has lower complexity.

ISA Extensions for Mapping Memory Management The ClearHistory and CopyHistory

instructions clear and copy low-level data-race detector access histories of given memory

locations. They are intended for use by a memory manager when it frees or moves language-

level memory objects. ClearHistory takes two arguments, the address and size of a memory

region whose access histories should be discarded. CopyHistory takes three arguments, the

address of a source region of memory, the address of a destination region of memory, and

the size of the two regions. (They must be the same size.) In response to a CopyHistory

instruction, a low-level data-race detector copies the access history for each memory location

in the source region to use as the access history for the corresponding memory location in

the destination region. Specifying regions of memory rather than individual locations allows

the data-race detector to optimize bulk updates internally, but regions are restricted to a

single virtual memory page to simplify support in hardware-based data-race detectors.

67

Encapsulated vs. Exposed Access Histories LARDx86 assumes that the low-level

data-race detector is solely responsible for managing access histories. Exposing control

of access history storage to a language implementation may be more natural and efficient

if access histories can be colocated with the data they shadow and automatically moved

and deallocated by the garbage collector. This is not feasible with our implementation

because the hardware data-race detector manages access histories based on physical—not

virtual—addresses (§4.3.2). Reverse address translation or virtually addressed caches would

be necessary to support efficient external software management of access histories.

4.3.2 The LARDISH Hardware Data-Race Detector

To evaluate the performance potential of a hardware-based LARD system, we designed

LARDISH, an extension of RADISH (Chapter 3), a hardware-supported data-race detector.

This section outlines our extensions to RADISH to support low-level abstractable data-race

detection with LARDx86.

LARD Extensions Supporting LARD requires minor adjustments to RADISH’s access

and synchronization tracking and modest hardware extensions to support LARD’s memory

management. RADISH checks for data races on all memory accesses except stack accesses

and accesses in its software manager. We generalize this to use LARDx86’s explicit Tracked

memory access instructions. We implement the WriteVC and ReadVC instructions with

RADISH’s existing support for tracking and reporting synchronization in libraries.2 The

Thread instruction is identical to a context switch in RADISH, swapping the thread’s vector

clock and requiring eager or lazy flushing of the old thread’s cached access histories to the

software manager, which maintains the mapping between processor cores, kernel threads,

and language threads. ClearHistory and CopyHistory instructions must perform tasks similar

to context switches or virtual memory paging in RADISH. Manipulating access histories in

RADISH’s software manager is straightforward when they are not cached in hardware, but

hardware support is needed to invalidate or move cached access histories.

2The original RADISH simulator hard-codes pthreads support; we implement true vector-clock instructions.

68

Manipulating Cached Access Histories The RADISH software manager identifies ac-

cess histories by physical addresses, since it receives physically addressed access history cache

lines on eviction. We use the existing address translation mechanism to map the virtual

addresses specified by ClearHistory and CopyHistory instructions to physical addresses that the

extended RADISH software manager can use to manipulate the relevant access histories.

When a hardware cached access history is not available to perform a check, the RADISH

hardware requests it from software. When dirty cached access history is evicted, RADISH

calls its software manager to persist it instead of storing it to memory. The software manager

keeps track of what access histories may be in-cache (on calls for fills and evictions). If

an access history to be cleared or copied is not cached, it can be handled by the software

manager alone. If an access history is cached, ClearHistory and CopyHistory must explicitly

invalidate or copy hardware-cached access histories to ensure they stay consistent with the

software-managed copies and the new mapping of language-level to low-level memory. For

ClearHistory, we instead invalidate the cached access history without calling the software

handler.

CopyHistory must persist hardware-cached histories for its source location. In this case,

hardware first forces eviction of the source locations’ cached access histories via the normal

RADISH eviction handler. We assume that the destination of an object movement has no

preexisting access histories. If it does, the memory manager must use ClearHistory to explicitly

invalidate any cached version before copying. Once the software manager has persisted any

cached access histories for the source region, it copies all access histories for the source region

to become access histories for the destination region. On the first access to a location in the

destination region after copying, hardware will request the software-managed access history

as usual.

If the language implementation allows program threads to access objects concurrently

with copying, the software manager must ensure the atomicity of the copy operation by

disallowing hardware requests for access histories of the affected regions for the duration of

the copy, effectively blocking access to the region during access history copying. To allow

finer-grained access, concurrent copying collectors may issue smaller CopyHistory operations,

ensuring atomicity of the full copy themselves.

69

An alternative is to copy cached access histories directly in cache, moving stale software-

managed access histories to follow. This approach must consider whether it is profitable to

keep the history in cache, but evict another cache line at its destination. We implement a

simpler evict-and-copy policy. Additionally, a MoveHistory instruction could enable optimiza-

tions when the intent is to copy an access history and immediately clear the original, as in

stop-the-world copying collectors. We have not explored this.

4.3.3 The Jikes LARDVM Java Virtual Machine

Jikes LARDVM is a modified version of Jikes RVM [8] 3.1.1 that implements accurate

data-race detection for Java using LARDx86. Jikes LARDVM marks source program accesses

for data-race checks (§4.3.3.1), tracks source program thread identity and synchronization

(§4.3.3.2), and reports garbage collector operations (§4.3.3.3). Our implementation was

designed for detailed accuracy analysis and is only lightly optimized for performance.

4.3.3.1 Memory Tracking

The Jikes LARDVM JIT compiler emits Tracked accesses for potentially racing field and array

accesses in Java programs. All other accesses in the system are unmarked, to be ignored

by the low-level data-race detector. This includes JVM code like garbage collector write

barriers that are inlined into compiled code. In write barriers, the memory write on behalf

of the source program is marked Tracked, but all other accesses are untracked. The compiler

may decide not to mark some source program accesses Tracked if it can prove their data-race

freedom, such as for read-only final fields. We have not yet enabled thread-escape analysis.

Since Jikes RVM is a self-hosted JVM written in Java and compiled to machine code by its

own compiler, the compiler must distinguish Jikes RVM Java code from source program Java

code, emitting Tracked accesses and synchronization reporting only for the source program.

Compilers in conventional JVMs written in lower-level languages can emit Tracked accesses

everywhere except inlined VM code.

70

4.3.3.2 Thread Identity and Synchronization

Jikes RVM uses kernel threads directly, so we issue a Thread instruction only once per

thread. Every Java object may be used as a lock. To track lock synchronization, we

shadow each lock with a vector clock indicating the last logical time it was released. A

word in the object header stores a pointer to a lazily allocated vector clock. We also

augment each Jikes RVM thread with a thread vector clock tracking its logical time and

synchronization with other threads. We instrument lock operations and thread fork/join

to track happens-before ordering with vector clocks in the JVM, reporting updates to the

data-race detector’s per-thread vector-clock using WriteVC/ReadVC. Jikes RVM and source

programs share synchronization implementations. We added an instrumentation-wrapped

version of each for program synchronization.

Under the Java Memory Model [76], volatile field accesses never race; they induce

synchronization instead. There is a happens-before edge from a volatile write to each volatile

read observing the write, enforced by hardware memory fences and restrictions on compiler

reorderings. Jikes LARDVM never marks volatile accesses Tracked. Each volatile field is

shadowed by a vector clock representing the last logical time a volatile write occurred on

that field. The field contents and the vector clock must be updated and observed atomically.

Volatile reads have the same type of happens-before effects as lock acquires (volatile writes

are like lock releases), but provide no mutual exclusion. The vector clock to store on a

volatile write operation depends on the field’s vector clock at the time of the write, which

requires allocating one new vector clock per volatile write operation. To avoid introducing

a lock into the source program’s lock-free code, we align volatile fields with an adjacent

vector clock pointer and use a wide CAS to operate atomically over the two, optimistically

computing the vector clock to store and retrying under contention in a standard lock-free

manner.

4.3.3.3 Memory Management and Mapping

We modified the classical mark-sweep and semispace collectors in Jikes RVM and MMTk [13]

to issue a CopyHistory instruction when moving an object and a ClearHistory instruction when

71

reclaiming an object, including after movement. The garbage collector handles source

program objects and objects representing Jikes RVM internals (including vector clocks).

We issue ClearHistory and CopyHistory conservatively for all objects whose contents may have

been used by data-race-checked source program accesses and thus may have access histories

in the data-race detector. Unlike synchronization and access, conservative reporting of

memory-management events cannot cause missed or false data races.

Other more advanced garbage collectors do not introduce other issues beyond the reuse

and movement exhibited by mark-sweep or semispace. For example, accesses to metadata

in generational write barriers are properly left untracked, as they are not explicit in the

program.

4.3.3.4 Extent of Changes to Jikes RVM

Our modifications to Jikes RVM add or change 8229 lines of code. The core LARD additions

account for well under half those lines, with the rest devoted to extensions for accuracy

analysis (§4.3.4), extensive debugging/profiling, and significant trivial code duplication for

garbage collector access barriers.

The core LARD additions mainly track synchronization events and mark tracked accesses

in the compiler. Other significant additions involved object layout for volatile fields with

adjacent vector clocks and proper garbage collector tracing of vector clock references. Those

aspects of the data-race detector that are shared in common with software implementations

(i.e., synchronization tracking) were the most complicated to implement. Memory reuse and

movement reporting was relatively simple once we understood the memory management

architecture in Jikes RVM and MMTk.

4.3.4 Extensions for Accuracy Analysis

For the accuracy analysis in §4.4.2, we built an analysis tool that runs multiple data-race

detection algorithms on the same LARDx86 execution, comparing their results at each memory

access. Specifically, we support several detectors that each ignore one of the LARD extensions

in their analysis. It is simple to analyze all accesses instead of Tracked accesses only. To ignore

memory reuse or movement, a detector ignores the ClearHistory or CopyHistory instructions,

72

respectively. To analyze all synchronization instead of language-level synchronization only,

we must explicitly report all synchronization. Tracking all synchronization in Jikes LARDVM

on the same execution where we track language-level synchronization requires a separate

vector clock for each lock, volatile field, and thread. This addition is needed only for the

accuracy evaluation (§4.4.2) and not in real deployments.

4.4 Evaluation

We evaluate the efficacy of LARD and multiple näıve low-level data-race detectors for

implementing accurate dynamic data-race detection for Java. We validate LARD’s ability to

eliminate missed data races and false data races by comparing the results of our LARD-based

Java data-race detector with the accurate FastTrack Java data-race detector [52] and a

näıve low-level vector-clock data-race detector (§4.4.1) and quantify the effects of individual

LARD extensions in terms of the missed data races and false data races they eliminate

(§4.4.2). Although the accuracy analysis is the main contribution of our evaluation, we

include initial evaluation of the performance of a LARD implementation composed of Jikes

LARDVM executing on LARDISH via simulation (§4.4.3). Additionally, we evaluate the

performance of Jikes LARDVM alone on conventional x86 hardware (§4.4.4).

Experimental Configuration We ran experiments with multithreaded benchmarks from

Java Grande [122] and DaCapo 9.12 [14].3 The Java Grande benchmarks are mostly small

scientific applications with relatively static memory footprints.We replace Java Grande’s

custom racy spin-waiting barriers with data-race-free versions to verify LARD’s accuracy

for data-race-free programs. We report their results as one unit. DaCapo is composed

of larger applications with varied concurrency patterns. Where applicable, benchmarks

were configured to use 4 threads. To make heavyweight accuracy analyses and simulations

feasible, we used small inputs. For performance experiments on real hardware, we used the

largest inputs. We ran two configurations each of Jikes RVM and Jikes LARDVM, using

the mark-sweep (MS) and semispace (SS) garbage collectors. All experiments were run on

3We omit DaCapo benchmarks that crash on unmodified Jikes RVM or take too long to complete under
simulation.

73

quad-core 64-bit 2.8GHz Intel Xeon Pentium 4 machines with 4GB of RAM and a Linux

2.6.32 kernel.

4.4.1 False Data Races and Missed Data Races

To validate the accuracy of our LARD implementation and illustrate the degree to which näıve

low-level data-race detectors can suffer from false and missed data races, we compare the data-

race reports from three data-race detectors. FastTrack [52] is an accurate data-race detector

for Java implemented via bytecode instrumentation. We compared FastTrack data-race

reports with those of our LARD implementation (described in §4.3) and a Näıve low-level

vector-clock data-race detector equivalent to RADISH (Chapter 3). LARD and Näıve are run

over the same exact execution of the benchmarks, but FastTrack uses separate executions.

We have not reimplemented FastTrack within Jikes LARDVM due to the complexity of

co-hosting the two. FastTrack ignores accesses and synchronization in the JDK standard

libraries. LARD instruments all Java code by default.

Table 4.2 contains results from running these data-race detectors on the Java Grande

benchmarks and selected DaCapo benchmarks. Exact numbers can vary across executions;

we show the highest number of data races reported by each detector on any single execution.

Column DRE shows the number of dynamic accesses on which data races were reported.

Column PC shows the number of distinct program counters of these reports. Each racy

access (DRE) races with one or more previous accesses, hence counting DREs is slightly

different than counting distinct data races. We report data races on the second of a racing

pair of accesses and only report those racing pairs where the previous access has happened

since (or is) the last write to an address. Due to this optimization, FastTrack and LARD

are accurate (sound and complete) through the first data race. In practice, accuracy is not

often compromised thereafter, so we report total data-race reports in each execution as is

conventional in the literature.

FastTrack vs. LARD We compared data-race reports from FastTrack and LARD to

validate LARD’s accuracy. LARD consistently reported at least as many data races and at

least as many racy accesses as FastTrack, though generally in the same order of magnitude.

74

Benchmark
FastTrack

GC
LARD Näıve

DRE PC DRE PC DRE PC

Java Grande 0 0
MS 0 0 28211 124
SS 0 0 7899 175

avrora 83315 6
MS 106405 8 1997242 129
SS 104579 8 139131 194

luindex 0 0
MS 0 0 2841482 745
SS 0 0 539216 528

lusearch 0 0
MS 0 0 2823974 2395
SS 0 0 26469692 2865

pmd 3 3
MS 9 9 827934 87
SS 9 9 17378 189

sunflow 32 7
MS 84 16 3224426 123
SS 64 16 65075 203

xalan 588 8
MS 703 34 4152344 149
SS 704 36 203473 237

Table 4.2: Accuracy of LARD vs. FastTrack and a näıve low-level data-race detector.
Numbers of dynamic accesses on which data-race reports occur (DRE) and distinct PCs of
these reports.

We examined the differing reports and found three sources. None is inaccuracy in LARD.

First, LARD instruments all Java code in the source program, including the JDK.

It therefore reports some data races involving JDK code, where applications misused

unsynchronized JDK data structures. FastTrack misses these since it does not instrument

the JDK. In pmd, LARD reports the same 3 data races on 3 accesses as reported by FastTrack

and LARD, as well as 6 data races on unsynchronized ArrayLists from the JDK. Data races on

the contents of java.util.Properties objects in xalan cause similar disparities.

Second, for each benchmark, FastTrack and LARD analyzed separate executions on

entirely different JVMs, so some dynamic data-race-count variance is expected. Some

benchmarks, such as sunflow, had wide variance even between runs on the same detector and

JVM. There is large overlap in the data races reported. We carefully examined data races

reported by only one detector. All appear possible in some executions and hidden in others,

accounting for differences in sunflow and avrora. LARD reports more DREs, but at related

program points.

75

Third, Jikes RVM is implemented for IA32 and emits two 32-bit accesses to implement

accesses for Java’s 64-bit long and double types. The Java Memory Model allows non-atomic

long/double accesses, so we report data races individually. These duplicated reports inflate

LARD’s data-race counts compared to those of FastTrack, though they report the same data

races, and account for the remaining disparities between LARD and FastTrack.

Comparison with a Näıve Low-Level Data-Race Detector The Näıve configuration

reports up to several orders of magnitude more data races than LARD or FastTrack, as shown

in Table 4.2. The majority of these are false data races involving system accesses; some are

false data races between language-level accesses. The Näıve detector also misses some data

races reported by LARD or FastTrack, as discussed in §4.4.2, and reports data races on a

large number of PCs, including many outside the source program.

4.4.2 Impacts of LARD Extensions

To understand the practical impact of each LARD extension on missed and false data races,

we compared the accurate LARD detector to variants with one or all of the LARD extensions

disabled. The detectors are as follows, labeled as in Table 4.3:

• LARD is accurate, with all LARD extensions enabled.

• AllMem tracks all non-stack memory accesses in the JVM and the source program.

• AllSync tracks all synchronization in the JVM and the source program.

• NoClear ignores reports of memory deallocation.

• NoCopy ignores reports of memory movement.

• Näıve tracks all non-stack memory accesses and all synchronization and ignores all

memory management.

Jikes RVM uses a one-to-one mapping between kernel threads and Java threads, so we do not

evaluate a detector that ignores thread identity. For each benchmark and garbage collector

76

B
e
n

ch
G

C
L
A
R
D

A
llM

e
m

A
llS

y
n

c
N

o
C

le
a
r

N
o
C

o
p
y

N
ä
ıv

e
D

R
E

P
C

F
D

R
E

F
P

C
M

D
R

E
M

P
C

F
D

R
E

F
P

C
M

D
R

E
M

P
C

F
D

R
E

F
P

C
M

D
R

E
M

P
C

J
ava

M
S

0
0

76
2
969

222
0

0
0

0
0

0
28211

124
0

0
G

ran
d

e
S

S
0

0
75

3
437

226
0

0
0

0
0

0
7899

175
0

0

av
rora

M
S

1
064

0
5

8
9
564

4
276

33
7
4

7
0

0
0

0
1894211

121
3374

7
S

S
1
045

7
9

8
6
801

0
174

12
3
6

7
2

1
0

0
35788

186
1236

7

lu
in

d
ex

M
S

0
0

4
267

0
157

0
0

0
0

0
0

2841482
745

0
0

S
S

0
0

4
346

0
159

0
0

0
0

0
0

539216
528

0
0

lu
search

M
S

0
0

170
7
993

5
839

0
0

2
8
2
3
9
7
4

3
7
0

0
0

41760642
2395

0
0

S
S

0
0

166
9
043

4
873

0
0

3
7
7
0
5
8
7

2
6
4

0
0

26469692
2865

0
0

p
m

d
M

S
9

9
4
312

3
613

9
9

0
0

0
0

827934
87

9
9

S
S

9
9

1
789

9
236

9
9

0
0

6
6

17378
189

9
9

su
n

fl
ow

M
S

84
1
6

9
925

0
481

8
1

1
5

0
0

0
0

3224423
121

81
15

S
S

64
1
6

10
4
457

255
6
1

1
5

1
7

1
0

9
6

65072
201

61
15

x
a
la

n
M

S
7
0
3

34
83

7
451

723
6
9
9

3
4

0
0

0
0

4152340
147

699
34

S
S

7
0
4

36
59

6
556

649
7
0
0

3
6

0
0

0
0

203469
235

700
36

T
a
b

le
4
.3

:
F

alse
or

m
issed

d
ata

races
w

ith
in

d
iv

id
u

al
L

A
R

D
ex

ten
sion

s
d

isab
led

.

77

(mark-sweep (MS) or semispace (SS)), we ran all six detectors over the same execution,

comparing their results on each dynamic memory access, with LARD as ground truth (by

proxy to FastTrack). Table 4.3 shows the results.

The LARD column repeats the count of racy accesses and distinct PCs for LARD from

Table 4.2. For the other detectors, we report: (1) the number of false DREs (F DRE)—

those accesses on which LARD does not report a data race but the other detector does, (2)

the number of distinct PCs of false DREs (F PC), (3) the number of missed DREs (M

DRE)—those accesses on which LARD reports a data race but the other detector does not,

and (4) the number of distinct PCs of missed DREs (M PC). All four of these are reported

for Näıve. For the remaining four detectors, only one of missed or false is reported. The

omitted columns contain only zeroes.

The most notable feature of these results is that disabling any one extension in our

experiments results in false or missed data races in at least one benchmark. All of these

LARD extensions are necessary for accuracy in practice.

Program vs. System All benchmarks in our experiments have false data races under

AllMem, with tracking of program and system accesses. The majority of false data races

are reported on accesses outside the source program, but false data races are also reported on

program accesses. Filtering out data-race reports on PCs in system code does not eliminate

all false data races. Conversely, AllSync misses data races on all benchmarks, often (e.g.,

pmd, sunflow, xalan) missing all or nearly all the data races reported by LARD.

Memory Management Empirically, most benchmarks do not lead to false data races

when memory reuse is ignored (NoClear), but avrora and sunflow do suffer false data races

under semispace collection. Short executions and low garbage collection pressure make

problematic reuse of memory rare in these experiments. In particular, the Java Grande

benchmarks generally use large, long-lived arrays, rather than short-lived shared objects.

Nonetheless, false data races occurred under these relatively favorable conditions.

Ignoring memory movement in the NoCopy detector has no effect on the accuracy of

data-race detection when using mark-sweep garbage collection, since mark-sweep never moves

78

objects. Ignoring movement never leads to missed data races in data-race-free executions

such as the Java Grande benchmarks, but missed data races do occur under semispace

collection in pmd and sunflow.

4.4.3 Jikes LARDVM Performance on LARDISH

We did a preliminary evaluation of the performance potential of hardware-based LARD data-

race detection for Java by running benchmarks from DaCapo Jikes LARDVM on simulated

LARDISH hardware. We model the same baseline configuration as in [38], extended with

mechanisms described in §4.3.2. A PIN [74] binary instrumentation tool emulates LARDx86

to drive the simulator, an extension of the simulator used in [38]. Our main addition is to

model the costs of ClearHistory and CopyHistory. For each, we charge 100 cycles to transition

to the software manager. Next we simulate memory accesses for software manager lookups

of what access histories may need to be invalidated in the cache, issuing invalidations (the

same cost as a cache hit for the cache where the access history lives in the cache hierarchy).

For CopyHistory, we simulate the accesses of the software handler for eviction; in ClearHistory

there is no handler for eviction since the data is discarded. Finally, we simulate each memory

access required in the software manager to clear or copy software access histories.

Results from these initial simulations suggest Jikes LARDVM on LARDISH has overheads

under 50% in most cases, comparable to those reported for C programs in [38], while lower

on average. JVM accesses are not data-race-checked, so LARDISH can introduce less overhead

than RADISH does for C programs in which all accesses are checked.

4.4.4 Jikes LARDVM Performance on x86

We evaluated the performance overhead of our JVM modifications alone on real x86 hard-

ware (with compilers emitting no LARDx86 instructions) to measure the costs of tracking

synchronization and memory management in software. We ran benchmarks from DaCapo

with their largest input 10 times each with Jikes LARDVM and with an unmodified Jikes

RVM, and with the mark-sweep and semispace collectors. Figure 4.3 shows the additional

overheads of Jikes LARDVM normalized to unmodified Jikes RVM using the same garbage

79

mark-sweep semispace MarkSweep SemiSpace
h2

LUFact
MonteCarlo
RayTracer
SOR
Series
JGF
MolDyn
avrora
luindex
lusearch
pmd
sunflow
xalan
(mean)

-100.00% -100.00%

101.80% 101.80%

100.90% 100.90%

102.00% 102.00%

177.48% 192.41%

101.70% 101.70%

16.78% 19.76% 116.78% 119.76%

134.30% 134.20% 234.30% 234.20%

58.60% 54.68% 158.60% 154.68%

8.20% 8.20% 106.29% 107.53%

33.73% 17.01% 133.73% 117.01%

8.24% 18.35% 108.24% 118.35%

5.53% 11.49% 105.53% 111.49%

18.79% 19.43% 118.79% 119.43%

21.86% 21.42% 121.86% 121.42%

0%

10%

20%

30%

40%

50%

JGF MolDyn avrora h2 luindex lusearch pmd sunflow xalan

T
im

e
O

ve
rh

ea
d

137%

0%
10%
20%
30%
40%
50%
60%

avrora luindex lusearch pmd sunflow xalan (mean)

Ti
m

e
O

ve
rh

ea
d mark-sweep

semispace

Figure 4.3: Execution time overhead of Jikes LARDVM normalized to unmodified Jikes
RVM, both run on native x86.

collector. Overheads average 22% for mark-sweep and 21% for semispace. All overheads are

under 60% and most are under 20%. These results show that synchronization and memory

management events can be tracked in software with relatively low overhead, even in our

relatively unoptimized prototype.

4.5 Related Work

Work related to low-level abstractable race detection generally falls into two categories:

work on virtualizing low-level resources or providing usable semantics when compiling under-

specified program primitives (§4.5.1) and work on data-race detection that has attempted to

address one or more of the translation issues that affect low-level data-race detection for

high-level languages (§4.5.2).

4.5.1 Virtualization and Language Semantics

The task of virtualizing data-race detection bears some resemblance to virtualization of other

hardware services, such as virtual transactional memory [107]. However, unlike hardware

transactional memory, for example, data-race detection is not an execution resource to be

controlled by programs. It is more an issue of preserving semantics.

A better parallel is Boehm’s exposition of why a usable semantics for shared-memory

multithreading requires deep language integration, hence threads cannot be implemented as a

80

library [18]. This work served as a precursor to the formal C/C++ memory model [20], which

addresses issues raised in [18]. Just as compilers must reason carefully about the semantics of

synchronization and memory accesses to translate shared-memory multithreaded programs

to machine code in a way that preserves usable semantics, they must also faithfully translate

the language-level notion of a data race to a machine-level analysis if the analysis results are

to be interpreted at the language level. Our approach has also been similar to that in [18],

starting with practical correctness problems in low-level detection of language-level data

races and deriving a more general set of rules to solve them. The responsibilities of a compiler

in low-level abstractable race detection are analogous to the compiler’s responsibilities under

a language memory consistency model [20, 70, 76].

Systems that try to use low-level analysis to reason about the effects of data races

as harmful or benign [65, 87] have been limited by reasoning about a specific low-level

instantiation of a higher-level program in a language with a permissive semantics [19]. Like

a näıve low-level data-race detector, they lack sufficient semantic information from the

language-level program. A system in the spirit of LARD might help these analyses become

more relevant at the language level, although their judgments on effects of data races have

farther-reaching dependence on language semantics than merely detecting data races.

4.5.2 Compensation for Translation Artifacts

Others have previously identified memory management or custom synchronization as potential

sources of inaccuracy when using low-level data-race detection implementations for high-level

languages, but existing solutions do not fully address this inaccuracy.

Helgrind [125] offers C preprocessor macros to annotate custom synchronization and

allocation in C/C++ programs to reduce false data-race reports, but there is no way to turn

off analysis of standard synchronization operations (e.g., pthreads) or to specify memory

movement in a way that preserves data-race detection access history. RADISH (Chapter 3)

depends on synchronization libraries to annotate synchronization effects for the data-race

detector, but does not provide support for memory reuse or movement. LARD provides a

general interface to communicate the salient details of language-level synchronization and

81

memory abstractions to the low-level data-race detector for accurate data-race detection.

Choi, et al., mention that memory reuse and movement in garbage collection could break

their JVM-level data-race detector, since it stores addresses of objects in its analysis state [30].

Their solution (a heap size large enough that garbage collection never occurs) is not feasible

for production systems. Qi, et al., address this problem in their MulticoreSDK [105] JVM

data-race detector implementation with logical addresses for data-race-checked locations.

This adds a logical address lookup indirection to the critical path of memory accesses, along

with the cost of managing available unique identifiers. For low-level data-race detectors,

each tracked memory instruction in the ISA would need to take an extra logical-address

argument. TLB-like hardware support to cache the low-level to logical address mapping

could speed the lookup at the cost of lengthening the critical path for cache accesses, which

is unmodified in hardware data-race detectors such as RADISH (Chapter 3), but would

require shootdown on object movement. LARD uses explicit movement of analysis state to

follow the movement of objects, which occurs much less frequently than memory accesses.

While reporting movement has overheads to copy access histories, data-race-checked memory

accesses occur far more frequently than object movement. We choose reporting movement

(copying) as a less invasive and higher-performance option.

RACEZ [118] is an offline, dynamic data-race detector for C/C++ that uses the imprecise

lockset algorithm [115], sampling of memory accesses via hardware performance monitoring,

and offline log analysis to improve run-time performance at the cost of missing some true

data races and reporting some false data races. RACEZ uses memory allocation events as a

heuristic to filter false positives, but the authors give no discussion of why tracking memory

allocation is important—-nor to what extent it is effective—in reducing false positives.

Memory movement is not considered.

This prior work indicates that memory management affects the accuracy of data-race

detection, but our work is the first to provide a single clear interface for managing all aspects

of the gap between language-level and low-level memory abstractions and to make low-level

data-race detection implementations accurate for language-level data-race detection.

82

4.6 Conclusions

LARD is a set of extensions to low-level data-race detectors and run-time systems. LARD’s

five extensions—distinguishing program vs. system memory accesses, distinguishing program

vs. system synchronization, reporting memory reuse, reporting memory movement, and

reporting thread identity—are sufficient for low-level detection of language-level data races.

We have implemented a prototype system to detect data races in Java programs using a

low-level data-race detector and modifications to a JVM. Our results demonstrate that basic

low-level detection mechanisms alone do not provide accurate detection of language-level data

races, but a LARD implementation does. LARD admits general hardware implementations of

performance-critical data-race checking logic, while allowing language implementations to

customize the semantics of memory, synchronization, and thread identity. This result is a

step toward feasible data-race exceptions for high-level languages.

83

Chapter 5

FIB:

Fast Instrumentation Bias

Fast Instrumentation Bias (FIB) aims to reduce the cost of data-race checks in pure-software

dynamic data-race detectors by using cooperative synchronization to protect against metadata

races that could compromise accuracy.

5.1 Introduction

Who detects the races in the race detector? Software dynamic analysis implementations

modify target programs by inserting analysis code inline within application code and running

the modified program directly. The execution of the analysis is therefore subject to all

effects of program execution. In addition to analyzing concurrency properties of the program

execution, a data-race detector (or other similar analysis implementation) must protect itself

against consistency errors due to metadata races induced by the very concurrency patterns

the analysis intends to detect.

A software dynamic data-race detector inserts code called a barrier before each memory

access in the program to check whether that access will cause a data race. This barrier

reads and may update analysis metadata that is stored in memory alongside program

data. When two program accesses to the same memory location execute concurrently with

each other, their associated barriers also execute concurrently. Without sufficient additional

synchronization in analysis barriers, metadata races and atomicity violations in these barriers

may corrupt the analysis metadata. Ironically, this is most likely to occur exactly when the

analysis should be detecting a data race in the program, and when it causes the analysis to

84

Thread t1 Thread t2 Wx Rx

Ct1 = {5@t1, 3@t2, 1@t3} Ct2 = {2@t1, 7@t2, 1@t3}
1@t3 1@t3

Load 1@t3 from Wx

Is 1@t3 = Ct1(t1)? No. Load 1@t3 from Rx.
Load 1@t3 from Rx. Is 1@t3 = Ct2(t2)? No.

Is 1@t3 � Ct2? Yes, OK!
Is 1@t3 � Ct1? Yes, OK! Store Ct2(t2) in Rx. 7@t2
Store Ct1(t1) in Wx. 5@t1
Store Ct1(t1) in Rx. 5@t1

rd(t2, x, v2)
wr(t1, x, v1)

Figure 5.1: Lost access history updates lead to a missed data race in an unsynchronized
software data-race detector. Time flows down. Thread t1’s Load from Rx should observe
the value written by thread t2’s Store in Rx to detect the data race, but does not in this
interleaving. Other safe and unsafe orderings are also possible.

miss a true data race in the program execution.

Example Consider Figure 5.1, in which two FastTrack barriers1 and the accesses they

analyze execute concurrently without synchronization, resulting in a lost access history

update and a missed data race.

Thread t1 prepares for a write to data location x by executing a write barrier. It first

checks if the last write occurred in the same epoch, which it does not. The barrier next

loads the last read and checks if it is by this thread. The barrier then checks if thread t1’s

current epoch happens after the last read, finding that it does. This shows that all accesses

completed so far happen before the upcoming write in thread t1, so there is no data race.

Thread t1 therefore updates the access history to record its current epoch as the last write

and last read.

However, thread t2 is executing a read barrier on x concurrently with thread t’s write

barrier. Thread t2’s read barrier also checks against the last read for ordering, but it observes

1Refer to Figures 2 and 5 in [52] for presentation of the original FastTrack barriers used in Figure 5.1 of
this dissertation. Additionally §5.2 in this dissertation presents the slightly modified version of FastTrack
we use in the remainder of this chapter.

85

the last read before thread t1 has updated it, finding that the last read happens before

thread t2’s current epoch, so it proceeds to record a new last read. There is clearly a data

race between the data write in thread t1 and the data read in thread t2, but neither barrier

has detected this, violating the guarantee that one or both of the pair of racing accesses will

raise a data-race exception.

Note that even if the read barrier also checked against the last write, lost updates and

missed races could still occur.

Some data-race detectors simply forego formal accuracy guarantees in order to omit meta-

data synchronization altogether, since the timing of concurrent barriers must be simultaneous

in a very small window to compromise analysis accuracy in practice. This often suffices for

best-effort debugging tools, but data-race exceptions require strong accuracy guarantees.

5.1.1 Barrier Atomicity and Barrier-Access Ordering

A sufficient solution to the metadata consistency problem is to ensure every barrier-access

sequence executes atomically. Barrier-access atomicity ensures that the analysis of an access

always executes on metadata that is consistent with the state of the target program execution.

The operational semantics for FastTrack presented in [52] has this feature.

In practice, barrier-access atomicity is stronger than necessary to implement the first-race

guarantee (§2.2.3). If the analysis never allows execution to pass a barrier that detects a

data race, then the weaker policy of barrier atomicity and barrier-access ordering suffices to

ensure analysis consistency.

• Barrier atomicity: All barriers that do not detect data races execute atomically. If a

barrier’s checks determine an access to be data-race-free, updates to the access history

to record the new access occur atomically with the metadata observations on which

the checks were based. If a barrier detects a data race, it may execute non-atomically,

but rolls back any access history updates it has made and raises an exception.

• Barrier-access ordering: Every barrier completes and makes any access history updates

visible in memory before the access it monitors, and in the same synchronization-free

86

region. A compiler may even reorder barriers and corresponding accesses individually,

so long as it respects the original barrier-access order and does not move any program

synchronization operations between an access and its barrier.

On hardware memory models that do not relax read-read or read-write order across control

dependences, no fence is necessary to enforce ordering between the data-race check and

the update. Thus no fence is necessary for any implementation of barrier atomicity under

SC, TSO, PC, or PSO [3]. Otherwise, on weaker memory models that relax read-read or

read-write order, we must prevent program writes from becoming visible and program reads

from being used before the barrier has successfully shown data-race freedom. It would seem

unsafe for a program access to take effect before its barrier update in the general case, but

this can cause the data-race detector to miss a true data race only if it also violates barrier

atomicity. The need for a fence to enforce ordering of the data-race check and the program

access depends on the implementation of barrier atomicity. We suspect that most, if not all,

reasonable and correct implementations of barrier atomicity would also suffice to force the

proper ordering. Our design and implementation targets TSO, and for simplicity we assume

TSO in the remaining discussion.

Given these constraints and the symmetry of the data-race detection algorithm (a pair

of barriers on racing data accesses will detect the data race regardless of which barrier

executes first), both analysis barriers for a pair of racing data accesses are guaranteed to

execute—and detect the data race—before at least one of the racing data accesses executes.

Thus arbitrary interleaving of barriers and corresponding accesses to the same memory

location from multiple threads can never lead to false or missed data races, given barrier

atomicity and barrier-access ordering.

5.1.2 Pessimistic Barrier Atomicity

Barrier-access ordering is fairly straightforward and inexpensive to implement, but barrier

atomicity can be costly in software. Barrier atomicity is feasible with little or no additional

overhead in a hardware-supported data-race detector, as in RADISH (Chapter 3). A software

dynamic data-race detector stores its analysis metadata in shared memory, so synchronization

87

is necessary to ensure barrier atomicity in the presence of concurrent accesses to the same

memory location, whether or not they are data races.

An obvious software implementation of barrier atomicity is to protect the barrier with

a critical section on a lock associated with the accessed memory location, so that analysis

metadata for the memory location is accessed by at most one barrier at a time. This

pessimistic solution can incur significant overhead in practice. Profiling experiments in [38]

suggest that pessimistic barrier atomicity accounts for 20%-90% of the additional overhead

of the original FastTrack implementation [52] beyond an unmodified HotSpot JVM running

four multithreaded benchmarks from the Java Grande suite [122]. Measurement of the

DaCapo benchmarks [14] on our own separate implementation of FastTrack in Jikes RVM

shows that even a mostly-lock-free implementation of barrier atomicity accounts for 3-38%

of the full execution time of the DaCapo benchmarks.2 Costs for a näıve barrier atomicity

implementation acquiring a spin lock for every barrier are even higher. Thus eliminating the

costs of barrier atomicity has the potential for significant overall performance improvement.

5.1.3 Cooperative Barrier Atomicity with FIB

We propose the Fast Instrumentation Bias (FIB) protocol for cooperative synchronization

based on per-location thread ownership state. FIB redistributes the synchronization burden

of barrier atomicity such that the expected common case requires no synchronization, while

rare cases require costlier synchronization. As a cooperative synchronization protocol, FIB is

inspired by insights from biased locking [67, 99, 113], cache coherence [96], local permissions

in RADISH (§3.2.3.2), and cooperative object-granular thread conflict analysis in Octet [23].

These protocols, discussed further in §5.7, track and control concurrent resource usage

with thread-ownership states, generally including at least a state where access is available

exclusively to thread t and a state where read-only access is shared by a set of threads.

The principal difference with pessimistic access control is that when a thread, t, needs

2These percentages are not directly comparable across sources, even ignoring the different implementations
and benchmarks. The experiments in [38] report barrier atomicity costs as a percentage of the execution
time added to baseline JVM execution time by data-race detection. The experiments in this work report
how much of the full execution time, including baseline JVM execution time and the additional execution
time due to data-race detection. The former percentages would be smaller under the latter scheme; the
latter percentages would be larger under the former scheme.

88

to access a resource currently owned exclusively by another thread, u, thread t acquires

ownership not by synchronization through shared memory in that resource (e.g., by acquiring

a lock attached to the access history), but by direct communication with thread u. The

owner thread, u responds to this request explicitly and only at well-defined points in the

program. A thread can observe that it holds exclusive or shared ownership of a resource

without any synchronization or cross-thread communication. This thread then enjoys the

guarantee that the ownership state will not change until this thread explicitly changes it in

response to another thread’s request.

FIB is unique among cooperative synchronization protocols because it is specific to

data-race detection and it uses no dedicated storage to represent ownership state. Instead,

it derives ownership state purely from access history metadata in the data-race detector.

Transitions from one state to another are tied to access history updates in the data-race

detection algorithm.

5.1.4 Contributions and Outline

Fast Instrumentation Bias (FIB) aims to reduce the cost of data-race checks in pure-software

dynamic data-race detectors by using cooperative synchronization to protect metadata.

Hypothesis: Performance overheads of pure-software accurate dynamic data-race detection

can be reduced by replacing pessimistic metadata synchronization with instrumentation bias,

a form of cooperative metadata synchronization based on thread ownership information

already implicitly encoded by data-race detection metadata.

Our contributions in the remainder of this chapter are organized as follows:

• We present a simple accuracy-preserving modification to the original FastTrack algo-

rithm that we will use as the basis for the remainder of Chapter 5. (§5.2)

• We present Fast Instrumentation Bias (FIB), an algorithm for accurate data-race

detection that uses cooperative synchronization to control access to access history with

no synchronization in common cases in exchange for costly synchronization in rare

cases. (§5.3)

89

• We apply conservative dynamic thread-escape analysis as a pre-filter for data-race

detection and show how it maintains accuracy. (§5.4)

• We implement FIB for Java programs in the Jikes RVM [8] Java virtual machine. (§5.5)

• We evaluate the overall performance of multithreaded Java applications on our pro-

totype implementation as well as unsynchronized and pessimistically synchronized

implementations of FastTrack, finding that FIB is 13-21% faster than the fastest

conventionally synchronized implementation on 4 benchmarks, 0-7% slower on three

benchmarks, and 45-260% slower on three benchmarks, and that dynamic thread-escape

filtering has mixed performance effects. We profile the distribution of intended common

and rare cases in practice, finding that poor performance in FIB is linked to relatively

high rates of FIB’s expensive slow paths, from roughly 0.4% to 2.2% of barriers. (§5.6)

• We discuss related work on cooperative synchronization and dynamic thread-escape

analysis. (§5.7)

• We discuss limitations of FIB as described in this dissertation. (§5.8)

• We propose future extensions to address FIB’s limitations and improve performance

more generally. (§5.9)

• Finally, we conclude (§5.10).

5.2 FastTrack

FIB is derived from the state-of-the-art FastTrack algorithm for accurate dynamic data-race

detection [52], also introduced briefly in §2.2.1.3. This section describes a slightly modified

version of FastTrack that is the basis for FIB (§5.3) and all data-race detector implementations

described in §5.5 and evaluated in §5.6. Our modification—storing the epoch of the last

write as the last read if there is no last read since the last write—makes some checks cheaper

90

and supports FIB’s derivation of ownership state from access history. We discuss the essence

of the modification in §5.2.2 and note its implications throughout this section.

An epoch, e = c@t, is a local logical time, c, in a single thread, t. We use vector clocks,

v, interchangeably with sets of epochs with at most one belonging to a given thread, such

that a vector clock lookup returns an epoch: v(t) = c@t.3 Epoch c@t happens before vector

clock v, written c@t � v, if and only if v(t) = d@t and c ≤ d. FastTrack uses the same

synchronization tracking as the canonical vector-clock algorithm (§2.2.1.1). The origin epoch,

0@t0, is an epoch that happens before all logical times of operations of all threads. It is

notated ⊥e in [52].

5.2.1 Access History

The FastTrack access history for location x differs slightly from that of the canonical

vector-clock algorithm. Our modified version stores the following:

• Last Write Wx: the epoch of the last write to x. If x has never been written, the

last write is considered to have happened in the origin epoch, 0@t0.

• Last Read(s) Rx:

– If there has been at least one read since the last write and all reads since the last

write are totally ordered by happens-before, then the value is the epoch of the

last read of x.

– If there have been mutually concurrent reads since the last write, then the value

is a set (or read map) v where each element c@t is the epoch of thread t’s last

read from x since the last write. This set is typically represented by a vector

clock or other read map structure.

– If no reads have occurred since the last write, then the value is the epoch of the

last write, if any, or the origin epoch, 0@t0, otherwise.

3This is a minor change from the vector clocks introduced in §2.2.1, which store raw clocks, not epochs.

91

In this case only, the version of FastTrack used in this chapter differs from the

original. In the original FastTrack algorithm, the value of Rx may also be an

epoch that happens before the last write epoch.

5.2.2 Invariants

Our version of FastTrack maintains the following invariants for each access history, making

it sound for data-race checks to examine only the partial access history described above.

Invariant 1 All writes to x in the execution so far and all reads that precede the last write

recorded as Wx in the execution happen before epoch Wx or happen in epoch Wx.

This invariant is also maintained by the original FastTrack algorithm.

Invariant 2 If Rx is a set v, then all accesses to x in the execution so far happen before

at least one epoch e ∈ r.

This invariant is also maintained—but its full strength is not exploited—by the original

FastTrack algorithm.

Invariant 3 If Rx is a single epoch, e, then all accesses to x in the execution so far happen

before epoch e or happen in epoch e.

This invariant is not maintained by the original FastTrack algorithm. By changing the

original semantics of Rx to the epoch(s) of the most recent accesses to x in happens-before

order, we gain Invariant 3. With this invariant, any check that can show Rx happens before

the current logical time need not check against Wx, as discussed in §5.2.3.1 and §5.2.3.2.

More importantly, it affords FIB a simple derivation of ownership state by examining Rx

alone, as described later in §5.3. While Rx would now more accurately be named the last

access, we retain the name last read for consistency with existing terminology.

5.2.3 Barriers

Figure 5.3 shows our FastTrack barriers as a judgment (C;L;R;W)
a

==⇒FT′ (C ′;L′;R′;W ′)

on the data-race detector state, shown in Figure 5.2, and a program operation. We omit

92

Clock c ∈ N
Epoch e ::= c@t

Vector Clock v ::= · | v, t 7→ c@t
Thread VCs C ::= · | C, t 7→ v

Lock VCs L ::= · | L,m 7→ v
Last Reads R ::= · | R, x 7→ e | R, x 7→ v
Last Writes W ::= · | W,x 7→ e

FastTrack State (C;L;R;W)

Figure 5.2: FastTrack metadata

synchronization tracking, which is identical to that of the canonical vector-clock algorithm,

described in §2.2.1.1 and Figure 2.3. Program and heap constraints are imposed by an

external judgment (not shown here) that uses this judgment for data-race detection. Stuck-

ness indicates a data race. This high-level semantics has barrier atomicity by virtue of the

atomicity of a single step, but does not indicate how it might be implemented in practice.

5.2.3.1 Write Barrier

A write to location x by thread t is data-race-free if all accesses to x in the execution so far

happen before thread t’s current logical time.

If the last write is the current epoch (ft’ write excl same epoch: Wx = Ct(t)), then

a write in this epoch has already been shown to be data-race-free with earlier accesses and

later accesses will check for data races with writes in this epoch. Further checks or updates

are redundant. This is FastTrack’s FT write same epoch case [52].

Otherwise, the write barrier must check ordering with the last reads. (Due to Invariant 3

it is never necessary to explicitly check against the last write in our modified version.)

If Rx is an epoch, e, then:

• ft’ write excl same read thread: If e is an epoch of this thread, then the last read

happens before the current access by program order. By transitivity via Invariant 3,

all previous accesses happen before the current access.

93

(C;L;R;W)
a

==⇒FT′ (C ′;L;R′;W ′)

ft’ read excl same epoch
Rx = Ct(t)

(C;L;R;W)
rd(t,x,v)

======⇒FT′ (C;L;R;W)

ft’ read excl same thread
Rx = c@t

(C;L;R;W)
rd(t,x,v)

======⇒FT′ (C;L;R, x 7→ Ct(t);W)

ft’ read excl
Rx = e e � Ct

(C;L;R;W)
rd(t,x,v)

======⇒FT′ (C;L;R, x 7→ Ct(t);W)

ft’ read share
Rx = c@u Wx � Ct v = ·, u 7→ c@u, t 7→ Ct(t)

(C;L;R;W)
rd(t,x,v)

======⇒FT′ (C;L;R, x 7→ v;W)

ft’ read shared same epoch
Rx = v v(t) = Ct(t)

(C;L;R;W)
rd(t,x,v)

======⇒FT′ (C;L;R;W)

ft’ read shared again
Rx = v t ∈ v v′ = v, t 7→ Ct(t)

(C;L;R;W)
rd(t,x,v)

======⇒FT′ (C;L;R, x 7→ v′;W)

ft’ read shared first
Rx = v Wx � Ct v′ = v, t 7→ Ct(t)

(C;L;R;W)
rd(t,x,v)

======⇒FT′ (C;L;R, x 7→ v′;W)

ft’ write same epoch
Wx = Ct(t)

(C;L;R;W)
wr(t,x,v)

=======⇒FT′ (C;L;R;W)

ft’ write excl same read epoch
Rx = Ct(t)

(C;L;R;W)
wr(t,x,v)

=======⇒FT′ (C;L;R;W,x 7→ Ct(t))

ft’ write excl same read thread
Rx = c@t

(C;L;R;W)
wr(t,x,v)

=======⇒FT′ (C;L;R, x 7→ Ct(t);W,x 7→ Ct(t))

ft’ write excl
Rx = e e � Ct

(C;L;R;W)
wr(t,x,v)

=======⇒FT′ (C;L;R, x 7→ Ct(t);W,x 7→ Ct(t))

ft’ write shared
Rx = v v v Ct

(C;L;R;W)
wr(t,x,v)

=======⇒FT′ (C;L;R, x 7→ Ct(t);W,x 7→ Ct(t))

Figure 5.3: High-level view of modified FastTrack barriers.

94

• ft’ write excl: If Rx � Ct, then by Invariant 3, all previous accesses happen before

the current epoch. Both the last write and last read must be set to the current epoch

to maintain Invariant 3. This corresponds to FastTrack’s ft write exclusive case,

which also checks against Wx, but leaves Rx unchanged.

• Otherwise, this write forms a data race with at least the last read.

If Rx is a read map, v, then:

• ft’ write shared: If Rx v Ct, then by Invariant 2, all previous accesses happen

before the current epoch. Both the last write and last read must be set to the current

epoch to maintain Invariant 3. This corresponds to FastTrack’s ft write shared

case, which additionally checks against Wx and sets Rx = 0@t0.

• Otherwise, this write forms a data race with at least one of the last reads.

5.2.3.2 Read Barrier

A read to location x by thread t is data-race-free if all writes to x in the execution so far

happen before the current epoch. There are multiple fast paths in the read check.

If Rx is an epoch, e, then:

• ft’ read excl same epoch: If e is the current epoch (Ct(t)), then a read in this

epoch has previously been found to be data-race-free and has been recorded. Checking

and recording again would be redundant. This is FastTrack’s FT read same epoch

case [52].

• ft’ read excl same thread: Otherwise, if e is an epoch of thread t, but is not the

current epoch, then by program order it happens before the current epoch. By the

transitive happens-before invariants (§5.2.2) all previous accesses also happen before

the current epoch. The last read must be set to the current epoch. The original

FastTrack algorithm does not distinguish this case from the next, more general, case.

95

• ft’ read excl: Otherwise, if e � Ct, then all earlier accesses happen before this access.

The last read must be set to the current epoch. By our modification’s introduction

of Invariant 3, it is never necessary to check against the last write in this case as the

original FastTrack algorithm does in its corresponding FT read exclusive case [52].

• ft’ read excl: Otherwise, if e 6� Ct, but Wx � Ct, then this read is data-race-free

with earlier writes, but concurrent with some other read to x. In this case, the last

read must be set to a new read map containing the previous single last read epoch and

the current epoch. This is FastTrack’s FT read share case [52].

• Otherwise, this access forms a data race with at least the last write.

If Rx is a read map, v, then:

• ft’ read shared same epoch: If thread t has an entry in v and it is the current epoch,

then no further checks or updates are needed, as in the corresponding single-epoch

case above.

• ft’ read shared again: Otherwise, if thread t has an entry in v, then thread t has

already read since the last write. By program order and the happens-before order

established by that earlier check, the last write happens before the current epoch, and

it is not necessary to explicitly check Wx � Ct. The last read entry for t must be set

to the current epoch.

• ft’ read shared first: Otherwise, thread t has no entry in v and has not read x

since the last write and there is no transitive ordering via program order. If Wx � Ct,

then the last write happens before the current epoch. The last read entry for t must

be set to the current epoch. This is FastTrack’s general FT read shared case, which

covers the above two cases as well [52].

• Otherwise, this read forms a data race with at least the last write.

96

5.3 The FIB Protocol

In this section, we describe Fast Instrumentation Bias (FIB), a dynamic data-race detection

algorithm which extends the FastTrack algorithm (as modified in §5.2) with a protocol for

cooperative synchronization of data-race detection metadata. FIB’s logic for checking for data

races is nearly identical to the FastTrack algorithm, but this analysis logic is intertwined with

logic to maintain the consistency of the data-race detection metadata without pessimistic

synchronization.

FIB derives an ownership state for each memory location purely from that location’s

access history, with no dedicated storage of the ownership state. In each analysis barrier, FIB

uses this ownership state to determine what (if any) synchronization is required to ensure

barrier atomicity. The first step of a data-race check subsumes the work to determine the

current ownership state of the access history this check will use. In the common case, the

joint check shows that this thread has exclusive or shared ownership of the location and that

there is no data race. Thus the data-race check and access history update execute without

any synchronization. In the rare case, when the ownership state does not grant this thread

sufficient permission, cross-thread coordination is required to preserve barrier atomicity.

5.3.1 Notation

FIB uses the per-memory-location, per-thread, and per-synchronization-object analysis

metadata of our modified FastTrack (§5.2) and adds some thread metadata to support

cross-thread communication. Throughout this section, analysis pseudo-code uses records

describing thread metadata and access history metadata. Figure 5.4 shows the form of these

records and their correspondence to FastTrack metadata described in §5.2. Dot notation

denotes record field access. Synchronization metadata and tracking are identical to FastTrack;

we omit them here.

Every access history is allocated with its lastReads field initialized to the single epoch

0@t where t is the allocating thread. This epoch happens before all operations of all threads

in the program (for all threads t, thread t’s initial vector clock holds the epoch 0 for all

threads other than t), so it does not affect the results of data-race checks. We discuss options

97

Thread {
VC vc; ← Ct

RequestQueue queue;

AckQueue acks;

Response response;

}

AccessHistory {
Epoch lastWrite; ←Wx

Epoch ∪ VC lastReads; ← Rx

}

Figure 5.4: FIB analysis metadata. The type notation Epoch ∪ VC indicates that the
lastReads field holds either an epoch or a reference to a read map, represented as a vector
clock.

and optimizations for ownership initialization in §5.4.2.

In the following sections, FIB barriers and communication mechanisms are described with

Java-like pseudo-code to be executed with total store order (TSO, [3]) memory consistency

semantics. Stores are retired in program order; store-load order can be enforced by issuing

a memory fence with fence(). In barriers and supporting routines, types are elided and

local variables are scoped at the function level. Variables and parameters t and u are

references to Thread records. Variables h or history are references to AccessHistory

records. Barriers take as arguments the currently executing thread and the access history of

the data location to be accessed. A value r from the lastReads field of an access history

can be distinguished as an epoch or a vector clock with the functions isExclusive(r) or

isShared(r), respectively. The thread of an epoch e is extracted with thread(e). The

order of two epochs of the same thread can be compared with >, <, ≤, and ≥. For example,

c@t ≤ d@t is equivalent to c ≤ d.

5.3.2 Ownership States

The use of an access history is controlled by an ownership state derived from the access

history. Each ownership state grants certain threads permission to perform certain operations

on the access history without synchronization, along with the guarantee that the ownership

state will not change without cooperation from these threads. There are two types of

ownership states, with corresponding permissions:

98

• Exclusive(t) grants thread t exclusive permission for both write and read barriers to

check against and update all contents of this access history without synchronization.

• Shared(S) grants every thread t ∈ S shared permission for read barriers to check

against all contents of this access history and update thread t’s entry in the access

history’s last reads map without synchronization.

There is no dedicated storage for the ownership state of an access history. The read

component of an access history determines ownership:

• Exclusive(t): If the lastReads field holds a non-zero epoch, c@t where c > 0, then

thread t has exclusive ownership of the access history.

• Shared(S): If the lastReads field holds a read map r, then all threads t with an entry

in r hold shared ownership of the access history: Shared(S), where S = {t | r[t] =

c@t ∧ c > 0}.

All barriers that are not granted sufficient ownership under the current state must initiate

a state transition, which involves coordination (via cross-thread communication) with all

threads that do hold ownership. The one exception is read barriers by threads not in

the shared set: all threads u /∈ S may gain shared ownership via a communication-free,

almost-as-fast path. State transitions are described in §5.3.3; the special read-shared case is

discussed in §5.3.4.2.

Since access histories for data allocated by thread t have their last read initialized to the

single epoch 0@t, the initial ownership state is naturally Exclusive(t). We discuss options

and optimizations for ownership initialization in §5.4.2.

When the specific threads involved are not important, an exclusive state Exclusive(t) may

be abbreviated as Exclusive and a shared state Shared(S) may be abbreviated as Shared.

Note that while a Shared state corresponds to the conventional notion of read-shared

data, the access history may receive updates: read barriers by any thread t may update its

entry in the last reads map. However, these updates are always non-conflicting (each thread

99

Profile Type Barrier Start State → End State Coordination DRE?

fast,
common

local
write Exclusive(t) → Exclusive(t)

none no
read

Exclusive(t) → Exclusive(t)
Shared(S), t ∈ S → Shared(S)

medium,
rarea

fence read Shared(S), t /∈ S → Shared(S ∪ {t}) fence

maybe
slow,
rare

single-

conflictb

write Exclusive(u), u 6= t → Exclusive(t)
comm. u

read
Exclusive(u), u 6= t → Exclusive(t)
Exclusive(u), u 6= t → Shared({u, t})

slower,
rarer

multiple-
conflict

write Shared(S) → Exclusive(t)
CAS, fence, and
∀u ∈ S, comm. u

Table 5.1: Summary of FIB ownership state transitions initiated by a barrier in thread t,
coordination necessary to complete the transition, and whether the transition could raise a
data-race exception. This table imitates Table 1 in [23] to facilitate comparison with Octet.

aAll three parts of this dissertation have food references.

bThe term conflict here refers to conflicting metadata accesses rather than conflicting data accesses. A
single-conflict transition may occur between a state Exclusive(u), that arose due to a read barrier, and
another state due to a second read barrier. The two corresponding data read accesses do not conflict, but
updates in the access history by the read barriers do conflict.

updates only its own entry). The main access history record remains read-shared, but the

individual entries of the auxiliary read map record are thread-private, but mutable.

Note also that, while an Exclusive(t) state can be observed atomically, a Shared(S) state

cannot. The fact that the state is Shared is atomically observable, but the up-to-date set of

sharing threads S is not.

5.3.3 State Transition Overview

Ownership state transitions occur at every barrier, although in practice, most barriers cause

self-transitions that do not change the ownership state of the access history in use. Table 5.1

summarizes the FIB state transitions that a given barrier may initiate and groups transitions

both by how fast and common they are in practice and by the type of coordination they

require. For each transition, the table also shows: the kind of barrier that initiates the

transition; the starting and ending states of the transition; the coordination required for the

transition; and whether the transition may detect a data race.

100

When a thread executes a barrier on an access history with a compatible ownership state,

a self-transition is completed locally with no coordination with other threads. Self-transitions

correspond exactly to those cases in FastTrack where data-race checks only reason about

program order with earlier accesses by the current thread. Self-transitions never detect data

races and hence never fail.

When a thread executes a barrier on an access history with an incompatible ownership

state, a transition to a new state is attempted via coordination with other threads. State

transitions correspond exactly to those cases in FastTrack where data-race checks require

reasoning about synchronization with earlier accesses by other threads. State transitions

may detect data races and fail. A state transition fails only if a data race occurs involving

the access that initiated the transition. If two accesses race, one or both of their barriers

will experience a transition failure and raise a data-race exception.

State transitions demand coordination with all threads that rely on guarantees of the

current ownership state that would be invalid under the new state, to ensure that these

threads are aware of the invalidation and that the transition checks against an up-to-date

version of the access history to avoid missing data races. Coordination for state transitions

requires either direct cross-thread communication or indirect coordination via a memory

fence. While communication is very expensive compared to the cost of the single memory

access it is deployed to analyze, transitions requiring communication are rare in practice. In

exchange for the high cost of these rare transitions, FIB allows the common self-transitions

to execute completely free of synchronization overhead.

Transitions are further grouped by the four types of coordination required:

• Local: When an access history is in state Exclusive(t) or Shared(S), where t ∈ S, a

barrier by thread t executes locally, with a self-transition. Self-transitions require no

coordination and never detect data races. Local cases of the FIB barriers are described

in §5.3.4.

• Fence: When an access history is in state Shared(S), a read barrier on this access

history by thread t /∈ S requires a memory fence to coordinate a safe transition to

state Shared(S ∪ {t}). Unlike all other (conflicting) non-local transitions, a successful

101

transition from Shared(S) to Shared(S) ∪ {t} preserves all permissions granted by

Shared(S), so synchronous communication is not necessary for coordination. The fence

serves to coordinate with a potential write barrier in some thread u concurrently

attempting to coordinate a transition to state Exclusive(u). We briefly discuss this

transition in the read barrier along with local transitions in §5.3.4, since it is also in

the fast path. We also discuss its interaction with the write barrier in §5.3.6.

• Single-conflict: When an access history is in state Exclusive(u), a write or read

barrier on this access history by thread t 6= u requires synchronous communication

with the single conflicting thread u to coordinate a safe transition to state Exclusive(t)

or Shared({t, u}). We discuss the single-conflict coordination cases of write and read

barriers and the supporting cross-thread communication mechanism in §5.3.5.

• Multiple-conflict: When an access history is in state Shared(S), a write barrier on

this access history by any thread requires synchronization via atomic compare-and-

swap, a memory fence, and communication with the multiple conflicting threads u ∈ S

to coordinate a safe transition to state Exclusive(t). We discuss the multiple-conflict

coordination case of write barriers and the supporting cross-thread communication

mechanism in §5.3.6.

Barriers can only execute locally when the access is data-race-free with respect to earlier

accesses. Communication is a necessary (but not sufficient) condition to detect a data race.

It is tempting to offer additional specializations in some cases where data races can be

detected without expensive communication and without affecting accuracy, but in FIB’s

expected case—data-race-free execution—such “optimizations” only add expense to common

cases, while never doing useful work.

5.3.4 Local Transitions

Local self-transitions align with the most common patterns of access in multithreaded

programs: data-race-free accesses to data that is thread-private, at least temporarily, and

102

data-race-free reads of data that is read-shared, at least temporarily. The write and read

barriers, shown in Figures 5.5 and 5.6, respectively, test these cases first.

The write and read barriers both start by loading the lastReads field and checking if its

value is a single last read by the current thread at (A) in Figures 5.5 and 5.6. This sequence

serves identically as a lookup and check of ownership and a lookup and check for the first

potential proof that the access is data-race-free.

5.3.4.1 Exclusive Writes and Reads

If there is a single last read and it is by this thread, then: the access history is exclusive to

this thread, so this check and any updates it does will execute atomically; and the access

will be data-race-free with respect to all earlier accesses, by transitivity via program order

with the last read and the invariant that all access so far happen before the single last read

(§5.2.2). In this case, the barrier completes by updating the access history’s last read—and,

if writing, the last write—to this thread’s current epoch.

5.3.4.2 Shared Reads

Read barriers may also execute locally when the access history is Shared, i.e., when there

are multiple last reads represented by a read map. We break local shared barriers into

three cases: (B), (C), and (D) in Figure 5.6. Examining case (C) first, if the ownership

state is Shared(S), where the current thread t ∈ S, then thread t already has an entry4 in

the read map and has already done at least one data-race-free read that happens after the

last write. The current access is therefore data-race-free with respect to earlier writes by

transitivity via program order with the read recorded by thread t’s entry in the read map

and the invariant that all other writes so far happen before all last reads recorded in the

access history (§5.2.2). In this case, the barrier completes by updating thread t’s entry in

the read map to the current epoch. Any thread attempting to write concurrently in Shared

state will be responsible for communicating with thread t (and all threads u ∈ S) to catch

potential data races. Case (B) specializes case (C) to skip redundant updates of the current

4The lack of an entry is encoded as an entry of 0@t0, thus “has an entry” means “has an entry, e 6= 0@t0.”

103

write(t, history) {

r = history.lastReads;

// (A) EXCL(t) and DRF: last access was by t.

if (isExclusive(r) && thread(r) == t)) {

history.lastWrite = t.epoch;

history.lastReads = t.epoch;

return;

}

// (C) EXCL(u != t)

if (isExclusive(r)) {

request(r, t, history, WRITE);

return;

}

// (D) SHARED

writeShared(t, history, r);

}

Figure 5.5: FIB write barrier. write(t, history) takes the current thread t and access
history.

epoch.

In case (D), handled in readSharedFirst(...), the ownership state is Shared(S), where

the current thread t /∈ S: there are multiple last reads but none by this thread. This case

requires a vector-clock check against the last write, since there is no earlier read by this

thread since the last write that would establish transitive happens-before ordering. This case

reverses the usual order of the data-race check and access history update and introduces a

memory fence to avoid expensive communication without missing data races. We describe

the interaction of this transition and potentially racing transitions to Exclusive(u), where

u 6= t, in §5.3.6. The use of a fence for threads t /∈ S in this case is analogous to Octet’s use

of read-sharing counters to determine whether a read under read-shared ownership requires

a fence [23].

104

read(t, history) {

r = history.lastReads;

// (A) EXCL(t) and DRF: last access was by t.

if (isExclusive(r) && thread(r) == t.epoch)) {

history.readWord = t.epoch;

return;

}

if (isShared(r)) {

// (B) SHARED({t, ...}) and DRF:

// t has read in current epoch.

if (r[t] == t.epoch) return;

// (C) SHARED({t, ...}) and DRF:

// t has read since last write.

if (r[t] != NONE) {

r[t] = t.epoch;

return;

}

// (D) SHARED(S), but t not in S.

// t has not read since last write.***

readSharedFirst(t, history, r);

return;

}

// (F) EXCL(u != t)

request(r, t, history, READ);

}

readSharedFirst(t, history, r) {

// Optimistic transition to SHARED({t} + S).

r[t] = t.epoch;

fence();

// Check for racing write.

w = history.lastWrite;

if (w > t.vc[thread(w)]) {

// Race. Roll back to SHARED(S).

r[t] = NONE;

raise DRE;

}

}

Figure 5.6: FIB read barrier. read(t, history) takes the current thread t and access
history. readSharedFirst(t, history, r) also takes a read map r.

105

5.3.4.3 Optimizations

To eliminate redundant access history updates, we specialize a few common cases of the

local read and write barriers, following our version of FastTrack (§5.2). Figure 5.7 shows

pseudo-code for these specializations to write and read barriers in writeOpt(...) and

readOpt(...), respectively.

Write The second specialization of the write barrier is simplest to explain and justify: it

eliminates a redundant update of the last read when the last read is the current epoch but

the last write differs. This check and the update of the last write still occur atomically, since

the last read is an epoch belonging to this thread, giving it exclusive ownership.

The first specialization is from FastTrack: when executing a write barrier, if the executing

thread has already written to this location during its current epoch (i.e., the last write is

the current epoch), then this barrier will be redundant with the barrier for the earlier write

in the same epoch. Intuitively, it is impossible for any access in another thread to race with

only one of these two writes, so any further check and update for this access is redundant.

This specialization is an exception to the rule of checking the last read(s) to determine the

history’s ownership state. Nonetheless, it respects the ownership state of the access history:

if the recorded last write is the current epoch, then the recorded last read is guaranteed to

be the current epoch as well.

When a barrier sets a history’s last write, it also sets the last read identically. An epoch

is stored as a last write only after a successful data-race check on that epoch, so the equality

of the current epoch and the last write guarantees that a write in the current epoch does not

race with any earlier accesses. Clearly no thread has successfully written in a later epoch,

otherwise the last write would hold a different epoch. Furthermore, no thread has stored a

later last read since the last write. The current thread remains in the same epoch as the

last write, so it cannot have stored a newer epoch as the last read. Any other thread u 6= t

must synchronize with thread t after thread t’s current epoch for any access in u to pass the

data-race check with the last write and record a new last read, but such synchronization is

impossible. Any outgoing synchronization from thread t would increment thread t’s current

106

writeOpt(t, history) {

// EXCL(t) and DRF:

// last write was by t in current epoch.

// Also implies history.lastReads == t.epoch.

if (history.lastWrite == t.epoch) return;

// EXCL(t) and DRF:

// last access was by t in current epoch.

if (history.lastReads == t.epoch) {

history.lastWrite = t.epoch;

return;

}

// General cases.

write(t, history);

}

readOpt(t, history) {

// EXCL(t) and DRF:

// last access was by t in current epoch.

if (history.lastReads == t.epoch) return;

// General cases.

read(t, history);

}

Figure 5.7: Specializations of the Exclusive cases of local FIB barriers. writeOpt(t,

history) and readOpt(t, history) both take the current thread t and access history.

epoch such that it would be different from the last write, which is a contradiction. Thus it

is guaranteed that the last read has not changed since it was set to this thread’s current

epoch along with the last write, so the ownership state is Exclusive(t).

Read The read barrier specialization (from FastTrack) skips a redundant update of the

last read when it is identical to the current epoch, yielding a common fast path with no

metadata updates.

107

5.3.5 Single-Conflict Transitions

To support communication for single-conflict coordination, each thread maintains a queue of

incoming requests and a field to store an incoming response. When a barrier in thread t

encounters an access history in state Exclusive(u), where u 6= t, thread t requests that thread

u perform a data-race check, update, and state transition on its behalf. We refer to this

requested work as the check-and-transfer sequence. If thread u is running, the request is

enqueued with thread u and thread t waits for thread u to respond. If thread u is blocked,

thread t self-serves its own request, just as in Octet [23].

When a thread reaches a yield point in execution, it processes all the requests in its queue,

and responds to each with the data-race check result. Yield points must occur within a

bounded interval to ensure forward progress. They are typically inserted in application code at

calls, returns, loop back-edges, blocking operations, etc. Managed language implementations

typically already have such yield points for run-time services such as garbage collection and

on-stack replacement [50].

5.3.5.1 Request Dispatch and Response Handling

A thread t can successfully process a request only if the requested access history is in state

Exclusive(t), for the same reason that the requesting thread was not allowed to perform a

single-conflict state transition without coordination in the first place. Requesting threads

atomically look up—and enqueue a request with—an access history’s current owner thread,

to ensure that check-and-transfer requests are sent only to the correct owner thread even if

other state transitions occur concurrently. Once a request has arrived at the current owner

thread, it will eventually be processed. Pseudo-code for sending a check-and-transfer request

and handling the response is shown in Figure 5.8.

To send a request to thread u, thread t first locks thread t’s queue and re-examines

the ownership (by reloading the last read(s)) of the access history it will request, to guard

against protocol races.

In the common case, the access history is still owned by thread u. If thread u is running,

thread t enqueues a request in thread u’s queue, unlocks u’s queue, and awaits a response

108

request(r, t, history, kind) {

do {

u = thread(r);

lock u.queue;

r = history.lastReads;

if (isExclusive(r) && thread(r) == u) {

if (u.blocking) { // self-service

result = checkAndTransfer(t, history, kind);

unlock u.queue;

} else { // send request

enqueue(u.queue, (t, history, kind));

unlock u.queue;

result = awaitResponse(t);

}

if (result == OK) return;

else raise DRE;

} else {

unlock u.queue;

}

} while (isExclusive(r));

// Concurrently changed to SHARED.

if (kind == READ) {

readSharedFirst(t, history, r);

} else { // kind == WRITE

raise DRE;

}

}

Figure 5.8: FIB request dispatch and response handling in communicating barriers.
request(r, t, history, kind) takes the expected value r of the access history’s last-reads
field, the requesting thread t, the access history history, and the kind of access (READ or
WRITE).

109

from thread u. If thread u is blocked, thread t self-serves its own request without enqueueing

anything and unlocks u’s queue. The same check-and-transfer sequence is executed in both

cases. We discuss this data-race checking logic (checkAndTransfer(...) in Figure 5.9)

shortly.

In the rare case, a concurrent barrier on the same access history may cause the ownership

state to change by the time thread t has locked thread u’s queue, causing the attempted

atomic lookup-and-enqueue to fail. In this case, thread t unlocks thread u’s queue without

enqueueing a (stale) request. If thread t is writing, a concurrent ownership change clearly

indicates a data race. If thread t is reading, a concurrent ownership change not indicate a

data race. Additional consideration of ownership and possible new communication attempts

will be required to resolve the data-race check.

• If the access history has become exclusive to a thread other than thread u (note that

it cannot have become exclusive to t), then thread t restarts the check-and-transfer

process with this new thread (repeating the loop in Figure 5.8) to check whether it

read (safe) or wrote (race).

• If the access history has become shared and the last read(s) holds a read map, then no

communication is needed and thread t continues (falling out of the loop in Figure 5.8) by

performing a check and update against this read map, following the previously-discussed

readSharedFirst(...), from Figure 5.6.

Finally, although it is not shown explicitly in the pseudo-code (hidden in awaitResponse),

a thread must respond to incoming requests (or allow other threads to self-serve requests)

while waiting for a response to its own request to avoid deadlock via a cycle of requests.

The atomic lookup-and-enqueue as described here and in Figure 5.8 may experience

starvation, as it essentially uses safe double-checked locking in a loop to ensure atomicity.

Starvation has never occurred in practice and failed atomic lookup-and-enqueue operations

are rare, as discussed in §5.8.2. Approaches with non-atomic lookup-and-enqueue operations

would have to handle stale requests sent to threads that no longer own the requested access

histories. Recognizing the need to retry becomes subject to remote communication latency

110

rather than local lookups, making a non-atomic lookup-and-enqueue more susceptible to

starvation.

5.3.5.2 Check and Transfer

Regardless of whether a request is served by a remote thread or self-served when the remote

thread is blocked, the same check-and-transfer logic is applied. Figure 5.9 shows pseudo-code.

These checks are most of the cases in FastTrack that compare an accessing thread’s vector

clock with an access history that has a single last read. (Checks against multiple last reads

are covered with multiple-conflict coordination, in §5.3.6.) These checks are used in contexts

satisfying the following invariants:

• Earlier in the same barrier, the access history was observed to have ownership state

Exclusive(u).

• No thread will change this access history concurrently with this check. Either this

check is run while the current owner thread, u, is blocked or this check is run by the

initially observed owner thread u itself and this access history is a private copy.

• If the access history has been changed since the earlier observation of its ownership

state, Exclusive(u), then the change was performed by thread u in response to a request

concurrent with this one, and this access history is a private copy, and thread u is

running this check.

Write A write by thread t in this context is data-race-free with respect to all previous

accesses if there is a single last read by some thread u (i.e., the access history has ownership

state Exclusive(u)) and that single last read is no newer than thread u’s entry in thread t’s

vector clock. Otherwise the write creates a data race. If there is no data race, the last write

and last read are updated to thread t’s current epoch, which also causes the access history’s

ownership state to become Exclusive(t).

The general version of FastTrack also determines a write to be data-race-free if it follows

multiple concurrent last reads and happens after all of those last reads. However, in the

111

checkAndTransfer(t, h, k) {

r = h.lastReads;

if (k == WRITE) {

if (isExclusive(r) && r <= t.vc[thread(r)]) {

h.lastWrite = t.epoch;

h.lastReads = t.epoch;

return OK;

} else {

return RACE;

}

} else { // k == READ

if (isExclusive(r)) {

if (r <= t.vc[thread(r)]) {

h.lastReads = t.epoch;

return OK;

} else if (h.lastWrite <= t.vc[thread(h.lastWrite)]) {

h.lastReads = { (thread(r), r), (t, t.epoch) };

return OK;

} else {

return RACE;

}

} else { // isShared(r)

if (h.lastWrite <= t.vc[thread(h.lastWrite)]) {

r[t] = t.epoch;

return OK;

} else {

return RACE;

}

}

}

}

Figure 5.9: FIB check-and-transfer handling. checkAndTransfer(t, h, k) takes the
requesting thread t, access history h, and kind of access k.

112

context where this check is used, we observed earlier in the barrier that the access history

had a single last read. Thus if it now has multiple last reads, one of those reads was

clearly concurrent with this write. Comparing each last read against thread t’s vector clock

will definitely reveal at least one data race, so we omit the comparison since its result is

known and immediately report a data race. In fact, any change to the access history since

this barrier’s initial observation indicates a data race. However, a lack of change does not

demonstrate data-race freedom, so there are no optimization opportunities for data-race-free

cases.

Read A change in the number of last reads in this access history (from Exclusive to Shared)

does not indicate a data race, so all FastTrack read cases that compare vector clocks with

access histories also appear here.

If the access history is exclusive to some thread, and the single last read is in an epoch

of thread u′ that happens before thread u′’s entry in thread t’s vector clock, then there is no

data race and the single last read is replaced by the current epoch of thread t. The new

ownership state is Exclusive(t). (Furthermore, u′ = u, by the invariants in §5.2.2.)

If the access history is exclusive to thread u′, and the single last read does not happen

before thread u′’s entry in thread t’s vector clock, and the last write, by thread u′′, happens

before thread u′′’s entry in thread t’s vector clock, then there is no data race and the single

last read is replaced by a read map mapping u′ to the current last read and t to thread t’s

current epoch. The new ownership state is Shared({u′, t}).

If the access history is in a Shared state and the last write, by thread u′, happens before

thread u′’s entry in thread t’s vector clock, then there is no data race and a mapping from t

to thread t’s current epoch is added to the read map. Furthermore, by the invariants, thread

t must not have had an entry in this read map before it was added here, since this barrier

earlier observed the access history to be Exclusive(u) and the necessary changes to arrive at

a Shared state all come from requests concurrent to the one served here.

In all other cases, this read creates a data race with the last write.

113

yield(t, blocking) {

lock t.queue;

for history s.t. (u, history, k) in t.queue {

// Accumulate responses and history updates in private copy.

responses = {};

hc = copy(history);

for (u, k) s.t. (u, history, k) in t.queue {

responses += (u, checkAndTransfer(u, hc, k));

}

// Publish history updates.

history.lastWrite = hc.lastWrite;

history.lastReads = hc.lastReads;

// Respond.

for (u, resp) in responses { respond(u, resp); }

}

for u in t.acks {

respond(u, ACK);

}

if (blocking) t.blocking = true;

unlock t.queue = {};

}

continueAfterBlocking() {

lock t.queue;

t.blocking = false;

unlock t.queue;

}

Figure 5.10: FIB request processing at yield points. yield(t, blocking) is called at
yield points of thread t with an indication of whether the thread is will be blocking.
continueAfterBlocking() is called after returning from blocking to start accepting requests
again.

5.3.5.3 Queue Processing and Response

Figure 5.10 shows pseudo-code for request processing at yield points. A thread locks its

queue during request processing to prevent new requests while processing the existing

queue. An alternative approach is to allow concurrent requests, processing the queue until it

becomes empty or through some arbitrary maximum number of requests. We choose the

former approach to simplify the implementation of atomic lookup-and-enqueue for requesting

threads.

Rather than processing and responding to each request individually, a responding thread

114

groups requests by access history. For each group, the responding thread processes the group

of requests using a private copy of the access history. After processing all requests in the

group, it publishes the final resulting access history and sends responses to all requests in

the group. This avoids turning queued requests stale (i.e., enqueued with a thread that

cannot process the request safely) during processing of other requests earlier in the queue,

along with the concomitant issues of forwarding, latency, and starvation.

Consider an access history with state Exclusive(u) when threads t and t′ both enqueue

requests to read. Suppose the request from thread t is processed first and causes the transition

Exclusive(u)→ Exclusive(t). If this update is published to the access history immediately, the

request from thread t′ is stale by the time thread u reaches it, as thread u no longer owns the

access history. If thread u also sends a response immediately, thread t could execute further

barriers on this access history under the valid assumption that it holds exclusive ownership.

Even if thread u defers its response to t until the end of queue processing, but still publishes

access history updates immediately, other threads could observe the Exclusive(t) ownership

state and self-serve requests for this access history with thread t while thread t is blocked

waiting for a response from thread u.

By using a private copy of the access history and deferring its publication and the delivery

of responses to the end of queue processing for that access history, thread u can make multiple

state transitions even into and through states where it does not have permission to do checks

or updates under the normal protocol. All other threads still see the global copy of the

access history as Exclusive(u) until it is updated with the private copy, blocking until the

new copy is published or thread u’s queue is unlocked after processing. This prevents stale

requests during queue processing.

In fact, all sequences of transitions possible from a set of requests for a single access

history at a single yield point are described by three patterns. In the following, last write

and last read refer to the access history at the beginning of request processing, before any

updates have been made. Request processing is being done by thread u and the access

history is initially in state Exclusive(u).

• Exclusive(u)→ Exclusive(t)

115

A single write request or a single read request that happens after the last read.

• Exclusive(u)→ Shared(S0)→∗ Shared(Sn)

where ∃t, S0 = {u, t} and n ≥ 1 and ∀i ∈ 1..n,∃t′ /∈ Si−1, Si = Si−1 ∪ {t′}.

One or more concurrent read requests that happen after the last write and at least the

first of which is concurrent with the last read.

• Exclusive(u)→ Exclusive(t)→ Shared(S0)→∗ Shared(Sn)

where ∃t′, S0 = {t, t′} and n ≥ 1 and ∀i ∈ 1..n,∃t′′ /∈ Si−1, Si = Si−1 ∪ {t′′}.

One or more concurrent read requests that happen after the last write and at least the

first of which happens after the last read.

Our actual implementation exploits these patterns and the fact that a transition

Shared(S)→ Shared(S ∪ {t}) is accomplished by thread-private mutation in the read map

with no mutation to the main access history. We slightly decrease response latency by

publishing the private access history and enabling immediate responses whenever an access

history reaches a Shared state, rather than waiting to the end of request processing. Any

remaining requests for that access history are served against the same read map.

5.3.6 Multiple-Conflict Transitions

Multiple-conflict transitions occur in write barriers following read-sharing. This case is

rare in practice and requires the most expensive form of coordination: communication

with multiple threads. Figure 5.11 shows pseudo-code for this case of the write barrier

(writeShared(...)) plus supporting communication infrastructure (ack(...)). This

section also considers interaction with read barriers in Shared states (see Figure 5.6).

Read and write barriers for Shared ownership are carefully co-designed to minimize

overhead in the common read-shared case at the cost of overhead in the rare write-after-

read-shared case. Most instances of the read barrier in Shared state will never examine the

last write, relying on the knowledge that (1) the access history is in Shared state and (2) the

presence of an entry for the current thread in the corresponding read map demonstrates

116

writeShared(t, history, r) {

// Then take tentative ownership.

if (!CAS(&history.lastReads, r, t.epoch)) raise DRE;

// Tentatively install new last write.

w = history.lastWrite;

history.lastWrite = t.epoch;

fence();

// Ack and check existing last reads.

for (u, _) in t.vc {

if (r[u] != NONE) {

ack(u, t);

// If data race, roll back -> SHARED(r).

if (r[u] > t.vc[u]) {

history.lastWrite = w;

history.lastReads = r;

raise DRE;

}

}

}

}

ack(u, t) {

lock u.queue;

if (u.blocking) {

unlock u.queue;

return;

} else {

enqueue(u.acks, t);

unlock u.queue;

awaitResponse(t);

}

}

Figure 5.11: FIB write barrier case for Shared state. writeShared(t, history, r) takes
the current thread t, the current access history history, and the value r loaded from the
last-reads field earlier in the write barrier. ack(u, t, h) take the thread u from which to
request an ack and the current thread t.

117

that an earlier access by this thread happened after the last write, so by transitivity via

program order, the current read also happens after the last write. This reasoning relies on the

assumption that a transition out of Shared state to an Exclusive state, with an accompanying

update of the last write, cannot concurrently invalidate the above reasoning without also

detecting a data race. To support this assumption, the write barrier’s case for Shared state

is structured as follows.

First, a write barrier in thread t finding a Shared access history preemptively CASes its

current epoch into the access history’s last read field to make a tentative state transition

to Exclusive(t). This ensures that read barriers sufficiently far in the future will see the

new Exclusive(t) state and commence communication with this thread which will detect any

data races. Additionally, a failure of this CAS indicates that at least one other concurrent

write barrier is racing to make a transition out of Shared state, detecting a write-write

race. The CAS guarantees that only one Shared→ Exclusive transition is underway at any

time. However, this preemptive ownership transition may temporarily break an invariant of

the access history: namely, that all other access in the execution so far happen before the

recorded last read. The write barrier’s atomic ownership transition may also occur between

a concurrent read barrier’s observation of Shared state and the read barrier’s update of a

read map entry ((C) in Figure 5.6), causing the read barrier to miss a data race. Rather

than adding communication to common read barrier cases, the write barrier compensates

to detect these races in a way that exploits the careful guarantee that one or both (not

necessarily exactly one) of a pair of racing accesses will raise an exception.

After taking tentative ownership of the access history, the write barrier updates the last

write to the current epoch and issues a memory fence to make the new tentative last write

visible before it continues. The write barrier keeps local copies of the old last write and old

read map for coordination purposes and for potential rollback if this barrier detects a data

race.5

Next, the write barrier communicates with all threads that currently have an entry in

the read map that it CASed out of the access history earlier. For the purposes of this case

5Rollback is clearly unnecessary under halt-on-first-race semantics. If only the offending thread is to
receive an exception and others may continue, then rollback is needed.

118

of the write barrier, we use a separate communication mechanism which shares some of

the infrastructure described earlier, but simply provides an acknowledgment or ack to the

requesting thread that the responding thread has reached a yield point, guaranteeing that:

• The responding thread will see any access history updates the requesting thread

performed prior to its request.

• The requesting thread will see any access history updates the responding thread

performed before its response.

Here, in state Shared(S), the write barrier in thread t requests acks from all other threads

u ∈ S, i.e., all other threads that have recorded a last read in the read map. Receipt of this

ack guarantees that:

• The responding thread will see the new Exclusive(t) state in any future barriers, thus

avoiding missed data races.

• The writing thread will see the most recent entry from the responding thread in the

read map from the preceding Shared state.

While waiting for an ack from another thread, this thread may need to take yield points and

respond to other threads’ requests to avoid deadlocked communication requests. In doing so,

it may receive requests for this access history. The very existence of such a request clearly

indicates a data race, but processing the request as usual will detect the race, so we do not

specialize this unlikely case.

After receiving a thread’s ack, the write barrier does the conventional happens-before

check for that thread, comparing its entry in the read map to the corresponding entry in

this thread’s vector clock.6 If a race is detected, then the write barrier rolls back the access

history to its earlier state, replacing the last write and last read map. Note that the racing

read barrier may also detect this race, which is allowed by our accuracy guarantee.

6The simplified pseudo-code for requesting and acting on acks is over-constrained. The write barrier may
issue all ack requests asynchronously, and then process the responses in any order.

119

If no data races were detected then the barrier completes, as the current epoch has

already been installed as the last write and last read of this access history.

5.3.6.1 Interaction with Fence Transitions

Even if the write barrier succeeds, other threads without entries in the last-reads map

may concurrently perform communication-free fence transitions in read barriers. Under

the conventional order of data-race check followed by access history update, a racing read

barrier could check against the old Shared state before the write barrier makes the transition

to Exclusive(t) and add its entry to the read map after the write barrier has finished its

communication. Thus neither barrier catches the data race! Even if the write barrier requests

acks from all live threads instead of just those found in the read map at the time, this missed

update could still occur.

This case motivates the co-design of the read barrier case in which a thread u /∈ S reads in

Shared(S) state, i.e., reads in Shared state, but for the first time since the last write, when it

does not have a read map entry. This case is covered at (D) and in readSharedFirst(...)

in Figure 5.6 and in §5.3.4. To review, this read barrier case first tentatively stores its

current epoch in the read map and issues a memory fence to ensure this entry is visible.

Then, it does a happens-before check against the last write in the access history. If this

check succeeds, the barrier is complete. If it fails, the barrier rolls back its tentative update.

With both the shared case of the write barrier and this first-time shared case of the read

barrier updating the access history before doing data-race checks, it is guaranteed that when

these two barriers race, one or both of the barriers will detect that race.

• If the write barrier’s last-read CAS and last-write update do not become visible to the

read barrier before the read barrier checks the ownership state and the last write, then

the read barrier’s read map update must be visible to the write barrier by the time

the write barrier checks that entry in the read map when doing communication and

happens-before checks with threads that do have entries.

• If the read barrier’s read map update does not become visible to the write barrier until

after the write barrier has checked that entry in the read map, then the write barrier’s

120

last-write update must be visible to the read barrier by the time it checks against the

last write.

The tentative access history updates in these cases of the write and read barriers do not

cause missed data races. Data-race checks exploit the transitivity of the happens-before

relation to reduce performance overhead while avoiding missed races. To do this, they

rely on the invariant that, at a given point in an execution, all accesses to a data location

in the execution so far happen before at least one of the reads presently recorded in its

access history. Tentative access history updates may temporarily break this invariant by

updating the access history before checking that the history it overwrites happens before the

new access it records. Thus other data-race checks that see the tentatively updated access

histories could falsely assume that all earlier accesses happen before this current access

history and miss data races with earlier accesses. However, this transitivity assumption is

only applied when there is happens-before order with the accesses currently recorded in the

access history, which is never the case for tentative access history updates. The transitivity

invariant is restored by the end of a barrier that makes tentative access history. By the

time another thread can observe that the tentative last read or last write happens before its

current access (i.e., there has been synchronization after the tentatively updating barrier),

the transitivity invariant is restored, so this other thread cannot miss a true data race.

Tentative access history updates do not cause false data races, since tentative last reads

or last writes represent real accesses. Thus the co-design of these two cases of the write

and read barriers maintains soundness and completeness, with no missed or false data races,

while allowing all read-shared barriers to execute without communication and, except for a

single memory fence in some cases, without synchronization.

5.3.6.2 Alternatives

The use of fence transitions in read barriers allows the multiple-conflict case of the write

barrier to do coordination by communicating with only those threads that are members

of the current Shared state. An alternative is to communicate with all live threads in the

system and omit the fence transitions in read barriers. For large thread counts, our approach

121

may have significantly better performance in this case of the write barrier, especially if

sharing is often narrow (i.e., few threads have shared) relative to the number of live threads

in the system. However, this benefit is exercised only if the multiple-conflict case of the

write barrier is not excessively rare. From our profiling results (see Table 5.2), it appears

that this case is quite rare in practice.

5.3.7 Progress Guarantee

FIB guarantees that, if at least one thread is attempting to complete a FIB barrier, at least

one thread will eventually complete its FIB barrier or raise a data-race exception.

FIB may cause starvation: there exist fair schedules of data-race-free programs under

which one thread is unable to complete its FIB barrier, while other threads repeatedly

complete FIB barriers. For example, starvation of thread t3 can occur in a data-race-free

program execution under the following conditions: an access history is initially Exclusive(t1),

and “should” eventually become Shared({t1, t2, t3}), but instead it makes transitions back and

forth between Exclusive(t1) and Exclusive(t2) as t1 and t2 complete alternating reads ordered

by synchronization while t3 never successfully completes an atomic lookup-and-enqueue to

request concurrent access and force the transition to Shared({t1, t2, t3}). There exist fair

schedules that allow t3 to complete its barrier, but there also exist fair schedules that do not.

FIB never causes starvation if all attempts to atomically lookup-and-enqueue requests

eventually succeed. Regardless, the Java language specification makes no fairness guaran-

tee [76], so the possibility of starved lookup-and-enqueue attempts should be indistinguishable

from lack of fairness. In practice Java programs may falsely assume fairness, but in practice,

atomic lookup-and-enqueue starvation has never occured.

FIB never introduces deadlock or livelock where it could not occur without FIB. It is

always the case that at least one thread can complete its FIB barrier and access, assuming

fair scheduling and atomic CAS operations that do not fail spuriously. If a barrier depends

on a response to a request to another thread, that response will eventually arrive. Either the

responding thread is running and will eventually reach a yield point where the request will

be served, or the responding thread is blocked, in which case the request can be self-served

122

by the requesting thread. The possibility for starvation of a single thread exists when trying

to enqueue or self-serve a request, but depends on progress by other threads. If other threads

are not making progress, starvation is impossible, and the requesting thread is guaranteed

to make progress.

5.4 Extensions

We have implemented two extensions to the FIB protocol described in §5.3: dynamic thread-

escape analysis to filter data-race checks and lazy initialization of access history ownership

states.

5.4.1 Dynamic Thread-Escape Analysis

Conservative dynamic thread-escape analysis can be used as a pre-filter to skip data-race

detector analysis barriers on data that are reachable by only one thread. This is likely

to offer stronger benefits to pessimistically synchronized data-race detectors than to FIB,

but may still help FIB’s performance, since some updates to access histories are necessary,

regardless of what synchronization is needed to protect them. When an access occurs in an

epoch newer than the last read (or write if writing), the access history must be updated in

case the data is eventually used by another thread, when this access history will be necessary

for data-race detection. Conservative dynamic thread-escape analysis (§5.7.4) can elide even

these updates for data that remains reachable from only one thread.

5.4.1.1 Filtering Access Barriers

To use dynamic thread-escape analysis as a pre-filter for data-race detection barriers, the

conservative analysis described in §5.7.4 is run independently of the data-race detector. Each

data-race detector barrier starts by checking the escape status of the object holding the

current access history’s data location. If the object is Escaped, then the normal FIB barrier

is executed. If the object is Private, then the fact that this thread can access it means that

it is private to this thread and is not yet reachable by any other thread, so the FIB barrier is

skipped.

123

Completeness Using the thread-escape pre-filter clearly does not introduce false data

races. In general, by checking fewer accesses for data races it is only possible to miss true

data races, not to introduce false data races.

Soundness Using the thread-escape pre-filter also does not cause FIB to miss true data

races, under the first-race guarantee (§2.2.3). With filtering, accesses to location before

it escapes are not recorded in its access history. After escape, accesses are checked and

recorded.

Before escape, all accesses are by one thread, so there are clearly no data races.

The analysis will not detect a true data race between a post-escape access (outside the

initial owner thread) and a pre-escape access, but if such a data race is missed then it is

preceded by an earlier detected data race involving the access that published the reference to

the escaping object. Figure 5.12 illustrates this scenario. The grayed-out data-race check in

thread t2 would fail to report a data race, but it is never reached because thread t2’s earlier

access, to acquire the reference o, also races with thread t1 access which caused o to escape.

Suppose object o is initially private to thread t1 and t1 writes to field o.f before o escapes.

If thread t2 can access a field o.f of an object that was previously accessed by thread t1 while

o was private to thread t1, then there must be an earlier access by thread t2 which reads the

reference to o published by thread t1 at o’s escape.

If thread t2’s access of o.f races with thread t2’s pre-escape access to o.f, then it must be

the case that there has been no synchronization from thread t1 to thread t2 between thread

t1 and thread t2’s accesses to o.f.

By program order, thread t1’s pre-escape accesses to o.f happen before its escaping

publication of a reference to o, which, since o was not reachable by t2 before this publication,

causally precedes thread t2’s acquisition of this reference, which, by program order, happens

before thread t2’s access to o.f. Therefore, the accesses passing reference o from thread t1

to thread t2 happen between the racing accesses to o.f, so if there is no synchronization

between the latter, there is no synchronization between the former, and the passing of

the reference must also race. This race will be detected before the race on o.f can occur,

satisfying the first-race guarantee regardless of whether the race on o.f is detected. With

124

Thread t1 (in epoch c1@t1) Thread t2 (in epoch c2@t2)

let o = new . . .

Fib: Is o escaped? No, OK.
set o.f = 1

Esc: Is g escaped? Yes.
Esc: Is o escaped? No.
Esc: Mark o escaped.
Fib: Is g escaped? No.
Fib: . . . data-race check . . . OK.
Fib: Store c1@t1 in Wg.obj.
Fib: Store c1@t1 in Rg.obj.
set g.obj = o . . .
. . . Fib: Is g escaped? Yes.

Fib: Load c1@t1 from Rg.obj

Fib: . . . coordination . . .
Fib: c1@t1 � Ct2? No. Race!
Fib: . . .
let o = g.obj

Fib: Is o2 escaped? Yes.
Fib: . . . data-race check . . . OK. ×
Fib: Store c2@t2 in Ro.f .
let n = o.f

Figure 5.12: A missed data race on o.f due to escape-filtering is preceded by a detected
data race on o’s escape through g.obj. Time flows down. o is used as a local variable in both
threads, but refers to the same object. g is a global variable. The missed data race follows
detection of the first race on g.obj and is never reached if data races are exceptions.

125

data-race exceptions, the second race (and all of the gray section of thread t2’s execution in

Figure 5.12) will never be reached nor missed.

Thus eliding data-race checks on private data can result in missed true data races only if

they follow at least one reported true data race. This behavior meets the first-race guarantee.

5.4.1.2 Filtering Synchronization Instrumentation

It is also possible to elide a vector-clock race detector’s instrumentation of synchronization

operations (e.g., lock acquire and release) when they operate on synchronization state in

thread-private objects without missing data races or introducing false data races. Clearly

if we ignore synchronization, we cannot miss data races, since we have only reduced the

perceived happens-before ordering of accesses. The argument for the lack of false data races

here is similar to that against missed data races when using escape status to filter data-race

checks on accesses.

Incoming (acquire) synchronization on private synchronization state (lock) never grows

the happens-before order of a program, because the synchronization order due to these

operations is subsumed by program order in the single thread that can use the object. Only

the last outgoing (release) synchronization on a given piece of private synchronization state

can possibly link up with a later incoming synchronization operation in a different thread.

All early outgoing synchronization on this synchronization is necessarily private and happens

before the final instance. Thus with locks, for example, we need only consider the last release

of a lock before that lock escapes.

Ignoring the last pre-escape release of lock l by thread t1 could cause a data-race detector

to miss transitive happens-before order between accesses of t1 happening before this release

operation and accesses of some thread t2 happening after a later acquire of lock l, resulting

in false data races reported in thread t2. However, false data races can only be reported

here if this pair of release and acquire formed the only happens-before order between these

accesses in threads t1 and t2. Following the argument for eliding data-race checks, if this

is indeed the case, then there exists an earlier true data race between thread t1’s escaping

publication of a reference to lock l and thread t2’s later observation of this reference. The

synchronization on lock l cannot be responsible for ordering these accesses, since thread t2

126

needs the reference to lock l before it can acquire lock l.

Thus eliding instrumentation of synchronization operations on private synchronization

state can only result in reported false data races if they follow at least one reported true

data race. This behavior meets the first-race guarantee.

5.4.2 Ownership State Initialization

The FIB protocol assumes that every access history is initialized with ownership state

Exclusive(t) when allocated by thread t. In practice, we do not use allocation-time initializa-

tion, implementing one of the two following deferred initialization policies instead. Every

barrier using a given access history must follow the same policy. In practice we use one

policy exclusively.

5.4.2.1 CAS for Initial Ownership

The simplest ownership state initialization method is lazy. Access histories are allocated

in a third ownership state, None, implicitly encoded by the origin epoch 0@t0 in the last

read. When a thread finds an access history in state None, the access history has not been

used before. A thread t must make a transition to Exclusive(t) in order to proceed with a

barrier. To make this transition, it uses an atomic compare-and-swap to set the last read

to its current epoch. If this CAS fails in a write barrier, there is definitely a data race.

If it fails in a read barrier, it may or may not be a data race, depending on the type of

concurrent barrier that caused it to fail, so the read barrier falls back to the normal FIB

protocol, looking up the new ownership state and coordinating with the owner thread.

CAS for initial ownership may be used with or without thread-escape filtering.

5.4.2.2 Indirect Initial Ownership via Thread-Escape Analysis

When conservative dynamic thread-escape analysis is used a pre-filter to FIB’s barriers, it

can support CAS-free deferred initialization of access history ownership state. Since the

FIB barrier is never run on an access history until after the containing object has escaped,

the access history’s ownership state need not be initialized until escape. If an object never

escapes, its access histories never need their ownership states initialized.

127

We replace the Escaped flag with Escaped(t), where thread t is the thread to which

the object was originally private. The escape check remains as a pre-filter to a slightly

modified FIB barrier. We call this an eager escape check. If the object containing the access

history is Escaped(t), then the FIB barrier executes. When deriving the ownership state from

the access history’s last reads, a last read of 0@t0 means the access history is Exclusive(t),

where the object containing the access history is Escaped(t), as determined earlier in the

escape check. Barriers on access histories for static fields (global variables) still require the

CAS-for-ownership initialization, since they are never private, and thus have no escaping

thread to lend them an initial ownership state.

The escape check can be reordered into the FIB barrier instead of used as a pre-filter. We

call this a lazy escape check. In this case, the FIB barrier executes on every access. When

looking up the last read to determine ownership, if the last read is a non-zero epoch or a

read map, the FIB barrier executes normally without an explicit escape check. If the last

read is 0@t0, then the containing object’s escape status is checked. If the object is Private,

then the rest of the FIB barrier is skipped. If the object is Escaped(t) then we derive the

ownership state Exclusive(t) and execute the FIB barrier accordingly.

Eager escape checks are expected to have slightly better performance when most accesses

are to objects that are not escaped, since these require looking up just the escape status.

Lazy escape checks are expected to have slightly better performance when most accesses are

to objects that are escaped, since these can omit looking up the escape status on non-empty

access histories. The decision between eager and lazy escape checks can be made individually

for each (static) barrier. In practice, we have used only eager escape checks.

5.5 Implementation

We implemented FIB and other versions of the FastTrack algorithm [52] in the x86 version

of the Jikes RVM Java virtual machine [8], version 3.1.3 as extended by Bond, et al., in

their implementation of Octet [23]. Of the extensions in the Octet code base, we use only

the facilities for inserting barriers. While Octet and FIB execute similar protocols, their

details differ enough that they do not currently share implementations of communication,

128

etc. (See §5.7.3.)

5.5.1 Common Metadata and Instrumentation

All of our FastTrack implementations share the same access history metadata, synchronization

metadata, and synchronization tracking instrumentation. They differ only in the code for

access barriers and yield points.

5.5.1.1 Metadata

An access history is encoded as two adjacent words in memory, the last-read word and the

last-write word. Access histories for object fields are laid out inline in the same objects as the

fields they shadow. Access histories for static fields are laid out in the statics section. Access

histories for array elements are laid out the corresponding index in a dedicated shadow array.

A header word in every array points to this shadow array, which is initialized lazily.

The last-write word of an access history always stores an epoch. The last-read word

stores an epoch or a pointer to a read map data structure. Jikes RVM still supports x86

only in 32-bit mode, so each word is 32 bits. To distinguish epochs from pointers in the

last-reads fields of access histories, epochs always have the least significant bit set to 1. We

extended the garbage collector to scan the last-reads field in access histories, following the

reference only if it has an least significant bit of 0. After the tag bit, the next lowest 5 bits in

an epoch represent the thread identifier, and the remaining high 26 bits represent a logical

clock. Representing only 25 distinct threads limits the scope of executions we support but

represents the best balance between avoiding clock overflow and thread identifier exhaustion

in the 32-bit environment. 64-bit epochs would be less limiting.

Read maps are arrays of epochs, the same encoding used for vector clocks.7 Given our

fixed 5-bit thread identifiers, we fix vector clocks and read maps at 32 entries.

Each thread structure stores a vector clock as well as a copy of their entry in their own

vector clock (the current epoch) to avoid the extra pointer dereference with this commonly

used metadata.

7Nascent experiments with alternative read-map encodings are omitted here for lack of interesting results
thus far.

129

Every object is a lock in Java. We lazily allocate a vector clock to track the lock’s

synchronization ordering the first time it is used. A reference to this vector clock is stored

in a word in the header of the object. If the object is an array then this header word is

used to store a reference to the shadow access history array, so the vector clock reference is

stored in the header word of the shadow array for arrays. We expect the relative rarity of

synchronization to make this more economical than a second header word in every object,

despite the added conditional to dispatch on the type of object before retrieving the vector

clock and (when locking arrays) an extra dereference. Java volatile fields are treated as

synchronization in the Java Memory Model [76], so every volatile field has a space for vector

clock reference laid out in the same object, or in the statics section for static volatile fields.

All of our data-race detector implementations maintain and rely on the revised access

history invariants discussed in §5.2.2.

5.5.1.2 Instrumentation

Thread fork and join operations as well as lock acquire and release operations are all

treated via the normal vector-clock race-detector algorithm (§2.2.1). They require no special

synchronization, since their instrumentation is always performed at program points where

there is not concurrent demand for the vector clock structures involved.

Volatile field accesses have no mutual exclusion guarantees, so to avoid lost vector clock

updates, we use an atomic CAS to swap a vector clock reference with a special locked value

while using the vector clock. We have not considered applying an ownership protocol for

cooperative synchronization of access to these vector clocks, but for programs with heavy

use of volatile in relevant patterns, it may be helpful.

The read and write barrier fast paths (see §5.3.4 and §5.3.4.3) are inlined into application

code before the accesses they monitor. The inlined barriers call out-of-line code for slow

paths.

FIB uses existing yield points that are already in place in Jikes RVM for run-time services

like on-stack replacement and garbage collection.

For purposes of performance evaluation, all implementations print a short report about

the first data race detected in each thread, but continue execution past all detected data

130

races. Accuracy is not guaranteed past the first data race, but the detectors continue normal

execution.

5.5.2 FastTrack Implementations

We implemented variations on the FastTrack algorithm using the following implementations

of barrier atomicity:

• SpinLock acquires a simple spin lock on the access history before every barrier, spinning

until it succeeds at atomically comparing and swapping a special locked value into

the last-reads word of an access history. After the barrier, the resulting up-to-date

last-reads value is stored into the access history, simultaneously releasing the lock. Cas

guarantees accuracy, albeit via a naive, pessimistic mechanism.

• Cas avoids synchronization in barriers that do not update the access history after a

successful data-race check. Specifically, read barriers are synchronization-free when the

access history’s last-reads field holds the current epoch and when the access history’s

last-reads field holds a reference to a read map in which the current thread’s entry is

the current epoch. Write barriers are synchronization-free when the access history’s

last-write field holds the current epoch. Cases that update the access history require a

CAS operation is required to ensure barrier atomicity, similar to the last-reads spin lock

used in SpinLock. Cas guarantees accuracy via what we believe is the most effective

feasible non-cooperative synchronization scheme.8

• Fib implements the FIB protocol discussed in §5.3, initializing access histories with

they CAS-for-ownership policy (§5.4.2.1).

• Unsync uses no synchronization of its own. It makes optimizations that depend on

barrier atomicity, assuming that the existing program synchronization suffices to

8We have also considered a refinement that allows the case matching FIB’s readSharedFirst case to use
a CAS on its individual read-map entry, rather than a CAS on the read word, plus an accompanying
write-after-read-shared case that locks all read-map entries. This refinement could minimize contention
in read-shared cases, but as our profiling shows in Table 5.2, these cases are too rare to have significant
performance impact in practice, so we have omitted the refinement from the evaluation presented here.

131

provide barrier atomicity. Unsync therefore does not guarantee accuracy, but serves as

a benchmark for the expected best possible performance of safe implementations of

barrier atomicity.

5.5.3 FIB Communication Infrastructure

A thread’s incoming requests and ack queues are stored as single 32-bit bit vectors in the

thread’s structure. As each thread may make at most one request at a time, the worst-case

size of each thread’s incoming request queue is linear in the number of threads. Since our

epoch representation can express at most 32 unique thread identifiers (§5.5.1.1), we choose a

matching queue size. The target and type of a request are stored in the requesting threads

structure, since a thread has at most one outstanding request at a time. A thread may have

several outstanding ack requests at a time, but they all have the same target and type. This

representation makes the atomic enqueue process simpler. A requesting thread CASes out

the responding thread’s bit vector, replacing it with a special locked value. It then inspects

the last-read word of the access history it is requesting and if it is still owned by the same

thread, it writes back a new bit vector with the requesting thread’s bit set. When a thread

blocks after a yield point it CASes its queue to a special blocked value. Thus all state about

a thread’s communication is visible through this single bit vector, making atomic transitions

simpler. The locked and blocked values differ per responding thread. For thread ti’s queue,

they use two distinct values the ith bit set, since thread ti never enqueues a request with

itself.

Request-queue processing works as described in §5.3.5.3. Responses are stored in the

requesting thread’s structure. After sending a request, the requesting thread spins on its

response field until the responding thread stores a response there. For acks, the single

response field is used as a bit vector or counter to accumulate the set of expected responses.

A requesting thread may need to process incoming requests while it is waiting for a response

to its own request to avoid deadlock.

132

5.5.4 Dynamic Thread-Escape Analysis

For each version of FastTrack barrier atomicity, we implement a counterpart using dynamic

thread-escape analysis as a pre-filter for access barriers and synchronization tracking. We

use an implementation of a standalone conservative dynamic thread-escape analysis in Jikes

RVM due to Man Cao and Mike Bond. This implementation stores an escape status in a

bit of the object header, updating as described in §5.7.4. SpinLockEsc, CasEsc, FibEsc, and

UnsyncEsc simply check the escape status for accesses to object fields and only continue with

the barrier if the containing object is escaped. FibEscInit also does such filtering and modifies

the escape analysis to store the current epoch upon escape instead of a single bit. The

necessary storage space is shared with that for pointers to vector clocks and array shadows,

so no additional storage is required. FibEscInit then uses the stored ownership to initialize

the ownership state of fields of this object lazily. When an access barrier encounters an

empty last read field of an access history, this indicates the first post-escape access to this

location. The last read is derived by loading the escape epoch from the object header and

FIB’s protocol continues as usual. (See also §5.4.2.2.)

5.6 Evaluation

We evaluate the performance of FIB in two parts. First, to evaluate whether—and by

how much—FIB reduces or increases the cost of barrier atomicity versus pessimistic imple-

mentations, we compare the performance of FIB against that of other data-race detectors

using different implementations of barrier atomicity, but the same detection algorithm. We

examine FIB’s performance relative to these other implementations and in absolute terms

against native execution without data-race detection. Second, to evaluate how well FIB’s

cooperative protocol matches costs of expected common and rare cases with real executions,

we present detailed profiling results.

5.6.1 Environment

We ran performance and profiling experiments on a set of multithreaded Java benchmarks

from the DaCapo benchmark suites [14] versions 2006-10-MR2 (eclipse6 and xalan6) and

133

9.12 (avrora9, jython9, luindex9, lusearch9 (fixed per [142]), pmd9, sunflow9, and xalan9), plus

pjbb2005 [12], a fixed-workload version of the SPECjbb2005 benchmark [123]. Other bench-

marks from DaCapo run more than 32 threads (which our prototype does not support), do

not succeed on the base Jikes RVM, or lack interesting multithreaded behavior. Benchmarks

run with either a fixed number of threads, or a number of threads depending on the number

of available cores.

Experiments used the implementations described in §5.5, plus two other configurations:

Base is Jikes RVM with no data-race detection; No Barriers adds synchronization tracking with

vector clocks, but does not insert access histories or data-race checking. All configurations

of Jikes RVM use the adaptive just-in-time optimizing compiler (FastAdaptive) and the

generational immix garbage collector (GenImmix). Profiling experiments insert additional

profiling counters in our FastTrack implementations. These counters are not present in the

versions run for performance experiments. The performance and profiling results are from

different sets of executions.

All experiments are run on a machine using a Linux 2.6.32 kernel on 2 × 4-core Intel

Xeon E5520 CPUs at 2.26GHz with 2 SMT hardware threads per core (8 cores, 16 threads),

8MB L3 cache per CPU with 64-byte cache lines, and 10GB of RAM.

Performance experiments use 15 cores, since one benchmark (sunflow9) uses 2×|cores|+1

threads, exceeding our 32-thread limit when 16 cores are available. Scaling experiments use

2, 4, 8, 15, and 16 cores.

5.6.2 Performance and Profiling Results

The goal of FIB is to reduce the overhead of metadata synchronization, to help lower

performance overheads for fully accurate dynamic data-race detection implemented in pure

software. Motivated by data-race exceptions, we take guaranteed first-race accuracy as a

requirement and good performance as a highly desirable property.

We ran each configuration of Jikes RVM described in §5.6.1 10 times on each machine

configuration, collecting timing information. Figure 5.13 shows performance results on 15

of 16 cores, with execution times of each configuration normalized to those of Jikes RVM

134

without data-race detection (Base).

Table 5.2 shows measurements of the spread of ownership state transitions FIB takes

in practice, measured over a separate set of profiling runs. Rows are benchmarks and

sub-rows are individual configurations of the FIB algorithm (see §5.5.2 and §5.5.4). Columns

are the types of transitions, divided into two categories: Pure transitions examine but

do not update the access history; transitions in the Updates Access History category

update the access history. The Not Escaped column counts data-race checking barriers

avoided using dynamic thread-escape analysis; Local transitions and Fence transitions are

described in §5.3; First (CAS) transitions occur at the first access to a location under

CAS-for-ownership initialization policy and for static field accesses in all policies (see §5.4.2);

Single-Conflict transitions and Multiple-Conflict transitions are described in §5.3. Each

cell contains the absolute number of transitions of this type on this benchmark under this FIB

configuration, plus this number expressed as a percentage of the total number of transitions

(accesses) on this benchmark under this FIB configuration (i.e., over the sum of the full

sub-row of absolute counts).

Figure 5.14 shows scalability results from 2 to 16 cores. Note that some benchmarks

(lusearch9, sunflow9, and xalan9) derive thread counts from the number of available cores,

while the rest use fixed thread counts.

5.6.3 Discussion

In this section we examine themes in the empirical behavior of FIB and other FastTrack

implementations. Our data-race detection implementations range from 1.5× as slow (avrora9

on Unsync) to about 48× as slow (sunflow9 on SpinLock) as normal Java execution on Jikes

RVM without data-race detection. (Overheads thus range from 50% to 4700%.) Variability

is minimal except on lusearch9, which exhibits relatively high variability on all data-race

detector configurations. There are several factors, from JVM to implementation level to

benchmarks, that make these performance results incomparable with the average 8.5×

normalized execution time reported for the original FastTrack data-race detector in [52].

135

ec
lip

se
6

xa
la

n6
av

ro
ra

9

jy
th

on
9

lu
in

de
x9

lu
se

ar
ch

9

pm
d9

su
nf

lo
w

9

xa
la

n9
pj

bb
20

05

01234567 Execution Time Normalized to Base

B
en

ch
m

ar
ks

B
as

e
N

o
B

ar
ri

er
s

U
ns

yn
c

U
ns

yn
cE

sc
Sp

in
L

oc
k

Sp
in

L
oc

kE
sc

C
as

C
as

E
sc

Fi
b

Fi
bE

sc
Fi

bE
sc

In
it

9.
69.
79.
7

46
.2

48
.0

10
.1

10
.2

10
.2

F
ig

u
re

5
.1

3
:

E
x
ec

u
ti

on
ti

m
es

of
d

at
a-

ra
ce

d
et

ec
to

r
im

p
le

m
en

ta
ti

on
s

n
or

m
al

iz
ed

to
B

as
e

J
ik

es
R

V
M

.

136

Pure Updates Access History
Not Escaped Local Local Fence First (CAS) Single-Conflict Multi-Conflict

Excl→ Excl Excl→ Shared

ec
li
p

se
6

Fib
0 13,246,520,597 1,562,258,300 12,155 1,219,052,568 963,322 8,586 2,194

0% 82.6% 9.75% 0.0000758% 7.61% 0.00601% 0.0000536% 0.0000137%

+Esc
13,515,037,259 2,045,108,099 363,955,331 7,591 105,991,912 794,895 3,790 1,289

84.3% 12.8% 2.27% 0.0000474% 0.661% 0.00496% 0.0000236% 0.00000804%

+Init
13,510,142,210 2,046,674,929 364,350,974 11,786 104,413 1,114,104 4,811 814

84.8% 12.9% 2.29% 0.000074% 0.000656% 0.007% 0.0000302% 0.00000511%

xa
la

n
6

Fib
0 6,198,120,224 6,249,879,792 23,399 701,062,430 150,709,494 1,424 19

0% 46.6% 47.0% 0.000176% 5.27% 1.13% 0.0000107% 1.43× 10−7%

+Esc
6,130,866,197 2,472,848,887 4,296,465,186 21,388 253,985,385 149,925,095 1,238 18

46.1% 18.6% 32.3% 0.000161% 1.91% 1.13% 0.00000931% 1.35× 10−7%

+Init
6,148,530,139 2,488,549,132 4,290,064,832 20,662 23,168 149,424,600 1,097 19

47.0% 19.0% 32.8% 0.000158% 0.000177% 1.14% 0.00000839% 1.45× 10−7%

a
vr

or
a

9

Fib
0 7,276,621,877 539,552,403 864,301 45,282,123 35,054,978 4,985 466

0% 92.1% 6.83% 0.0109% 0.573% 0.444% 0.0000631% 0.0000059%

+Esc
128,014,449 7,203,059,883 528,956,171 864,300 1,935,392 34,427,768 4,793 821

1.62% 91.2% 6.7% 0.0109% 0.0245% 0.436% 0.0000607% 0.0000104%

+Init
128,447,408 7,203,939,949 529,386,011 864,033 233,257 34,564,620 5,066 1,092

1.63% 91.2% 6.7% 0.0109% 0.00295% 0.438% 0.0000641% 0.0000138%

jy
th

o
n

9

Fib
0 4,874,439,027 650,978,450 0 645,094,466 73 1 0

0% 79.0% 10.5% 0% 10.5% 0.00000118% 1.62× 10−8% 0%

+Esc
4,712,194,016 913,226,774 541,735,408 0 135,330 27 2 0

76.4% 14.8% 8.78% 0% 0.00219% 4.38× 10−7% 3.24× 10−8% 0%

+Init
4,722,776,592 923,431,761 573,738,434 0 48 27 2 0

75.9% 14.8% 9.22% 0% 7.72× 10−7% 4.34× 10−7% 3.22× 10−8% 0%

lu
in

d
ex

9

Fib
0 346,281,673 57,277,402 0 11,630,063 1,211 2 1

0% 83.4% 13.8% 0% 2.8% 0.000292% 4.82× 10−7% 2.41× 10−7%

+Esc
374,518,601 39,641,255 291,791 0 32,465 710 2 1

90.4% 9.56% 0.0704% 0% 0.00783% 0.000171% 4.83× 10−7% 2.41× 10−7%

+Init
375,906,265 39,658,652 271,758 0 534 718 2 1

90.4% 9.54% 0.0654% 0% 0.000128% 0.000173% 4.81× 10−7% 2.4× 10−7%

lu
se

ar
ch

9 Fib
0 2,590,564,430 365,306,939 2,960 95,502,775 609,175 79 0

0% 84.9% 12.0% 0.000097% 3.13% 0.02% 0.00000259% 0%

+Esc
3,023,134,220 27,241,990 5,498,196 2,008 9,676 110,323 52 0

98.9% 0.891% 0.18% 0.0000657% 0.000317% 0.00361% 0.0000017% 0%

+Init
3,048,959,312 31,190,388 55,108 2,005 7,251 52,928 44 1

99.0% 1.01% 0.00179% 0.0000651% 0.000235% 0.00172% 0.00000143% 3.25× 10−8%

p
m

d
9

Fib
0 573,181,058 44,929,534 17,532 58,681,794 1,296,562 757 32

0% 84.5% 6.63% 0.00259% 8.65% 0.191% 0.000112% 0.00000472%

+Esc
597,984,400 60,620,635 17,301,128 15,373 2,054,123 1,189,281 1,855 54

88.0% 8.93% 2.55% 0.00226% 0.302% 0.175% 0.000273% 0.00000795%

+Init
606,645,723 60,591,174 17,283,255 16,047 34,353 1,195,135 1,889 52

88.5% 8.84% 2.52% 0.00234% 0.00501% 0.174% 0.000275% 0.00000758%

su
n

fl
ow

9

Fib
0 22,458,991,312 7,780,515 905,161 1,058,758,098 734,393 35,095 7

0% 95.5% 0.0331% 0.00385% 4.5% 0.00312% 0.000149% 2.98× 10−8%

+Esc
10,981,938,814 12,540,462,585 4,583,243 899,680 368,066 1,365,931 30,476 7

46.7% 53.3% 0.0195% 0.00382% 0.00156% 0.00581% 0.00013% 2.97× 10−8%

+Init
11,184,148,661 12,578,483,600 4,576,745 905,347 80,573 937,688 31,171 7

47.1% 52.9% 0.0193% 0.00381% 0.000339% 0.00394% 0.000131% 2.94× 10−8%

xa
la

n
9

Fib
0 6,385,799,620 4,747,075,440 63,014 915,332,736 120,848,149 2,510 15

0% 52.5% 39.0% 0.000518% 7.52% 0.993% 0.0000206% 1.23× 10−7%

+Esc
1,155,790,329 5,940,654,319 4,647,992,733 59,715 304,086,745 120,301,165 2,106 16

9.5% 48.8% 38.2% 0.000491% 2.5% 0.989% 0.0000173% 1.31× 10−7%

+Init
1,159,743,464 6,106,246,634 4,646,292,809 61,479 28,861 120,318,315 2,148 17

9.64% 50.7% 38.6% 0.000511% 0.00024% 1.0% 0.0000179% 1.41× 10−7%

p
jb

b
2

0
0

5 Fib
0 4,199,607,738 3,823,644,444 940,944 759,038,261 196,215,212 631,947 2,153,591

0% 46.8% 42.6% 0.0105% 8.45% 2.18% 0.00704% 0.024%

+Esc
1,658,967,315 3,501,133,082 3,549,758,384 962,269 77,902,527 186,057,396 640,461 2,161,941

18.5% 39.0% 39.5% 0.0107% 0.868% 2.07% 0.00713% 0.0241%

+Init
1,674,636,083 3,492,145,992 3,542,466,688 929,721 2,509,327 187,565,714 632,126 2,070,916

18.8% 39.2% 39.8% 0.0104% 0.0282% 2.11% 0.0071% 0.0233%

Table 5.2: FIB ownership state transitions in practice.

137

2 4 8 1516
Cores

0

100

200

300

400

E
xe

cu
ti

on
 T

im
e

(s
)

(a) eclipse6, 18

2 4 8 1516
Cores

0

100

200

300

400

E
xe

cu
ti

on
 T

im
e

(s
)

(b) xalan6, 9

2 4 8 1516
Cores

0

50

100

150

200

E
xe

cu
ti

on
 T

im
e

(s
)

(c) avrora9, 27

2 4 8 1516
Cores

0

50

100

150

E
xe

cu
ti

on
 T

im
e

(s
)

(d) jython9, 3

2 4 8 1516
Cores

0

2

4

6

8
Ex

ec
ut

io
n

Ti
m

e
(s

)

(e) luindex9, 2

2 4 8 1516
Cores

0

10

20

30

E
xe

cu
ti

on
 T

im
e

(s
)

(f) lusearch9, |cores| + 1

2 4 8 1516
Cores

0

5

10

Ex
ec

ut
io

n
Ti

m
e

(s
)

(g) pmd9, 5

2 4 8 1516
Cores

0

100

200

300

E
xe

cu
ti

on
 T

im
e

(s
)

(h) sunflow9, 2×|cores|+ 1

2 4 8 1516
Cores

0

50

100

150

200

250

E
xe

cu
ti

on
 T

im
e

(s
)

(i) xalan9, |cores| + 1

2 4 8 1516
Cores

0

100

200

300

E
xe

cu
ti

on
 T

im
e

(s
)

(j) pjbb2005, 9

6 11 16
Cores

0

100

200

300

400

Ex
ec

ut
io

n
Ti

m
e

(s
)

Base
No Barriers
Unsync
UnsyncEsc
SpinLock
SpinLockEsc
Cas
CasEsc
Fib
FibEsc
FibEscInit

(k) Key

Figure 5.14: Scalability of Base Jikes RVM and FastTrack implementations. Each bench-
mark is listed with the number of threads it runs in each execution.

138

eclipse6

xalan6
avrora9

jython9

luindex9

lusearch9

pmd9
sunflow9

xalan9
pjbb2005

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

E
xe

cu
ti

on
 T

im
e

N
or

m
al

iz
ed

 t
o

C
as

Benchmarks

Base
Unsync
SpinLock
Cas
Fib

8.7 3.6

Figure 5.15: Execution times of Base, Unsync, Cas, and Fib, normalized to Cas.

5.6.3.1 Fib versus Cas

To evaluate how well FIB achieves its primary goal of reducing overhead of metadata syn-

chronization, we focus on the performance of Fib relative to traditionally synchronized

accurate data-race detection implementations (Cas). We use an optimized unsynchronized

implementation without accuracy guarantees (Unsync) as a rough proxy for the best perfor-

mance we could expect from synchronization changes alone. Figure 5.15 shows a subset of

the performance results from Figures 5.13 normalized to execution times of Cas, our most

sophisticated pessimistic implementation of FastTrack. This presentation emphasizes two

ratios. First, comparing execution times of Unsync to those of Cas shows that 2% (pmd9) to

38% (xalan6) of the full execution time of Cas is spent on synchronization.9

Second, comparing Fib to Cas in this plot shows that Fib runs between 21% faster

(luindex9) and 260% slower (pjbb2005) than Cas. The range of performance of Fib versus

9Some earlier work has characterized the percentage of execution time overheads—i.e., the time left after
subtracting the execution of the unmodified JVM—are due to synchronization [38]. We always refer to
percentages of full execution times rather than overheads. The percentages reported here would of course
be larger if reported as overheads.

139

Cas is mixed. Four benchmarks (eclipse6, jython9, luindex9, lusearch9) are 13-21% faster

on Fib than Cas. Furthermore, on these benchmarks, the performance of Fib is within

3% of that of the completely unsynchronized Unsync implementation. In these cases Fib

delivers full accuracy guarantees with nearly no synchronization cost. Table 5.2 shows that

these benchmarks have very low communication rates and high rates of synchronization-free

barriers. Three benchmarks (pmd9, sunflow9, and xalan9) are as fast as or up to 7% slower

on Fib than on Cas.

The remaining benchmarks are signficantly slower on Fib than on Cas: xalan6 is 45%

slower, avrora9 is 57% slower, and pjbb2005 is 260% slower. Profiling results in Table 5.2

show that the these benchmarks exhibit relatively high rates of communication under Fib,

with 1.1%, 0.44%, and 2.2% of all barriers requiring communication, respectively. With the

exceptions of avrora9 and pmd9, all other benchmarks’ communication rates are at least an

order of magnitude smaller. FIB performance for avrora9 is exacerbated by the fact it runs

27 threads, but our machine offers just 15 hardware threads in these experiments. Thread

preemption does not move a thread into FIB’s blocking state, so a thread making a request

to a descheduled thread must wait for that descheduled thread to be scheduled again and

send a response, rather than self-serving the request, as would be ideal.

Neither Fib nor Cas consistently out-performs the other for all benchmarks. Fib is

faster than or within 7% of Cas for 7 of 10 benchmarks and at least 45% slower for the

remaining 3, while Cas is at least as fast Fib for 6 of 10 benchmarks and at least 12% slower

on the remaining 4. This split suggests that selecting the synchronization scheme on a

per-benchmark—or per-memory location—basis could achieve the best performance overall.

We discuss the potential for adaptive techniques in §5.9.2.

5.6.3.2 Dynamic Thread-Escape Analysis

Adding dynamic thread-escape analysis as a filter for data-race checking barriers and

synchronization has mixed effects on performance. Revisiting Figure 5.13, escape filtering

noticeably improves performance on at least one synchronized FastTrack configuration for

several benchmarks. It has signficant negative performance effects in some configurations in

avrora9, sunflow9, and jython9.

140

Not surprisingly, thread-escape filtering often has greater impact on pessimistically

synchronized versions of FastTrack than on FIB, to the point that FibEsc and FibEscInit rarely

perform signficantly better than CasEsc. While FibEscInit never requires synchronization

on accesses to data that are thread-private, Cas must use a CAS every time it updates an

access history regardless of whether it is private. For example, on eclipse6, CasEsc runs 35%

faster than Cas by filtering out many data-race checks with escape status. Results for Fib

and Unsync show that pessimistic synchronization is not the only overhead escape-filtering

can mitigate: updates to access histories do have costs, but never affect accuracy if the

access histories are not yet escaped (see §5.4.1). On eclipse6, escape-filtering to omit these

synchronization-free updates in FibEscInit and UnsyncEsc causes these implementations to

run about 25% faster than their counterparts without escape analysis.

Escape analysis for jython9 actually slows UnsyncEsc and CasEsc by close to 10% versus

Unsync and Cas, while FibEsc runs over 20% faster than Fib and 40% faster than CasEsc

in this case. Profiling information in Table 5.2 shows that Fib required CAS transitions

on over 644 million accesses—over 10% of all accesses—while FibEscInit requires a CAS

transition on the first access to each of 48 static fields (0.00000078% of accesses). About

99.98% of accessed memory locations in jython9 never escape. We discuss the relative merits

of dynamic thread-escape and the FIB protocol further in §5.8.3.

5.6.3.3 Scalability and Other Pessimistic Implementations

For the most part, the scalability of the data-race detectors largely follows that of the

Base Jikes RVM, with proportional overheads, as seen in Figure 5.14. This trend continues

on benchmarks not shown in Figure 5.14, which have nearly flat scalability graphs on all

configurations. The first exception to this trend is pjbb2005 running on Fib and its variants.

While other configurations show modest scaling up to 4 or 8 cores, Fib and its variants show

negative scaling: the high rate of communication is exacerbated by more live threads. When

most threads are blocked, as with lower core counts, many communication requests can be

self-served with a couple CAS operations for synchronization in place of expensive round-trip

communication waiting for yield points.

The second scaling exception is sunflow9 running on SpinLock, which acquires a lock for

141

every barrier. Unlike Cas, SpinLock requires synchronization for all barriers. Its performance

is between about 10% faster and 80% slower than Cas on all benchmarks except sunflow9,

where it is about 9× as slow as Cas and 46× as slow as Base with 15 cores. sunflow9 has

significant read-sharing behavior. SpinLock’s locking operations on every barrier add massive

amounts of cache coherence traffic where sunflow9 would experience none on a normal JVM.

Figure 5.14h shows that, while other implementations have scaling that generally reduces

overheads with growing core counts and scales somewhat proportionally to Base Jikes RVM,

overheads and absolute execution times of SpinLock and its escape-filtered counterpart

SpinLockEsc both increase with the breadth of read-sharing.

The non-starter pessimistic SpinLock implementation uses a CAS to lock the read word

for every barrier, even in the same-epoch cases, since FastTrack’s same-epoch optimizations

are such obvious opportunities to avoid synchronization in the common case. It is often

10-80% slower than Cas, although it is sometimes up to 10% faster (when Cas’s optimistic

synchronization-free path fails frequently). SpinLock is about 790% slower than Cas on

sunflow9, which has significant read-sharing. Cas benefits from a synchronization-free fast-

path when a thread reads read-shared data repeatedly in the same epoch. SpinLock locks

for every barrier, causing heavy write contention and resulting cache coherence transitions

where the program behavior allows the program data to stay shared in all caches, with no

coherence required.

We omit barrier atomicity implementations that require dedicated synchronization storage,

such as a biased lock for each access history or an Octet state for each object. FastTrack

is not directly expressible as an Octet client analysis (§5.7.3). We discuss potential

opportunities to improve the FIB protocol with modest dedicated state storage in §5.9.

5.7 Related Work

Cooperative synchronization based on thread ownership has been employed in a range of

settings previously. The most relevant to FIB are biased locking (§5.7.1), cache coherence

and associated techniques like RADISH local permissions (§5.7.2), and Octet and object

granularity race detection (§5.7.3). We also discuss related work on sound dynamic thread-

142

escape analysis (§5.7.4).

5.7.1 Biased Locking

Biased locking [67, 99, 113, 126] is a well-known lock implementation technique targeting

locks that are acquired by one thread only, at least within some large consecutive series

of acquires. Initially the lock is unowned and must be acquired in the typical fashion. A

thread may bias a lock it acquires by tagging the lock with its ID. Typically, this is stored

in the lock word, with another bit that indicates bias is enabled. Once a lock is biased, the

bias owner thread may acquire it and release it with a single memory access and no fences,

atomic compare-and-swap instructions, or other expensive operations. If another thread tries

to acquire the lock, it must request that the bias owner unbias the lock or transfer bias to

the requesting thread. Threads check for such requests at regular, well-defined yield points

in the program. Communication to request bias changes is more expensive than normal lock

operations, but also much rarer. Biasing is handled adaptively to ensure a program does

not have to pay for frequent, repeated bias changes. After some number of bias changes

(typically one), the lock typically enters an unbiased mode, where normal locking techniques

are used to handle contention or frequent sharing.

Our algorithm differs from the simple use of a biased lock to protect each unit of metadata.

In our algorithm, the bias owner for a location is derived from the access history for that

location. There is no separate explicit representation of the bias owner. As a result, the

metadata never enters an unbiased mode and it cannot be preemptively rebiased.

5.7.2 Coherence, Permissions, and Protections

MESI cache coherence [96] is a well-known hardware protocol to ensure that copies of

data stored in private caches on separate cores or processors do not diverge, preserving

the illusion of a single shared memory. When a processor has a cache line in sufficiently

permissive ownership state, it can execute accesses to that line without communicating

to other processors, but otherwise it must perform extra communication to acquire that

ownership state.

143

The RADISH [38] hybrid software-hardware data-race detector harnesses cache coherence

events to optimize its analysis. The key observation for this optimization is that after

checking an access to location x and finding it is data-race-free, all accesses to x of the same

or lesser type (read < write) that occur before the next cache coherence on the cache line

containing x (or its eviction) are also guaranteed to be data-race free. RADISH exploits

this guarantee by memoizing the result of checks as local permissions and downgrading

these permissions as needed in response to cache coherence events. RADISH permissions are

quite similar to lock bias, with potential yield points coming more frequently. While our

algorithm’s use of ownership information is similar in spirit to cache coherence, or its use by

RADISH and some other data-race detectors [58, 82, 110] and more general analyses [85], our

algorithm does not enjoy hardware support. Aikido [95] uses an extended hypervisor and

virtual memory page protections for thread ownership to avoid instrumenting accesses to

thread-local data.

5.7.3 Object Race Detection and Octet

Per-object thread ownership is used as an optimization to filter out data-race checks in von

Praun and Gross’s algorithm for object race detection [130]. However, as discussed in §2.5,

object-granularity race detection both misses true data races and reports false data races.

Octet [23] also associates an ownership state with each object, and reports conflicting

state transitions to a client analysis. On every access to an object field, the state is checked.

When the accessing thread owns the object, or if the thread is reading and the object

is in a shared state, no transition is required. A conflicting transition occurs when one

thread owns the object and another accesses it. To safely make this transition, the current

thread must communicate with the owner thread to receive ownership and do analysis in

a well-synchronized way before it can proceed. To facilitate this communication, threads

check for transition requests at yield points (inserted at loop back-edges, call, return, etc.).

Our algorithm differs from Octet mainly in that ownership state is derived from access

history metadata rather than stored explicitly, meaning no extra storage is required, and

state is at the granularity of fields rather than objects. While Octet may suffer from false

144

sharing if fields have independent ownership patterns in practice, paying many transitions

for false sharing, it may also benefit if several fields of an object tend to be accessed together,

paying a single object-level transition for many field-level ownership transitions.

Pure Octet could be used as a synchronization mechanism to protect data-race detection

metadata, but data-race detection cannot exploit Octet’s conflicting transition notifications:

due to object granularity false sharing, all accesses must be still be checked by the data-race

detector, regardless of whether there is a conflicting transition. (This is the same reason

object race detection [130] is problematic.) Even using field-granular Octet, data-race

detection must record some accesses that do not cause conflicting transitions because these

accesses might become the last access before a future conflicting transition. On that (possibly

racing) transition, knowledge about the last access before the transition is needed to decide

if a data race occurs.

5.7.4 Dynamic Thread-Escape Analysis

Conservative static thread-escape analysis (see §2.6) has been used as a pre-filter to a number

of thread-aware analyses that need (or less) analysis on data that are proveably thread-

private. However, as a static analysis, it has precision limits. A dynamic thread-escape

analysis can potentially identify more thread-private data as well as monitoring data that is

initially thread-private, and making an anlysis transition when this data becomes shared.

We consider two types of dynamic thread escape analysis.

The first analysis accurately identifies the first non-thread-private access, but used as a

pre-filter for data race checks, it may cause missed data races. A precise dynamic thread

escape analysis, such as that used in Eraser [115] or the thread-local filter tool in the

RoadRunner dynamic analysis framework [54], tags each memory location with the thread

that first accessed that location. On all later accesses, the analysis checks whether the

accessing thread is the same as the original thread. If it is not, then the location transitions

to shared. This analysis is precise, in that it initiates a transition to thread-shared mode

only if (and exactly when) the location becomes accessed by multiple threads, but used as a

pre-filter for data-race checks, it can lead to false or missed data races, as discussed in §2.4.

145

The second analysis conservatively identifies the first time a location becomes reachable

by some thread other than its initial owner. It may identify locations as escaped and

acessible by multiple threads before any non-thread-private access occurs and even may

make this identification for locations that are never accessed by more than one thread. This

type of analysis has been used to implement thread-local heaps [42], accelerate software

transactional memory [119], and in accelerate some previous data-race detectors [33, 72, 92].

Reachability-based dynamic thread-escape analysis can serve as a safe pre-filter for data-race

checks and synchronization tracking, never causing missed or false data races (see §5.4.1).

However, all thee of the data-race detectors described in [33, 72, 92] may miss data races.

Object race detection is employed in [92] and unsound stationary analysis is applied in [72].

TRaDE [33] starts with a thread-escape analysis that does not miss data races under the

first-race guarantee, although the paper offers no justification. However, it adds a refinement

optimization whereby it halts data-race detection on privatized objects, those objects that

were formerly reachable by multiple threads but are now reqachable by only one thread.

This optimization can miss data races that cross privatization.10 We describe a sound use of

dynamic escape status for filtering data-race-checks and synchronization tracking for FIB and

other accurate vector-clock-based data-race detectors in §5.4.1. Our current implementation

does not try to exploit reprivatization of data, but we discuss a sound version of refinement

in §5.9.3.

5.8 Limitations

The basic version of FIB presented in this chapter has a number of limitations, some of which

may be addressed by refinements to the protocol.

10Refinement is done in the garbage collector. It is unclear if the TRaDe analysis considers synchronization
in the garbage collector. If it does, then the refinement optimization does not miss any data races that the
TRaDe algorithm would detect without the optimization. However, as we discuss in §4.2.2, tracking such
synchronization in language implementations can cause missed language-level data races.

146

5.8.1 Sensitivity to Serialized Sharing

The most significant limitation of our current FIB implementation is that its performance

is highly sensitive to the rate of communication required. For programs with very high

rates of temporally thread-private or read-shared data accesses, FIB excels. Its common-case

synchronization barriers allow it to run noticeably faster than more pessimistic implementa-

tions. For programs with slightly lower rates of temporally private and shared accesses and

higher rates of serialized sharing, the expense of FIB’s heavyweight rare-case synchronization

dominates, causing FIB to run significantly slower than pessimistic implementations.

These problematic sharing patterns typically correlate with performance bottlenecks

such as poor cache behavior even in uninstrumented applications. In many cases, while

FIB has poor performance on these sharing patterns, it arguably exacerbates an existing

problem rather than introducing overheads where application performance was otherwise

well-optimized. Nonetheless, FIB can add signficant overheads even for moderates of such

sharing. This sensitivity is likely due to several factors.

First, as FIB derives the ownership state of a location purely from its access history

metadata, FIB state transitions cannot be decoupled from data-race detection analysis

updates. Second, FIB maintains a state per location, meaning large sets of locations

accessed in the same pattern require individual state transitions. These two features prevent

preemptive or bulk transitions that would be possible in other more decoupled or coarser-

grained ownership tracking systems.

Third, FIB’s limited states (Exclusive or Shared), also tied to the pure state derivation

feature, force expensive communication on some transitions that are cheaper in other

ownership tracking systems that offer more states to represent more refined access permissions

and transitions.

5.8.1.1 FIB versus Octet

FIB’s three most problematic benchmarks (xalan6, avrora9, and pjbb2005) are also the

benchmarks with the highest performance overheads and highest rates of communication

for Octet [23]. FIB’s rates of communication and overheads versus Unsync follow the same

147

pattern as Octet’s, but are proportionally higher. While this is not a directly meaningful

comparison, it roughly measures the overhead of the synchronization protocol alone by

using the unsynchronized data-race detector as a baseline for FIB. There are two protocol

differences that may contribute the higher relative overheads of FIB.

First, Octet associates ownership state with objects, not individual fields and array

elements. Thus Octet’s states and transitions experience a false sharing effect with

potential detriments and benefits. When fields of the same object or elements of the same

array have independent thread ownership, Octet’s object-granular states can cause falsely

conflicting transitions and incur unneeded communication overhead. A pattern on which

this would occur is an array with one element per thread, where each thread’s element

is treated as thread-private to that thread. In the worst case for Octet, Octet could

incur communication on every access where FIB incurs no synchronization at all. However,

when multiple fields of a single object or multiple elements of a single array are all accessed

together by the same thread in the same pattern exhibiting spatial thread-locality, Octet’s

object-granular states amortize the cost of communication for an access to the first field of

an object over accesses to several fields in that object. In the worst case, FIB could incur

communication for every individual field accessed.

Second, Octet breaks FIB’s Exclusive state into two states, WrEx and RdEx, allowing for

some synchronization-free transitions that would require communication in FIB, at the cost

of CAS transitions on some cases where FIB is synchronization-free. Specifically, Octet

allows a RdEx → RdSh transition with a single CAS, while FIB requires communication

for Exclusive → Shared. (See the discussion of such transitions in §5.3.5.3.) On the other

hand, FIB allows writes following reads as Exclusive(t) → Exclusive(t) transitions with no

synchronization, while Octet requires a CAS for upgrades from read to write permission:

RdExT →WrExT. While FIB can be extended to use WrEx and RdEx states, they are more

restrictive than those in Octet (see §5.9.1).

Furthermore, FIB’s policy of deriving state purely from FastTrack access history metadata

forces FIB to follow FastTrack’s policies on metadata update. Specifically, FastTrack’s

optimization for globally-ordered reads avoids storing a full read map when reads are ordered

by locking, for example. This allows later write checks to succeed with constant-time checks

148

rather than time linear in the number of threads. This also forces FIB to make some

Exclusive(t)→ Exclusive(u) transitions—each requiring communication—where Octet could

make a transition to RdSh, allowing future read barrier to complete free of synchronization.

FIB’s Exclusive→ Shared transition (see Table 5.2) is rarer than Octet’s RdEx→ RdSh

transition (see Table 3 in [23]) in practice, suggesting FIB may be negatively impacted by

FastTrack’s globally-ordered reads optimization. However, Octet’s RdEx→ RdSh transition

is infrequent enough that this tradeoff does not likely have significant impact on performance.

Besides a margin for the more carefully tuned concrete communication implementation

in Octet, this leaves the conclusion that object granularity likely helps Octet versus

FIB overall. This suggests a possible limit on further optimizations of FIB, since object

granularity is poorly suited to accurate data-race detection, as discussed in §5.7.3.

5.8.2 Starvation of Atomic Lookup-and-Enqueue

The three limitations of the basic FIB protocol that contribute to its sensitive performance also

contribute to the theoretical starvation of atomic lookup-and-enqueue operations discussed

in §5.3.5.1. In practice, starvation never occurred in our experiments, and even single failed

atomic lookup-and-enqueue operations were rare. In the worst case, pjbb2005 retried 1253

failed atomic lookup-and-enqueue operations in a single execution, at a rate of 1 in 7.2

million accesses or 1 in 150,000 requests. In all other benchmarks, no more than 22 atomic

lookup-and-enqueue operations required retry, with many benchmarks never experiencing

failed atomic lookup-and-enqueue.

Distinct FIB state for each location could mitigate the possibility of starvation by

replacing the two-step lookup-and-enqueue operation with a single CAS operation. We have

not investigated this option in detail given the lack of observed starvation in practice.

5.8.3 Dynamic Thread-Escape Analysis

The FIB protocol is naturally optimized to make analysis of thread-private data relatively

inexpensive. While dynamic thread-escape filtering can reduce FIB’s overheads further

for thread-private data, other more pessimistic synchronization implementations see much

149

greater reductions in overheads due to dynamic thread-escape filtering, as it eliminates

common-case overheads in much the same way that the FIB protocol does. With dynamic

thread-escape analysis, the performance gains of FIB are less significant. On the one hand,

this suggests that FIB is natural fit for many programs and mitigates the need for thread-

escape information. On the other hand, it suggests that—in practice on the benchmarks

we evaluated—the version of the FIB protocol implemented here does not offer significant

gains over a simple synchronization scheme combined with a simple dynamic thread-escape

analysis. We discuss possible improvements to FIB in §5.9.

5.9 Future Work

In this section we outline a number of future extensions to FIB to address its limitations and

improve its performance.

5.9.1 Refined Ownership States

By adding modest explicit storage for ownership state in each access history, FIB could make

several protocol variations such as distinguishing between Write-Exclusive and Read-Exclusive

states (§5.9.1.1), adding intermediate states to simplify atomic lookup-and-enqueue (§5.8.2,

§5.3.5.1), or enabling preemptive or bulk state transitions that do not occur hand-in-hand

with data-race detection updates (§5.9.1.2).

5.9.1.1 Write- and Read-Exclusive States

Splitting FIB’s Exclusive state into distinct Write-Exclusive and Read-Exclusive states would

realign synchronization costs closer to those of Octet (§5.8.1.1). Unlike Octet’s WrEx

and RdEx states, which refer to writing and reading of the associated application data, FIB

Write-Exclusive and Read-Exclusive states would refer to writing and reading of the access

history, since FIB’s goal is to order analysis accesses, not just application accesses. As such,

FIB would utilize Read-Exclusive less often than Octet uses RdEx, since some data-race

detection barriers for program read accesses require (Write-Exclusive) updates to the access

history. Specifically, the FIB permissions would be as follows:

150

• Write-Exclusive(t) grants thread t exclusive permission for both write and read barriers

to check against and update all contents of this access history without synchronization.

• Read-Exclusive(t) grants thread t exclusive permission for both write and read barriers

to check against but not update this access history without synchronization.

Permission granted by Shared states remain the same. The distinction between Write-Exclusive

and Read-Exclusive would be encoded by stealing another bit from the last-read word.

Transitions from Read-Exclusive(t) to Write-Exclusive(t) would require a CAS of the

last-read word in the access history.11 This transition replaces a synchronization-free

Exclusive(t)→ Exclusive(t) transition in FIB. Transitions from Write-Exclusive to Shared are

the same as Exclusive→ Shared transitions in FIB, but Read-Exclusive(t)→ Shared transitions

are made safely with a CAS and no communication, since a barrier by thread t cannot

update the access history without a CAS transition to Write-Exclusive(t).

This version of the protocol trades the added cost of a CAS on some previous synchroni-

zation-free Exclusive(t)→ Exclusive(t) self-transitions for the elimination of communication

on some previously expensive Exclusive→ Shared transitions. As noted in §5.8.1.1, the rates

of these transitions do not appear likely to have signficant performance impact, but we

believe this protocol would still be valuable to implement and test.

5.9.1.2 Independent or Bulk Transitions

A more attractive use of additional explicit state storage would enable transitions independent

of data-race detection updates to the access history. By stealing an extra bit of access

history, we could encode that state lookup should be either by the current FIB derivation or

indirected to a word in the object header.12 This state indirection would essentially allow for

the choice between states covering data at field granularity or object granularity, while also

allowing transitions independent from data-race detection metadata updates at the cost of

11With careful layout and manipulation of the bit fields of each word in the access history, some
Read-Exclusive(t) → Write-Exclusive(t) transitions could be made by individual byte updates without
a CAS.

12For further flexibility at the cost of more space, we could add a word to each access history to hold a
pointer to any arbitrary state storage. See [44] for a similar construct with software transactional memory.

151

added time and space for state lookup. As discussed in §5.8.1.1, object granularity states are

attractive when all fields of an object (or all elements of an array) should change ownership

states together, as in a producer-consumer thread pipeline, for example.

5.9.2 Adaptive Synchronization Selection

The mixed performance of FIB versus more pessimistic implementations of barrier atomicity

(see §5.6.3.1) suggests that selecting a synchronization scheme via profiling or programmer

directive could offer the best overall performance. Selecting synchronization at the granularity

of a single access history (or even a single phase of execution for a single access history) could

offer better performance than any single synchronization scheme per application. A simple

adaptive approach would associate a saturating counter with each access history or object to

count the number of expensive FIB transitions it takes. Once the counter is saturated, this

access history or object switches to a pessimistic barrier atomicity implementation. When

combined with dynamic escape analysis, it may prove most effective to select pessimistic

synchronization preemptively for an object if that object escapes via publication to an object

where pessimistic synchronization is already in effect.

Cao, et al., have explored more complicated combined state transition machines using

both optimistic and pessimistic states for an adaptive version of Octet [75] that might

inform a similar design for FIB if a simple version does not suffice.

5.9.3 Reprivatization for Data-Race Detection

Marking escaped objects non-escaped when they are no longer reachable by multiple threads

could allow dynamic thread-escape analysis to cut performance overhead more aggressively

by filtering data-race checks even for objects that were shared but have since been privatized.

Privatization appears in many programming patterns, such as thread pipelining or producer-

consumer patterns.

152

Thread t1 Thread t2
let x = g
release(m)

acquire(m)
g.f = 2
g = null

— reprivatize o —
let y = x.f

Figure 5.16: Unsound reprivatization in TRaDe may miss true data races. The variables g
and m are global; x and y are local. Initially, g is the only reference to object o. Since g is a
global variable, o is escaped. The red accesses to o.f form a data race spanning privatization.

5.9.3.1 Unsound Reprivatization

The TRaDE algorithm for data-race detection [33], discussed in §2.2.1.3 and §5.7.4, makes

an unsound version of this optimization, called refinement. The garbage collector scans for

newly-private objects at each collection, clears their escaped state, and erases their access

histories, so future accesses to these objects will not require a data-race check until they

escape again. TRaDe refinement can miss true data races that span privatization. Unlike a

true escape-spanning data race that can be missed under conservative dynamic thread-escape

filtering, a true privatization-spanning data races is not necessarily dominated by another

true data race that TRaDe will detect.

Consider the example in Figure 5.16, where a true data race on field f of object o will be

missed under TRaDe’s refinement. Lock m is intended to protect global variable g. Thread

t1 takes a local reference to o, then passes lock m to t2, which writes to field f of object o

and then nulls the reference g, such that thread t1’s local variable x is now the only reference

to o. Garbage collection and TRaDe refinement occur at this point, erasing access history

for o.f and marking o as non-escaped. When thread t1 reads o.f through its local reference

x, the data-race detector will see that o is non-escaped and will skip the data-race check,

missing a data race between this access and thread t2’s earlier access to o.f. This is the

only data-race in the execution. It is not preceded by any other data race. Specifically, the

privatizing access g = null in thread t2 is not involved in a data race.

153

5.9.3.2 Sound Reprivatization

In this example, it is not safe to mark o non-escaped and erase its access history until the

next synchronization from thread t2 to thread t1. A more general sound policy is to mark a

privatized object with a third escape state, privatized. The dynamic thread-escape analysis

treats a privatized object as non-escaped. Filtering of data-race checks treats a privatized

object as escaped. The dynamic thread-escape analysis must mark a privatized object escaped

(and perform accompanying transitions) if it installs an escaped reference to that object.

Accesses to a field of an object in privatized state require data-race checks. Once a field has

been read without a data race, no further read data-race checks are required on that field

unless the object’s state changes. Once a field has been written without a data race, the

access history of that field can be erased and no further data-race checks are required on

that field unless the object’s state changes. Once all fields of the object have been written

without a data race, the object can be marked non-escaped once more. More preemptive

versions of this reprivatization checking are also possible.

The downside of reprivatization is the potential for repeated escape and reprivatization.

If a connected component of the heap is privatized, we would like to benefit from cheaper

analysis barriers on all objects in this component, so the transitive propagation done at escape

should also happen at privatization. In conventional escape analysis without reprivatization,

each object is marked escaped at most once. The potentially high cost of transitive escape

on a single reference update is amortized. When reprivatization is introduced, there is no

bound on the number of times an object may escape (or be reprivatized). In the worst case,

the entire heap is a single connected component rooted in one object that repeatedly escapes

and is reprivatized. At every step, a full transitive closure is required.

Measuring behavior of escape and reprivatization will be important to determine the

practical impact of these differing bounds. To avoid worst-case behavior, a saturating counter

can be associated with the escape status of each object. If the object has been privatized

more than k times, it should remain escaped permanently.

154

5.10 Conclusions

FIB is a cooperative synchronization protocol to preserve the integrity of dynamic data-race

detection metadata with no synchronization in the common case and expensive synchroniza-

tion in the rare case. Our evaluation shows that FIB’s performance is promising, but sensitive

to the rate of tight sharing of data. FIB out-performs conventional analysis synchronization

techniques on some benchmarks while running slower on others. These results suggest that

future work on an adaptive approach and other refinements to the protocol could achieve

the best overall performance.

155

Chapter 6

Conclusions and Next Steps

This dissertation described three techniques to bring data-race exceptions closer to feasibility

in programming languages at various levels of abstraction. Data-race exceptions would

mitigate the ill effects of data races by making every data race an explicit fail-stop error at

run-time. Implementing data-race exceptions demands accurate and fast dynamic data-race

detection support, yet accuracy and performance have historically been at odds in data-race

detection. This dissertation showed that: a hybrid software-hardware data-race detector

can optimize common cases with hardware support while handling rare cases in software to

maintain full accuracy for ISA-level programs (Chapter 3); low-level data-race detectors are

inaccurate for higher-level programming languages but can be virtualized to support accurate

language-level data-race detection (Chapter 4); and cooperative analysis synchronization

has the potential to reduce overheads of accurate data-race detection in pure software

implementations we can run today (Chapter 5).

6.1 Summary of Conclusions

A repeated theme in this dissertation is the importance and power of designing dynamic

analysis systems with careful consideration of the interaction between software and hardware,

as well as their respective strengths and weaknesses.

Our design for RADISH and our proof of its correctness demonstrated the value of starting

with a canonical, accurate software algorithm for dynamic data-race detection and mapping

performance-critical common cases into hardware. The software baseline allowed RADISH to

maintain full accuracy even in rare cases that are difficult to handle in hardware alone. The

156

design process of correctness first, performance later resulted in a design that exploits the

strengths, and mitigates the weaknesses, of both hardware and software analysis techniques.

Compared to hardware data-race detectors, RADISH eliminates all sources of inaccuracy.

Compared to software data-race detectors, RADISH mitigates most sources of inefficiency.

Our work with LARD evolved this co-design further, taking into account the effects

of translation between execution abstractions to virtualize lower-level data-race detection

resources such that they can be applied accurately to arbitrary higher-level shared-memory

multithreaded execution abstractions that run via translation to a lower-level shared-memory

multithreading implementation. Beyond designing a single software-hardware platform for

accurate high-level data-race detection, this work synthesized a principled taxonomy of how

program translation affects artifacts defined in terms of a single execution abstraction and

a design pattern for translating these artifacts, drawing on fresh insights as well as ad hoc

workarounds familiar to some dynamic analysis implementers, but not widely understood in

the broader community. Furthermore, our evaluation demonstrated that translation effects

are a prohibitive problem for näıve hardware-level detection of language-level data races

in practice, validating the necessity of designing mutually aware software and hardware

systems.

Our design and implementation of the FIB protocol eliminated hardware support in favor

of pure-software data-race detection that we can evaluate and use in real-world conditions

without waiting years for robust hardware implementations. Despite a lack of hardware

integration, the idea for FIB arose from lessons learned designing hybrid software-hardware

systems. FIB’s synchronization-free optimization of common cases in a software data-race

detector emulates similar optimizations accomplished via hardware support in RADISH. The

initial implementation and evaluation in this dissertation demonstrate that this approach

shows promise for reducing the overheads of pure-software data-race detection, although

further work is necessary to determine its practical value.

Our combined work on RADISH, LARD, and FIB has demonstrated the power of mutually

aware software and hardware techniques to reduce the overheads of accurate dynamic analysis

and bring data-race exceptions closer to feasibility.

157

6.2 Racing Onward: Limitations and Future Work

Despite RADISH’s overall good performance (detailed in [38]), some benchmarks still expe-

rience overheads that are too high for most deployment scenarios. Furthermore, RADISH

remains a relatively high-level design. While we have designed solutions to a number of

systems issues (detailed partly in Chapter 3 and more extensively in [38]), their practicality

and feasibility have not been tested in the real world.

A consistent challenge in moving new hardware designs from proposal to widespread

implementation is demonstrating significant utility. While we envision data-race exceptions

as always-on—not just a testing or debugging feature—and highly useful, additional uses of

the RADISH mechanism could broaden its appeal. Our earlier consideration of constructive

misuses of accurate and fast hardware data-race exception support generated promising

ideas [136]. (In fact, it was in the course of this brainstorming that the need for LARD first

became apparent.) Nonetheless, the RADISH hardware mechanism is clearly purpose-built for

data-race detection. A more flexible hardware mechanism that could express other similar

analyses while maintaining good performance for data-race detection would broaden the

appeal of RADISH and its chances for adoption.

Similarly, the RADISH hardware extensions required for LARDISH (§4.3.2) have not been

deeply vetted, and may benefit from small but fundamental revisions in a redesigned hardware

data-race detector that takes abstractable data-race detection as its first goal. In particular,

the merging of a modern language virtual machine with the software component of a hybrid

software-hardware data-race detector should present additional optimization opportunities,

but is not fully feasible in our current designs of LARDISH and Jikes LARDVM (§4.3).

We believe that the principles of LARD generalize beyond hardware-supported detection

of language-level data races. First, the taxonomy of translation effects and the associated

design pattern generalize to other pairs of execution and memory abstractions, including

hypervisors, operating systems, and programming models implemented atop high-level

languages. Second, we hope the design of LARD can inform that of other language-level

analyses using low-level resources, such as atomicity violation detection [56] or inter-thread

communication checking [138]. Yet more generally, the development and presentation of

158

LARD has raised many interesting questions about how programmers or analyses define and

reason about notions like data races or memory locations on layered execution abstractions

that do not hide all implementation details perfectly. We hope future studies will generalize

our insights and develop deeper principles for this type of analysis and execution abstraction.

The evaluation of FIB presented in this dissertation demonstrated that no single software

approach to barrier atomicity is most efficient in all cases (§5.6.3.1) and that performance

improvements due to the current version of the FIB protocol have significant overlap with

those enabled by conservative dynamic thread-escape analysis (§5.8.3). An adaptive and

generally more flexible version of FIB could offer stronger performance, as discussed in §5.9.

Nonetheless, this design process has opened up more general questions about how best to co-

optimize a given pair of dynamic analysis and application. We foresee opportunity in steering

automated optimization attempts via a combination of static analysis, dynamic profiling,

adaptive protocols, and flexible optimization hints from programmers. For programmers who

need both the safety of data-race exceptions and good performance, integrating moderated

control of the data-race detection analysis with language or library support may enable the

programmer to better co-optimize analysis and application.

Finally, the three contributions of this dissertation represent steps forward in the imple-

mentation of data-race exceptions, but their potential utility is currently limited to traditional

shared-memory multithreading on a single machine. Adapting data-race exceptions and

the supporting analysis techniques developed in this dissertation to a broader range of

related programming models could increase their impact and offer new insights into analysis

implementation.

159

References

[1] Mart́ın Abadi, Cormac Flanagan, and Stephen N. Freund. Types for Safe Locking:
Static Race Detection for Java. TOPLAS, 28(2), 2006.

[2] Sarita V. Adve and Hans-Juergen Boehm. Memory Models: A Case for Rethinking
Parallel Languages and Hardware. CACM, 53, August 2010.

[3] Sarita V. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tutorial.
Computer, 29(12):66–76, 1996.

[4] Sarita V. Adve and Mark D. Hill. Weak Ordering—A New Definition. In ISCA, 1990.

[5] Sarita V. Adve, Mark D. Hill, Barton P. Miller, and Robert H. B. Netzer. Detecting
Data Races on Weak Memory Systems. In ISCA, 1991.

[6] Jonathan Aldrich, Craig Chambers, Emin Gün Sirer, and Susan Eggers. Eliminating
Unnecessary Synchronization from Java Programs. In SAS, 1999.

[7] T. R. Allen and D. A. Padua. ”debugging fortran on a shared memory machine”. In
ICPP, 1987.

[8] Bowen Alpern, C. Richard Attanasio, John J. Barton, Anthony Cocchi, Susan Flynn
Hummel, Derek Lieber, Ton Ngo, Mark F. Mergen, Janice C. Shepherd, and Stephen E.
Smith. Implementing Jalapeño in Java. In OOPSLA, 1999. http://www.jikesrvm.org.

[9] David Bacon, Robert Strom, and Ashis Tarafdar. Guava: A Dialect of Java Without
Data Races. In OOPSLA, 2000.

[10] Utpal Banerjee, Brian Bliss, Zhiqiang Ma, and Paul Petersen. A Theory of Data Race
Detection. In PADTAD, 2006.

[11] Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan Grossman. CoreDet:
A Compiler and Runtime System for Deterministic Multithreaded Execution. In
ASPLOS, 2010.

[12] Stephen M. Blackburn. pjbb2005. http://users.cecs.anu.edu.au/~steveb/

research/research-infrastructure/pjbb2005.

http://users.cecs.anu.edu.au/~steveb/research/research-infrastructure/pjbb2005
http://users.cecs.anu.edu.au/~steveb/research/research-infrastructure/pjbb2005

160

[13] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. Oil and Water? High
Performance Garbage Collection in Java with MMTk. In ICSE, 2004.

[14] Stephen M. Blackburn, Robin Garner, Chris Hoffman, Asiad M. Khan, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z.
Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss,
Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage,
and Ben Wiedermann. The DaCapo Benchmarks: Java Benchmarking Development
and Analysis. In OOPSLA, 2006.

[15] Guy Blelloch. NESL: A Nested Data-Parallel Language. Technical report, Carnegie
Mellon University, Pittsburgh, PA, USA, 1992.

[16] Robert D. Blumofe and Charles E. Leiserson. Scheduling Multithreaded Computations
by Work Stealing. Journal of the ACM, 46(5):720–748, September 1999.

[17] Robert L. Bocchino, Jr., Vikram Adve, Danny Dig, Sarita V. Adve, Stephen Heumann,
Rakesh Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin Sung, and Mohsen
Vakilian. A Type and Effect System for Deterministic Parallel Java. In OOPSLA,
2009.

[18] Hans-Juergen Boehm. Threads Cannot Be Implemented As a Library. In PLDI, 2005.

[19] Hans-Juergen Boehm. How to Miscompile Programs with ”Benign” Data Races. In
HotPar, 2011.

[20] Hans-Juergen Boehm and Sarita V. Adve. Foundations of the C++ Concurrency
Memory Model. In PLDI, 2008.

[21] Hans-Juergen Boehm and Sarita V. Adve. You Don’t Know Jack About Shared
Variables or Memory Models. CACM, 55(2):48–54, February 2012.

[22] Michael D. Bond, Katherine E. Coons, and Kathryn S. McKinley. PACER: Proportional
Detection of Data Races. In PLDI, 2010.

[23] Michael D. Bond, Milind Kulkarni, Man Cao, Minjia Zhang, Meisam Fathi Salmi,
Swarnendu Biswas, Aritra Sengupta, and Jipeng Huang. Octet: Capturing and
Controlling Cross-Thread Dependences Efficiently. In OOPSLA, 2013.

[24] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership Types for Safe
Programming: Preventing Data Races and Deadlocks. In OOPSLA, 2002.

[25] Chandrasekhar Boyapati and Martin Rinard. A Parameterized Type System for
Race-Free Java Programs. In OOPSLA, 2001.

[26] C++ Standards Comittee, Stefanus Du Toit, ed. Working Draft,
Standard for Programming Language C++. 2012. http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2012/n3376.pdf.

161

[27] Luis Ceze, Joseph Devietti, Brandon Lucia, and Shaz Qadeer. A Case for System
Support for Concurrency Exceptions. In HotPar, 2009.

[28] Guang-Ien Cheng, Mingdong Feng, Charles Leiserson, Keith Randall, and Andrew
Stark. Detecting Data Races in Cilk Programs that Use Locks. In SPAA, 1998.

[29] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam Sreedhar, and Sam
Midkiff. Escape Analysis for Java. In OOPSLA, 1999.

[30] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan, Vivek Sarkar,
and Manu Sridharan. Efficient and Precise Datarace Detection for Multithreaded
Object-Oriented Programs. In PLDI, 2002.

[31] Jong-Deok Choi, Barton P. Miller, and Robert H. B. Netzer. Techniques for Debugging
Parallel Programs with Flowback Analysis. TOPLAS, 13(4), October 1991.

[32] Jong-Deok Choi and Sang Lyul Min. Race Frontier: Reproducing Data Races in
Parallel-Program Debugging. In PPoPP, 1991.

[33] Mark Christaens and Koen De Bosschere. A Topological Approach to On-the-fly Race
Detection in Java Programs. In Symposium on Java Virtual Machine Research and
Technology, 2001.

[34] Maria Christakis and Konstantinos Sagonas. Static Detection of Race Conditions in
Erlang. In PADL, 2010.

[35] Mark Christiaens and Koen De Bosschere. Accordion Clocks: Logical Clocks for Data
Race Detection. In EuroPar, 2001.

[36] Joseph Devietti, Colin Blundell, Milo Martin, and Steve Zdancewic. HardBound:
Architectural Support for Spatial Safety of the C Programming Language. In ASPLOS,
2008.

[37] Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. DMP: Deterministic
Shared Memory Multiprocessing. In ASPLOS, 2009.

[38] Joseph Devietti, Benjamin P. Wood, Karin Strauss, Luis Ceze, Dan Grossman, and
Shaz Qadeer. RADISH: Always-On Sound and Complete Race Detection in Software
and Hardware. In ISCA, 2012.

[39] Joseph Devietti, Benjamin P. Wood, Karin Strauss, Luis Ceze, Dan Grossman, and
Shaz Qadeer. RADISH: Always-On Sound and Complete Race Detection in Software
and Hardware. Technical report, UW-CSE-12-04-01, 2012.

[40] Anne Dinning and Edith Schonberg. An Empirical Comparison of Monitoring Algo-
rithms for Access Anomaly Detection. In PPoPP, 1990.

[41] Anne Dinning and Edith Schonberg. Detecting Access Anomalies in Programs with
Critical Sections. In Workshop on Parallel and Distributed Debugging, 1991.

162

[42] Damien Doligez and Xavier Leroy. A Concurrent, Generational Garbage Collector for
a Multithreaded Implementation of ML. In POPL, 1993.

[43] Laura Effinger-Dean, Hans-Juergen Boehm, Dhrova Chakrabarti, and Pramod Joisha.
Extended Sequential Reasoning for Data-Race-Free Programs. In MSPC, 2011.

[44] Laura Effinger-Dean and Dan Grossman. Region-Based Dynamic Separation for STM
Haskell. In TRANSACT, 2011.

[45] Laura Effinger-Dean, Brandon Lucia, Luis Ceze, Dan Grossman, and Hans-Juergen
Boehm. IFRit: Interference-free Regions for Dynamic Data-Race Detection. In
OOPSLA, 2012.

[46] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: A Race and Transaction-
Aware Java Runtime. In PLDI, 2007.

[47] Dawson Engler and Ken Ashcraft. RacerX: Effective, Static Detection of Race Condi-
tions and Deadlocks. In SOSP, 2003.

[48] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk Olynyk. Effective
Data-Race Detection for the Kernel. In OSDI, 2010.

[49] Colin Fidge. Logical Time in Distributed Computing Systems. Computer, 24, August
1991.

[50] Stephen J. Fink and Feng Qian. Design, Implementation and Evaluation of Adaptive
Recompilation with On-stack Replacement. In CGO, 2003.

[51] Cormac Flanagan and Stephen N. Freund. Type-Based Race Detection for Java. In
PLDI, 2000.

[52] Cormac Flanagan and Stephen N. Freund. FastTrack: Efficient and Precise Dynamic
Race Detection. In PLDI, 2009.

[53] Cormac Flanagan and Stephen N. Freund. Adversarial Memory for Detecting Destruc-
tive Races. In PLDI, 2010.

[54] Cormac Flanagan and Stephen N. Freund. The RoadRunner Dynamic Analysis
Framework for Concurrent Programs. In PASTE, 2010.

[55] Cormac Flanagan and Stephen N. Freund. RedCard: Redundant Check Elimination
For Dynamic Race Detectors. In ECOOP, 2013.

[56] Cormac Flanagan, Stephen N. Freund, and Jaeheon Yi. Velodrome: A Sound And
Complete Dynamic Atomicity Checker for Multithreaded Programs. In PLDI, 2008.

[57] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David
Culler. The nesC Language: A Holistic Approach to Networked Embedded Systems.
In PLDI, 2003.

163

[58] Rodrigo Gonzalez-Alberquilla, Karin Strauss, Luis Ceze, and Luis Piñuel. Accelerating
Data Race Detection with Minimal Hardware Support. In ICPP, 2011.

[59] Dan Grossman. Type-Safe Multithreading in Cyclone. In TLDI, 2003.

[60] Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Race Checking by Context
Inference. In PLDI, 2004.

[61] Intel. Thread checker. http://software.intel.com/en-us/articles/intel-thread-checker/,
2011.

[62] Intel. Inpector XE. http://software.intel.com/en-us/intel-inspector-xe, 2013.

[63] Ayal Itzkovitz, Assaf Schuster, and Oren Zeev-Ben-Mordehai. Toward Integration of
Data Race Detection in DSM Systems. Journal of Parallel and Distributed Computing,
59(2):180 – 203, 1999.

[64] Huafeng Jin, Tuba Yavuz-Kahveci, and Beverly A. Sanders. Java Memory Model-Aware
Model Checking. TACAS, 7214, 2012.

[65] Baris Kasikci, Cristian Zamfir, and George Candea. Data Races vs. Data Race Bugs:
Telling the Difference with Portend. In ASPLOS, 2012.

[66] Baris Kasikci, Cristian Zamfir, and George Candea. RaceMob: Crowdsourced Data
Race Detection. In SOSP, 2013.

[67] K. Kawachiya, A. Koseki, and T. Onodera. Lock Reservation: Java Locks Can Mostly
Do Without Atomic Operations. In OOPSLA, 2002.

[68] Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
CACM, 21, July 1978.

[69] Leslie Lamport. How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. IEEE Transactions on Computers, C-28(9):690–691, 1979.

[70] Doug Lea. The JSR-133 Cookbook. http://g.oswego.edu/dl/jmm/cookbook.html,
Retrieved January 20, 2014.

[71] Kyungwoo Lee and Samuel P. Midkiff. A Two-phase Escape Analysis for Parallel Java
Programs. In PACT, 2006.

[72] Du Li, Witawas Srisa-an, and Matthew B. Dwyer. SOS: Saving Time in Dynamic
Race Detection with Stationary Analysis. In OOPSLA, 2011.

[73] Brandon Lucia, Luis Ceze, Karin Strauss, Shaz Qadeer, and Hans-Juergen Boehm. Con-
flict Exceptions: Simplifying Concurrent Language Semantics with Precise Hardware
Exceptions for Data-Races. In ISCA, 2010.

164

[74] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. PIN: Building
Customized Program Analysis Tools With Dynamic Instrumentation. In PLDI, 2005.
http://www.pintool.org.

[75] Man Cao and Minjia Zhang and Michael D. Bond. Drinking from Both Glasses:
Adaptively Combining Pessimistic and Optimistic Synchronization for Efficient Parallel
Runtime Support. In WoDet, 2014.

[76] Jeremy Manson, William Pugh, and Sarita V. Adve. The Java Memory Model. In
POPL, 2005.

[77] Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. LiteRace: Effective
Sampling for Lightweight Data-Race Detection. In PLDI, 2009.

[78] Daniel Marino, Abhayendra Singh, Todd D. Millstein, Madanlal Musuvathi, and
Satish Narayanasamy. DRFx: A Simple and Efficient Memory Model for Concurrent
Programming Languages. In PLDI, 2010.

[79] Nicholas D. Matsakis and Thomas R. Gross. A Time-Aware Type System for Data-Race
Protection and Guaranteed Initialization. In OOPSLA, 2010.

[80] Friedemann Mattern. Virtual Time and Global States of Distributed Systems. In
International Workshop on Parallel and Distributed Algorithms, pages 215–226, 1989.

[81] John Mellor-Crummey. On-the-fly Detection of Data Races for Programs with Nested
Fork-Join Parallelism. In SC, 1991.

[82] Sang L. Min and Jong-Deok Choi. An Efficient Cache-based Access Anomaly Detection
Scheme. In ASPLOS, 1991.

[83] Abdullah Muzahid, Dario Suárez, Shanxiang Qi, and Josep Torrellas. SigRace:
Signature-Based Data Race Detection. In ISCA, 2009.

[84] Arndt Mhlenfeld and Franz Wotawa. Fault Detection in Multi-Threaded C++ Server
Applications. Electronic Notes in Theoretical Computer Science, 174(9):5–22, 2007.

[85] Vijay Nagarajan and Rajiv Gupta. ECMon: Exposing Cache Events for Monitoring.
In ISCA, 2009.

[86] Mayur Naik, Alex Aiken, and John Whaley. Effective Static Race Detection for Java.
In PLDI, 2006.

[87] Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Edwards, and Brad
Calder. Automatically Classifying Benign and Harmful Data Races Using Replay
Analysis. In PLDI, 2007.

[88] Robert H. B. Netzer. Race Condition Detection for Debugging Shared-Memory Parallel
Programs. PhD thesis, Computer Sciences Department, University of Wisconsin–
Madison, August 1991.

165

[89] Robert H. B. Netzer, Timothy W. Brennan, and Suresh K. Damodaran-Kamal. De-
bugging Race Conditions in Message-Passing Programs. In SPDT, 1996.

[90] Robert H. B. Netzer and Barton P. Miller. Improving the Accuracy of Data Race
Detection. In PPoPP, 1991.

[91] Robert H. B. Netzer and Barton P. Miller. What Are Race Conditions?: Some Issues
and Formalizations. ACM Letters on Programming Languages and Systems, 1(1):7488,
March 1992.

[92] Hiroyasu Nishiyama. Detecting Data Races Using Dynamic Escape Analysis Based on
Read Barrier. In Conference on Virtual Machine Research And Technology Symposium,
2004.

[93] Robert O’Callahan and Jong-Deok Choi. Hybrid Dynamic Data Race Detection. In
PPoPP, 2003.

[94] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo: Efficient Determinis-
tic Multithreading in Software. In ASPLOS, 2009.

[95] Marek Olszewski, Qin Zhao, David Koh, Jason Ansel, and Saman Amarasinghe. Aikido:
Accelerating Shared Data Dynamic Analyses. In ASPLOS, 2012.

[96] Mark S. Papamarcos and Janak H. Patel. A Low-Overhead Coherence Solution for
Multiprocessors with Private Cache Memories. In ISCA, 1984.

[97] Chang-Seo Park, Koushik Sen, Paul Hargrove, and Costin Iancu. Efficient Data Race
Detection for Distributed Memory Parallel Programs. In SC, 2011.

[98] Chang Seo Park, Koushik Sen, and Costin Iancu. Scaling Data Race Detection for
Partitioned Global Address Space Programs. In SC, 2013.

[99] Filip Pizlo, Daniel Frampton, and Antony L. Hosking. Fine-grained Adaptive Biased
Locking. In PPPJ, 2011.

[100] Filip Pizlo, Erez Petrank, and Bjarne Steensgaard. A Study of Concurrent Real-Time
Garbage Collectors. In PLDI, 2008.

[101] Eli Pozniansky and Assaf Schuster. Efficient On-the-fly Data Race Detection in
Multithreaded C++ Programs. In PPoPP, 2003.

[102] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. LOCKSMITH: Context-
Sensitive Correlation Analysis for Race Detection. In PLDI, 2006.

[103] Milos Prvulovic. CORD: Cost-effective (and nearly overhead-free) Order-Recording
and Data race detection. In HPCA, 2006.

[104] Milos Prvulovic and Josep Torrellas. ReEnact: Using Thread-Level Speculation
Mechanisms to Debug Data Races in Multithreaded Codes. In ISCA, 2003.

166

[105] Yao Qi, Raja Das, Zhi Da Luo, and Martin Trotter. MulticoreSDK: A Practical and
Efficient Data Race Detector for Real-World Applications. In PADTAD, 2009.

[106] Cosmin Radoi and Danny Dig. Practical Static Race Detection for Java Parallel Loops.
In ISSTA, 2013.

[107] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtualizing Transactional Memory.
In ISCA, 2005.

[108] Paruj Ratanaworabhan, Martin Burtscher, Darko Kirovski, Benjamin Zorn, Rahul
Nagpal, and Karthik Pattabiraman. Detecting and Tolerating Asymmetric Races. In
PPoPP, 2009.

[109] Veselin Raychev, Martin Vechev, and Manu Sridharan. Effective Race Detection for
Event-Driven Programs. In OOPSLA, 2013.

[110] Brad Richards and James R. Larus. Protocol-Based Data-Race Detection. In SPDT,
1998.

[111] Michiel Ronsse and Koen De Bosschere. RecPlay: A Fully Integrated Practical
Record/Replay System. TOCS, 17(2):133–152, May 1999.

[112] Erik Ruf. Effective Synchronization Removal for Java. In PLDI, 2000.

[113] K. Russell and D. Detlefs. Eliminating Synchronization-Related Atomic Operations
with Biased Locking and Bulk Rebiasing. In OOPSLA, 2006.

[114] Alexandru Salcianu and Martin Rinard. Pointer and Escape Analysis for Multithreaded
Programs. In PPoPP, 2001.

[115] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas An-
derson. Eraser: A Dynamic Data Race Detector for Multithreaded Programs. TOCS,
15(4), 1997.

[116] Edith Schonberg. On-the-fly Detection of Access Anomalies. In PLDI, 1989.

[117] Konstantin Serebryany and Timur Iskhodzhanov. ThreadSanitizer: Data Race Detec-
tion in Practice. In Workshop on Binary Instrumentation and Applications, 2009.

[118] Tianwei Sheng, Neil Vachharajani, Stephane Eranian, Robert Hundt, Wenguang Chen,
and Weimin Zheng. RACEZ: a Lightweight and Non-Invasive Race Detection Tool for
Production Applications. In ICSE, 2011.

[119] Tatiana Shpeisman, Vijay Menon, Ali-Reza Adl-Tabatabai, Steven Balensiefer, Dan
Grossman, Richard L. Hudson, Katherine F. Moore, and Bratin Saha. Enforcing
Isolation and Ordering in STM. In PLDI, 2007.

[120] Abhayendra Singh, Daniel Marino, Satish Narayanasamy, Todd D. Millstein, and
Madanlal Musuvathi. Efficient Processor Support for DRFx, a Memory Model with
Exceptions. In ASPLOS, 2011.

167

[121] Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon Yi, and Cormac Flanagan.
Sound Predictive Race Detection in Polynomial Time. In POPL, 2012.

[122] L. A. Smith, J. M. Bull, and J. Obdrzálek. A Parallel Java Grande Benchmark Suite.
In SC, 2001.

[123] Standard Performance Evaluation Corporation. SPECjbb2005. http://www.spec.

org/jbb2005/.

[124] Tachio Terauchi. Checking Race Freedom Via Linear Programming. In PLDI, 2008.

[125] Valgrind Project. Helgrind: a thread error detector. http://valgrind.org/docs/

manual/hg-manual.html, 2013.

[126] Nalini Vasudevan, Kedar S. Namjoshi, and Stephen A. Edwards. Simple and Fast
Biased Locks. In PACT, 2010.

[127] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen, J. Flinn, and
S. Narayanasamy. DoublePlay: Parallelizing Sequential Logging and Replay. In
ASPLOS, 2011.

[128] Kaushik Veeraraghavan. Uniparallel Execution and Its Uses. PhD thesis, 2011.

[129] Kaushik Veeraraghavan, Peter M. Chen, Jason Flinn, and Satish Narayanasamy.
Detecting and Surviving Data Races Using Complementary Schedules. In SOSP, 2011.

[130] Christoph von Praun and Thomas Gross. Object Race Detection. In OOPSLA, 2001.

[131] Christoph von Praun and Thomas R. Gross. Static Conflict Analysis for Multi-Threaded
Object-Oriented Programs. In PLDI, 2003.

[132] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. RELAY: Static Race Detection on
Millions of Lines of Code. In FSE, 2007.

[133] Jaroslav Ševč́ık. Safe Optimisations for Shared-Memory Concurrent Programs. In
PLDI, 2011.

[134] Edwin Westbrook, Jisheng Zhao, Zoran Budimli, and Vivek Sarkar. Practical Permis-
sions for Race-Free Parallelism. In ECOOP, 2012.

[135] Benjamin Wester, David Devecsery, Peter M. Chen, Jason Flinn, and Satish
Narayanasamy. Parallelizing Data Race Detection. In ASPLOS, 2013.

[136] Benjamin P. Wood, Luis Ceze, and Dan Grossman. Data-Race Exceptions Have
Benefits Beyond the Memory Model. In MSPC, 2011.

[137] Benjamin P. Wood, Luis Ceze, and Dan Grossman. Low-Level Detection of Language-
Level Data Races with LARD. In ASPLOS, 2014.

[138] Benjamin P. Wood, Adrian Sampson, Luis Ceze, and Dan Grossman. Composable
Specifications for Structured Shared-Memory Communication. In OOPSLA, 2010.

http://www.spec.org/jbb2005/
http://www.spec.org/jbb2005/
http://valgrind.org/docs/manual/hg-manual.html
http://valgrind.org/docs/manual/hg-manual.html

168

[139] Jingyue Wu, Heming Cui, and Junfeng Yang. Bypassing Races in Live Applications
with Execution Filters. In OSDI, 2010.

[140] Xinwei Xie and Jingling Xue. Acculock: Accurate and Efficient Detection of Data
Races. In CGO, 2011.

[141] Yuan Yu, Tom Rodeheffer, and Wei Chen. RaceTrack: Efficient Detection of Data
Race Conditions via Adaptive Tracking. In SOSP, 2005.

[142] Minjia Zhang, Jipeng Huang, , Man Cao, and Michael D. Bond. LarkTM: Efficient,
Strongly Atomic Software Transactional Memory. Technical Report OSU-CISRC-
11/12-TR17, Computer Science & Engineering, Ohio State University, 2012.

[143] P. Zhou, R. Teodorescu, and Y. Zhou. HARD: Hardware-Assisted Lockset-based Race
Detection. In HPCA, 2007.

	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Data races are exceptional.
	Problem: Accurate language-level data-race detection is slow.
	Fast hardware-supported data-race detection is inaccurate.
	Low-level data-race detection is inaccurate on high-level languages.
	Software data-race detectors use costly defensive synchronization.

	Dissertation Goals and Contributions
	RADISH: Accurate and Fast Race Detection in Software and Hardware (Chapter 3)
	LARD: Low-level Abstractable Race Detection (Chapter 4)
	FIB: Fast Instrumentation Bias for Pure-Software Data-Race Detection (Chapter 5)

	Publication and Collaboration

	Foundations and Related Work
	Data Races
	The Happens-Before Relation and Data Races
	Data Races and Higher-Level Properties of Program Executions

	Accurate Dynamic Data-Race Detection
	Vector Clocks
	Synchronization tracking
	Access tracking and checking
	Variants

	Alternative Happens-Before Representations
	First-Race Accuracy
	Data-Race Exceptions
	Performance

	Conservative Data-Race Detection
	Lock Sets
	Generalization to Other Executions

	Precise Data-Race Detection
	Data Races that Violate Sequential Consistency
	Other Precise Techniques

	Best-Effort Data-Race Detection and Other Tools
	Static Data-Race Detection

	RADISH: Accurate and Fast Race Detection in Software and Hardware
	Introduction
	The RADISH System
	Intuition
	The RADISH Architecture
	RADISH Metadata
	In-Hardware Status
	Local Permissions

	Maintaining In-Hardware Status and Local Permissions
	Maintaining In-Hardware Status
	Maintaining Local Permissions

	RADISH Checks
	The RADISH Software Interface
	An Example Trace

	Equivalence to Canonical Vector-Clock Data-Race Detector
	State
	No Cache Evictions, No Context Switches, No Optimizations
	Synchronization Tracking
	Access Tracking and Checking

	Cache Evictions
	Context Switches
	In-Hardware Status
	Local Permissions
	Proof: Local Checks Suffice for Permitted Accesses
	Proof: Local Updates Suffice for Permitted Accesses

	Related Work
	Conclusions

	LARD: Low-Level Abstractable Race Detection
	Introduction
	Low-Level Data Races = Language-Level Data Races
	Low-Level Detection of Language-Level Data Races
	LARD Implementation and Evaluation
	Contributions and Outline

	Low-Level Abstractable Race Detection
	Memory Access
	Synchronization
	Memory Allocation
	Memory Movement
	Thread Identity
	Sufficiency
	Generality

	Implementation
	The LARDx86 ISA
	The LARDISH Hardware Data-Race Detector
	The Jikes LARDVM Java Virtual Machine
	Memory Tracking
	Thread Identity and Synchronization
	Memory Management and Mapping
	Extent of Changes to Jikes RVM

	Extensions for Accuracy Analysis

	Evaluation
	False Data Races and Missed Data Races
	Impacts of LARD Extensions
	Jikes LARDVM Performance on LARDISH
	Jikes LARDVM Performance on x86

	Related Work
	Virtualization and Language Semantics
	Compensation for Translation Artifacts

	Conclusions

	FIB: Fast Instrumentation Bias
	Introduction
	Barrier Atomicity and Barrier-Access Ordering
	Pessimistic Barrier Atomicity
	Cooperative Barrier Atomicity with FIB
	Contributions and Outline

	FastTrack
	Access History
	Invariants
	Barriers
	Write Barrier
	Read Barrier

	The FIB Protocol
	Notation
	Ownership States
	State Transition Overview
	Local Transitions
	Exclusive Writes and Reads
	Shared Reads
	Optimizations

	Single-Conflict Transitions
	Request Dispatch and Response Handling
	Check and Transfer
	Queue Processing and Response

	Multiple-Conflict Transitions
	Interaction with Fence Transitions
	Alternatives

	Progress Guarantee

	Extensions
	Dynamic Thread-Escape Analysis
	Filtering Access Barriers
	Filtering Synchronization Instrumentation

	Ownership State Initialization
	CAS for Initial Ownership
	Indirect Initial Ownership via Thread-Escape Analysis

	Implementation
	Common Metadata and Instrumentation
	Metadata
	Instrumentation

	FastTrack Implementations
	FIB Communication Infrastructure
	Dynamic Thread-Escape Analysis

	Evaluation
	Environment
	Performance and Profiling Results
	Discussion
	Fib versus Cas
	Dynamic Thread-Escape Analysis
	Scalability and Other Pessimistic Implementations

	Related Work
	Biased Locking
	Coherence, Permissions, and Protections
	Object Race Detection and Octet
	Dynamic Thread-Escape Analysis

	Limitations
	Sensitivity to Serialized Sharing
	FIB versus Octet

	Starvation of Atomic Lookup-and-Enqueue
	Dynamic Thread-Escape Analysis

	Future Work
	Refined Ownership States
	Write- and Read-Exclusive States
	Independent or Bulk Transitions

	Adaptive Synchronization Selection
	Reprivatization for Data-Race Detection
	Unsound Reprivatization
	Sound Reprivatization

	Conclusions

	Conclusions and Next Steps
	Summary of Conclusions
	Racing Onward: Limitations and Future Work

	References

