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Computer number systems are one of the most fundamental interfaces between software and

hardware, but despite recent interest they are rarely studied. We present a suite of tools

and techniques to make it easier for both application-level software developers and hardware

architects to study number systems and design new ones. Our key theoretical contribution

is the use of rounding as an abstraction to describe the behavior of a wide variety of number

systems in terms of real arithmetic. By leveraging this abstraction, we can build tools that

simulate the behavior of many different number systems, efficiently track error through large

computations, and automatically search for number system configurations that are optimized

for a particular application.
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Chapter 1

INTRODUCTION

What’s in a number, anyway?

Counting gives us the natural numbers, often written N, from one until you run out of

fingers. We might sometimes want to count nothing, so we can add zero to get the whole

numbers. We might also want to count the absence of things, so we can add negative numbers

to get the integers Z, and close the group under addition.

This is good for counting entire things. However, what happens if we have more than

nothing to count, but less than a single something? Putting two integers together in a ratio

gives us the rational numbers Q. Ratios are powerful—we can not only count big things,

but subdivide in order to measure small things.

Some small things, anyway. What about those things that can’t be represented as ratios

of integers, say the diameter of a circle compared to its circumference, or the number that,

when multiplied by itself, gives exactly two?

These numbers are members of the reals, R. If you imagine an ideal, infinite line, centered

at zero, real numbers can represent any distance along that line, without respect for physical

concerns like quanta or mathematical ones like rationality. Curiously, there are more reals

than naturals [7]. Just by counting more, we can assign a unique natural number to any

integer or even any ratio, but not to every real. Not even to every real between zero and

one.

We could go further, for example by constructing a perpendicular line of imaginary

numbers to deal with the square root of -1 and creating the whole complex plane in the

process. In some cases, we might also want to reason about things that are almost but not
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quite numbers, such as infinities or infinitesimally small quantities that have a sign but not

finite magnitude. But, for most things we would want to represent, real numbers in some

quantity are good enough.

Numbers are nice to have, but what we really want to do is perform computations with

them. Unfortunately, math is hard. Computers are a big help in this regard: they can do

billions of operations each second, and they hardly ever make mistakes unless we specifically

tell them to.

But there is a fundamental problem: computers are finite. They cannot directly represent,

or perform computations with, continuous real values.

What to do?

1.1 Computer number systems

As the name would imply, a computer number system is a system for representing numbers

on a computer. A computer number system has two key parts or capabilities: it must have

some way to represent numbers, and also some way to perform computations with those

numbers. Usually, computation is the more interesting part, but in this presentation we will

show that rounding can serve as an abstraction to describe both capabilities, allowing us to

turn the usual paradigm on its head and focus on the simpler problem of representation.

The most elemental number representation is binary counting. A sequence of n bits can

be in 2n distinguishable states; if we treat the bits as digits in a base-2 positional notation,

we can efficiently map them to whole numbers between 0 and 2n−1. The more bits we have,

the larger the numbers we can represent, and priority is given to smaller numbers first so

that no gaps arise when counting.

Negative numbers can be represented easily enough with a separate sign bit, or with

tricks such as a two’s complement representation where the most significant place represents

a negative magnitude rather than a positive one.

But what about the reals? Some of them can be represented as rational numbers, using

pairs of integers in the natural way. Alternatively, we could decide in advance on a fixed scale
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factor for all the numbers in the system. This avoids having to store two separate integers

for each number, and is often referred to as a fixed-point representation.

Effectively, the scale factor (fixed or not) lets us control the spacing between real numbers

that are included in the representation. If we make it small enough, then for any real number,

we should be able to find some represented number that is very close to it.

To compute over the number representations and produce a full number system, we would

usually first break computations up into atomic mathematical operations like addition or

exponentiation. We could then perform real arithmetic on the represented numbers (which

are, after all, real numbers) and find some representable number that’s close to the result,

for each operation; alternatively, we could build a mapping from representable numbers to

representable numbers directly. Either way, the limited number representation means that

the results will differ from the behavior of true real arithmetic, both at an operation level

and for the entire computation.

Let’s see how this works in an example.

1.1.1 Illustrated running example: the Lorenz system

The Lorenz system [30] is a set of 3-dimensional ordinary differential equations that arise as

a model of atmospheric convection:

dx

dt
= σ(y − x)

dy

dt
= x(ρ− x)− y

dz

dt
= xy − βz

with σ = 10, β = 8/3, and ρ = 28. These equations exhibit chaotic behavior, and are

often used as an example in numerical analysis due to their sensitivity to small errors in the

calculation.

There is no closed form solution to the system, but if we pick an arbitrary initial point
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Figure 1.1: Lorenz system from point (−12, −17
2
, 35), evolving for t = 15

4

at (−12, −17
2
, 35), we can follow the derivatives in time (for a total evolution over t = 15

4
) to

produce the plot in Figure 1.1. In the plot, we can already see the two butterfly wings of

the so-called “double-scroll attractor” starting to form. The initial point is at the top of the

left scroll; the solution goes around this scroll three times before swinging over to the right

and looping around the other scroll about one and a half times.

The plot doesn’t actually show real numbers; like everything else in this dissertation, it

was rendered using a computer. However, any error in the plotted values is much less than

the uncertainty from rendering it on a screen with pixels, or from printing it out, so for all

practical purposes (or if we squint at it enough) we can assume it faithfully represents real

number behavior.

In practice, particularly for more complex applications, we would approximate the solu-

tion using an iterative algorithm such as a Runge-Kutta method [28]. Figure 1.2 shows the

approximations obtained with various step sizes. With too large a step size (and thus too

coarse an approximation), we can see that the plot is visibly jerky, and the double scroll
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Figure 1.2: Lorenz system solved with Runge-Kutta 4th order method

attractor does not properly form. With a step size of 1
64

, the line is not as smooth as the

real solution, but at least on this timescale it faithfully reproduces the scrolls. Of course,

this assumes we are working with real numbers.

A practical simulation of the system would use both an approximate, iterative algorithm,

and a computer number system with limited precision. Figure 1.3 shows the approximate

solutions using the RK4 method with a step size of 1
64

and a variety of different fixed-point

systems, all with 32 integer bits (this is enough to represent magnitudes up to about two

billion, more than enough for the equations) and between 10 and 32 fractional bits.

With only 10 fractional bits, the difference between adjacent numbers in the system (the

resolution, if you will) is about 1
1024

; we can see that this fails to reproduce the scrolls.

14 fractional bits is just barely enough. Looking closely, the ending point of the plot is

a bit lower when computed with 14 fractional bits as opposed to 32, which is completely

indistinguishable from using real numbers.

There are two different sources of error in our approximation. We need to have a suffi-

ciently accurate algorithm, with a small enough step size to capture the behavior; we also

need to have a sufficiently precise number system so that the algorithm behaves as it would

with real numbers. These sources of error are interdependent. With real numbers, we would
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Figure 1.3: Lorenz system, RK4, fixed-point number systems

expect that a more accurate algorithm (here, using a smaller step size for RK) should pro-

duce more accurate results. However, if we fix our barely sufficient number system with 14

fractional bits, then we can see in Figure 1.4 that using a smaller step size of 1
256

actually

makes the result less accurate. If we make the step size much smaller, for example 1
2048

as

shown, then the double scroll completely fails to form, even though the plot looks smooth.

1.1.2 Number systems in practice

Dealing with error in numerical computations is not a new challenge. Whenever we model the

behavior of a continuous function over real numbers with a finite system like a computer, both

algorithmic and numerical error will arise. The interdependence between them is particularly

insidious; when something goes wrong, it can be unclear whether it is a problem with the

algorithm, a limitation of the number system, or simply a bug in the code.

Historically, the solution has been to standardize on a single, “good enough” number

system, and painstakingly modify the algorithms until they work within the constraints of

that number system. The chosen number system is floating-point with a particular number
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Figure 1.4: Number system limitations for Lorenz system, RK4 with fixed-point

of bits, as enshrined in the IEEE 754 standard. Floating-point offers a better dynamic range

than the fixed-point systems shown in the example, but it still exhibits exactly the same

kinds of problems with numerical error, and the additional complexity of the format and

many edge cases can lead to other problems.

This approach has led to huge developments in numerical computing over the past 36 years

since the IEEE 754 standard was first adopted. By fixing the behavior of the number system,

IEEE 754 makes it possible to write software with reproducible behavior across multiple

hardware platforms, effectively separating the development of software and hardware and

allowing both to progress independently.

However, standardizing a particular number system also makes that system into a lim-

itation. IEEE 754 floating-point is not suitable for all applications or hardware designs.

We propose a more general abstraction for reasoning about the behavior of many number

systems, which can still preserve the necessary separation between number system imple-

mentations and numerical applications, enabling independent development without being

limited by a single number system.
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1.2 Thesis

This research rests on two theses:

1. Rounding behavior provides a comprehensive, mathematical way to understand the

semantics of number systems in software.

2. This perspective enables automated approaches to find application- and algorithm-

specific number systems that have significant performance advantages.

1.3 Outline and relationship with prior work

Chapter 2 discusses related work.

Chapter 3 presents our semantics for number systems in FPCore. FPCore [13] is an

existing programming language that is part of the FPBench project [18]. Compared to

previous publications and the official documentation of the standard on the website, this

presentation will delve more deeply into the theoretical underpinnings of the abstract number

system representation, and focus less on more typical programming language features.

Chapter 4 presents Titanic, a foundational tool which we use to implement FPCore’s

semantics for a variety of different number systems. Titanic has been used behind the scenes

for several publications, such as [48] and [50], but this is the first detailed description of its

design and implementation.

Chapter 5 describes Sinking-point, a number system that uses rounding behavior to detect

some forms of numerical error automatically. Sinking-point was previously published in [50],

The presentation here omits some of the definitions of rounding behavior, as they are covered

by other chapters.

Finally, Chapter 6 presents QuantiFind, a new design space exploration tool that auto-

matically explores the behavior of many different number systems to find configurations with

particularly good combinations of performance (or cost) and accuracy for a given application.
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We devote the rest of the introduction to a discussion of some expectations and intentions

for this work.

1.4 Why not numerical analysis?

Numerical analysis is, broadly speaking, the art and science of getting continuous, real-valued

algorithms to work correctly when implemented with finite precision number systems. This is

a huge and very important field, with research going back for centuries to develop techniques

that are robust to the oddities of floating-point. It is only because of numerical analysis that

the IEEE 754 float-point standard has achieved any measure of success; while the standard

ensures that results are reproducible, numerical analysis is required to show they are correct.

We think of our work as adjacent to numerical analysis. Our goal is not to produce tra-

ditional numerical analysis results, nor to advance the state of the art in numerical analysis.

The techniques and results presented here should not be seen as a replacement for numerical

analysis, but rather as complementary to it.

Much of traditional numerical analysis concerns two archetypal questions:

1. Given some finite-precision algorithm, what is the worst case error (statically) that it

can produce, compared to the expected real-valued result?

2. Given some real-valued algorithm, what is the best finite-precision algorithm to com-

pute the same result as cheaply and accurately as possible?

We will probably see new research that addresses these questions for as long as we have

computer science because they are so difficult to answer in a general and scalable way. Our

research does not address these questions directly. Instead, we present a new conceptual

framework which makes it easier to ask and study other questions, such as:

1. Given some finite-precision computational trace, about how much error (dynamically)

has occurred so far?
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2. Given some real-valued algorithm, how much numerical error from the number system

can it tolerate before it breaks down?

Answering these questions, and phrasing others, does not solve the fundamental problems

that numerical analysis addresses, but if we can do it in a practical and scalable way, we can

lighten the load and make working with finite precision numbers easier for everyone.

1.5 What about error?

Error is a natural, inevitable effect in any system that seeks to model continuous behavior

with something that is finite. That is to say, error is the consequence of rounding.

There are multiple ways of measuring error. Say that x is some ideal real number, and

x̂ is the concrete, nearest representable number in some number system. The absolute error

ε is the difference: ε = |x − x̂|. In its purest form, absent the context of x and x̂, ε is just

some other real number. Often it is more useful to know how the error compares to x, for

example by taking the relative error ε
x
, than it is to study ε directly.

Typically, error is usually thought of in terms of x. The scaling term in the relative error

is the true real value x—not x̂. This is to say, it doesn’t matter what representable number

we actually got back; we only care about the real result we wanted, and how close to it we

came. The particular properties of the number system are irrelevant, except to determine

how big ε is.

This is certainly a useful viewpoint, particularly for translating real analysis results into

a finite precision setting. If a property holds for all real numbers, then we shouldn’t care

which particular ones are representable in a number system. If we can bound our error, it

doesn’t matter which or how many representable numbers fall within the bound. That they

are all within the bound is enough.

However, there are limitations to this viewpoint. ε, like x, might be any real number, so

it might be hard to represent or reason about. We also need the real value of x to obtain

it. These aren’t significant issues for pen and paper proofs, but for automated tools they
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can pose a problem. Some bounds that are observably true for particular number systems

might not be provable with real arithmetic, because they simply are not true in general:

they only hold because of special number system properties, i.e. for the finite number

of representable inputs. These kinds of bounds are important for building and verifying

optimal, high-performance hardware designs.

We adopt a slightly different view of error. Rather than real number-centric, traditional

“x + ε” error, we sometimes think in terms of “x̂ + ε” error. In this viewpoint, it’s not the

real answer that matters, it’s the representable number you actually got, and the distance

that the true (possibly unknowable) real answer must be within. We will refer to this as

a rounding envelope: the interval of real numbers around a representable number that all

round to that number.

Obviously rounding envelopes are no good for proving the correctness of an implemen-

tation of an atomic square root or logarithm operation. But they can be quite useful when

reasoning compositionally about the behavior of individually bounded operations, particu-

larly because we can use their discrete nature to avoid some of the pitfalls of dealing with

arbitrary real numbers.
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Chapter 2

BACKGROUND AND RELATED WORK

2.1 Applied math and numerical analysis

At the broadest possible level, this work falls under the umbrella of applied math. Many al-

gorithms with important real-world or economic applications today (weather modeling, deep

learning, etc.) are based on mathematical reasoning in terms of real numbers, and ultimately

on the ability of computers to do some approximation of this math quickly. Number systems

are the key interfaces between numerical applications and physical silicon that make these

applications possible; we can think of applied math as the view of number systems from

above, in software.

Roughly speaking, numerical methods is the subset of applied math that deals with build-

ing finite approximations of continuous algorithms that are suitable for running on comput-

ers, and numerical analysis studies ways to ensure these approximations are correct. Work

in this space goes back millennia, if the name of the “Babylonian method” for approximating

the square root is any indication.

One frequent thread in numerical analysis is to make the error go away by reproducing

the behavior of real number exactly. This can be done in a variety of ways. Constructive

reals can track the behavior of a computation symbolically and produce an arbitrary number

of correct digits on demand [5]; implementations have been built for various programming

languages [6], [31]. Alternatively, systems like the Daisy framework [14] statically bound

the numerical error so that the entire computation can be trusted as a reflection of real

valued behavior. Both of these approaches face significant challenges with scale—for large

computations, it is difficult to compute large numbers of digits or prove a static error bound.
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2.1.1 Dynamic precision tracking

Another subfield within numerical analysis with particular relevance for this research is dy-

namic precision tracking. A standard approach to identify error in a particular computational

trace is to keep around higher-precision shadow values for each intermediate result that is

computed; comparing these shadow values to the actual results computed with the number

system can expose divergences from the behavior expected with real arithmetic.

A variety of tools perform some sort of shadow analysis. For example, Herbgrind [43]

uses shadow value computation to localize error and discover small program fragments that

are the root causes of numerical problems in a computation.

Shadow value execution is computationally expensive, as it requires not just instrument-

ing the computation but computing with greatly more precision than the original program, so

some techniques have been developed to reduce this cost. The work in [10] makes the shadow

execution tasks parallel, so that the instrumented computation can be spread over multiple

processors even when the main application is single-threaded. The Shaman library [15] takes

a different approach to shadow execution, using another value of the same type as the main

computation to store an error term, in a scheme similar to double-double computation.

2.1.2 Automated tools for numerical analysis

Another line of work of particular interest deals with automating numerical analysis. The

Herbie tool [33] automatically rewrites numerical programs to improve their accuracy; it is

assumed that this is done in the presence of, and with respect to, some particular number

system, which is always IEEE 754 floating-point. Pareto Herbie [42] further develops the

tool to handle multiple number systems, and to do precision tuning at the same time as

rewriting, in a manner somewhat reminiscent of QuantiFind.
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2.2 General-purpose number systems

We devote the rest of this section to related work on number systems themselves, and how

they are implemented in computers; we can think of this as the view of number systems from

below, in hardware.

A considerable amount of effort has been invested into designing and using number sys-

tems, some of it published as research, other pieces hidden inside standards and applications.

We will break our discussion of this work into three rough categories. First, we will discuss

some historical work on universal number systems like IEEE 754. Second, we will review

more recent developments using specialized number systems to accelerate particular appli-

cations. Last, we will cover existing techniques for optimizing applications against number

systems, such as mixed precision tuning.

2.2.1 Floating-point as a universal number system

The use of floating-point as a universal computer number system significantly predates the

IEEE 754 standard, going back as far as the work of Leonardo Torres y Quevedo, who

designed an electro-mechanical version of Charles Babbage’s analytical engine in 1914 which

used floating-point arithmetic [37]. Konrad Zuse also used floating-point in his Z machines

[39], even proposing features like careful round and the use of infinities and NaNs, 40 years

before the adoption of the IEEE 754 standard.

Floating-point offers significant advantages over fixed-point in terms of the dynamic

range and accuracy that can be provided by a representation with a given number of bits.

By separating the representation’s bits into two fixed-point values, usually called the sig-

nificand and the exponent, floating-point expands the dynamic range for n bits from 2n

for a pure fixed-point representation, to 22cn assuming a constant fraction c of the bits

are used for the exponent. This is accomplished by representing values as the product

2value(exponent)value(significand), where value(x) is the real number represented by a bitvec-

tor x in a typical fixed-point system. The precision of this representation, which is approxi-



15

Figure 2.1: Floating-point precision selector of IBM Model 44 mainframe [45]

mately equal to the number of bits in the significand, is mostly constant across the dynamic

range.

For a given number of bits, the dynamic range of a floating-point number system can be

exponentially larger than that of a fixed-point system. This makes floating-point represen-

tations with a relatively small number of bits widely useful for a large variety of scientific

calculations, in a way that fixed-point cannot match. Most physical constants and other num-

bers that appear frequently in calculations have exponents of reasonable size. Floating-point

systems thus hit a “sweet spot” in the design space of number systems, where a reasonable,

constant number of bits, few enough to fit in a machine register, can represent most values

expected to occur in computations. Furthermore, basic arithmetic operations can still be

implemented efficiently with binary integer adders and multipliers, though some additional

logic is needed to normalize and maintain the exponents.

2.2.2 The IEEE 754 standard

In the decades leading up to the 1980s, a wide variety of floating-point systems were imple-

mented in a diverse set of computers. Figure 2 shows the floating-point precision selector of

an IBM System/360 Model 44 mainframe, a physical knob that let the operator select from

4 significand sizes (in multiples of 4 bits) to use during arithmetic operations [45]. While no
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doubt useful to an expert with a deep understanding of both the hardware and the software

running on the machine, such a knob must have been intimidating for application developers

with less hardware expertise.

The contribution of the IEEE 754 floating-point standard was not to introduce floating-

point as a number system, but rather to provide unity and standardization in a fragmented

environment of existing floating-point systems. Pre-IEEE 754 floating-point systems were

essentially designed for application domains, specifically the domains of applications that

would run on particular computers. IEEE 754 embodied the idea that such specialization

was unnecessary—that a single, universal system would be sufficient for all domains simul-

taneously.

IEEE 754 serves two major purposes. First, it standardizes a single binary representation

as a common data exchange format, so that numerical values can be communicated between

applications and computers without having to go through an intermediate representation,

like decimal strings, which could be both costly and error prone. More importantly, the

IEEE 754 standard establishes guidelines about the accuracy of arithmetic operations. These

guidelines are strong enough for the most basic operations (addition, multiplication, division,

and taking square roots) to make the behavior of many programs reproducible across different

computers implementing the standard, and enable development of numerical applications and

algorithms independently of the hardware that runs them.

The IEEE 754 standard has endured, essentially unchanged, since its inception in 1985,

and is still by far the most widely supported (and often only) number system implemented

in computer hardware. It is a proof by existence that a sufficiently good universal number

system is possible. However, it is not necessarily the only sufficiently good formulation of

floating-point, nor is floating-point necessarily the only way to design a number system with

the right balance between dynamic range and precision to be universally useful.
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2.2.3 Other number systems

The IEEE 754 standard is by no means the only system that has been proposed to standardize

floating-point behavior and permit reliable data exchange and reproducible computation.

Some systems, such as the “Morris floats” [32] or more recently “unums” [23], offer better

numerical properties than IEEE 754 floating point: tapered precision for Morris floats, and

a bit efficient representation of rigorous interval bounds for unums.

However, it has proved hard for these systems to catch on, as they do not provide an

asymptotically larger dynamic range or greater amount of precision compared to IEEE 754

with a given number of bits. Most new number systems seek to optimize the binary rep-

resentation as much as possible, or are being developed for high-performance, low-precision

applications where all commonly used IEEE 754 formats are too large and slow.

Posits

Posits [22] are a new number system, proposed by John Gustafson as an alternative to IEEE

754 floating-point. Posits are very similar to floating-point, and indeed can be conveniently

configured to match the representation sizes and dynamic ranges of the IEEE 754 types.

Rather than representing the exponent as a single fixed-point value that occupies a frac-

tion of the representation’s bits, posits break the exponent up into two values: a number of

coarse-grained chunks, called the regime r, and a small adjustment, stored like traditional ex-

ponent bits. The value represented by a posit is 2u r+value(exponent)value(significand), where

the exponent and significand are interpreted as for typical floating-point, and the constant

u is 2es for a representation with es exponent bits.

The difference between posits and traditional floating point is that the regime of a posit

is encoded with a unary encoding which allows smaller regimes to be represented with a

smaller number of bits. The encoding includes a mechanism to detect where the regime ends

dynamically, so that within a single representation, different values will have different regime

sizes (based on the magnitude of their exponent), and thus different numbers of bits left over
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Figure 2.2: Accuracy of floats and posits over the dynamic range [21]

to form the significand. Because of this, posits have tapered precision - the significands

of numbers near to 1 in magnitude are longer, allowing more precision, while towards the

extreme ends of the dynamic range, the precision falls off as more bits are taken up by the

regime.

Figure 2.2, borrowed from [21], shows a comparison of the accuracy of 8-bit posit and

floating-point formats across the dynamic range. Floating-point shows a saw-tooth pattern

of precision, familiar from fixed-point, that repeats for each exponent; posits show a similar

pattern within exponents of a given regime, but also gradual tapering to either side based

on the size of the regime.

The properties of floating-point and posit number systems are largely similar. Both can

provide dynamic range exponential in the number of elements in the representation, or doubly

exponential in the number of bits. Posits can actually be configured to provide much greater

dynamic range, by choosing a number of exponent bits greater than the total number of bits

in the representation, but this is probably not useful in practice. In cases where many values

encountered in a computation can be scaled towards 1 in magnitude, the tapered accuracy

of posits can be an advantage; in other cases, the flat precision distribution of floating-point

can offer higher minimum precision over a range of values. In practice, low-precision posits

have been shown to be a useful number system for many numerical computations, such as

weather simulations [8].
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Representing real numbers with bisection

Floating-point and posits are examples of different but similar ways to build number systems

with sufficient dynamic range and precision to be universal. One natural question is whether

there is a more general abstraction that explains both of them and concisely describes their

relationship.

Peter Lindstrom outlines such an abstraction in [29]. To explain this abstraction, consider

a binary string representing a number as a series of (binary) yes/no questions, each about

the real number the string represents. What is the best sequence of questions to ask?

These questions can be broken up into two categories. First, it is necessary to perform

an unbounded search to bracket the represented value. This corresponds to the exponent

part of a floating-point or posit representation. Second, once the value is bracketed, addi-

tional questions can be asked to refine the value via binary search. This corresponds to the

significand.

Lindstrom provides a framework for describing any such series of questions in terms of a

generator function for bracketing, and a mean function for refinement via binary search. Par-

ticular settings of these functions produce number systems that resemble IEEE 754 floating-

point (though the bracketing function is extremely contrived, reflecting the uneven distri-

bution of information across the bits of many IEEE 754 floating-point values) and posits.

Other configurations are possible, including smooth number systems that avoid the saw-

toothed precision behavior seen in Figure 3, but don’t admit obvious implementations of

basic arithmetic operations.

2.3 Emerging number systems for emerging applications

When designing number systems, it is critical to take the needs of the applications that will

run on them into consideration. Most applications have substantially similar needs: given

sufficient precision and dynamic range to produce an acceptably accurate result, the hardware

implementing the number system should ideally be able to store as much data, and perform
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as many calculations, as quickly and efficiently (in terms of system power consumption) as

possible.

The great success of universal number systems like IEEE 754 is in finding a representation

with a finite, fixed number of bits that has sufficient precision and dynamic range for the

vast majority of applications. Because of this, building a more powerful computer can be

reduced to building more, faster, and more efficient logic for the same number system, not

building a more powerful number system. With Moore’s law and Dennard scaling in full

effect, this improvement happens more or less automatically with each process generation,

giving in effect a free, multiplicative speedup for all applications, without the need for any

additional number system design.

It is only now that Dennard scaling has largely tapered off that that significant interest

has been brought back to number system design in order to improve application performance

and efficiency. The IEEE 754 representation is in one sense quite small, being constant in

size - under the reasonable assumption that the cost in terms of area, power, and operation

time of a number system is proportional to the bits in its representation, this means that

there is no more than a constant improvement to be had by switching from IEEE 754 to more

compact representations. However, with few alternatives, even this constant improvement

has proven to be worth investigation for certain applications.

2.3.1 Application-specific accelerators

Graphics processing units, or GPUs, are probably the most widely used class of hardware

accelerators for numerical computations. Traditionally used for rendering 3D graphics, they

have recently seen wide adoption for other embarrassingly parallel, computationally intensive

tasks, including AI and deep learning.

Historically, GPUs have often deviated from strict adherence to the IEEE 754 standard.

Prior to the Fermi architecture, for example, NVIDIA GPUs used single precision IEEE 754

floating-point, but did not support computing with subnormal values [11]. Properly handling

all cases involving subnormals for operations like multiplication requires a significant amount
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of overhead, increasing latency. Since these numbers occur rarely in most of the applications

that are run on GPUs, it is often an acceptable tradeoff to lose some dynamic range (and

compatibility) in order to speed up operations.

Inside the GPU, in parts of the rasterization pipeline that are not directly exposed to

the end user as compute operations, computations can be even more specialized and diverge

further from the IEEE standard. Over 125 different number formats are used in different

parts of the hardware inside Intel GPUs [16]; since they are not exposed as compute func-

tionality available to software, however, only the hardware designers have to reason about

their behavior directly.

More recently, GPUs such as NVIDIA’s Volta architecture have included support for

“half precision” 16-bit floating point [12], which was until recently not an official part of

the IEEE 754 standard. To this day, there is disagreement over what 16-bit floating-point

should mean. While half-precision representations have significantly reduced dynamic range

and precision, too small for most traditional scientific calculations found in high performance

computing workloads, they are still sufficient for some emerging workloads in AI and deep

learning. With half the representation size, GPUs such as Volta can provide half-precision

operations at twice the rate of single-precision operations, trading off the strength of the

number system for what amounts to one free generation of process scaling.

Beyond GPUs, even more specific hardware accelerators have been recently proposed

for deep learning, specifically Google’s TPUs [26], or tensor processing units, and the simi-

lar tensor cores introduced in NVIDIA GPUs, including Volta. These accelerators provide

coarse-grained primitives, specifically small matrix multiplies, that can be used to imple-

ment deep learning workloads with very high performance at the cost of limited generality.

For instance, while Volta shows only modest single-precision performance over the previous

generation Pascal architecture of about 12.1 to 15.7 TFLOPS, NVIDIA claims that Volta

can achieve 125 trillion “tensor operations”” per second using tensor cores, and Google’s v1

TPUs achieve 92 trillion operations per second.

This performance is achieved by careful selection of number system parameters inside the
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primitives. TPU v1 used a mixed fixed-point representation; later versions have updated this

to use low-precision (16-bit) floating-point, making the operations more general. NVIDIA

uses 16-bit floating-point inside the multipliers, but accumulates the output of each block

with a 32-bit floating-point value.

Some more research-oriented accelerator designs go beyond customized high-performance

number systems to implement customizable ones. For example, AdaptiveFloat [47] imple-

ments an IEEE 754-like number system with variable precision at the granularity of individual

layers that can improve the application performance of some deep learning workloads at very

low bitwidths.

2.3.2 Compiler frameworks for numerical computing

Hardware capabilities for exotic number systems are only useful if we can write software that

runs on them. Increasingly, this depends on complex compiler frameworks, such as (in the

space of machine learning) TensorFlow [1], PyTorch [35], and TVM [8]. In the broader space

of numerical computing, compilers for specific application domains have existed for a long

time: FFTW [19], OSKI [49], FEniCS [3], and Halide [36], to name a few.

While these frameworks were not inherently designed for computing with new number

systems, or for multi-precision, multi-format computation involving many number systems

simultaneously, it will become increasingly important to support these kinds of computations

as hardware support for them grows, and the performance reasons for using that hardware

become more pronounced.

2.4 Mixed precision tuning

Though we have so far treated IEEE 754 as a single, universal number system, in reality it

is at least two commonly used number systems: 32-bit single precision, and 64-bit double

precision. Since both are implemented in hardware by many processors, it is already possible

to optimize representation size or performance for a particular application by choosing which

width to use for each stored value or operation.
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A considerable amount of research has gone into the area of mixed-precision tuning

for IEEE 754 floating-point. Precimonious [41] automatically searches for a configuration of

IEEE 754 types, selecting among 80-bit long double, 64-bit double, and 32-bit single precision

for each program variable, that gives maximum performance for the desired accuracy. One of

the largest challenges is finding a way to systematically explore the search space, as even with

three available types, there are an exponential number of configurations to test. Subsequent

work [40] improves the performance significantly by using a new search strategy.

Other tools use different techniques to explore the search space and provide guarantees

about the discovered mixed-precision programs. FPTuner [9] provides rigorous bounds about

the error of a tuned computation on a given input domain based on a formal analysis using

symbolic Taylor expansions, similar to that used in the FPTaylor tool [46]. Such guarantees

are particularly useful when replacing code in applications with strict accuracy requirements,

but the cost of the formal analysis can be prohibitive when scaling to large computations.

Alternatively, Schufza et al. describe a stochastic technique [44] for optimizing small

numerical library functions, by extending the STOKE superoptimizer. This approach has

the advantage that it can discover optimizations that are format-specific and don’t admit easy

formal analysis based on the properties of real numbers. A new precision-tuning approach

proposed by Khalifa et al. [2] avoids a stochastic or exhaustive search completely by deriving

precision constraints from the program being optimized, and then solving them as an integer

linear program.
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Chapter 3

FPCORE: SPECIFYING NUMBER SYSTEMS WITH REAL
NUMBERS

We present a vision of rounding as a point of standardization to think about number

systems and describe computations that use them. To turn that vision into something

practical, we need to formalize it.

Per our thesis, we want this formalism to be general and mathematical in nature, so

that it can be used to reason natively about algorithms designed in terms of real numbers.

At the same time, we want it to be specific enough to describe all of the potentially ugly

behavior of particular number systems, and elegantly bring those details back to the level of

the algorithm.

The IEEE 754 floating-point standard is an existing, widely used example of this kind of

formalism. First, we will study it as an example to guide the reasoning behind our design.

Then we will work out the mathematical underpinnings of a more general framework for

describing the semantics of number systems, which we have deployed on top of the existing

FPCore language for specifying numerical benchmarks [18].

3.1 Concrete bit-level semantics in IEEE 754

For purposes of illustration, consider an IEEE 754-like 5-bit floating-point format, with one

sign bit, three exponent bits, and one explicit bit for the significand.

Every concrete number system has two parts: some set of representable values, and

some method of performing computation with those values. Our example uses bitvectors of

length 5 for its representation. Figure 3.1 gives all of the representable values in a table.

Computation can be defined in terms of these bitvectors; Figure 3.1 also gives a table with
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Bitvector Value

0b00000 0

0b00001 1
8

0b00010 1
4

0b00011 3
8

0b00100 1
2

0b00101 3
4

0b00110 1

0b00111 3
2

0b01000 2

0b01001 3

0b01010 4

0b01011 6

0b01100 8

0b01101 12

0b01110 ∞
0b01111 NaN

Bitvector Value

0b10000 −0

0b10001 −1
8

0b10010 −1
4

0b10011 −3
8

0b10100 −1
2

0b10101 −3
4

0b10110 −1

0b10111 −3
2

0b11000 −2

0b11001 −3

0b11010 −4

0b11011 −6

0b11100 −8

0b11101 −12

0b11110 −∞
0b11111 NaN

x
√
x

0b00000 0b00000

0b00001 0b00011

0b00010 0b00100

0b00011 0b00100

0b00100 0b00101

0b00101 0b00101

0b00110 0b00110

0b00111 0b00110

0b01000 0b00111

0b01001 0b00111

0b01010 0b01000

0b01011 0b01000

0b01100 0b01001

0b01101 0b01001

0b01110 0b01110

0b01111 0b01111

x
√
x

0b10000 0b10000

0b10001 0b01111

0b10010 0b01111

0b10011 0b01111

0b10100 0b01111

0b10101 0b01111

0b10110 0b01111

0b10111 0b01111

0b11000 0b01111

0b11001 0b01111

0b11010 0b01111

0b11011 0b01111

0b11100 0b01111

0b11101 0b01111

0b11110 0b01111

0b11111 0b01111

Figure 3.1: 5-bit floating-point number system, with implementation of square root

the input and output bitvectors for computing the square root.

For finite number systems, tables are the most direct way of defining the parts. While they

are not too cumbersome for our small example, building tables will not scale to more realistic

number systems like 32-bit IEEE 754 floating point. To avoid this limitation, the IEEE 754

standard gives algorithms to construct the tables, based on the bitvector representation of

values, the parameters of the particular number system, and, for mathematical operations,

real arithmetic. Implementations of the standard, for example in processor hardware or

in software math libraries like libm, would also perform the operations with algorithms (or

circuits) that map bitvectors to bitvectors. In this way, represented values can be interpreted,

and computation can occur, without ever explicitly constructing the table.

Figure 3.2 shows the calculation, according to the IEEE 754 floating-point standard,

of the real number represented by the bitvector 0b11010. The bitvector representation is
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1 1 0 1 0

Sign bit
Biased 

exponent Significand

ҧ𝑥 =

𝑥 = −1𝑠2𝑒−𝑏𝑖𝑎𝑠𝑚 = −11221 = −4

𝑠 = 1 𝑒 = 5 𝑚 = 0b1.0 = 1

𝑏𝑖𝑎𝑠 = 3

bitvector:

real value:

Figure 3.2: Anatomy of a floating-point value. The number -4 is represented with the

bitvector 0b11010 in a 5-bit IEEE 754-like format.

broken down into fields, specifically, the sign, exponent, and significand mentioned above

when we introduced the example number system, and based on the integer values of the

binary numbers in the fields, the represented real value of -4 can be computed.

The IEEE 754 floating-point standard gives a concrete data type for representing a variety

of number systems. By varying the parameters of the encoding—that is, the total size of

the bitvector, or bitwidth, and the relative sizes of the exponent and significand fields—the

standard specifies a variety of different floating-point number systems. The representation is

concrete because the actual structure and implementation of represented values is transpar-

ent. IEEE 754 explicitly specifies not just the set of real numbers that should be represented,

but how they should be represented with objects that can exist on a computer.

Operations on this IEEE 754 concrete data type are specified at two different levels. In

the specification, it is mandated that certain basic arithmetic operations should be correctly

rounded with respect to real arithmetic. That is to say, given two representable inputs, then
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the output value should match the value obtained with the following procedure: First, obtain

the real values of the inputs; then perform the corresponding operation with real arithmetic;

and finally, find the closest representable number to this real output, according to the number

system and the specified rounding mode. We call this model rounded real-valued computation.

In a given implementation of the IEEE 754 standard, operations will actually be per-

formed as algorithms over the concrete bitvectors of the representation, as real arithmetic

is not available for use in a concrete implementation. The concrete nature of the semantics

is particularly useful when building implementations of the number system, as it ensures

that there is no dependence on real arithmetic in the ultimate hardware specification, and

it guarantees that binary data can be transferred between implementations.

However, the standard has limitations. It only describes floating-point number systems,

not fixed-point or other more exotic representations such as posits. While the rounded real-

valued semantics can be used to relate low-level number system behavior back up to the level

of mathematical algorithms, this only works for one very specific class of number systems.

As a concrete bit-level standard, IEEE 754 is ill suited as a general mathematical framework

for capturing the behavior of all number systems, rather than just a particular one.

3.2 An abstract data type for number systems

To power our semantic framework, we want an abstract data type rather than a concrete

one. An abstract data type captures behavior while keeping implementation details opaque,

or that is to say, abstract. Where IEEE 754 specifies how bitfields are packed into machine

words, we would rather have a formalism written in terms of summations. The challenge is

keeping the framework general enough while still giving it the power to describe potentially

ugly, low-level number system behavior.

Returning to our example number system, we can make the bitfields go away by simply

dropping the whole representation onto a numberline, as show in Figure 3.3. The represen-

tation is reduced to its most elemental form: a potentially arbitrary set of real numbers.

Similarly, we can adopt the idea of rounded real-valued computation to define a simple spec-
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Figure 3.3: A 5-bit floating-point number system representation on the real line. Each tick

shows a representable real number. The number system also includes some members that

do not represent real numbers: ∞, −∞, −0, and NaN.

ification for operations in terms of this set. Everything is a real number; just take the real

number inputs, which may or may not be representable in the number system, perform the

operation in real arithmetic, and then select the nearest representable real number in the set

to the output under some kind of rounding rules.

The problem with this approach is that, like the näıve table implementation of IEEE 754,

it doesn’t scale to number systems with a realistic quantity of representable numbers. The

challenge is in specifying the representation. If we know what the representation is, then

some form of rounded real-valued computation should get us most of the way to a semantics

for operations. But, how can we specify a set of useful subsets of the reals for building

number systems in terms of a few simple parameters?

3.2.1 p and n: parameters for abstract number system representations

Instead of parameters over bitfields, we define our abstract number system type in terms

of two parameters over binary numbers. We will call these parameters p, roughly standing

for “precision,” and n, or roughly the most significant “unknown” bit. Binary numbers are

different from bitvectors in that, while they admit various efficient bitvector implementations,

they don’t specify any particular one. A binary number is just any number that can be

represented with an expression of the form:
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24 16 12 8 6 4 3 2 1 00 1 2 3 4 6 8 12 16 24

Figure 3.4: Some representable values for an ideal floating-point number system with p = 2

bits of precision, between -24 and 24. The pattern extends to cover the whole real line; values

close to zero overlap in this graphic and are indistinguishable.

∑
i

x̄i2
i (3.1)

x̄ is some (potentially infinte) binary string; its indices must be marked in some way, so

that we can determine which values of i to plug into the expression that determines the value

of x. Not every real number has a binary representation, but by increasing the number of

binary digits included in x̄, we can find a binary approximation that is within an arbitrarily

small amount of error.

In this general form, the binary number does not admit a particularly convenient rep-

resentation (as we might have to label each individual bit with its own integer index). To

improve on this situation, we can normalize the representation and introduce a scale factor

based on a separate integer exponent e. This gives us a general floating-point representation,

and introduces our first parameter, p.

2e
p−1∑
i=0

x̄i2
−i (3.2)

Instead of allowing the digits to be spread all over the numberline, this representation

records a starting offset position as a single integer (the exponent) and requires all of the

digits to be packed together relative to this index. This permits a convenient concrete

implementation using a bitvector, though the representation in no way requires this. The

number of digits is bounded by our parameter, p, which as we have suggested gives the
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12 8 6 4 3 2 1 1 2 3 4 6 8 12

Figure 3.5: Representable values for a finite floating-point number system with p = 2 bits of

precision, limited to exponents between -2 and 3. Notice the gap near zero.

precision, or the size of the binary fraction that has been used to represent a particular

number. By limiting the maximum value of p allowed in the representation (or requiring

that all represented values have a particular value of p, though of course parts of the fraction

could be filled in with zeros) we can define various ideal, finite-precision, floating-point

number systems. For example, if we set p = 2, we can represent the real values marked in

Figure 3.4.

Ideal floating-point representations of this form are like a superset of an IEEE 754 format:

though each representable value has a finite amount of precision, there are no bounds on the

values of the exponent, so any such system allows an infinite number of representable values.

This is easy enough to fix by also imposing bounds on the value of the exponent, which we

can call emin and emax. If we specify these bounds, as well as a particular p, we can define a

number system that is almost but not quite the same as what we get with IEEE 754.

In the case of our example, if we want to duplicate the behavior of an IEEE 754 number

system with the following properties:

• 1 sign bit (always)

• 3 exponent bits

• 1 explicit significand bit

then we would specify in our new system:

• p = 2 (including the implicit bit)
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• emax = 3

• emin = −2

to obtain the set of real numbers in figure 3.5.

Looking closely at this numberline, we can see that it’s missing a few values from our

original set of real numbers. There is a gap between the smallest representable number and

0, which is somewhat larger in size than the spacing between (for example) the smallest

and second smallest representable positive numbers. This gap will always occur in a finite

precision floating-point representation with a finite minimum exponent.

IEEE 754 fills in the gap with a special type of number referred to as “subnormal” or

“denormal.” Much ado is made about these special edge-case values, particularly in high-

performance implementations where supporting them may come at a steep cost of additional

circuitry, or potential data-dependent variability in performance. However, from the point

of view of a specification in terms of real numbers, there is nothing special or unusual about

subnormal numbers: they are just real numbers, with a different (but actually simpler)

parametric representation scheme.

The infamous IEEE 754 subnormals are just a fixed-point representation. Instead of

normalizing the binary representation by aligning the digits on the left and scaling with

an exponent, we can also standardize the indexing of digits by insisting on some smallest

representable binary place, and shifting the index exponents (or equivalently, scaling by some

fixed exponent) to align with it.

2e
∑
i>n

x̄i2
i (3.3)

This expression looks a lot like our original definition for the real value of a binary

number, but we insist that each index is larger than some parameter n, which tells us the

most signficiant index (or binary place) that is not allowed to be present (i.e. non-zero) in

a represented number. Number systems of this form are ideal fixed-point formats; we can
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Figure 3.6: An ideal fixed-point number system with a largest unrepresentable binary digit

n = −4. The pattern extends to cover the whole real line.

think of n as the granularity of representable numbers, as the distance between any two

representable numbers is 2n+1. Figure 3.6 shows a fixed-point system with n = −4. There is

no inherent bound on the largest representable number, but as with floating-point systems

specified in terms of p, we could easily limit the maximum exponent to produce a finite

system.

Choosing n = −4 is convenient, because if we look at the representable values just

adjacent to zero, we will see that they include all of the numbers representable in our 5-bit

IEEE 754 format but missing from the floating-point system with p = 2 and appropriately

bounded exponents. To reproduce IEEE 754’s representable numbers exactly (at least the

representable reals) we can combine a floating-point and a fixed-point number system to get,

with specific values of p and n depending on the IEEE 754 parameters we want to emulate:

• p = 2 (including the implicit bit)

• emax = 3 = 2ebits−1 − 1

• emin = −2 = 1− emax

• n = −4 = emin − p

Together, these parameters p and n, along with appropriate bounds on allowed exponents,

let us define in terms a few integer parameters not just all of the possible sets of real numbers

representable by IEEE 754 formats with arbitrary bitfield representations, but also any fixed

point number system representation, and ideal number systems that have (for example)
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unbounded exponents. We have done this abstractly, without any dependence on concrete

representations or bit-level logic.

These parameters solve the hard problem, of specifying which real values a number system

can represent. Occasionally we might want to represent things that aren’t real numbers,

which we will discuss in Section 3.3.3. We still have to address the other component of any

number system—a way to perform computations—which as we will see is made easier at the

specification level by the the power of rounded real-valued computation.

3.3 Computation is rounding

The premise of rounded real-valued computation is that rounding captures the entire seman-

tic difference between computing with real arithmetic and working in a particular number

system. Real arithmetic itself is the most permissive number system, with the least inter-

esting rounding behavior: just never round anywhere. For other number systems where we

know the more restricted set of representable values, we need a rounding function to map

the true real outputs of computations back to representable numbers from the system.

3.3.1 Rounding
√

2

Let us return to our example 5-bit number system. Say we have the real number
√

2 and

would like to represent it. How we got here is not particularly important; maybe we actually

computed the square root of the exact representable value 2, or the value is an ideal mathe-

matical constant provided as an input. What matters is that we must now choose a member

of our finite set of representable values to represent it. Which one do we choose?

Figure 3.7 shows the representable numbers in the vicinity of
√

2. There are two obvious

choices: we can either pick the next number 1.5, or the previous one, 1.0. If we pick any

other representable number, than that is arguably the wrong answer, as we could have picked

one of the closer ones instead (specifically, the one between that number and
√

2), and have

less error, without even changing the sign of the error.

This decision seems obvious, but there are some very important subtleties. First, we
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Figure 3.7:
√

2 shown on a number line with representable numbers in the example 5-bit

floating-point format between -4 and 4.

are assuming that the goal is to approximate the real numbers as accurately as possible

everywhere, particularly locally, at the scale of individual operations. This does not in

any way guarantee globally optimal accuracy. In some cases, which we will actually find

automatically later 6 It might be possible to produce less accurate results locally, but have

a more accurate result for some larger computation, because the error will cancel out.

However, doing this comes with a huge amount of numerical peril. If we assume that our

algorithm works like real numbers everywhere, then we can reason about it like any contin-

uous algorithm, and we can independently improve the number system without breaking it.

This makes numerical analysis possible. If we are depending on non-optimal local behavior,

our algorithm is specific to the number system; all bets are of when reasoning about it the

way would reason about normal real arithmetic, and changing the number system at all,

even by making in more accurate, can completely break everything.

Sometimes this kind of specialization is warranted; there are plenty of bit hacks out there

in IEEE 754 math libraries, and many custom hardware implementations that are allowed

to produce inaccurate results for performance reasons. In almost all of these cases, the hacks

incur additional development cost and are done to meet some important goal like application

performance. Outside of these special requirements, it is a wiser idea to assume local real

behavior to make it possible to do numerical analysis.

It is interesting to think about which way the rounding should go. It might seem like

the only obvious, “correct” answer is 1.5, as it is much closer to the real value of
√

2—the

absolute error in this case is less than one quarter the error from rounding to 1.0. However,
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depending on how (and how consistently) the decision is made, we will see that rounding

some values the “wrong” way can provide critical properties about the kinds of error and

rounding envelopes produced by the number system.

3.3.2 Three kinds of rounding

We distinguish three flavors of rounding behavior, in order of increasing numerical guarantees.

At the most basic level, committing to give one of the two nearest representable values is

what we will call “faithful rounding,” and is a necessary prerequisite for correct rounding in

any system that locally approximates the reals.

This alone does not provide particularly strong properties for numerical analysis. We can

strengthen the guarantees of the number system by further committing to round not just any

particular value, but consecutive ranges of values (“consistent rounding”), or maximally to

always round not just to a nearest representable value, but the nearest (“nearest rounding”).

Faithful rounding

Formally, if the exact answer to some computation is the real number x, and the (exactly

representable) result in some number system is x̂, then that result is faithfully rounded if

there is no real number y between x and x̂ such that y is exactly representable.

In terms of error bounds, this guarantees a bound of one unit in the last place, or

“ulp”. Equivalently, the rounding envelope extends all the way to the next and previous

representable values. This means that adjacent rounding envelopes will overlap.

This means that for any real value, it could round two different ways. The rounding rules

are underspecified and do not define a single function that tells us what must always happen.

This can be troublesome for analysis because it means that operations will lose properties

like monotonicity that they might be expected to have over the reals. For this reason, faithful

rounding is rare as a software-level abstraction, but the extra degrees of freedom it allows in

low-level implementations can be worth the trouble for high-performance hardware.
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Consistent rounding

If some real number x rounds to x̂, then that rounding is consistent if there is no real number

x′ such that x′ is between x and x̂ and x′ rounds to a different representable x̂′ 6= x̂.

Essentially, a consistently rounded system does not allow any overlap in the rounding

envelopes. This is extremely important for analysis because it means the rounding function

is indeed a function. Among other properties, it now preserves monotonicity: if x ≤ y in the

reals, then x̂ ≤ ŷ in the number system.

Most number systems exposed to software have this property: note that all IEEE round-

ing modes do. In terms of error bounds, the maximum error is actually the same as faithful

rounding, at 1 ulp.

Nearest rounding

The strongest property we can imagine for rounding is to always round to the nearest value.

This implies faithful and consistent rounding, necessarily.

Formally, if some real number x rounds to x̂, then that rounding is nearest if there is no

representable ŷ such that |x− ŷ| < |x− x̂|.

The only remaining decision is which way to break ties. As long as this is done consistently

(so that rounding remains a function) all of the other properties will be preserved. For most

implementations of IEEE 754, the round to nearest even mode (RNE) is used by default.

While nearest rounding does reduce the maximum error to half an ulp, it does not reduce

the rounding envelope size compared to consistent rounding. As long as there are the same

number of envelopes, they cover the whole real line, and they don’t overlap, the average size

must be the same.

For a given number system, capturing the exact flavor of rounding used is important to

fully define its behavior, but this is much easier for practical systems than specifying the set

of representable numbers. Most useful rounding behaviors are simple, as demonstrated by

the IEEE 754 rounding modes: round down to the smaller magnitude value, for example, or
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RNE.

3.3.3 Beyond real numbers

So far we have glossed over the parts of the IEEE 754 floating-point standard that deal with

representable “numbers” that do not have a distinct real values. These are “negative zero”,

positive and negative infinity, and all representations of NaN, or “not a number.”

These constructs are useful for a variety of reasons, mostly related to capturing error

conditions that can occur when computations are attempted that are either ill-specified in

the reals (e.g.
√
−2) or exceed the capabilities of the number system (e.g. computing 22100 ,

for most number systems with a finite exponent).

Really, rather than the reals, we want to reason about arithmetic on a slightly more

general set, which we can descriptively call the “affinely extended reals with signed zero and

NaN.” Arithmetic in this space is mostly the same as normal real arithmetic, but we have to

also check the error conditions in certain cases, and any operation that would be ill-defined

instead is fully defined and returns an error condition.

What the conditions are is possibly a good topic for further standardization. The IEEE

754 standard specifies certain rules for what error conditions should be returned by mathe-

matical functions for inputs outside their domain; we will borrow these rules, but make no

claim to have vetted their utility or completeness. Ensuring the arithmetic is fully specified

with respect to all error conditions and other edge cases is a worthy goal in the long term, but

is not particularly useful for most computations, which should be able to operate correctly

in terms of real numbers even if the exception cases are undefined, as they are for the reals.

3.3.4 The rounding monad

We can describe rounded real-valued computation in its most general form as the action

of a monad, which we call the rounding monad. Figure 3.8 gives an implementation in

pseudocode.
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return(x: R): -> M R
wrap x with rounding context r;

bind (x: M R, f: R -> M R): -> M R
unwrap x to determine rounding context r;
find x’ that represents x in context r;
compute f(x’);

f(x: R): -> M R
return f(x);

Figure 3.8: Pseudocode implementation of the rounding monad

In the pseudocode, R is the type of real numbers R, and M R is the monadic type for some

number system.

The return operation takes any real number x and wraps it in the monadic type. This

is different from rounding, as it does not change the value, it only annotates it.

Rounding is performed inside the bind operation, which takes a wrapped real value x

and a function f over real values, unwraps x to produce a normal real value x’, and then

applies f to x’. This unwrapping is rounding, as it changes the original wrapped real value

x into some other real value x’.

The effect of the monad is to make rounding lazy, as it only happens on demand when

a rounded value is consumed, rather than on production when the rounding specification is

attached by bind. Any real function f can be converted to produce values in the monad by

simply wrapping its output with return.

In this formulation, the concrete rounding context r is left arbitrary. It is global to the

type M, so bind can modify it in arbitrary ways to implement stateful rounding. This makes

the abstraction very general: we can, for example, describe number systems that alternately

round up and down for consecutive operations, or that look at the inputs to f directly and

bypass its real valued implementation.

In practice, the rounding context is usually simple and constant. For IEEE 754 number

systems, the only things we need to keep in r are the exponent and mantissa sizes and the

rounding mode.
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1 (FPCore (a b c)
2 :name "NMSE p42 , positive"
3 :cite (hamming -1987)
4 :pre (and (>= (sqr b) (* 4 (* a c))) (!= a 0))
5 (/ (+ (- b) (sqrt (- (sqr b) (* 4 (* a c)))))
6 (* 2 a)))

(−b)−
√
b2 − 4ac

2a

Figure 3.9: Example FPCore program (left), and mathematical notation (right)

1 (FPCore (a b c)
2 :name "NMSE p42 , positive"
3 :cite (hamming -1987)
4 :pre (and (>= (sqr b) (* 4 (* a c))) (!= a 0))
5 (if (< b 0)
6 (/ (/ (* 4 (* a c))
7 (+ (- b)
8 (sqrt (- (sqr b) (* 4 (* a c))))))
9 (* 2 a))

10 (if (< b 10e127)
11 (* (- (- b) (- (sqr b) (* 4 (* a c))))
12 (/ 1 (* 2 a)))
13 (+ (- (/ b a)) (/ c b)))))



4ac
−b+
√
b2−4ac/2a if b < 0

(
−b−

√
b2 − 4ac

)
1
2a

if 0 ≤ b ≤ 10127

− b
a

+ c
b

if 10127 < b

Figure 3.10: The same program, after numerical improvement by Herbie

3.4 FPCore 1.0: a language for numerical programs

FPCore began life as part of Herbie [33], and was later split off as part of FPBench [13]. In

its original form, FPCore 1.0 is a purely functional programming language that can describe

numerical kernels. FPCore is ideal for working with number systems because it is designed

to describe programs that depend on them, and interact with them, in exquisite detail.

3.4.1 FPCore by example

A small example program is provided in Figure 3.9, borrowed from [13]. This program

finds one of the roots of a parabola according to the quadratic formula. It is interesting

for numerical analysis because this particular formulation suffers from numerical instability.

Mathematical notation for the expression the kernel computes is provided on the right side

of the figure, while the FPCore code which implements this math is on the left.

Every FPCore program begins with the identifier FPCore and a list of arguments to
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the program, which correspond to free variables in the mathematical notation. Here those

arguments are the parameters of the parabola, a, b, and c. The syntax is based on S-

expressions, reminiscent of Lisp or the SMTLIB input format for SMT solvers [4], making it

easy to parse and process with automated tools while still being human readable.

Lines 2-4 provide some metadata properties, such as the :name and a source to :cite

for the origin of the benchmark. These two properties have no effect on evaluation of the

program, but other properties might specify details like the IEEE 754 datatype or the par-

ticular math library the computation is intended to use. Following the precondition, the

main program body is given on lines 5-6. Both of these expressions describe math and logic

operations in prefix notation. Supported operations include all typical math functions from

the C11 standard. The non-standard sqr operation, for computing the square, was provided

as a special case for Herbie, but was later removed from the standard (since it could be

implemented as a user-defined function).

FPCore is a middle ground between mathematical notation and more traditional pro-

gramming languages. Most algorithms that can be written down in mathematical notation

can also be described by FPCore, as long as they use operations available in C11. FPCore

makes the whole computation tree explicit, so there can be no confusion about things like

order of operations or associativity (does 1+2+3 compute 1+2 first, or 2+3?) which might

not matter in real arithmetic, but do matter when using a finite precision number system.

Compared to more general-purpose programming languages like C or Python, FPCore

only allows for description of the numerical part of the application, plus a bit of metadata—

no string processing, complex data structures, I/O, etc. This means that whole applications

cannot be directly ported into FPCore, but the critical numerical kernels they depend on

can. Performing analysis is generally easier once the math is isolated.

This situation is ideal for tools like Herbie. Figure 3.9 is a typical input to Herbie, and

Figure 3.10 shows the tool’s output, after automatically rewriting the program to have better

numerical behavior. This particular example again is from [13]; Herbie produces the FPCore

program on the left, and the mathematical notation on the right is created manually to
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explain its behavior.

Both programs compute the same thing, but they use different algorithms at the math-

ematical level. FPCore makes it easy for Herbie to explain these differences in an auto-

matically generated output. This more complex program uses FPCore’s if statements to

introduce control flow. Since FPCore is just a standard, and does not have a standardized

execution environment outside of Herbie, a user would typically translate these numerically

improved output programs into another language like C in order to actually run them. FP-

Bench provides a suite of compilers to partially automate this process.

3.4.2 FPCore and number systems

So far we haven’t said anything about FPCore’s relationship with number systems. That

is because while it deals with numerical programs, which by definition must operate in

the presence of some number system, FPCore 1.0 is deliberately vague about how programs

should be executed and formally leaves number system behavior up to tool implementers [18]:

FPCore expressions can describe concrete floating-point computations, abstract

specifications of those computations, or intermediates between the two. The

semantics of FPCore are correspondingly flexible.

Following IEEE-754 and common C and Fortran implementations, FPCore does

not prescribe an accuracy to any mathematical functions except the arithmetic

operators, sqrt, and fma. If the exact accuracy is important, we recommend

that benchmark users declare the implementation used with the :math-library

property.

This is perfectly fine in a world where everything uses IEEE 754. Herbie’s numerical

improvements are number system specific, and simply assume that the programs will be run

with IEEE 754 double precision; otherwise the bounds for the conditionals won’t make a lot

of sense.
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At the same time, FPCore is ideally positioned to do more than just describe numerical

programs that use IEEE 754 floating-point. Most programming languages already have

enough on their plate, so to speak, when trying to formally define their semantics, and

would rather stay as far away from real arithmetic as possible, with a concession to use

IEEE 754 being a sort of effective compromise. FPCore, however, is not so burdened. The

entire purpose of the language is to describe the behavior of numerical kernels, and the

particularities of running them in a finite precision environment.

3.5 FPCore 1.1: a language for number systems

Our contribution to FPCore is a specification layer for number systems themselves, not

just programs that run on top of them. Semantically, the specification layer resembles the

rounding monad. FPCore 1.1 formally clarifies what this means:

FPCore expressions can describe concrete floating-point computations, abstract

specifications of those computations, or intermediates between the two. The

semantics of FPCore are correspondingly flexible, and are made explicit by

the rounding context.

Function applications round their results using the rounding context. More pre-

cisely, a function application (f e1 ...) in a rounding context ρ must evaluate

to the same value as if f were evaluated in exact real arithmetic, and then rounded

according to the rounding context.

The rounding context is just some additional state that determines the behavior of round-

ing when operations are performed; in the definition of the rounding monad we called it r.

Syntactically, the rounding context is controlled by lexically scoped precision annotations

which can be added at the top level, or wrapped around individual expressions with the !

operation.
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3.5.1 Precision annotations

Let us consider a few examples of FPCore programs to illustrate. The following program

computes x+ 1 and does not contain any precision annotations:

(FPCore (x)
(+ x 1))

While there are no explicit annotations in this program, there is still a rounding context.

For backwards compatibility with tools like Herbie that assume FPCore programs will use

IEEE floating-point, the default context if none is provided explicitly is 64-bit IEEE 754

double precision. The following FPCores all use the same rounding context, either implicitly

as the default, explicitly as a top-level annotation, or explicitly as an annotation around the

expression (+ x 1).

(FPCore (x) (FPCore (x) (FPCore (x)
(+ x 1)) :precision double (! :precision double (+ x 1)))

(+ x 1))

Precision annotations can contain any number of properties for the rounding context. A

property is a pair of a key, which must be an FPCore symbol starting with a colon, and a

value, which can be an arbitrary s-expression. This makes the language very flexible, as any

relevant information for rounding behavior can be encoded as s-expression data and tagged

with some appropriate key. The FPCore standard leaves the interpretation of this data up to

individual tools that use the standard. Tools may also read other data from the environment

(such as the inputs to operations), and keep persistent state in the rounding context between

operations.

For convenience, FPCore recommends common notations for common number systems

such as IEEE 754 floating-point and general fixed-point computation. Double precision can

be requested in a few different officially documented ways:

(FPCore (x) (FPCore (x) (FPCore (x)
:precision double :precision binary64 :precision (float 11 64)
(+ x 1)) (+ x 1)) (+ x 1))

Alternatively, we could specify a mathematical version of double precision in terms of p

and n directly, which would reproduce the behavior of subnormals but not be limited by a
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maximum exponent:

(FPCore (x)
:p 53 :n -1075 :round nearestEven
(+ x 1))

Note that the properties p and n are not officially part of the FPCore standard, but this

notation might be useful to particular tools or analyses. Other properties such a :round

are officially documented to control aspects of the rounding behavior, such as specifying an

IEEE 754 rounding mode. Properties can be specified independently and mixed together

according to the needs of individual users.

One special case is the :precision real annotation, which indicates that a subcompu-

tation should not computed with real values and never rounded.

(FPCore (x)
:precision real
(+ x 1))

This is very different from not specifying a rounding context, which as discussed above

reverts to a reasonable finite-precision number system as a default behavior. Describing true

real-valued components of computations is valuable for a variety of reasons, particularly for

writing mathematical specifications. We can, for example, write down a simple description

of the C11 expm1 operation:

(FPCore (x)
:spec (! :precision real (- (exp x) 1))
(expm1 x))

By using real precision in the body expression, we can also define new fused operations.

Of course, reasoning about such constructs is hard, and is not a task for the FPCore standard.

That is left to tools and mathematicians that use it.

3.5.2 Lexical scoping of precision annotations

Precision annotations are lexically scoped. An annotation modifies the rounding context of

the expression contained lexically within it. For example, in the FPCore

(FPCore (x)
(! :precision double

(- (! :precision single (+ x 1)
1))))
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(+ x 1) is computed with (IEEE 754) single precision, but the final subtraction of 1 from

this intermediate value is computed with double precision.

Annotations apply to entire subexpressions, so if we apply a precision annotation to the

quadratic formula example

(FPCore (a b c)
:precision double
(/ (+ (- b) (sqrt (- (sqr b) (* 4 (* a c)))))

(* 2 a)))

It will determine the rounding behavior of every mathematical operation in the com-

putation. Variable bindings can be used to restrict annotations to the relevant parts of a

computation:

(FPCore (a b c)
:precision single :round toZero
(let ([x (! :precision double

(+ (- b) (sqrt (- (sqr b) (* 4 (* a c))))))])
(/ x (* 2 a))))

In this version of the quadratic formula, the intermediate value x is computed with higher

precision, but the denominator (* 2 a) and the final division will use single precision, as

specified at the top level. All operations will inherit the toZero rounding mode.

3.5.3 Subtleties of precision annotations

Precision annotations are very expressive, because they allow for the description of any

conceivable rounding behavior, and they allow the behavior to be changed at a fine gran-

ularity, on the level of individual operations. Lexical scoping also makes it convenient to

add multi-precision rounding information to existing computations without having to anno-

tate each operation individually, but also without sacrificing any generality where individual

operations need to be rounded in a particular way.

There are a few important subtleties of working with the rounding context, and with

rounded real-valued computation in general. Rounding only applies to the output of opera-

tions. Variables in FPCore are never rounded: the following FPCore expressions are all the

same thing, which is just x:

x (! :precision double x) (! :precision double (! :precision single x))
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The cast operation can be used to explicitly round a value in some rounding context, for

example to convert a value to single precision and then back to double precision:

(FPCore (x)
(! :precision double

(cast (! :precision single (cast x )))))

Having mathematical variable bindings simplifies the semantics of FPCore, as no special

considerations need to be made for data storage. This also prevents any multiple rounding.

While it is possible to write expressions that return real values that might be hard to store,

most practical computations will use a finite-precision rounding context. This means that

while values are stored exactly, they will mostly be rounded (finite-precision) values to begin

with, so storing them is not an insurmountable challenge.

Special rules are provided to deal with constants and inputs to FPCores. Constants

are rounded in the context where they are defined; the expression (! :precision double

PI) represents the nearest representable value to the mathematical constant π in double

precision. Changing the context changes the nearest representable value. Inputs are also

rounded, using either top-level annotations from the FPCore or per-input annotations if

they are provided. Of course, any of these rounding contexts can be given real precision to

handle true real values, at least at the specification level.

FPCore’s rounding behavior, and therefore its semantics for number systems, is tied to

mathematical operations. In contrast to languages like C, which treat precision as a property

of the way values are stored, FPCore only rounds at the output of operations. This is the ideal

point to mediate between real arithmetic and the behavior of particular number systems. As

long as we can define any arbitrary rounding behavior, we can describe any number system;

at the same time, real arithmetic is conveniently available to provide the unrounded results,

so there is no need to redefine common notions like addition or exponentiation for every

single number system.
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1 (FPCore lorenz -3d ((xyz 3))

2 :precision (float 5 16)

3 (let ([sigma 10]
4 [beta 8/3]
5 [rho 28]
6 [x (ref xyz (# 0))]
7 [y (ref xyz (# 1))]
8 [z (ref xyz (# 2))])
9 (array

10 (* sigma (- y x))

11 (- (* x (- rho z)) y)

12 (- (* x y) (* beta z))

13 )))

dx

dt
= σ(y − x)

dy

dt
= x(ρ− x)− y

dz

dt
= xy − βz

Figure 3.11: Lorenz system, FPCore and mathematical notation

14 (FPCore vec -scale ((A n) x)
15 (tensor ([i n])
16 (* (ref A i) x)))
17 (FPCore vec -add ((A n) (B m))
18 :pre (== n m)
19 (tensor ([i n])
20 (+ (ref A i) (ref B i))))
21 (FPCore rk4 -3d ((xyz 3) h)

22 :precision (float 5 14)

23 (let* ([k1 (! :precision (float 5 13)

24 (vec -scale (lorenz-3d xyz) h))]

25 [k2 (! :precision (float 5 10)

26 (vec -scale

27 (lorenz-3d (vec-add xyz (vec-scale k1 1/2)))

28 h))]

29 [k3 (! :precision (float 5 12)

30 (vec -scale

31 (lorenz-3d (vec-add xyz (vec-scale k2 1/2)))

32 h))]

33 [k4 (! :precision (float 5 9)

34 (vec -scale (lorenz-3d (vec-add xyz k3)) h))])

35 (tensor ([i (# 3)])

36 (+ (ref xyz i)

37 (* 1/6

38 (+ (+ (+ (ref k1 i) (* (ref k2 i) 2))

39 (* (ref k3 i) 2))

40 (ref k4 i)))) )))

k1 = f(xn)

k2 = f(xn + hk1
2

)

k3 = f(xn + hk2
2

)

k4 = f(xn + hk3)

xn+1 =xn + 1
6
h(k1 + 2k2 + 2k3 + k4)

Figure 3.12: 4th order Runge-Kutta method, FPCore and mathematical notation

41 (FPCore main ((initial -conditions 3) h steps)
42 (tensor* ([step steps])
43 ([xyz initial -conditions (rk4 -3d xyz h)])
44 xyz))

Figure 3.13: RK4 driver FPCore
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3.6 FPCore 2.0 and beyond

Besides providing a semantics for number system behavior, FPCore is also a general purpose

language for writing numerical kernels. This aspect of it isn’t a major contribution of this

work (there are, after all, many general purpose programming languages out there) but it is

interesting to reflect on some of the experiences we have had, and look towards the future.

The latest revision to the standard is FPCore 2.0, which adds some quality of life fea-

tures to make writing realistic programs easier. The most important features are function

abstraction, by allowing FPCore programs to be referred to and used as operations in other

FPCore programs, and structured data in N-dimensional arrays. To illustrate these features

in action, Figures 3.11, 3.12, and 3.13 show a complete implementation of the Lorenz System

example with RK4, using mixed low-precision floating-point.

Functions are a critical abstraction both for implementing larger computations and for

decomposing them in ways that are good for analysis. In its original form, FPCore programs

were intended to be independent, stand-alone benchmarks, which is why the language has

no formal description of functions or a top-level scope above individual programs, but this

is not practical for implementing kernels from real-world applications.

FPCore handles name resolution as a dictionary; if an operation is performed that is

not one of the usual primitives, then implementations should look in the dictionary to see

if there is another program with this identifier that can be invoked. The dictionary can be

filled in any way that is convenient for the implementation, for example by parsing all of

the programs together at the top level and adding them before any are executed. Calling

functions is different from executing a standalone benchmark in that inputs to a function are

never rounded (they are already FPCore variables). In contrast, inputs at the top level are

coming in from outside of FPCore, and are therefore rounded with the top-level rounding

context as if they were constants.

Structured data is also important for implementing real benchmarks. Without some

notion of structured data, a dot product of 1000-element vectors takes 500 times more in-



49

puts than a dot-product of 2-element vectors, even though both of these algorithms can be

expressed with the same code in most languages. FPCore standardizes on N-dimensional

arrays as its only data structure.

This allows for most of the benefits of having data structures, without adding analysis

complexity to handle more complex structures like sets or maps. In practice, most numerical

algorithms use arrays of varying dimensionallity, so it is natural to make this the data

structure of choice. Arrays are implemented in a pure way, in keeping with the design of

FPCore as a pure functional language, and operations are kept in terms of scalar values, to

minimize the impact on the rest of the semantics. Arrays can be read element-wise, and

they can be created by the array-creating construct tensor, but due to purity the can’t be

modified in place. To simulate mutation, programs can create a new (updated) array, as is

standard in functional programming.

The FPCore 2.0 standard also provides new iteration constructs to make working with

arrays more natural, specifically for loops. With the addition of these constructs, it is possible

to represent most linear algebra kernels in about the same code size as other general-purpose

languages. FPCore does not provide an implementation of BLAS or similar libraries, but

such a thing would be possible to implement on top of it, and that is how we intend it would

be provided (i.e. not as language primitives).

FPCore is still an evolving standard; we do not anticipate FPCore 2.0 to be the final

revision. With that said, we do expect that the rounded real-value semantics of number

system operations will be preserved in all future versions without change. This is the key

core to the semantics that makes working with different number systems practical.
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Chapter 4

TITANIC: IMPLEMENTING ROUNDED REALS WITHOUT
INFINITE PRECISION

FPCore is only a specification for the semantics of number systems. It does not provide

a concrete implementation to actually run numerical programs, except by working out their

behavior by hand, with pen and paper, in terms of real arithmetic.

Because of the close relationship with the reals, implementing the semantics is tricky.

Real numbers are difficult to represent because they might require infinite precision; in a

binary system, there might be an infinite number of digits in the exact real representation of

a particular number. Additionally, comparing two arbitrary real numbers is undecidable [38].

Taking the view of numbers as streams of digits, even if there are programs that produce the

streams, comparing two of them requires determining arbitrary program equivalence since

the streams themselves are infinitely long.

FPCore can therefore encode programs whose output cannot be computed. However, in a

sense this is true of many languages, including FPCore, due to the possibility of infinite loops

or recursion. We can still build a reference implementation for a large subset of FPCore’s

semantics, including support for the wide variety of number systems that we can describe in

terms of p and n, that is total and does not require an implementation of real arithmetic. We

do this in a new tool called Titanic, which serves as a laboratory for exploring the behavior

of number systems. Instead of rounding true real values, Titanic rounds arbitrary precision

values, which it can compute using the MPFR library with enough precision to ensure that

the final, rounded representable value matches the behavior that would be expected from

rounding a true real-valued output.

We say Titanic is a number system “laboratory” because it is has built-in support for



51

the most common binary number systems (fixed- and floating-point, as well as posits, with

arbitrary representation parameters or values of p and n), it is easily extensible to implement

other number systems in terms of their rounding behavior, and it has good enough perfor-

mance to run interesting FPCore programs to empirically observe their behavior. Critically,

Titanic allows completely different number systems to interact seamlessly in the same compu-

tation. It also provides a pathway to integrate reasoning about ideal, real-valued specification

with concrete implementations of number systems.

4.1 Arbitrary precision computation

While we cannot finitely represent an arbitrary real number, it is possible to represent any

real number to an arbitrary amount of precision. An arbitrary precision number system is

one that does not place an upper bound on p for represented numbers. The precision p used

to represent any given number is not bounded by some global limit, but each number must

have some finite p, and numbers with a large amount of precision will require correspondingly

more storage space in a concrete implementation.

Similarly, while comparing real numbers is undecidable in general, it is possible to finitely

compare arbitrary precision numbers, and more generally to compute real functions that

would occur as mathematical operations in a numerical program to arbitrary precision.

Arbitrary precision computation works the same way as rounded real-valued computation

in a finite-precision number system, but the output precision p is given as a parameter to

the computation. This way, an arbitrary (though again, still finite) amount of precision can

be requested, to represent the true real value with an arbitrarily small amount of error.

4.1.1 The GNU MPFR library

The GNU Multiple Precision Floating-Point Reliable Library [17], or MPFR, is a concrete

implementation of correctly-rounded, arbitrary precision floating point. We use its capabil-

ities, particularly the guarantees it offers about correct rounding, as the core computation

engine of Titanic.
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MPFR represents numbers with an arbitrary precision format which greatly resembles

our ideal binary floating-point number system. Representable numbers have a normalized

significand of arbitrary size, limited by the amount of available memory, and floating-point

style exponent. MPFR implements a variety of math functions, including basic arithmetic

and all of the transcendental functions from the C11 standard and FPCore.

When performing a computation with MPFR, the precision of the output must be spec-

ified as a parameter, independently of the precisions of any inputs. The output is limited

to this amount of precision. MPFR guarantees that the output will be correctly rounded,

according the the specified rounding mode. All standard IEEE 754 rounding modes are sup-

ported, but we exclusively use the round towards zero (RTZ) mode in our implementation

of Titanic.

Computation assumes that the values of the inputs are exact. MPFR is not an interval

arithmetic library; if the inputs are not the true real values intended for the computation

(i.e. if they are arbitrary precision values, rounded at some other precision) then error may

accumulate across multiple operations. However, because the underlying number system

allows values with arbitrary precision, MPFR will never round its inputs, as long as they

can be specified as binary numbers.

Compared to other number system implementations, particularly hardware implemen-

tations of IEEE 754 with fixed precision, MPFR is relatively slow. As with any arbitrary

precision library for computing for transcendental functions, it suffers from the “tablemaker’s

dilemma” [27]: it is not possible to bound in advance the amount of computation required

for a given amount of output precision. However, given what it has to compute, MPFR is

highly efficient for a software library.

Arbitrary precision computation with MPFR is about as close as it is possible to get

to a concrete reference implementation of the real arithmetic used in rounded real-valued

computation. The difference compared to real arithmetic is that MPFR cannot always

produce exact real results, only rounded results with some finite amount of error, even if

that error is arbitrarily small. To ensure that Titanic provides a correct implementation of
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rounded reals, we will need a more sophisticated model of rounding to track that error and

ensure that it never causes a wrong answer.

4.2 Representing rounding

Rounding numbers that have already been rounded is more difficult than rounding true

reals because rounding multiple times can be dangerous. Let’s construct an example to

demonstrate this. Our example will address the following question: Does rounding a real

number first to a higher precision number system, then to a lower precision one, always

produce the same answer?

Let’s use the common IEEE 754 32-bit single precision and 64-bit double precision

floating-point formats for our example, with the strongest round to nearest even rounding

mode. First, consider the number that is halfway between 1 and the next larger representable

number in single precision. This number is exactly 1.000000059604644775390625, or 16777217
16777216

.

This number is not exactly representable in single precision; if we round it, we should get

one, since the significand of one is even. The number is exactly representable in double

precision.

Now, consider some other number that is not more than halfway between this exactly

representable double precision value and the next larger representable double precision

value. For our example, we can use the number that is one quarter of the way between

them. This new number is 1.000000059604644830901776231257827021181583404541015625,

or 18014399583223809
18014398509481984

. This number is representable in neither double nor single precision. In

single precision, it is larger than the halfway point between 1 and the next representable

number, so it should round up. In double precision, however, it is close to the exact halfway

point, and so it rounds down. If we round that halfway number again in single precision, we

will break the tie down to 1 as before—a different answer than if we had rounded directly

from the real value.

This answers the question: no, rounding to a higher precision number system first and

then to a lower precision one does not always produce the same result as direct rounded
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1

The smallest representable 
single-precision number > 1

The largest representable 
single-precision number < 1

Exactly 1.000000059604644775390625

The smallest representable double precision number
> 1.000000059604644775390625 (not to scale)

Exactly 1.000000059604644830901776231257827021181583404541015625
(not to scale)

In single precision, real numbers 
inside the green envelope round to 1

In double precision, real numbers in the orange envelope 
round to 1.000000059604644775390625 (not to scale) 

Figure 4.1: Rounding envelopes for example single and double precision values near 1. Note

that the green and orange envelopes do not completely overlap.

real-value computation in the lower precision system. If we are to use (rounded) arbitrary

precision values to implement number systems with Titanic, we will need some way to avoid

these differences.

4.2.1 Rounding envelopes

To illustrate the example, we can draw it on a number line in Figure 4.1. The ranges of

real values that round to 1 in single precision, and to our awkward halfway point value in

double precision are shown on the number line, in green and orange respectively. We refer

to these ranges of real numbers that all round to some common representable number as the

rounding envelope of that number.

The problem, in short, is that the two rounding envelopes overlap partly but not com-

pletely. Specifically, the halfway point number is itself in the green rounding envelope because
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the tie is broken down; but, some of the numbers in the orange envelope that round to it

are outside of the green envelope. The orange envelope is ambiguous with respect to the

green envelope. If we only know that some number was rounded to the halfway point, and

therefore must be in the orange envelope, then we cannot say for sure if it should be in the

green envelope or not.

Titanic tracks enough information about rounded numbers to accurately reconstruct the

rounding envelopes. This means that for any two rounded numbers, it can trivially detect if

one can be safely rounded to the other by checking if the second rounding envelope completely

contains the first. Therefore, for any sequence of rounding operations, Titanic can ensure

that the final result is still correctly rounded, as if the original real value had been rounded

directly to the final number system. This capability is exactly what we need to ensure that

rounded arbitrary precision remains correctly rounded.

4.2.2 Conditions for computing

To guarantee that computation is possible, i.e. that there is a sufficiently precise “compute”

number system we can use as a stand-in for the real valued result, it must be the case that

every rounding envelope in the compute number system is completely contained within a

single envelope in the “target” or output number system. Fortunately, this is true for binary

number systems that use all of the standard IEEE 754 rounding rules.

Formally, if we want to correctly round an output in some finite-precision number system

with maximum precision p0 and rounding mode rm0, then we must find some p1 and rm1

such that if we compute in arbitrary precision p1 and rm1, then round to p0 and rm0, we will

produce the same result as if we had computed in real precision and rounded to p0 and rm0

directly. This is true if each rounding envelope at p1 and rm1 is completely contained by

an envelope at p0 and rm0, because rounding from the contained envelope to the containing

one is always correct.

First let’s consider a few cases where computation fails. If p1 < p0, then the rounding

envelopes at p1 will be larger than those at p0, so there must be some envelopes that are not
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completely contained, and computation will fail.

A more subtle problem occurs if rm1 is any flavor of nearest rounding. Consider any

boundary between b two rounding envelopes in p0. For binary systems and IEEE 754 round-

ing modes, this b is exactly representable at pe = p0 + 1. If p1 < p0, then the compute

envelopes are too large as before, and computation fails. If p1 > p0, then p1 ≥ pe, and b is

exactly representable at p1. This means that there are some values greater than b that will

round to b, and some values less than b that will round to b, since rm1 is nearest rounding.

But since b is a boundary at p0, these values must be split between envelopes in p0, and

computation also fails.

Computation is only possible in this case when p1 = p0 and rm1 = rm0, which is to

say, when the number systems are exactly the same and arbitrary precision computation is

implementing rounded real valued computation directly, without any intermediate rounding

steps. This completely defeats the purpose of Titanic, which is to use an existing arbitrary

precision library that is correct for a limited set of compute number systems to provide

answer for a wide variety of target number systems, which do not exactly match the arbitrary

precision rounding semantics of the library.

Fortunately, it is easy to find p1 to reproduce the rounding behavior of any IEEE 754

number system if we use the round towards zero mode (or simple truncation) instead of

nearest rounding for rm1.

Consider the case where rm0 is not nearest rounding: it must be IEEE 754 round towards

zero, towards positive, or towards negative. In all of these cases, the rounding envelope

boundaries are all representable numbers at p0, and each envelope only contains numbers

rounded from one side. This is even true for zero with rm0 as round to zero, because positive

and negative values will be distinguishable by the sign of the rounded zero.

This means that for any p1 = p0, we will have exactly the same set of rounding envelopes

as long as rm1 is round towards zero, or more generally, any mode that is not nearest

rounding. Switching between the rounding modes is just shifting the envelopes up or down

by one. The only situation we have to be careful about is values that are exactly represented,
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and the only extra work we need to do is identify them and not shift them up or down when

changing rounding modes.

Additionally, we can use not just p1 = p0, but any p1 ≥ p0. If rm1 is round towards zero,

then we know that all envelopes at p1 and rm1 are one-sided. If p1 ≥ p0, then all envelope

boundaries at p0 are still representable at p1. So, any envelope at p1 must be completely

enclosed by an envelope at p0, as the endpoints of the enclosing p0 envelope are representable

at p1, and because the p1 envelopes are one-sided, no p1 envelope spans across a representable

number at p1. Intuitively, smaller envelopes at larger p1 will tile larger envelopes without

inconveniently spanning across them.

Finally, consider a target number system p0 with rm0 as nearest rounding. Because rm0

is nearest rounding, envelope boundaries in this system are representable at pe = p0 + 1.

Let p1 = pe = p0 + 1, and rm1 is round towards zero. Envelopes in the target number

system span numbers representable at p0, and also some numbers representable at p1, since

p1 > p0. However, while this would be a problem for the compute number system, it doesn’t

matter in the target system. Because rm1 is round towards zero, we know that envelopes

at p1 are one sided, so they do not span across values at p1. Consider an envelope at p1;

there must be some enclosing envelope at p0 since the endpoints of all envelopes at p0 are

representable at p1 = pe, and the p1 envelope cannot span across them. Intuitively, while

the fact that they are not one-sided means that rounding envelopes in a round to nearest

system do not tile nicely, they are tiled without overlap by any number system with greater

precision that does not use nearest rounding.

4.2.3 Implementing number systems with rounding

Titanic provides the following facilities to implement number systems:

• An arbitrary precision representation for binary numbers, which tracks rounding en-

velopes
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• Computation of elementary math operations with MPFR, to any precision p, including

a safe rounding envelope for the output

• Safe rounding of any represented number to a number system with specified p, n, and

IEEE 754 style rounding mode

With these operations, it is easy to implement arbitrary-precision versions of common

number system such as IEEE 754 floating-point and general fixed-point. This is different

from computing directly with MPFR. While MPFR does provide a direct implementation of

many IEEE 754 floating-point number systems, it does not allow for mantissa sizes below 3

bits, and it does not explicitly track any of the guarantees about correct rounding. Titanic’s

explicit rounding envelopes allow values computed with MPFR to be used to safely implement

other number systems as well, beyond just IEEE 754 floating-point.

Tracking envelopes can be done with only a few bits. In addition to the arbitrary precision

value, stored in typical floating-point format with a separate sign bit, exponent, and mantissa,

Titanic records the following properties about each represented number:

1. Whether or not the value was rounded

2. Which direction the value was rounded from

3. The size of the envelope

4. Whether or not the value is exactly on the endpoint of the interval

(1) is a single bit. An unrounded value must have been computed exactly, and can be

rounded again to any precision. It will remain unrounded until some rounding operation

changes its value.

(2) is another single bit, to record if the the true value was larger or smaller in magni-

tude than the represented, rounded value. For one-sided rounding modes (i.e. not nearest

rounding) it will have a consistent sign, given the sign of the value.
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(3) records the integer size of the rounding envelope, in -log(ulps). This becomes impor-

tant for rounded numbers on exponent boundaries. As the exponent changes, the size of ulps

changes as well; for values with the larger exponent, it is twice as large as it is for values

with the smaller one. Keeping this information around explicitly allows for consistent safe

rounding of values without knowing the number system in which they were initially rounded.

(4) is another bit. If it is true, then the rounded value is actually exact, and fell exactly

on the boundary between this rounding envelope and another adjacent one. This information

is necessary to ensure that nearest rounding can correctly break ties.

Titanic’s safe rounding capability is provided as a function that takes any represented

value and rounds it according to some precision p and some greatest unrepresentable binary

place n. While these measures of precision might seem to be independent, they are actually

related. Rounding can provide only p, which resembles floating-point rounding; only n,

which resembles fixed-point rounding; or both, which resembles IEEE 754 rounding with

subnormals.

The limiting binary place for any number with exponent e can be determined based on

optional p and n. This is the absolute place beyond which less significant digits will be

rounded off. Floating-point rounding for some fixed exponent is, after all, just a special case

of fixed-point rounding. If n is supplied, then it gives a lower bound on the limiting place.

If p is also provided, then the limiting place is the larger of n or e− p.

Reducing to fixed-point rounding in terms of this limiting position allows Titanic to

provide safe, general fixed-point and floating-point rounding behavior with full support to

model subnormals, all with a single unified implementation. We say that Titanic’s rounding

is safe because attempting to round to a large amount of precision, or a smaller value of

n (such that the output rounding envelope would not fully enclose the input envelope) will

raise an exception. This gives number system implementers a good starting point to build

correct rounding models for various number systems.

Because of its dependence on MPFR, Titanic is limited to binary number systems, where

each exactly representable number has some finite representation as a binary fraction. Binary
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number systems tend to be very convenient, due to easy mapping to hardware and param-

eterization with p and n in addition to computation with MPFR, but there is no obstacle

in theory to building safely rounded number systems in other bases in terms of rounding

envelopes, or (say) number systems that could exactly represent rational numbers such as 1
3
.

4.3 Using Titanic

In addition to rounding behavior, Titanic also provides a full parser and interpreter for the

control layer of the FPCore language. As this is a typical functional programming language

implementation, it represents a significant engineering effort but not a theoretical research

contribution of this work.

By making the semantics of FPCore executable, Titanic enables a wealth of new research

projects. The implementation is built entirely in Python 3 (with the stated dependence on

MPFR, which is accessed from Python through the gmpy2 binding library [24]), which makes

it easy to extend and instrument.

The full implementation of Titanic is open source an is available on GitHub at https:

//github.com/billzorn/titanic.

4.3.1 An extensible framework for number systems

Providing the core rounding operations as a library, as well as the integrated computational

capabilities with MPFR and the general design of the system in Python, means that actual

number system implementations are a very small part of the overall codebase. The rounding

logic required to emulate arbitrary precision IEEE 754 number systems fits in 15 lines of code,

and arbitrary precision fixed-point only requires 22 lines. These number systems are provided

with Titanic as additional libraries, and allow it to run all FPCore programs annotated with

standard fixed-point and floating-point number systems.

Titanic’s provided rounding library only implements ideal rounding, which does not im-

pose an upper bound on the exponent, or in the case of fixed-point, the maximum number of

bits in the representation. These limits must be implemented manually where appropriate,

https://github.com/billzorn/titanic
https://github.com/billzorn/titanic
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which is why IEEE 754 takes 15 lines to implement rather than a single function call to the

general rounding function. Other number systems, specifically posits, are not as easy to im-

plement in terms of general rounding with p and n. Titanic also provides an implementation

of rounding for posits, which is about 150 lines long.

Comparison between values is built in to the arbitrary precision representation itself, so

values that have been rounded in different number systems can be compared to each other

with no additional effort. In the worst case, rounding can even be implemented for any

ordered number system via binary search. To round some value, pick some member of the

target representation, find the endpoints of the envelope as arbitrary precision values, and

simply check if the value to be rounded fits in the envelope. If not, binary search in the

appropriate direction.

Titanic does not provide support for number systems that do not use a binary represen-

tation. This means that some error will be introduced, even at arbitrarily large precision,

for computations that can be computed exactly in a different base (for example, decimal

calculations over dollars). In practice, most large-scale numerical computations use binary

IEEE 754 floating-point or other binary number systems. Binary integers and fixed-point,

IEEE 754 floating-point, and posits, including quires, are all fully binary number systems,

and Titanic makes it easy to implement all of them and even have them interoperate.

4.3.2 Instrumenting computations

As it is not a research contribution, we have largely glossed over the way Titanic implements

an FPCore interpreter. At a high level, the tool uses an ANTLR4 [34] to parse FPCore

syntax into an AST, and then it executes the AST directly with a recursive virtual machine,

implemented in Python.

The simple structure of the virtual machine makes it very easy to instrument FPCore

computations, in the number system or elsewhere. Each executed AST node reports its

inputs and output values after executing, and this information can be captured by analysis

hooks, without changing the code of the interpreter itself.
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The shared arbitrary precision representation is also fully available as a library, to perform

computations or store values outside the FPCore interpreter. The usual way to implement a

number system is to define a new number type, which inherits all of its math operations from

the shared type, and then override the rounding behavior with a custom implementation for

the new system. Computing with the number types works like any other shallowly embedded

language in Python; numbers are Python objects that provides methods like add, sub and

sqrt to perform computations with them.

4.3.3 Performance considerations

Titanic is not intended for production workloads, but it is fast enough for research. To give

a rough sense of scale, creating the Lorenz system plot for Figure 1.1 runs about 105 million

FPCore AST nodes through the Titanic interpreter, using MPFR with 4096 bits of precision,

and takes about 15 minutes on one thread of a Ryzen R9 5950X. A visually identical plot

can be produced in Python in a fraction of a second, and a C implementation could reduce

that by another factor of 100; of course, neither of these implementations would guarantee

correctly-rounded 4096-bit intermediate values. Waiting 15 minutes for the plot is perfectly

acceptable for the purposes of this research, where we are more concerned with doing it once,

correctly, than with being able to rerun or modify it in real time.

In cases where performance is a key consideration, which is to say almost all numerical

computing workloads in the real world, whether they are high-precision scientific compu-

tations or low precision machine learning, rounding is not the right way to think about

performing computation. In those cases, traditional hardware and software libraries, made

to be as efficient as possible, while not being too inaccurate to produce the necessary results,

are absolutely the way to go.

In performing research, however, we often want to answer questions about systems that

don’t exist yet, so that we can make informed decision and invest in their future existence.

Titanic is performant enough to reproduce the behavior of interesting and representative

workloads, like our Lorenz system example, in order to support this kind of research. In
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exchange for more expensive computation, the framework greatly reduces the upfront cost

of prototype implementation.

Titanic can also serve as a reference interpreter to check more optimized implementations

of number systems. Because its correctness (and the correctness of any number system

implemented on top of it) is entirely determined by rounding behavior, the amount of code

that needs to be correct will always be small.

4.4 Future work

Titanic is still actively in development. Many improvements could be made to broaden the

capabilities of the system and enable further research.

In its current form, Titanic (and also the FPCore language) does not have a formal

interface to translate between binary representations and real values. It is understood that

the rounded real values stored as intermediates in FPCore programs will have to be stored

in bits somewere, but is never made explicit how that is done.

One avenue of future work is to formalize this interface. This could be as simple as

defining a binary encoding function, which maps bitvectors to real values. Between rounding

and encoding, algorithms can be carried out as rounded real-valued computations, pure

bitvector algorithms, or a mixture of the two. This would be especially useful to model the

behavior of custom hardware that defies a more abstract mathematical description of its

numerical behavior.

Encoding can also be used to implement rounding via binary search, which would make

it easy to work with number systems, particularly the bisection based formulations described

by Lindstrom [29], that admit simple encoding functions but not obvious implementations

of rounding.

Another avenue of future work is to enhance Titanic’s representation of rounding en-

velopes to interact with proper interval arithmetic. As described here, Titanic implements

interval arithmetic, but only for the round operation, not any other mathematical function.

However there is nothing in principle stopping Titanic from using an interval arithmetic
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library to do computation instead of MPFR.

This would allow for Titanic to correctly implement some FPCore programs that specify

real precision. Specifically, as long as the region of the program done in real precision had

bounded size (i.e. no loops), then Titanic could, with some amount of computation and an

interval arithmetic library, provide an output that satisfied any rounding specification for

the whole real expression. This would allow Titanic to model custom fused operations, such

as expm1 (but for other real functions), among other things.
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Chapter 5

SINKING-POINT: A NUMBER SYSTEM WITH SAFER
ROUNDING

5.1 The hidden perils of rounding

So far, we have viewed rounding as a good thing. It provides an interface to model many

different number systems in terms of real numbers, and even lets us implement them easily

on top of existing arbitrary precision libraries.

But rounding error in finite precision number systems is often a problem. It is particularly

insidious because it can easily go unnoticed. Consider the following interaction with Python

3, which uses 64-bit IEEE 754 doubles to represent non-integer numbers:

>>> import math

>>> math.pi + 1e16 - 1e16

4.0

Clearly, something has gone wrong here. With real arithmetic, we would expect the

large terms of 1016 to cancel out, leaving π as the result. Instead, we get 4. This is not

a problem with Python’s math library: if we just type in math.pi, the interpreter prints

3.141592653589793, or about 16 decimal digits of precision, as one would expect from a 64-bit

double precision value. What happened?

If we look more closely at the computation, we can see that the first addition must have

rounded off the low bits of π. This is entirely understandable: 1016 is a big number, so out

of the 53 bits of precision available to an IEEE 754 double, there are only two bits left to

hold the value of π. Subtracting 1016 back off again simply exposes this rounding error.

4 is the correct result in this case: given the available precision, IEEE 754 floating-point

has done the best it can. However, the way the result is presented is problematic. IEEE 754
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floating-point only has one way to represent 4. Like all other IEEE 754 doubles (besides the

subnormals), that representation has exactly 53 bits of precision. All the bits which were

rounded off have been filled in with zeros; it would be more precise to write down the result

as 4.0000000000000000, though Python avoids printing the additional zeros.

While it is unfortunate to round π so imprecisely that the result is equal to 4, it is not just

imprecise but also inaccurate to round π to 4.0000000000000000 with 53 bits of precision.

The IEEE 754 standard provides no indication when this happens. In our simple example,

it is easy enough to work through the rounding behavior manually, but for more complex

computations, low-precision results can easily cause things ‘go off the rails’ and transform

into catastrophic error without any indication that something is wrong.

5.1.1 Can a number system do better?

To address this problem, we introduce a new number system which we call sinking-point.

Sinking-point can represent the same set of numerical values as IEEE 754 floating-point, but

it allows numbers with different precisions to coexist. If we perform the computation from

our example with our prototype sinking-point implementation, we will see the following:

>>> Sink(math.pi) + Sink(1e16) - Sink(1e16)

[3.5-5.0]

To illustrate the uncertainty of inexact numbers, our implementation prints them as ranges of

decimal numbers that are indistinguishable at the represented precision; that is, they would

all round to the same number. We can think of these ranges as a concrete manifestation of

the rounding envelope, translated into decimal notation for human consumption. Here, the

represented number is still 4, the same as the IEEE 754 result, but with only two bits of

precision, sinking-point makes it clear that we would not be able to distinguish it from any

other number between about three and a half and five.

Interestingly, the expected correct result of π is not within the range. This serves to

highlight two important properties of sinking-point. First, sinking-point is an approximation,
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not a sound analysis technique like interval arithmetic. Second, it aims to provide a lower

bound on the uncertainty: in this case, we know that we can’t distinguish results between

3.5 and 5, but the true range of uncertainty might be larger. This is entirely expected as

rounding envelopes only capture the uncertainty of the most recently performed operation,

not the total error that has accumulated through the computation.

If instead we perform a computation that should actually result in 4, such as

>>> Sink(4.0) + Sink(math.pi) - Sink(math.pi)

[3.9999999999999998-4.0000000000000004]

then we can see that while adding and subtracting π has caused some rounding and made

the result inexact, the rounding envelope is much smaller, capturing most of the zeros from

the precise IEEE 754 representation.

By tracking precision dynamically though a computation, sinking-point ensures that if

a result with some precision is produced, that precision is meaningful; it contains bits that

were actually computed rather than filled in with zeros to fit a particular IEEE 754 format.

5.2 Sinking-point

Sinking-point is based upon the following observation: when a floating-point operation causes

a loss of precision, that loss of precision is often immediately obvious. Rather than viewing

an operation as something that takes in only values, and produces another value with some

fixed, format-dependent precision as a result, sinking-point operations take as input both

values and precisions, and output both values and precisions to which those values have been

computed. The key is that, for arithmetic operations and square root, the basic building

blocks of floating-point computation, it is always possible to determine the output precision

given the precisions and values of the inputs. To give a high-level explanation of how this

works, we will examine examples of a few simple computations, paying particular attention

to the way the results are rounded.
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5.2.1 Design philosophy

There are several approaches we could follow to determine the output precision of a floating-

point computation. One is to provide a sound underapproximation of the true output preci-

sion: for each result, assign it some precision which is always known to be less than the true

precision of the result. Such an approach would have similar capabilities to interval arith-

metic, though it would be restricted to intervals centered around a particular representable

digital number. Like interval arithmetic, it would be hindered by a rapid increase in the

interval size over the course of long computations.

Instead, sinking-point uses an unsound approximation, not unlike the approximations

inherent to IEEE 754 floating-point. Rather than guaranteeing that the actual precision of

the result is greater than the assigned precision, sinking-point seeks to ensure that precision

is only reduced for good reason: that is to say, if some bit in the representation is cut off due

to reduced precision, then there must not have been enough precision available to precisely

compute the value of that bit, and similarly if there is definitely not enough information to

compute the value of some bit, then the precision must be reduced enough to cut it off.

As it is unsound, this approximation carries certain risks. In particular, it will not be

able to detect or protect against gradual error due to accumulated roundoff in the lowest

bits; however, unlike interval arithmetic, it does not suffer from rapidly exploding intervals.

In most cases, sinking-point is effective at detecting the catastrophic, floating-point-specific

precision problems that make the behavior of the IEEE 754 standard puzzling to users used

to working with real numbers. By providing an upper bound on the precision, sinking-point

can prevent programmers from mistakenly thinking that the guaranteed 53 bits of precision

in an IEEE 754 double is the true precision of a computed result.

5.2.2 Addition and subtraction

Consider the addition of 5.25 + 4.015625. For simplicity, assume that both numbers are not

known exactly: 5.25 has the binary representation 0b101.01, with the values of the less sig-
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1 0 1 . 0 1 ? ? ? ?

+ 1 0 0 . 0 0 0 0 0 1

1 0 0 1 . 0 1 0 0 0 1

1 0 0 1 . 0 1

Figure 5.1: Binary visualization of 5.25 + 4.015625 computed with sinking-point. Unknown

bit are represented as ?s. Four trailing bits (shown in orange) are rounded off due to sinking-

point’s dynamic reduction of precision.

nificant bits all unknown, and 4.015625, or 4 1
64

, has the binary representation 0b100.000001.

Assume that we are not limited by a particular representation: we can compute with ar-

bitrary precision, and produce arbitrary precision results, limited only by the precision to

which we know the inputs. What is the most precise answer we can give?

Figure 5.1 shows a visualization of the computation. The inputs are written out in

binary, with unknown bits represented as question marks. If we pretend the unknown bits

are all zeros, then the arbitrary precision result should have a binary representation of

0b1001.010001, or 9.265625. However, in reality the unknown bits might not be zero: since

we don’t know the value of 5.25 precisely, we don’t know what they are. An unknown value

plus a known value is not equal to the known value; it would be safer to say that the result

is also unknown. The most precise answer we can give for certain is 0b1001.01, or 9.25;

this requires rounding off the bits shown in orange in the figure. We want sinking-point to

determine that the precision is not high enough to provide these bits, and round them off

automatically.

The picture is similar for subtraction. Figure 5.2 shows a visualization of the same

computation, but with the sign of the second operand reversed. The rounding behavior is

exactly the same as before, with the orange bits from the figure rounded off due to insufficient
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1 0 1 . 0 1 ? ? ? ?

- 1 0 0 . 0 0 0 0 0 1

1 . 0 0 1 1 1 1

1 . 0 1

Figure 5.2: Binary visualization of 5.25− 4.015625 computed with sinking-point

precision. Regardless of the sign, adding or subtracting an unknown bit can never produce

a precisely known bit as a result. It is interesting to note that the result of the subtraction,

0b1.01 in binary or 1.25, has significantly less precision than either operand, at only 3 bits.

Although the same number of bits after the binary point are known, some of the higher bits

have canceled out. While IEEE 754 would immediately fill in more low bits with zeros to

maintain constant precision, we want sinking-point to recognize that there is no point in

doing so because the values of the low bits are not actually zero. Although we don’t know

what the bits are, we do know that we don’t know what they are, and we can communicate

this by lowering the precision.

Based on these two examples, we can begin to formulate a rule to determine the output

precision that sinking-point should assign for an addition or subtraction. The output pre-

cision is not limited purely by the amount of precision the inputs have, but also by where

that precision is in the representation. Specifically, the precision will be limited by whichever

number has an unknown bit in a more significant place. Visually, this is whichever number

has a question mark further to the left in its binary representation: at or to the right of the

position of this question mark, we can’t possibly know any bits of the output precisely.
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5.2.3 Multiplication

Multiplication requires a different precision-tracking scheme from addition or subtraction,

but using a shift and add multiplier, or the “grade school” multiplication algorithm, we

can relate it back to the rule we observed previously. Figure 5.3 visualizes the multiplication

5.25×5, again assuming both values are inexact. We sum from the largest values (which have

been shifted farthest left) to the smallest. Note that when the shift becomes small enough,

we will effectively be multiplying by an unknown bit: to model this, we add a completely

unknown value, shifted by the appropriate amount. We can think of this number as a zero

with some specific precision: we don’t known exactly what value it is, but we have an upper

bound on its magnitude. Above a certain significance all the bits in its representation are

known to be zero, but below that we have no idea what the bits are.

Like any other addition, we are limited by the most significant unknown bit. Here, that

unknown bit comes from the zero, and it restricts the output precision to only three bits.

In contrast to addition and subtraction, the location of the bits we know has moved around

significantly in the binary representation; in the inputs, we had known bits down to the

2−2s or 20s place, but in the output, the least significant known bit is in the 22s place.

Conveniently, however, we can see that the output precision is equal to the lesser of the two

input precisions.

This is not a coincidence. Assume that the second operand in the multiplication has less

precision, as in the example; that is to say, we are shifting and masking by the less precise

input. Eventually, we will run out of bits and add an imprecise zero. Relative to this zero,

the largest term in the addition can have been shifted left by at most the precision of the

second operand. There isn’t room for more than that precision’s worth of bits. Alternatively,

if we assume that the first operand has less precision, then we can see that the largest term

in the addition (which has the same precision as the first operand) would limit the output

precision in the same way.

As we have seen, the precision of a floating-point operation can be limited in two different
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1 0 1 . 0 1

* 1 0 0 . ? ?

1 0 1 0 1 . ? ? ?

0 0 0 0 . 0 ? ?

1 0 1 . 0 1 ?

+ ? ? . ? ? ?

1 0 0 1 0 . 0 1

1 1 1 ? ? .

Figure 5.3: Binary visualization of 5.25× 5 computed with sinking-point. The shift and add

algorithm is used to compute the multiplication as addition.

ways: by the most significant unknown bit in an addition or subtraction, or by the lesser

precision of an input to a multiplication. For sinking-point to work, we need to formalize

these rules in a way that lets us compute the output precision efficiently, and store the

necessary information for that computation compactly.

5.3 Implementing sinking-point

To evaluate the capabilities of sinking-point, we built a prototype implementation using

Titanic. The source is distributed as part of the Titanic project on GitHub. Our prototype

extends Titanic’s built-in support for IEEE 754 floating-point, and for computations with

exactly known inputs, it produces exactly the same output values. In order to support

dynamic precision tracking, we need to make two changes: first, we need to change the

representation of floating-point numbers to store additional information about their precision,

and second, we need to change the arithmetic operations to use that information to compute
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the output precision as well as the output value.

5.3.1 Sinking-point representation

Since the IEEE 754 standard does not track precision dynamically, we need to add a few

extra bits to the representation to store it. A sinking-point number can be thought of as a

tuple

(v, inexact, p, n)

v is a typical IEEE 754 floating-point value. We say that v is the host value, which comes

from some host IEEE 754 format that we are extending with sinking-point. inexact is a

single bit flag that represents whether this number is inexact. We need to keep track of

this because exact values should be given special treatment, as we know them to infinite

precision.

p and n are familiar from our discussion of rounding. p is the number of bits of precision

in the significand, which can range from 0 to pmax, where pmax is defined as the maximum

precision that can be represented by the host IEEE 754 format; for 64-bit IEEE 754 doubles,

pmax = 53. n represents the position of the most significant unknown bit; going back to

our visualizations from section 5.2.1, it is the position of the leftmost question mark. For a

number with a typical IEEE 754 floating-point exponent equal to e and precision p, we can

define n = e− p. With sinking-point, p and n can change for individual values based on how

they have been rounded, rather than being fixed for the entire number system as they are

for IEEE 754.

Representing p and n efficiently

For our prototype implementation, we do not concern ourselves with how the tuple would

be packed into a binary representation. In Titanic, we can simply add it to the metadata

recording the rounding envelope. However, we can provide a rough upper bound on the

maximum number of bits required. In a packed representation, it would make sense not
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to represent both p and n explicitly, since one could always be computed from the other

given access to the exponent of the host value v. In most situations, it would be better to

store p, which could be done in at most log(pmax) bits, since the value is an integer and

ranges between 0 and pmax. Assuming one extra bit for the inexact flag, this means the

total number of bits required comes to log(pmax) + 1 compared to the size of the host IEEE

754 binary representation. For example, using 64-bit IEEE 754 doubles as the host format,

sinking-point would require at most 7 additional bits, 6 for the precision and 1 for the inexact

flag.

Of course, those 7 extra bits could also be used to increase the precision of the host

format, but this would not have any of the benefits of sinking-point’s dynamic tracking. The

purpose of sinking-point is to increase confidence in precision, not precision itself, and the

benefits are independent of the host precision.

Printing sinking-point values

Printing sinking-point numbers in a human readable format presents some unusual chal-

lenges. Unlike IEEE 754 floating-point formats, which can only represent a value with one

particular precision, a sinking-point format can represent the same value with many differ-

ent precisions. To distinguish them, our prototype implementation prints inexact values as

ranges of decimal numbers. As we saw in section 5.1.1, 4 with two bits of precision is displayed

as [3.5-5.0], while with 53 bits of precision it is [3.9999999999999998-4.0000000000000004].

The ends of each range are the largest and smallest decimal numbers that would round to

the represented number when using IEEE 754 nearest even rounding at the represented pre-

cision. This gives humans a quick underapproximation of the uncertainty in the represented

value, while also encoding precision information that can be read back later. By finding the

greatest precision such that both ends round to the same value, we can recover both the

value and the precision from a decimal range.

Our tool prints the shortest prefix of decimal digits such that both the value and precision

can be recovered.
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A note about zero

In terms of precision, zero is a special case: by definition, its precision must be zero. For

exactly known zeros, the value truly is zero, and the behavior is the same as we would expect

from IEEE 754 floating-point. However, for inexact zeros, the most significant unknown bit

n for the zero, which is the same as its exponent, becomes important. As discussed in the

multiplication example, an inexact zero provides only an upper bound on the magnitude of

some value.

Like other inexact sinking-point values, we can display zeros as ranges of numbers that

are considered indistinguishable after rounding. Uniquely, zeros have ranges with ends of

different signs, essentially representing the negative and positive magnitude of the most

significant unknown bit. For example, a zero with a most significand unknown bit of n = 0,

or equivalently a least significant known bit in the 21s place, would be printed out as [-1.-+1.],

while a more “precise” zero with n = −10 would be printed as [-.0009-+.0009].

This property of zeros is not quite the same as having precision; it would be more accurate

to describe it as an exponent. In any case, tracking n for inexact zeros provides important

information about the effective precision of computations that produce them as results or

intermediate values.

5.3.2 Sinking-point operations

Sinking-point operations are substantially similar to IEEE 754 floating-point operations.

There are two major differences: first, the output precision must be computed, based on the

values and precisions of the inputs, and second, the computed output precision affects the

way the results are rounded.

For simplicity, we assume the ability to compute all arithmetic operations and square

roots to arbitrary precision, as Titanic provides this capability for us via MPFR. We also

assume the existence of a rounding function with the following signature:

round(vin, p, n)→ (vout, inexactout, pout, nout)
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operation n p

+ max(n1, n2, nmin) pmax

- max(n1, n2, nmin) pmax

* nmin min(p1, p2, pmax)

/ nmin min(p1, p2, pmax)

sqrt nmin min(p1 + 1, pmax)

Table 5.1: Summary of rules for computing sinking-point output precision

vin is the input value to round, according to some target precision p and least significant

bit n. The result is both a rounded value vout, and the corresponding exactness inexact,

precision p, and most significant unknown bit n. The rounding function assumes its inputs

are exact, so it is the case that (¬inexactout) ⇐⇒ vin = vout.

It is useful to define some precision-related quantities relative to sinking-point’s IEEE

754 host format. Specifically, we define pmax to be the maximum precision supported by

the host format, and nmin to be one less than the least significant bit representable in any

number in the host format. For IEEE 754 doubles, pmax = 53, and nmin = −1075, which in

general can be computed as emin − pmax, where emin is the minimum exponent.

Table 5.1 gives an overview of the rules for computing sinking-point output precisions.

The following sections provide pseudocode for each operation, as well as some additional

details.

Addition and subtraction

Sinking-point addition and subtraction effectively share an implementation, described in

Python-like pseudocode as:

def add((v1, ie1, p1, n1), (v2, ie2, p2, n2)):
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limiting_n = nmin

if ie1:

limiting_n = max(limiting_n, n1)

if ie2:

limiting_n = max(limiting_n, n2)

v_out, ie_out, p_out, n_out =

round(v1 + v2, pmax, limiting_n)

return (v_out, ie_out or ie1 or ie2, p_out, n_out)

Subtraction is exactly the same, other than flipping the sign of the second argument by

passing v1 − v2 to the rounding function.

Addition and subtraction are limited by n, not p; the limiting value cannot be less than

nmin, and might be limited further if either of the inputs is not exact. The limiting value

of n is determined by taking the maximum. Since n is the most significant unknown bit,

larger values of n indicate results that are less precise. Most of the work is done by the

addition itself, which our prototype computes to arbitrary precision but in principle could

be implemented in much the same way as IEEE 754, and by the rounding function. The

final result is inexact either if it became inexact after rounding, or if either of the inputs was

inexact.

Multiplication and division

Like addition and subtraction, multiplication and division share what is effectively the same

implementation, shown below:

def mul((v1, ie1, p1, n1), (v2, ie2, p2, n2)):

limiting_p = pmax

if ie1:

limiting_p = min(limiting_p, p1)

if ie2:
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limiting_p = min(limiting_p, p2)

v_out, ie_out, p_out, n_out =

round(v1 * v2, limiting_p, nmin)

return (v_out, ie_out or ie1 or ie2, p_out, n_out)

Again, division is the same, other than using arbitrary precision division v1/v2 instead of

multiplication. Here, the output precision is limited by the precision p of the inputs. The

final precision cannot exceed pmax, and might be further limited by the precision of either

input if it is inexact. The limiting value is computed by taking the minimum. Rounding is

exactly the same as for addition and subtraction, with the final result being inexact if either

input or the rounded value exhibits inexactness.

Square root

Taking the square root is similar to multiplication in that the output precision is limited by

p. However, there are some differences.

def sqrt((v1, ie1, p1, n1))

limiting_p = pmax

if ie1:

limiting_p = min(limiting_p, p1 + 1)

v_out, ie_out, p_out, n_out =

round(real_sqrt(v1), limiting_p, nmin)

return (v_out, ie_out or ie1, p_out, n_out)

Since it only takes one argument, there is only one value to limit the precision of a square

root operation. The way of computing the limiting precision is also slightly different. The

square root is relatively insensitive to errors in the last few bits: multiple nearby floating-

point numbers tend to share the same square root at a given precision, even if the last bit

is different. Because of this, we can relax the limiting precision slightly by adding one to it,

as long as we are not also limited by pmax.
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Special values

As noted, sinking-point tracks n for inexact zeros. This does not require any modifications to

the underlying arithmetic or the host IEEE 754 representation; it will happen automatically

as long as the rounding function produces the correct value of n.

Subnormal numbers also do not require any special treatment. They will be handled nat-

urally by the rounding function, as the limit on nmin will restrict the precision of values with

extremely small magnitudes, even if there seem to be sufficient bits in pmax. In a sense, sub-

normals and sinking-point are closely related; both are floating-point values with decreased

precision, but while subnormals occur due to a peculiarity of the format, sinking-point values

can only have reduced precision because of suspicious behavior within a computation.

The other special floating-point values, namely infinities and NaN, or not a number, are

retained, and their behavior is exactly the same as for the host IEEE 754 format. Any

precision information about them is disregarded. Once a computation has gone so off the

rails it no longer produces a real value, dynamic precision tracking is not going to help.

5.4 Case studies

To illustrate the capabilities of sinking-point, we present two case studies of interesting

computations. The first is based on the quadratic formula, and the second is based on a

modified version of John Gustafson’s “accuracy on a 32-bit budget” challenge.

5.4.1 The quadratic formula

Beloved of high-school algebra teachers and numerical analysts alike, the quadratic formula

gives the solution to the general quadratic equation and computes the roots of a parabola.

Given the general quadratic equation

ax2 + bx+ c = 0
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a b c x (IEEE 754 double) x (real value) x (sinking-point)

0.1 2 3 -1.6333997346592444 -1.6333997346592446 -1.633399734659244[0-8]

0.001 2 3 -1.5011266906707066 -1.5011266906707219 -1.501126690670[68-78]

1e-9 2 3 -1.5000000130882540 -1.5000000011250001 -1.[49999995-50000005]

1e-15 2 3 -1.5543122344752189 -1.5000000000000011 -1.[44-56]

1e-16 2 3 -2.2204460492503131 -1.5000000000000002 -[1.8-2.5]

1e-17 2 3 0 -1.5000000000000000 [-1.-+1.]

Table 5.2: Results for naive quadratic formula with a close to zero. Inaccurate digits in the

IEEE 754 result are colored orange. Sinking-point values are represented as a range of values

which are indistinguishable at the resulting precision.

a b c x (IEEE 754 double) x (real value) x (sinking-point)

0.1 2 3 -1.6333997346592446 -1.6333997346592446 -1.633399734659244[5-7]

0.001 2 3 -1.5011266906707219 -1.5011266906707219 -1.50112669067072[18-20]

1e-9 2 3 -1.5000000011250001 -1.5000000011250001 -1.500000001125000[0-2]

1e-15 2 3 -1.5000000000000013 -1.5000000000000011 -1.500000000000001[3-4]

1e-16 2 3 -1.5000000000000004 -1.5000000000000002 -1.500000000000000[4-5]

1e-17 2 3 -1.5000000000000000 -1.5000000000000000 -1.[4999999999999999-

5000000000000001]

Table 5.3: Results for herbified quadratic formula with a close to zero.
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the formula for the positive root is

x =
−b+

√
b2 − 4ac

2a

Though simple, the naive form of the computation can be very inaccurate for some inputs

when implemented with IEEE 754 floating-point. We can catch these inaccuracies by per-

forming the same computation with sinking-point and checking the output precision.

For purposes of the case study, assume we have some parabola defined with b = 2 and

c = 3. Additionally, we know that a is positive but very small; it is greater than zero, but

the magnitude is significantly less than that of b or c. a is the x2 term of our parabola; near

the origin, the smaller a is the more we expect the parabola to look like a line. For the line

bx+ c, there is one zero at −c/b, which in our case works out to −3
2
. Therefore, the smaller

a is, the closer we expect the positive zero to be to −3
2
.

We can plug in various values of a to see what the IEEE 754 standard gives us, and how

much precision sinking-point thinks is left. The results are show in table 5.2, compared to

the true answer to 16 decimal places.

At first, down to about a = 10−9, IEEE 754 confirms our mathematical intuition. But for

smaller values, floating-point inaccuracies start to creep into the computation, making the

result increasingly inaccurate until finally collapsing to a catastrophically inaccurate result

of zero around a = 10−17.

Meanwhile, sinking-point reports ever decreasing precision; while the first result with

a = 0.1 retains 51 bits of precision, reporting the values of bits down to the 2−50s place, the

result at a = 10−16 only has two bits of precision. We can also see the utility of tracking

the most significant unknown bit of zeros; though it also returns zero for a = 10−17, the

sinking-point zero has a least significant (known to be zero) bit in the 21s place, so it could

conceivable be any number between about −1 and 1.

As we can see, the naive form of the quadratic formula is not an accurate way to look for

zeros, given what we know about our parabola. Instead, we should be using an alternative

formulation, such as the following expression produced by the Herbie tool [33]:
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x =
1(√

b2 − 4ac+ b
) (−1

2c

)
Results for this computation are shown in table 5.3. By restructuring the computation,

Herbie has completely avoided the floating-point inaccuracies that plagued the naive version

of the formula, producing results that are mostly accurate down to the last few bits. Sinking-

point confirms this. Since none of the operations result in loss of precision, sinking-point

produces the same values as standard IEEE 754 floating-point, though as they are not exact

values, they are shown as very tight decimal ranges.

5.4.2 Accuracy on a 32-bit budget, adapted

In [21], John Gustafson proposes the following expression for evaluating the accuracy of

number systems on a 32-bit budget for precision:( 27
10
− e

π − (
√

2 +
√

3)

)67/16

Since sinking-point does not have support for the power function, we cannot use it to evaluate

this expression directly. However, we can perform a similar computation:( 27
10
− e

π − (
√

2 +
√

3)

)3/2

Instead of taking the power directly, we compute the inner expression, multiply it by itself

three times, and then take the square root.

The idea of this 32-bit accuracy challenge is to get as close as possible to the true an-

swer while computing with some number system that is only allowed to use 32 bits. For

our modified version, the true answer (to 10 decimal places) is 7.7413150952. In order to

come up with a “winning” IEEE 754 format, we might want to investigate different ways of

partitioning the 32 available bits between the exponent and the significand. To do this, we

can sweep across all of the different configurations using sinking-point augmented versions

of the corresponding IEEE 754 formats, and compare the precision left in the results.
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exponent bits result p bits of accuracy

3 NaN — —

4 7.7412[84-91] 20 17.6

5 7.7413[11-25] 19 20.9

6 7.7414[1-3] 18 15.6

7 7.7414[3-8] 17 15.2

8 7.741[64-76] 16 13.8

9 7.740[7-8] 15 13.1

10 7.740[5-9] 14 13.1

11 7.74[37-46] 13 10.9

12 7.74[4-5] 12 10.9

13 7.73[3-6] 11 9.6

14 7.69[2-9] 10 6.9

15 7.7[6-7] 9 7.8

16 7.8[0-2] 8 6.2

17 7.[79-84] 7 6.2

18 [7.94-8.12] 6 4.4

19 7.[13-37] 5 3.4

20 [7.8-8.5] 4 4.4

21 [4.5-5.5] 3 0.7

22 [2.8-3.2] 3 -0.5

23 NaN — —

Table 5.4: Sinking-point result, precision, and bits of accuracy for adapted 32-bit accuracy

challenge.

This might seem like cheating, since a sinking-point augmented format will use more than

32 bits, but we aren’t really interested in the accuracy of the sinking-point results. What

we want to see is the comparison between sinking-point’s assessment of the precision, and

the accuracy compared to the true result. We can obtain this by computing the “bits of

accuracy” for each of the sinking-point answers. Bits of accuracy, defined for two numbers

a and b as

− log2

(∣∣∣log2

(a
b

)∣∣∣)
is a measure inspired by John Gustafson’s similar “decimals of accuracy.” [21] For finite a
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and b with the same sign, the bits of accuracy tells us approximately how many bits in their

binary representations are the same. Ideally, we would want every sinking-point result to

have p bits of accuracy when compared to its ideal, true value.

The sinking-point results, their precisions, and the corresponding true bits of accuracy

for a range of exponent bits are shown in table 5.4. Sinking-point has a very consistent view

of the loss of precision that occurs during the computation: for almost all of the results, the

output precision is 8 bits less than the maximum that the format can represent. For the most

part, these precisions agree with the true bits of accuracy. However, we are starting to see

the limits of sinking-point’s capabilities. If we picked the result with the largest sinking-point

output precision, with 4 exponent bits and 28 bits of precision, we would actually end up

with a worse answer than the winning format with 5 exponent bits and 27 bits of precision.

This is likely a fluke due to the peculiarities of rounding for this specific computation, but we

can also see that sinking-point systematically overestimates the output precision by about

2-3 bits. Sinking-point is not designed to provide a sound analysis: its goal is to quickly and

cheaply detect catastrophic floating-point issues like we saw with the quadratic formula.

5.5 Sinking-point for other number systems

As we have described it so far, sinking-point is an extension of a host IEEE 754 format.

However, this choice is not due to any particular limitations of sinking-point itself. The

precision quantities n and p can be determined for almost any host number system that uses

a digital representation of numbers, so in principle, sinking-point could be used to extend

any such system. This includes not just IEEE 754 floating-point, but also other similar

formats such as posits [22], fixed-point representations, or other application-specific floating-

point designs [25]. Similarly, sinking-point is not restricted to host number systems that

use constant or finite amounts of precision; our prototype is based on Titanic’s arbitrary

precision arithmetic libraries, so it can already provide a sinking-point implementation for

an IEEE 754 format with arbitrary precision, or mix inputs from formats with different

precision.
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Sinking-point’s ability to track precision would be particularly valuable for multi-precision,

multi-format computations, since the meaning of precision remains constant across differ-

ent formats, even if they use completely different representations under the hood. In a

multi-precision, multi-format computation, the precision information sinking-point provides

could be used both to search for precision and format parameters that produce high output

precision, as we showed with the 32-bit accuracy challenge, or to dynamically adapt when

precision becomes too low, for example by redoing part of a computation with a different

format.

5.6 Future work

Sinking-point exposes some problematic rounding behaviors that commonly occur in finite-

precision number systems but that are often hidden by implementations like the IEEE 754

standard. While the analysis is not a sound guarantee, it is computationally cheap to com-

pute and it scales to nontrivial computations that are too large to provide sound error bounds

for with näıve interval arithmetic.

By exposing more information about the precision of values, not just the values them-

selves, sinking-point allows for an entirely new programming model. Precision aware pro-

grams could be implemented by extracting this information directly from the values, rather

than requiring the programmer to track a separate precision or error estimate. In the sim-

plest form, this could be used to check comparisons, and perhaps raise an exception if the

outcome of the comparison would be unclear due to a lack of precision.

There are several ways to tighten the analysis. For repeated additions, such as would

occur in a dot product, sinking-point could analyze all of the additions together and provide

sound p and n values for the entire sum, rather than individually for each operation. This

can be done dynamically, without identifying the sum in advance, by recording a bit more

metadata (the number of consecutive additions).

The analysis can also be extended to other math operations. Though we have not pre-

sented a formal analysis here, the sinking-point rules are related to the condition numbers of



86

the functions in question. This explains why the square root allows for additional precision

in the output; the condition number is 1
2
.

We also speculate that sinking-point could be implemented efficiently in hardware. While

this would not have any performance advantages over the host number system, it would

enable new programming paradigms for precision-aware algorithms, particularly because

sinking-point style precision information can be transferred between entirely different number

systems, as long as they have some notion of binary precision.

Sinking-point demonstrates that there is more to a number system than representing as

many numbers with as few bits as possible, and making math operations fast. It is also a

good showcase for the capabilities of Titanic, and the ease with which it can be extended to

model number systems beyond IEEE 754.
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Chapter 6

QUANTIFIND: EXPLORING APPLICATION-SPECIFIC
NUMBER SYSTEMS

Titanic gives us the ability to run FPCore programs with a wide variety of number system.

With sinking-point, we have used that flexibility to create a new number system that helps

improve numerical correctness.

But what about performance? Most computations today are implemented using a single

universal number system, or at best a few related number systems, such as single and double

precision floating point. What if instead, we could choose the right amount of precision for

each operation to build a fully customized number system for a specific application? How

many bits can we save, without sacrificing the correctness of the application?

To explore this question, we developed QuantiFind, a prototype tool for tuning application-

specific number systems. Unlike a universal number system, an application-specific number

system is co-designed with a particular application or algorithm in mind and embedded into

its implementation.

QuantiFind takes as input a mathematical description of an application, annotated with

optimization sites where the behavior of the number system can be controlled. By exper-

imentally observing the behavior of the application, QuantiFind searches for application-

specific number system configurations, filling the annotation sites with concrete number

system candidates. The output is a Pareto frontier of these configurations, each leading to

an implementation with some Pareto-optimal combination of observable metrics configured

per application to represent cost or output quality.

To evaluate QuantiFind, we detail the behavior of two representative applications, and ex-

plore application-specific number system configurations comprising either IEEE 754 floating-
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point with varying numbers of bits, or various configurations of posits [21]. The search pro-

cedure can generalize to other number systems as well; our metrics are general enough to

compare floating-point and posit configurations directly.

QuantiFind provides a Pareto frontier of the optimal tradeoffs between accuracy and cost

discovered during its search, rather than a single “best” implementation. The gaps between

our experimental frontiers and a mixed-precision baseline are considerable, amounting to

approximately a 2× quality improvement for a given bitcost, or the same quality at roughly

half the bitcost, depending on which part of the frontier is most important for the given

application.

Components of QuantiFind

The prototype QuantFind tool is built from the following major components:

• A representation for application-specific number systems in terms of the existing FP-

Core language and Titanic interpreter (Section 6.1).

• An abstract bitcost metric (Section 6.2).

• A hill climbing search procedure (Section 6.3).

In Sections 6.4 and 6.5, we discuss the results of using QuantiFind for two applications.

The purpose of QuantiFind is not to prove that any of the configurations we explore can

meet accuracy guarantees, nor is it to directly design efficient hardware for them. These are

well-known, difficult problems, and other approaches can help address them. The purpose

of QuantiFind is to find these configurations within a massive search space; the purpose of

the prototype tool is to show that exploration can be done at a high level, purely in software

“doing the simplest thing possible,” and thus opening many avenues for future work.



89

6.1 Representing configurations

In order to search for application-specific number system configurations of any kind, we first

need a way to describe what an application-specific number system is. Fortunately, FPCore

makes this easy. We can specify the number system for each individual operation in an

FPCore program, so an application-specific number system is just an FPCore program that

makes use of this capability.

In fact, we have already presented such a program, in Figures 3.11, 3.12, and 3.13. As a

running example, we will return to our FPCore implementation of the Lorenz system with

RK4. The orange highlighted precision annotations define an application-specific number

system found by QuantiFind works particularly well for our initial conditions.

To create a template for optimization, we replace the concrete precision annotations with

optimization sites that are filled in automatically by the tool. As this is not a feature of

FPCore, we fill in the optimization sites for each configuration to explore with a simple

Python string formatting function.

6.2 Evaluating configurations

To find interesting configurations, we also need some way to quantify their impact on applica-

tion quality, performance, and cost, relative to each other and to more traditional baselines.

A simple way to achieve this is to execute the FPCores directly with representative inputs

and measure the results.

6.2.1 Quantifying application quality

To determine the behavior of a particular configuration, we can simply run it with Titanic.

This will tell us what the application-specific number system does, but not how good it is.

To measure that, we need to develop some quality metric for the output of the application.

In most cases, this can be done by looking at the accuracy of the result, or using a

domain-specific quality metric. For our RK4 example, we obtain a correct reference solution
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by running the algorithm with a significantly smaller step size (16 times more steps) and a

very precise number system (double precision floating-point is more than precise enough in

this case). We then compare the final values of the x, y, and z coordinates of the simulated

result from each application-specific configuration to this reference, and calculate the bits of

accuracy. “Bits of accuracy” (similar to decimals of accuracy in [21]) measure the number

of bits that are in agreement between two values a and b, and can be calculated with the

formula:

− log2(|log2(
a

b
)|)

Numerical algorithms are approximate by definition, so in most domains comparing the

quality of different outputs is well understood and a suitable quality metric can be found

or created. Titanic handles the more difficult task of simulating the application-specific

number systems, though of course it has limited performance compared to, say, IEEE 754

implementations in hardware.

Like sinking-point, the implementation of QuantiFind is available on GitHub as part of

Titanic.

6.2.2 Quantifying performance: Bitcost

Titanic can simulate the functional impact different number systems have on application

quality, but it is a very poor proxy for real application performance. Ideally, we would like

to use the performance and power consumption of the most efficient hardware design we can

imagine for our cost metric, but this is intractable. We have too many configurations to

explore, and in any case hardware design depends on details that might not yet be known

while conducting the search.

To break the potential bootstrapping problem, we use a high-level cost metric which we

refer to as “bitcost.” The bitcost of a computation is the sum of the sizes of the represen-

tations of all numbers which are used as inputs to mathematical operations. To give an
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A: bitcost 494,760, 1.35 bits

of accuracy

D: bitcost 379,800, 3.26 bits

of accuracy

B: bitcost 569,160, 4.69 bits of

accuracy

E: bitcost 464,520, 3.27 bits of

accuracy

C: bitcost 660,280, 8.32 bits

of accuracy

F: bitcost 680,860, 7.96 bits of

accuracy

reference solution

Figure 6.1: Selected configurations for RK4 solver, with bitcost and accuracy. A, B, and C

use custom IEEE 754 floating-point number system configurations; D, E, and F use posits.

Full configuration parameters in Table 6.1

example, computing the x coordinate of the Lorenz equation (* sigma (- y x)) in some

(float exp? fn?) rounding context will depend on the value chosen for the parameter

fn? in this configuration, as well as the value chosen for rk? .

The bitcost of the multiply is 2fn? , since the constant σ and the result of the subtraction

are both rounded under the enclosing context with fn? total bits. The bitcost of the subtrac-

tion is 2rk? , as the values of x and y were last rounded in the rk?-bit context. The bitcost

for the whole subexpression is then 2fn? + 2fn? ; this might vary for the first iteration,

depending on the representation used for the initial-conditions argument. Bitcost is

tracked dynamically by the simulator across all operations as the FPCore program executes.

Bitcost is by no means a complete description of hardware performance characteristics.

It ignores the widely varying costs of different mathematical operations, as well as other

microarchitectural nuances like caches and the memory hierarchy. For the purposes of the
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QuantiFind prototype, however, bitcost is useful for determining the relative potential of

different configurations. Sending fewer bits to operations is almost never bad, all other

things being equal, and the dynamic analysis can easily be extended, for example to measure

operation costs, if that information is available. Most importantly, bitcost in practice is able

to differentiate different configurations enough that a Pareto frontier can form.

Figure 6.1 shows plots of the output of several sample configurations of the RK4 solver

run from the point (x = −12, y = −17/2, z = 35), using a step size of 1/64 for 240 steps.

Configurations A-C use floating-point, while D-F are various configurations of posits. Taken

together they illustrate the different tradeoffs between bitcost and accuracy we expect to

find. To explore more fully, we need an algorithm to conduct a systematic search.

6.3 Searching the configuration space

The space of configurations for an application-specific number system tends to be large. For

our RK4 solver example, we have decided on 6 annotations sites to control the rounding

behavior. At each site we let the precision of the floating-point number system vary from 3

to 24 bits; combined with a global exponent size which we allow to range between 2 and 8

bits, this gives us 7 parameters to tune and almost 800 million configurations to explore.

In theory, one could explore this space exhaustively, but only with immense patience, a

supercomputer, or a much faster number system simulator. Fortunately, the configuration

space has two useful properties that we can leverage in a search procedure that can be scaled

to larger applications.

6.3.1 The space of application-specific number systems

The first useful property of the space is its discreteness. Each configuration is a list of 7

small integers; in general, we expect that most application specific number systems could be

parameterized in a similar way. This suggests some classic techniques from AI that might

be applicable, in particular genetic algorithms [20].

To state our search problem as a genetic algorithm, we simply make the list of 7 integer
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parameters the genome. It is straightforward to generate random candidates (simply by

taking random parameters) and to create mutations (randomize a subset of the parameters).

Crossover can be done with any standard algorithm (for example, random parameter ex-

change between pairs of configurations). To limit the population after each generation, we

can measure properties of each configuration such as cost and output quality, and only keep

configurations that are on the Pareto frontier.

The second useful property is that the search space is ordered, at least in a global sense.

In general, we expect configurations with more bits to be more accurate and also more

costly, while configurations with fewer bits are less accurate but cheaper. Locally, these

expectations will tend to break down: sometimes, rounding in just the right place might

increase the accuracy of a configuration, by counteracting some of the algorithmic error with

quantization error in the other direction.

The search space is not completely smooth or convex, but it is “smooth enough” in

practice that exhaustively exploring points within a small radius of a given configuration

avoids many local minima and efficiently maps out the Pareto frontier.

6.3.2 Search algorithm

Our prototype search algorithm to find the Pareto frontier of number system configurations

for an application currently follows a modified hill climbing approach. Like a genetic algo-

rithm, we start with an initial population of randomly selected configurations. Our search

is not sensitive to the size of this initial population; in practice, even a single initial config-

uration seems to give good results.

Then, instead of mutation and crossover, we perform local search for each generation,

exhaustively exploring every configuration that is near some configuration on the current

Pareto frontier. Nearness is determined by adjusting each parameter individually up or

down by a small amount (2 or 3 seems effective for avoiding local minima in practice), and

similarly adjusting all of the parameters up and down together. After each generation, we

limit the population to the current Pareto frontier; if it has not changed, then we either
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position slope

exp? fn? rk? k1? k2? k3? k4? bitcost accuracy accuracy

A 5 3 5 3 3 3 4 494760 1.35 -inf

B 5 7 5 5 5 6 6 569160 4.69 2.96

C 5 11 9 8 5 7 4 660280 8.32 7.01

D 2 3 10 4 4 3 4 379800 3.26 -inf

E 2 6 10 5 11 4 9 464520 3.27 0.13

F 1 11 17 8 15 14 14 680860 7.96 4.50

Table 6.1: Selected configurations for RK4

explore additional completely random points or conclude that search has finished.

In our experiments, this search saturates the frontier after looking at a few tens of thou-

sands of configurations from the 800 million in the search space, and produces a much better

Pareto frontier than looking at a similar number of completely random configurations. As

noted with the bitcost metric, it is almost certainly possible to design a better search proce-

dure, for example by using more sophisticated genetic algorithm technology like crossover.

However, the existence of a better search procedure does not detract from our existing ex-

ploratory results.

6.4 Results - RK4

Figure 6.2 shows our results for the RK4 experiment, presented as Pareto frontiers. Up and

to the left is better. Our key finding is the significant gap between the application-specific

number systems found by the search (higher and further left; blue and orange) and the black

mixed-precision baselines.
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Figure 6.2: Pareto frontier for RK4 experiment

6.4.1 Experimental Pareto frontiers

The plot in Figure 6.2 shows four different Pareto frontiers, originating from two independent

experiments. We use QuantiFind to conduct the application-specific number system search

twice, using two different classes of number systems: IEEE 754-like floating-point, which

we have discussed through our running example, and also posits. For posits, we use as our

parameters the number of total bits in the representation (instead of significand bits) at

each of the annotations sites, with one additional parameter for the number of exponent bits

(which work differently from a traditional floating-point exponent [21]). Total bits range

from 3 to 24, while the exponent bits range from 0 to 2.
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Figure 6.3: Size of Pareto frontier during search for RK4

Our search can find a Pareto frontier with any number of quality and cost metrics; for

the RK4 experiment, we use a total of 5. To make the results easier to visualize, we project

this down to the two most relevant metrics: bitcost on the horizontal axis, and bits of

accuracy of the final position of the simulation on the vertical axis, averaged across the three

dimensions. The final, application-specific configuration frontiers are shown in blue squares

for the floating-point experiment and orange triangles for posits. Points on the true 5-metric

frontiers but not on the 2-metric projection are shown at reduced opacity.

The labeled points A-F correspond to the configurations plotted in Figure 6.1. Parameters

for these six configurations are given in Table 6.1.
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6.4.2 Mixed-precision baselines

As a baseline, we find a mixed-precision reference frontier for each of our experiments by

exhaustively searching over a set of four universal number systems at each of the six opti-

mization sites. For the floating-point version of the experiment, these four number systems

are 32-bit single-precision floats, float16 (5 exponent bits), bfloat16 (8 exponent bits), and

a hypothetical 8-bit floating-point format with 3 exponent bits. This reference frontier is

shown as black squares. For the posit experiment, we use 32-bit posits with 2 posit exponent

bits, 16 bits with 1 or 2 exponent bits, and 8 bits with 0 exponent bits. The posit reference

frontier is shown in black triangles.

In addition to the baselines, we also plot red fenceposts for uniform-precision configura-

tions using each of the baseline number systems.

The reference frontiers are valid application-specific number system configurations; since

they only use a few number systems, they could in theory be run on hardware today if

ALUs were available that supported those number systems. As far as baselines go, they are

somewhat optimistic, as ALUs for 8 and 16-bit floating-point operations, let alone posits,

are not widely available in mainstream processors.

However, we think these are the right baselines to compare against, because they illustrate

that mixed-precision tuning of a few types does not have all of the benefits of tuning every

bit in an application-specific number system.

6.4.3 Algorithmic accuracy ceiling and overspecialization

The grey horizontal line on the plot, drawn at about 9 bits of accuracy, shows the accuracy

ceiling we expect for the application based on the numerical error from the algorithm. As

expected, the uniform-precision 32-bit fenceposts are right on this line, as the 32-bit num-

ber systems are easily precise enough to reproduce the behavior of real numbers for this

application.

Perplexingly, the Pareto frontiers are able to push above this accuracy ceiling. This
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is because we test by running a single configuration, and compare to a reference result

computed with a more accurate algorithm. By tweaking the rounding behavior just so, the

search procedure can come up with ways to compensate for the error of the algorithm by

supplying the right counter-error in the number system. With only one test input, it is

relatively easy to overspecialize to it.

The far leftmost point on the floating-point reference frontier is caused by the same

effect. By truncating the coefficients in just the right way, it can achieve an accuracy and

cost tradeoff comparable to the application-specific configurations.

While this behavior illustrates the power of the search algorithm, it is neither desirable

nor an intended goal for the search. Overspecialization wastes the search algorithm’s time

and pollutes the output with configurations that may be too brittle to be useful in the

real world. Fortunately, we can mitigate this challenge in a variety of ways. QuantiFind is

designed to produce output for human inspection; our RK4 application is simple enough that

we can identify most of the overspecialized configurations by drawing the accuracy ceiling on

the graph, and rule them out by manual inspection. Users can also sample a larger number

of inputs, or manually select inputs representative of different application-specific scenarios.

6.4.4 Progress of the search

Independent of its results, it is also important to understand the behavior of the search

algorithm. One simple way to do this is by plotting the size of the current Pareto frontier

over the course of the search, as in Figure 6.3.

As with the Pareto frontiers, the blue points correspond to the floating-point experiment,

while the orange points are posits. Open points track the size of the current frontier, and solid

ones show the number of points from the final frontier that have been discovered. Vertical

lines show random restarts, after local search fails to expand the frontier.

Figure 6.3 confirms the expected behavior of QuantiFind’s search. The size of the frontier

goes up and down as new, good configurations are found; it does not seem to explode in

an unmanageable way. Interesting points from the final frontier are discovered steadily
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(a) input image (b) (c) reference output (d)

Figure 6.4: Test image used for blur. Images a and c enlarged for manual inspection; b and

d are the true size used for the search.

throughout the search, so the local search heuristic doesn’t seem to be wasting too much

time. Random restarts don’t add much to the frontier, but confirm that the local search

isn’t getting stuck; only one restart from the posit experiment led to any new exploration.

6.5 Results - blur

The RK4 solver is a useful example for understanding QuantiFind, but it isn’t the most

attractive target for low-precision, application-specific number system tuning. To show that

QuantiFind can be used in other domains, we also find interesting configurations for an image

processing application: blur.

6.5.1 3x3 box blur

Our image processing algorithm is a simple box blur [36], using the following 3x3 pixel

mask:
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1 (FPCore fastblur -mask -3x3 ((img rows cols channels) (mask 3 3))
2 :precision (float 5 10) :round nearestEven
3 (let ([ymax (! :titanic -analysis skip (# (- rows 1)))]
4 [xmax (! :titanic -analysis skip (# (- cols 1)))])
5 (tensor ([y rows]
6 [x cols])
7 (for* ([my (# 3)]
8 [mx (# 3)])
9 ([y* 0 (! :titanic -analysis skip (# (+ y (- my 1))))]

10 [x* 0 (! :titanic -analysis skip (# (+ x (- mx 1))))]
11 [in -bounds? FALSE (! :titanic -analysis skip (and (<= 0 y* ymax) (<= 0 x* xmax)))]
12 [mw 0 (if in-bounds? (! :precision (float 5 10) :round nearestEven (+ mw (ref mask my

mx))) mw)]
13 [w (tensor ([c channels ]) 0)
14 (if in-bounds?
15 (tensor ([c channels ])
16 (! :precision (float 5 12) :round nearestEven (+ (ref w c)
17 (! :precision (float 5 9) :round nearestEven (* (ref mask my mx) (ref img y*

x* c)))))
18 )
19 w)])
20 (tensor ([c channels ]) (/ (ref w c) mw))))
21 ))

Figure 6.5: Box blur kernel in FPCore, configuration E
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For each pixel in the output image, we take weighted averages of nearby pixels from the

input image, given by the mask. The weights are not uniform to exacerbate the effects of

rounding.

We insert annotations at 4 points in the computation: accumulating the in-bounds mask

weights, multiplying the pixel by the mask weight, accumulating the weighted pixel values,

and overall precision, which corresponds to the division of the weighted pixel values by the

sum of the mask weights. Like the RK4 experiment, we add a global exponent size as a fifth

parameter. Each precision is allowed to range from 3 to 16 bits, while the exponent ranges

from 2 to 8. We also perform a posit version of this experiment, using 3 to 16 total bits with

0 to 2 being reserved for the exponent.
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Figure 6.6: Pareto frontier for blur experiment

For input, we borrow an image from Halide [36] and resize part of it (shown in Figure 6.4)

to 32 by 32 pixels. To measure the quality of outputs, we use structural similarity compared

to a reference output computed with very high (64-bit) precision everywhere.

A complete FPCore implementation of the blur kernel is given in Figure 6.5. The precision

annotations correspond to a single explored point, represented by configuration E in Figre

6.9.
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Figure 6.7: Enlarged segment of Pareto frontier for blur

6.5.2 Pareto frontier for blur

Figure 6.6 shows the final Pareto frontiers for the blur experiment. The IEEE 754 experiment

is shown with blue squares, the posit experiment with orange triangles, and the reference

frontiers with black. Note the extreme steepness of the reference frontier, and spread of the

fenceposts. 8 bits is not enough here; 16 is fine for our structural similarity metric, but

incurs twice the bitcost of application-specific configurations with similar quality; while 32

bits is far more than necessary. However the search procedure is able to find a wealth of

configurations with around 9-12 bits that achieve structural similarity approaching 1.

The interesting parts of the application-specific frontiers are presented enlarged in Figure
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Global Sum Sum

exponent mask Multiply pixels Overall bitcost ssim

A 4 6 3 5 3 994604 0.06

B 5 3 3 3 3 1038784 0.87

C 5 4 3 4 3 1076176 0.95

D 5 4 3 5 4 1168632 0.98

E 5 5 4 7 5 1324988 1.00

F 2 3 4 4 4 488048 0.27

G 2 4 5 7 6 757320 0.73

H 2 10 7 11 8 1113568 0.95

I 2 9 8 11 9 1195140 0.98

J 2 8 10 13 10 1356236 1.00

Table 6.2: Selected configurations for blur

6.7. Posits seem to have an advantage in the extremely low precision part of the space, to the

left of the accuracy cliff seen around one million bitcost for the floating-point experiment.

This makes sense, as due to their rounding behavior, posits will insist on rounding to finite

values rather than 0 or infinity, which allows them to produce some kind of image even when

the number system can’t cover the full dynamic range of a 8-bit integer pixel. Further to the

right, we can see in the enlarged view that floating-point configurations have the advantage

leading up the the accuracy ceiling at a structural similarity of 1, past which point the

frontiers blur together.

Figure 6.8 shows the progress of the search, as the size of the Pareto frontier, again

confirming the expected behavior of QuantiFind’s search, as also seen in Figure 6.3. Because

structural similarity offers such a fine-grained continuous metric, the search can find a very

large number of almost indistinguishable configurations, but this still does not lead to an
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Figure 6.8: Size of Pareto frontier during search for blur

explosion in frontier size.

6.5.3 Inspecting outputs

Outputs from the labeled configurations A-J are shown in Figure 6.9. The parameters for

each configuration are given in Table 6.2. A-E are from the floating-point experiment, while

F-J use posits. The low precision configurations A, B, F, and G serve to illustrate the

failure modes of the respective number systems: as discussed above, posits can retain some

quantized color information at extremely low precisions, while IEEE 754 values are restricted

to either small (dark) pixel values, or the blackness of infinity.

Configurations C, D, and E, and respectively H, I, and J for posits, are chosen at about

0.95, 0.975, and 0.995 structurual similarity, and surprisingly comparable bitcosts between

1.0 and 1.35 million. On close inspection, the color quantization in these images should



105

A

F

B

G

C

H

D

I

E

J

float ref

posit ref

Figure 6.9: Example outputs for blur. A-E use floating-point; F-J use posits. Full configu-

rations in Table 6.2

be apparent, less so for configurations E and J. Even at this level of quality, however, the

search algorithm has decided that it doesn’t need to use an output number system that is

even capable of representing every possible pixel value, though it does cover the full dynamic

range. Depending on the application requirements, this could be a good thing or a bad thing.

By optimizing the number system, the search procedure has discovered that quantization can

compress the image with a manageable effect on quality.

6.6 Conclusion and future work

These two applications provide a good indication of the capabilities of QuantiFind. We have

applied the tool to a variety of applications, including various chaotic attractor systems,

other classic numerical algorithms, and simple image processing kernels. In an industrial

setting, QuantiFind has also been successfully used to improve numerical kernels found in a

hardware graphics datapath.

Looking forward, the QuantiFind prototype can be improved in many way to make a more
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production-ready system. On the hardware-facing side, specific domain knowledge could

be used to make a much more representative cost metric than our high-level bitcost. On

the software side, QuantiFind’s number system search could be combined with algorithmic

changes to perform true hardware-software co-design.

QuantiFind is not designed to replace existing tools or approaches, but to supplement

them. We do not intend it to be the final word on application-specific number system design,

but rather the beginning.
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Chapter 7

CONCLUSION

Number systems are a critical, fundamental interface between software (or any high-

level mathematical reasoning) and efficient implementations of computer hardware. In this

work, we have presented a set of tools and methodologies for working with number systems,

based on the observation that rounding behavior completely captures the semantic difference

between finite precision number systems and true real numbers.

Sometimes rounding can be catastrophic, as illustrated in Chapter 5, and the proposed

sinking-point number system exposes some of these problems to users without the need for

any expensive shadow execution or static real analysis techniques. Other times, however,

even very coarse rounding behavior will still allow for acceptable application quality, and

as we saw in Chapter 6 the QuantiFind tool can explore the space of application-specific

number systems to trade off quality for performance.

Both of these tools depend on FPCore, from Chapter 3, as a formal model of number

system behavior in terms of (rounded) real numbers, and on Titanic, from Chapter 4, as

a modular, extensible simulator for that behavior. Together, FPCore and Titanic form the

basis of a numerical workbench that can be used to design and study many number systems,

beyond what has been presented here.

None of this would be possible if we stuck with the IEEE 754 floating-point standard as

the only specification of how number systems should behave or be implemented. This is not

to say the IEEE 754 standard is bad; on the contrary, it has been incredibly successful at

enabling bit-exact reproducibility of numerical applications across a wide variety of hardware

implementations.

But there are more to numbers than just bits. Even when numbers are just bits, getting
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the right answer is not a function of the bits: it is a function of numerical intent. The IEEE

754 standard is very low level, and by reducing everything to bits, the numerical intent can

be lost. By focusing on the real-valued behavior of the number system through rounding,

FPCore preserves this intent without sacrificing any of the specificity of IEEE 754 to describe

quirky number system behavior.

As application needs and hardware designs continue to evolve, the underlying bits used to

construct number systems will inevitably change. We already see fields like machine learning

moving away from strict IEEE 754 compliance to achieve better hardware performance. Lan-

guages like FPCore are robust to this change because they provide numerical reproducibility

rather than bitwise reproducibility, and there will always be some guiding numerical intent.
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[39] Raúl Rojas. Konrad zuse’s legacy: the architecture of the z1 and z3. IEEE Annals of
the History of Computing, 19(2):5–16, 1997.

[40] Cindy Rubio-González, Cuong Nguyen, Benjamin Mehne, Koushik Sen, James Dem-
mel, William Kahan, Costin Iancu, Wim Lavrijsen, David H Bailey, and David Hough.
Floating-point precision tuning using blame analysis. In 2016 IEEE/ACM 38th Inter-
national Conference on Software Engineering (ICSE), pages 1074–1085. IEEE, 2016.
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