
OPTIMIZ ING THE AUTOMATED PROGRAMMING STACK

james bornholt

A dissertation
submitted in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

University of Washington
2019

Reading Committee:
Emina Torlak, Chair
Dan Grossman, Chair

Luis Ceze, Chair

Program Authorized to Offer Degree:
Paul G. Allen School of Computer Science & Engineering

© Copyright 2019

James Bornholt

abstract

OPT IMIZ ING THE
AUTOMATED PROGRAMMING STACK

James Bornholt

Chairs of the Supervisory Committee:
Associate Professor Emina Torlak

Professor Dan Grossman
Professor Luis Ceze

Paul G. Allen School of Computer Science & Engineering

The scale and pervasiveness of modern software poses a challenge for program-
mers: software reliability ismore important than ever, but the complexity of com-
puter systems continues to grow. Automated programming tools are a powerful
way for programmers to tackle this challenge: verifiers that check software cor-
rectness, and synthesizers that generate new correct-by-construction programs.
These tools are most effective when they apply domain-specific optimizations,
but doing so today requires considerable formal methods expertise.

This dissertation shows that new abstractions and techniques can empower
programmers to build specialized automatedprogramming tools that ensure soft-
ware reliability. We first demonstrate the importance and effectiveness of auto-
mated tools in the context of memory consistency models, which define the be-
havior of multiprocessor CPUs and whose subtleties often elude even experts.
MemSynth is a tool that automatically synthesizes formal descriptions of memory
consistency models from examples of CPU behavior, and has found ambiguities
and underspecifications in two major computer architectures. We then introduce
two new programmer techniques for developing automated programming tools.
Metasketches are a new abstraction for building program synthesis tools that in-
tegrate search strategy into the problem definition, allowing a metasketch solver
to solve synthesis problems that other tools cannot. Symbolic profiling is a tech-
nique for systematically identifying and resolving scalability bottlenecks in auto-
mated programming tools. Symbolic profiling generalizes across different sym-
bolic evaluation engines and has been used to improve the performance of state-
of-the-art automated tools by orders of magnitude. Together, these three con-
tributions demonstrate the value of automated programming tools for building
reliable software, and offer guidance on how to build such tools efficiently for
new problem domains.

To AJ (again!)

ACKNOWLEDGMENTS

I’ve had the incredible privilege of being advised by Emina Torlak, who I some-
how fooled into working with me during our first quarter at UW. Beyond her
fearsome technical skill, she has been a source of impeccable research taste and
a fierce advocate for my work. Above all else, she has been endlessly enthusiastic
and supportive of my research and of me (and my writing skills, which I hope this
dissertation shows she has considerably improved). I could not ask for a better
mentor or friend.

I originally came to UW to work with my coadvisors, Dan Grossman and Luis
Ceze, and have not for one second regretted that choice. Dan is a font of wisdom
and humor, has steered me through sticky situations (usually of my own making),
and is, to my mind, the quintessential PL researcher. Luis is a fearless academic
and visionary, and a reliable source of (good) distracting ideas and food advice.
I am grateful for their encouragement, even as my interests veered in and out of
their natural research areas.

As if three advisors were not enough, I’ve been lucky to collaborate with Xi
Wang for much of my PhD. What started as a hastily written ASPLOS submis-
sion my first summer turned into an immensely fun line of work at the intersec-
tion of systems and formal methods. Xi is deeply creative and a crazy hacker, and
working with him has helped me focus on having real impact.

I am grateful to the othermembers of my committee: Ras Bodik, whose unique
insights on my research have always improved it, and Andy Ko, who encouraged
me to consider the human side of my work.

The Allen School is an amazing environment for collaboration, and I want to
thank everyone I’ve worked with during my time here: Andrew Baumann, Doug
Carmean, BrunoCastro-Karney, RonghuiGu,Dylan Johnson,AntoineKaufmann,
Arvind Krishnamurthy, Rustan Leino, Jialin Li, Randolph Lopez, Mark Oskin,
Dan Ports, Georg Seelig, Karin Strauss, Irene Zhang, and Kaiyuan Zhang.

The Sampa, PLSE, and UNSAT groups made my time in grad school a blast.
There are too many of these wonderful people to list here, but thanks especially
to my friends Armin Alaghi, Meghan Cowan, Brandon Holt, Vincent Lee, Amrita
Mazumdar, Thierry Moreau, Luke Nelson, Sorawee Porncharoenwase, Adrian
Sampson, Helgi Sigurbjarnarson, John Toman, and Jacob Van Geffen. My office-
mates Eunice Jun, Kit Kuksenok, Brandon Myers, Kyle Rector, and Kendall Stew-
art made coming to school worth it every day.

EliseDorough,MelodyKadenko, andAndrei Stabrovski have eachmade count-
less administrative problems disappear. I’m especially thankful for Elise, who ef-
fortlessly moves between administrator and counselor as needed, and without
whom the Allen School would surely implode.

Steve Blackburn, Kathryn McKinley, and Todd Mytkowicz are collectively re-
sponsible for convincing me to give grad school a try. Thanks—you were right!

Finally, I am forever grateful for the love ofmy family:Karen,Mark, andMichael.
Moving halfway across the world for a PhD is a truly insane thing to do. Thank
you for believing in me.

vii

CONTENTS

1 introduction 1
1.1 Applying Automated Programming to Memory Consistency . . . 2
1.2 Scaling Program Synthesis with Metasketches 2
1.3 Targeting Scalability Issues with Symbolic Profiling 3
1.4 Contributions and Outline . 4

2 prelude: building a synthesis tool 7
2.1 Getting Started with Rosette . 7
2.2 Domain-Specific Languages . 8
2.3 Synthesis with DSLs . 10
2.4 Building Sketches . 12
2.5 Benefits and Pitfalls . 13

3 synthesis of memory consistency model specifications 15
3.1 Overview . 15
3.2 Ocelot: A Solver-Aided Relational Logic Language 17
3.3 Framework Sketches . 21
3.4 Memory Model Queries . 27
3.5 Reasoning Engine . 30
3.6 Case Studies . 36
3.7 Related Work . 43
3.8 Conclusion . 44

4 metasketches 47
4.1 Overview . 47
4.2 Optimal Syntax-Guided Synthesis 49
4.3 Metasketches . 53
4.4 Optimal Synthesis Algorithm . 58
4.5 Evaluation . 66
4.6 Related Work . 74
4.7 Conclusion . 76

5 symbolic profiling 77
5.1 Overview . 77
5.2 Example Workflow . 81
5.3 Symbolic Evaluation Anti-Patterns 85
5.4 Symbolic Profiling . 89
5.5 Actionability Case Studies . 96
5.6 Explainability, Generality, and Performance 103
5.7 Related Work . 106
5.8 Conclusion . 107

6 conclusion 109

bibliography 111

ix

1INTRODUCTION

Software reliability is more critical than ever. Today’s computer systems con-
trol essential infrastructure, medical devices, and our personal lives. Accompa-
nying this proliferation, today’s computer systems are also more complex than
ever, combining heterogeneous hardware, distributed networks, and sophisti-
cated algorithms. How can we help programmers to ensure reliability for these
far-reaching, complex systems?

One particularly effective approach to software reliability is automated pro-
gramming tools. Automated verification tools check a program’s adherence to a
desired specification, often written as a logical predicate defining the program’s
allowed behaviors. Automated synthesis tools take this task a step further, generat-
ing correct-by-construction programs from such logical specifications. Together,
these tools promise programmers a new paradigm for building reliable software,
in which automation carries the burden of ensuring reliability.

Two key challenges make realizing the promise of automated programming
tools particularly difficult. The first challenge is intractability. Automated pro-
gramming toolsmust solve intractable problemswhen reasoning about programs;
for example, a tool might verify that a property holds for every possible input.
Building an automated programming tool thus requires careful design to navi-
gate this intractability, working with a suite of heuristic-driven techniques that
are effective but sensitive to small changes.

The second challenge is specification. Automated programming tools relate soft-
ware behavior to a specification, but formany non-trivial programs, constructing
such a specification is at least as difficult as developing the program itself. Apply-
ing automated programming thus demands an ecosystem of tools for construct-
ing specifications that reflect programmer intent and capture potential program
flaws.

The common solution to both these challenges is domain specialization of au-
tomated programming tools. Specializing such tools to a particular problem do-
main addresses the intractability challenge by reducing the size of the problem
space—rather than reasoning about all possible programs (or programbehaviors),
a specialized tool need reason only about those programs (behaviors) relevant
to the problem domain. Specialization addresses the specification challenge by
providing domain-specific language constructs to concisely and precisely cap-
ture programmer intent without resorting to expressive-but-complex general-
purpose logics.

However, domain specialization is a challenging programming task in its own
right. My thesis is that new abstractions and techniques can empower programmers
to build specialized automated programming tools that ensure software reliability. This
dissertation explores both new specialized automated tools as well as new ab-
stractions and techniques for constructing them.

1

2 introduction

1.1 applying automated programming to memory consistency

What does it take to construct an automated programming tool for a new ap-
plication domain? Traditionally, such a task was a substantial engineering effort
that required formal methods expertise. The complexity stems from needing to
distill domain-specific concepts down to the generic interfaces of off-the-shelf
formal methods components such as satisfiability solvers. More recently, how-
ever, this burden has been alleviated by new programming languages [84, 122,
126, 127], which layer a familiar programming environment over such low-level
components. Automated tools built atop these languages are radically easier to
construct and to scale.

To illustrate the effectiveness of this approach to constructing automated pro-
gramming tools, Chapter 3 presentsMemSynth [26], a tool for automatically syn-
thesizing formal specifications of memory consistency models. These models de-
fine the ordering behavior of memory operations on a multiprocessor, and are
critical to writing concurrent software correctly. However, they are usually un-
derspecified, using natural language and example programs (“litmus tests”) to de-
fine their behaviors. Research efforts to fully specify and formalize even well-
studiedmodels (such as total store ordering) have takenmultiple person-years [114]
and yielded incorrect results that require later clarification [119].

MemSynth takes as input example behaviors of a multiprocessor, and automat-
ically synthesizes a formal descriptions of a memory model consistent with those
examples. The synthesis process relies on Ocelot [25], a new embedding of rela-
tional logic into a solver-aided programming language.The solver-aided language
takes care of the reduction from relational logic to boolean satisfiability. This ab-
straction allows us to easily implement domain-specific optimizations in Mem-
Synth, improving its scalability by orders of magnitude. Building on this scala-
bility allows MemSynth to include a powerful new disambiguation query that can
detect ambiguities and underspecifications in its synthesized outputs. We have
used MemSynth to synthesize memory model specifications for two major archi-
tectures, and in both cases we found ambiguities in existing documentation of the
expected models.

1.2 scaling program synthesis with metasketches

One of the key scalability challenges facing a synthesis tool like MemSynth is a
large, irregular search space of candidate programs. A synthesis tool works by
traversing this search space to find a program that satisfies the specification, and
this search ismost effectivewhen it can rapidly prune away large parts of the space
that do not contain valid solutions. Synthesis tools based on constraint solvers
achieve this pruning effect by learning from invalid candidate solutions to rule
out entire classes of candidates [58, 93]. The effectiveness of such a synthesis tool
thus depends on its ability to execute a good search strategy that rapidly rules out
large parts of the search space to hone in on a valid solution.

Most synthesis tools do not explicitly accept a search strategy as input; instead,
they rely on the underlying solver to infer a good strategy. Scaling a synthesis

1.3 targeting scalability issues with symbolic profiling 3

tool thus requires careful engineering to guide the solver towards good strate-
gies for a particular problem. To give programmers more control over this criti-
cal aspect of performance, Chapter 4 introduces metasketches, a general abstrac-
tion for specifying synthesis problems together with a search strategy for solv-
ing them [27]. The metasketch abstraction enables programmers to implement
domain-specific search strategies without having to build their own synthesis en-
gine. Metasketches also support optimal synthesis problems [42, 85], in which the
task is to find not just any solution but an optimal one according to a specified
cost function. A metasketch for optimal synthesis uses the cost function as part
of the search strategy, guiding the search process towards cheaper solutions.

Metasketches have formed the foundation of several state-of-the-art program
synthesis tools, and have enabled them to solve synthesis problems that existing
synthesis tools cannot. We have developed a solving engine for metasketches that
can solve them efficiently and in parallel. Our results show that metasketches can
express a wide variety of search strategies and cost functions, including dynamic
examples such asworst-case execution time and simplemachine learningmodels.

1.3 targeting scalability issues with symbolic profiling

How should a programmer decide where to apply domain-specific scalability op-
timizations such as metasketches? In traditional programs, performance engineer-
ing begins by using profiling tools that measure a program’s performance and
rank parts of the program according to their cost (usually their run time or re-
source usage) [65]. The underlying hypothesis of these tools is that, by improving
the performance of the slowest parts of the program, the entire program’s per-
formance will improve in concert [51]. But automated programming tools often
defy this hypothesis: speeding up the slowest part of the program can have un-
predictable effects on its performance. This instability stems from the unusual
all-paths program execution model that forms the foundation of automated pro-
gramming tools. These tools evaluate every possible path through the program;
for example, a program verifier checks that a desired property holds on every
possible execution.

The key technical challenge for improving this situation is identifying a per-
formance model for automated programming tools that can guide programmers’
optimization efforts. Chapter 5 presents symbolic profiling [24], an approach to
identifying anddiagnosing scalability issues in automatedprogramming tools [24].
Symbolic profiling instruments the symbolic evaluation engines that program-
mers use to implement automated programming tools, and provides diagnostic
guidance to identify parts of a tool where more programming effort is required
for scalability. Underlying symbolic profiling is a new performance model that
summarizes the behavior of any forward-based symbolic evaluation technique,
including symbolic execution [47, 77], bounded model checking [17, 46], and hy-
brids of the two approaches [118, 126]. Layered on top of this performancemodel
is a ranking heuristic for identifying potential optimization opportunities even in
parts of the program that are not “slow” according to a traditional profiler.

4 introduction

After identifying a potential optimization opportunity using symbolic profil-
ing, a programmer must still determine the appropriate change to make to the
program to improve its performance. This part of the process requires manual
programmer insight; often, the appropriate optimization involves exploitingdomain-
specific properties. However, to help programmers diagnose issues and explore
potential fixes,we have developed a catalog of common anti-patterns in automated
programming tools. Each anti-pattern lends itself to a different repair, and our
catalog includes examples of both problematic and repaired code.

We and others have used symbolic profiling to improve the scalability of auto-
mated programming tools by orders of magnitude, making it possible for them
to solve larger problems out of reach for existing tools. We have performed sev-
eral case studies showing that symbolic profiling is effective on real-world tools,
that our catalog of anti-patterns covers common issues, and that our performance
model for symbolic evaluation is more effective than traditional profilers. Sym-
bolic profiling is not specific to any one language or execution model—any for-
ward symbolic evaluation engine can be analyzed with the same performance
model. As evidence of this generality, we have integrated symbolic profiling into
two different engines [117, 126], and Galois, Inc. has integrated it into their Cru-
cible engine [61].

1.4 contributions and outline

Theremainder of this dissertation is arranged in four chapters.Chapter 2 presents
the state of the art in building automated programming tools through a primer
on the Rosette solver-aided language [126, 127]. Rosette abstracts away many of
the challenges of building these tools by automatically lifting programs to oper-
ate over symbolic values. This abstraction allows programmers to build verifica-
tion and synthesis tools for domain-specific languages (DSLs) with minimal effort:
they need only define the concrete syntax and semantics of the DSL, and Rosette
provides symbolic reasoning for free. However, scaling such tools to real-world
problems still requires substantial programmer effort.

Chapter 3 presents MemSynth, an automated programming tool for memory
consistencymodels, to demonstrate the programmer effort required to build scal-
able tools today. MemSynth demonstrates the importance of specialization—a
number of critical domain-specific designs and optimizations help make Mem-
Synth scale to industrial memory models.

Chapter 4 presentsmetasketches, a general abstraction for specifying and solv-
ing synthesis problems. The metasketch abstraction enables programmers to im-
plement domain-specific synthesis search strategies without having to build their
own synthesis engine, easing the burden of building a specialized tool.MemSynth
and other applications have used metasketches to solve problems that off-the-
shelf tools cannot.

Finally, Chapter 5 presents symbolic profiling, an approach to identifying and
diagnosing scalability issues in automated programming tools. Symbolic profiling
provides diagnostic guidance to identify parts of an automated programming tool

1.4 contributions and outline 5

where more programming effort (e.g., a custom metasketch) is required to make
a problem tractable.

Together, these chapters support the thesis at the core of this dissertation—
that automated programming tools are effective at helping experts solve problems
that would otherwise take years of manual work, and that new abstractions and
techniques make such tools easier to build and scale in practice.

2PRELUDE : BU ILDING A SYNTHES I S TOOL

This dissertation focuses on the task of building automated programming tools—
verifiers for checking software correctness, and synthesizers for automatically
generating programs from specifications. We argue that new abstractions and
techniques can help programmers build these tools more effectively, and demon-
strate this thesis through examples of real-world large-scale tools. But before in-
troducing these new contributions, we should first understand the current state
of the art: how do we build a new synthesis tool today?

2.1 getting started with rosette

There are several effective off-the-shelf frameworks for program synthesis. One
of the earliest is Sketch [121, 122], which offers a C-like language equipped with
synthesis features. In an effort to standardize across several different synthesis
engines, the syntax-guided synthesis (SyGuS) language [11] is a domain-specific
language for specifying synthesis problems.

This dissertation focuses primarily on the Rosette solver-aided language [125–
127], which extends the Racket programming language [60, 110] with support
for verification and synthesis. This support includes lifted versions of many of
Racket’s core language features,meaning that a tool based onRosette has access to
a rich library of components (lists, vectors, pattern matching, etc.) that program-
mers expect from a modern language. Though our contributions are not specific
to Rosette, its extensibility provides a vehicle to explore new abstractions and
techniques without rebuilding the infrastructure underpinning them.

Rosette’s key feature is programmingwith, and solving, constraints. Rather than
a program in which all variables have known values, a Rosette program has some
unknown values called symbolic constants.The values of the symbolic constantswill
be determined automatically at run time according to the constraintswe generate.

For example, we can find an integer whose absolute value is 5:

1 ; Compute the absolute value of `x`
2 (define (absv x)
3 (if (< x 0) (- x) x))

5 ; Define a symbolic constant called y of type integer
6 (define-symbolic y integer?)

8 ; Solve a constraint saying |y| = 5
9 (solve

10 (assert (= (absv y) 5)))

This program outputs:

(model

7

8 prelude: building a synthesis tool

[y -5])

This output is a model—an assignment of values to the symbolic constants—in
which y takes the value -5. The model satisfies all the constraints we provided
using Rosette’s assert form, which in this case was just the single assertion that
(absv y) be equal to 5.

Of course, not all constraints are satisfiable, and so models do not always exist.
For example, evaluting this program:

1 (solve (assert (< (absv y) 0)))

outputs the value:

(unsat)

which represents an unsatisfiable result. In this case, the result tells us there is no
possible value of y for which (absv y) is negative.

The solve form searches for an assignment of values to symbolic constants
consistent with the constraints it is passed (via assert). To execute this search,
Rosette compiles the program-level constraints down to logical constraints that
an off-the-shelf satisfiability modulo theories (SMT) solver [53] can check. This
compilation process is known as symbolic evaluation, and is often a bottleneck
in automated programming tools, as Chapter 5 explores. When the solver finds
a solution, Rosette translates the resulting model back up to the program-level
symbolic values.

2.2 domain-specific languages

Program synthesis is the task of finding a program that satisfies a specification.
The concept, then, is similar to the simple constraint solving examples above:
there are some unknowns whose values we wish to fill in subject to some con-
straints.Thedifference is that, in programsynthesis, the unknowns are programs—
we wish to find concrete programs that satisfy the desired constraints.

To define the space of candidate programs for a synthesis tool to consider, we
can define a domain-specific language (DSL). A DSL is a programming language
equipped with exactly the features required for a particular domain. Parts of this
dissertation deal with building DSLs for memory consistency models (Chapter 3)
and for approximate computing (Chapter 4), but we have also developed DSLs
for other problems such as file system crash safety [23]. Other researchers and
practitioners have developed DSLs for a myriad of tasks, from network configu-
ration [135] to K–12 algebra tutoring [34].

The design of the DSL is a key factor in defining the tractability of synthesis. If
a DSL is too complex, it may be difficult to solve the resulting synthesis problem,
because there are many programs to consider. But if a DSL is too simple, it will
not be able to express interesting behaviors. Navigating this trade-off is critical
to building practical synthesis tools.

2.2 domain-specific languages 9

2.2.1 Example: A Simple Arithmetic DSL

Consider the problem of synthesizing simple arithmetic expressions; for exam-
ple, a compiler might want to discover new expressions that are equivalent to a
given input expression for optimization purposes. Defining a DSL for this prob-
lem requires us to specify two components: the DSL’s syntax and its semantics.

Syntax. The syntax for ourDSLwill use abstract data types to represent the dif-
ferent expressions in the language. This representation is a deep embedding of our
arithmetic DSL inside Rosette. Our abstract data types will be implemented using
structures (Racket’s implementation of records). We declare the three operators in
our DSL as follows:

1 (struct plus (left right) #:transparent)
2 (struct mul (left right) #:transparent)
3 (struct square (arg) #:transparent)

Here, each struct line declares a newdata type named for its first argument (plus,
mul, square), with a field for each name in the second argument list (so plus and
mul have two arguments while square has one). The #:transparent annotations
are boilerplate for generating string representations and equality definitions for
the new data types.1

Our syntax allows us towrite programs in theDSLby instantiating the relevant
structures; for example, we can write:

1 (define prog (plus (square 7) 3))

to assign to prog a program that represents the mathematical expression 72 + 3.

Semantics. To define our DSL’s semantics, we implement an interpreter for pro-
grams in it. The interpreter takes as input a program, performs the computations
that program describes, and returns an output value. For example, when passed
the prog above as input, the interpreter should return the value 52—the result of
evaluating the mathematical expression 72 + 3.

Since our DSL syntax represents programs as abstract syntax trees, our inter-
preter recurses on the structure of the tree using pattern matching:

1 (define (interpret p)
2 (match p
3 [(plus a b) (+ (interpret a) (interpret b))]
4 [(mul a b) (* (interpret a) (interpret b))]
5 [(square a) (expt (interpret a) 2)]
6 [_ p]))

The recursive cases for each of the three DSL operations first evaluate their ar-
guments a and b, and then apply the corresponding Racket arithmetic operation

1 #:transparent also has a Rosette-specificmeaning: during symbolic evaluation, structureswith
this annotation can have their valuesmerged using boundedmodel checking, rather than requiring
symbolic execution to split into separate paths for each possible value of the structure. Chapter 5
explores the performance implications of this distinction.

10 prelude: building a synthesis tool

to the resulting values. The recursion has a base case [_ p] (in Racket patterns, _
matches any value) that returns the input program itself. This base case handles
constant values (e.g., 7 and 5 in prog above) by returning the value itself.

2.3 synthesis with dsls

The interpreter above is pure Racket code—it operates on concrete values (in-
stances of our DSL data types), and returns concrete values. Rosette lifts pure
Racket code to operate over symbolic values, and so the concrete interpreterworks
symbolically without any changes. For example, we can evaluate a program that
includes a symbolic integer y:

1 (define-symbolic y integer?)
2 (interpret (square (plus y 2)))

which returns the value

(* (+ 2 y) (+ 2 y))

since y is symbolic. Note that this returned expression is still a value—the in-
stances of square and plus from our DSL have been erased—but it is a symbolic
value in Rosette’s term language.

Building on this ability to work symbolically, we can use Rosette’s solve form
again, this time to answer simple questions about our DSL. For example, we can
askwhether there exists a value of y thatmakes the program (square (plus y 2))

evaluate to 25 (in other words, whether there exists a y such that (y+ 2)2 = 25)
by invoking the solver with such a constraint:

1 (solve
2 (assert
3 (= (interpret (square (plus y 2))) 25)))

This program returns a model:

(model
[y -7])

Here, the model says that by setting y to -7, the program (square (plus y 2))

evaluates 25. Of course, setting y to 3would also be a valid model; when multiple
satisfying models exist, Rosette (by virtue of its underlying SMT solver) chooses
one such model arbitrarily.

This example already demonstrates simple program synthesis: we have asked
our tool to find us a program (of a restricted shape) that evaluates to 25.2 To do
so, our tool effectively evaluates all possible programs (of the restricted shape), and
then searches for one that satisfies the specification using an SMT solver.

2 This problem is known as angelic execution [41, 78, 98] and has a number of applications beyond
synthesis.

2.3 synthesis with dsls 11

2.3.1 Dealing with Program Inputs

In the synthesis example above, the synthesized program is a constant expression.
But most programs are not constant: they take inputs and compute with them
to produce outputs. For example, rather than finding a constant expression that
evaluates to a particular number, we might want to find a constant c such that,
for every possible x, the program (mul c x) evaluates to x+ x. More formally, we
want to solve the query:

∃c. ∀x. cx = x+ x

While we can express this problem using symbolic values, the synthesis approach
above will not give the correct results, because it does not account for the univer-
sal quantifier over x. Concretely, trying the following program:

1 (define-symbolic x c integer?)
2 (solve
3 (assert
4 (= (interpret (mul c x)) (+ x x))))

gives the output:

(model
[x 0]
[c 0])

This model assigns concrete values to both c and x; when both are set to zero, it is
true that cx = x+ x, but this says nothing about other values of x.

To find a value of c that works for every x, Rosette includes a synthesize form.
This form takes as input a constraint (just as solve does) together with a list of
quantified variables, and finds a model that satisfies the constraint for every value
of those quantified variables. To solve the cx = x+ x problem above, we specify
x as a quantified variable while using the same constraint as above:

1 (synthesize
2 #:forall (list x)
3 #:guarantee (assert (= (interpret (mul c x)) (+ x x))))

This program finds a model that binds only the unquantified constant c:

(model
[c 2])

This model says that 2x = x+ x for every value of x, as we would expect.
This example already demonstrates the potential of automated synthesis tools:

here, we have discovered a fact about ourDSL (that (mul 2 x) and (plus x x) are
equivalent) without having to write any facts explicitly. The synthesizer discov-
ered this fact based solely on the semantics of the DSL we defined. This same idea
has been extended to find novel program rewrites and optimizations in a number
of application domains [70, 86].

12 prelude: building a synthesis tool

2.4 building sketches

Our example above synthesized a constant c, butwehad to specify the shape of the
program around that constant. A realistic program synthesis tool should be able
to generate entire programs, rather than just constants. But as discussed above,
generating entire programs is a second-order problem. To reduce this difficult
query to a first-order one our tools can solve efficiently, our program synthesis
tool will use sketches of programs from our DSL.

A sketch is a syntactic template for a program, with missing expressions called
holes for the synthesizer to fill in. Each hole is associated with a set of possible
completions, which are expressions that the synthesizer can try to place in the
hole. The sketch defines the search space for the synthesizer, which will explore
only those programs that correspond to a completion of the sketch. The synthesis
example above used a very simple sketch—it contained a single hole cwhose pos-
sible completions were integer constants—but we can also write sketches with
multiple holes, and define more complex holes whose completions are program
fragments in our DSL.

To define these more complex holes, we write a function that nondeterminis-
tically evaluates to one of several possible expressions:

1 (define (??expr terminals)
2 (define a (apply choose* terminals))
3 (define b (apply choose* terminals))
4 (choose* (plus a b)
5 (mul a b)
6 (square a)
7 a))

This ??expr function takes as input a list of terminal elements, defining the expres-
sions that can appear as leaves of our synthesized program fragment.The choose*
form is providedbyRosette and expresses nondeterministic choice: (choose* x y z ...)

can evaluate to any of its arguments. We use choose* in two ways. First, we de-
fine two leaf expressions a and b that can evaluate to any of the possible termi-
nal elements. Second, we define the return value of ??expr as a choice between
plus, mul, or square expressions in our DSL, or one of the terminal elements di-
rectly. Our ??expr function therefore returns expressions that apply any of our
DSL operators to any of the given terminal elements, or return one of the ter-
minals directly. For example, (??expr 2 x) can evaluate to programs such as 2,
x, (plus 2 x), (plus x x), or (mul 2 x), but not to multiple nestings of the DSL
operators, such as (plus (plus 2 x) 2).

The ??expr procedure demonstrates how Rosette reduces second-order syn-
thesis queries quantified over programs to first-order queries quantified over val-
ues.The key is the choose* operator. Given a call to (choose* x0 ... xn), Rosette
implicitly declares a set of symbolic boolean constants b0, . . . , bn−1, and returns
an if-then-else expressionof the form (if b0 x0 (if b1 x1 (if ... (if bn−1 xn−1 xn)))

that guards eachpossible program fragmentwith a corresponding symbolic boolean
constant. This return value reduces the choice between the given program frag-

2.5 benefits and pitfalls 13

ments to a first-order formula over the boolean constants—each assignment to
the booleans corresponds to a program.

Given the ability to construct holes, we can now write a sketch:

1 (define-symbolic x p q integer?)
2 (define sketch
3 (plus (??expr (list x p q)) (??expr (list x p q))))

This sketch defines a search space of programs that have a sum operation at the
top level, but whose operands are unknown expressions built out of the symbolic
constants x, p, and q. Because ??expr only returns expressions with at most one
operator, the resulting program will have no more than three DSL operations
(the top-level plus and one in each leaf). However, we could write an alternative
??expr that allowed nested operations (up to some finite depth).

Using this sketch, we can posemore complex synthesis problems. For example,
we can ask the synthesizer whether it is possible to rewrite an operation such as
(mul 10 x) as the sum of two expressions, based on the sketch above:

1 (define M
2 (synthesize
3 #:forall (list x)
4 #:guarantee (assert (= (interpret sketch)
5 (interpret (mul 10 x))))))

7 (evaluate sketch M)

Since the returnedmodelwill bind themany implicit booleans created by choose*,
we save it into a variable M rather than viewing it directly. Rosette’s evaluate form
allows us to convert this model into readable output. It takes as input an expres-
sion (sketch) and amodel (M), and returns sketch butwith any symbolic constants
in sketch substituted with their bindings in the model M. The result of evaluating
sketch against M is therefore a completion of sketch that satisfies the constraint
we gave to synthesize:

(plus (mul 8 x) (plus x x))

This program tells us that 10x = 8x+(x+ x), which is one way of decomposing
10x into a sumof two expressions.There aremanyother possible decompositions,
and so Rosette is free to choose any of them arbitrarily.

2.5 benefits and pitfalls

Our example works with trivial specifications over a simple DSL. The key ad-
vantage Rosette gave us was abstraction: we were able to implement our DSL
(syntax and semantics) without thinking at all about synthesis or verification. The
interpreter for concrete programs in our DSL worked automatically with sym-
bolic values and even symbolic programs, and Rosette gave us access to complex
queries for synthesizing programs in our DSL without any changes to the inter-
preter.

14 prelude: building a synthesis tool

The challenge this dissertation focuses on is the next step: how do we turn our
simple synthesizer into one that can solve real-world problems? As Chapter 1
discusses, the two key impediments to this progress are intractability and spec-
ification. Real-world problems have more complex DSLs with richer semantics,
which can make them intractable for a synthesizer to reason about (intuitively,
they lead to a bigger search space of programs). Real-world problems also carry
more complex specifications to define richer behaviors, which are both difficult
for programmers to write and difficult for synthesizers to reason about.

We argue in this dissertation that domain specialization is a potent technique
for addressing these two challenges. On the surface, however, specialization is in
opposition to our successes in the simple examples above: Rosette’s abstractions
(and those of other solver-aided languages) reduce the workload of programmers
building automated tools, but specialization requires more work to identify and
apply appropriate optimizations. How can we allow programmers to build spe-
cialized automated programming tools while still retaining the productivity ben-
efits of solver-aided languages?

The remainder of this dissertation addresses this challenge in two parts. First,
Chapter 3 demonstrates the effectiveness of specialized automated programming
tools in the case of memory consistency models. With the appropriate specializa-
tions, the tools built in that domain can solve important problems that no off-
the-shelf tool can. Second, Chapters 4 and 5 present techniques that allow such
tools to be built efficiently. These techniques help focus programmer effort on
discovering and implementing specializations. Together, these two contributions
demonstrate that new abstractions and techniques can empower programmers to
build specialized automated programming tools.

3SYNTHES I S OF MEMORY CONS ISTENCY MODEL
SPEC IF ICAT IONS

A memory consistency model specifies which writes to shared memory a given
read may see. Ambiguities or errors in these specifications can lead to bugs in
both compilers and applications. Yet architectures usually define their memory
models with prose and litmus tests—small concurrent programs that demonstrate
allowed and forbidden outcomes. Recent work has formalized the memory mod-
els of common architectures through substantial manual effort, but as new archi-
tectures emerge, there is a growing need for tools to aid these efforts.

This chapter presentsMemSynth, a synthesis-aided system for reasoning about
axiomatic specifications ofmemorymodels.1 MemSynth takes as input a set of lit-
mus tests and a framework sketch that defines a class ofmemorymodels.The sketch
comprises a set of axioms with missing expressions (or holes). Given these inputs,
MemSynth synthesizes a completion of the axioms—i.e., a memory model—that
gives the desired outcome on all tests. The MemSynth engine employs a novel
embedding of bounded relational logic in a solver-aided programming language,
which enables it to tackle complex synthesis queries intractable to existing re-
lational solvers. This design also enables it to solve new kinds of queries, such
as checking whether a set of litmus tests uniquely identifies a memory model,
and if not, synthesizing a new litmus test summarizing the ambiguity. MemSynth
can synthesize specifications for x86 in under two seconds, and for PowerPC in
12 seconds from 768 litmus tests. Our ambiguity check identifies missing tests
from both the Intel x86 documentation and the validation suite of a previous
PowerPC formalization.

3.1 overview

Reasoning about concurrent code on a multiprocessor requires a memory consis-
tency model that specifies the memory reordering behaviors the hardware will ex-
pose. Architectures typically define their memory consistency model with prose
and litmus tests, small programs that illustrate allowed and forbidden outcomes.
These imprecise definitions make reasoning about correctness difficult for devel-
opers and tool builders. Researchers have argued for formalizing memory mod-
els [140], and have recently created formal models for common architectures, in-
cluding x86 [119] and PowerPC [91]. But each such formalization required several
person-years of effort and several revisions (e.g., [5, 7, 103, 113, 114]).

These formalization efforts have been aided by tools for verification and com-
parison of memory models. Verification tools check whether a model allows a lit-

1 This chapter was first published as the paper Synthesizing Memory Models from Framework Sketches
and Litmus Tests, by James Bornholt and Emina Torlak, at PLDI 2017 [26]. This version adds proofs
of the major theorems about MemSynth’s reasoning engine.

15

16 synthesis of memory consistency model specifications

mus test [7, 105, 129], while comparison tools synthesize litmus tests on which
two models disagree [89, 136]. These tools provide verification and comparison
queries for memory models within a given axiomatic framework (e.g., [9]). The
framework supplies basic axioms that everymemorymodelmust follow, expressed
as first-order constraints on relations that order memory events (such as reads
and writes). The tools then answer queries about specific models from the frame-
work with respect to a given litmus test (in the case of verification) or a space of
litmus tests (in the case of comparison). But no existing tools can answer queries
about the framework itself, e.g., whether it contains amemorymodel that satisfies
a set of litmus tests.

This chapter proposes using program synthesis to answer novel queries about
memory models and their frameworks. The core idea behind the proposal is a
framework sketch, which describes a class of memorymodels with a syntactic tem-
plate. The template consists of a set of axioms with holes [122] (i.e., missing ex-
pressions) whose completion defines a memory model from the target class. The
sketch is providedby thememorymodel designer and can capture domain-specific
insights and assumptions, such as the use of scopes [4] to describe GPU memory
models. Given a framework sketch, synthesis-based tools can answer a variety
of new queries about memory models. For example, they can search for a mem-
ory model specification that satisfies a set of example litmus tests, automating a
tedious development cycle currently performed by hand [95]. Synthesis also en-
ables more complex queries, such as determining whether a synthesized model
is ambiguous by checking whether a second, semantically distinct model also ex-
plains the same example litmus tests.

We realize this proposal with MemSynth, a new system for synthesizing ax-
iomatic specifications of memory models from framework sketches and litmus
tests. MemSynth provides a language for writing framework sketches, and an ef-
ficient engine for synthesizing models in those frameworks. The language and
the engine are both based on a deep embedding of bounded relational logic [72,
128] in Rosette [126, 127] (Chapter 2). Relational logic combines first-order logic
with relational algebra and transitive closure, providing an expressive semantics
that subsumes many recent frameworks for memory models [7, 90, 129, 136].
The bounded version of the logic is decidable by reduction to boolean satisfia-
bility, and existing relational solvers [72, 99, 128] are based on such a reduction.
MemSynth takes a radically simpler approach—it delegates the reduction to its
host language. Rosette includes a symbolic evaluator that compiles the semantics
of its guest languages to efficiently-solvable SMT constraints. MemSynth layers a
specialized synthesis algorithm on top of this evaluator, scaling to produce spec-
ifications of real memory models in seconds.

The MemSynth synthesizer takes as input a framework sketch and a set of lit-
mus tests. The sketch is a formula in relational logic with missing expressions
(holes) over relations defined by the framework (e.g., happens-before [83]). Given
these inputs, MemSynth completes the sketch by solving a synthesis query of the
form∃φM ∈ F.

∧

T∈TP ∃I. JLUT;VT; φMMKI∧
∧

T∈TN ∀I. ¬JLUT;VT; φMMKIwhere
F is a framework sketch, and TP and TN contain litmus tests that demonstrate al-
lowed and forbidden behaviors, respectively. In principle, such a query can be

3.2 ocelot: a solver-aided relational logic language 17

discharged by generic relational solvers [99] that support higher-order quantifi-
cation (over the relations E). In practice, however, our queries are intractable for
these solvers: their languages lack the constructs (such as sketches and partial in-
terpretations [128]) that enable MemSynth’s embedded engine to employ aggres-
sive optimizations based on the structure of litmus tests and framework sketches.

But MemSynth’s novel design offers advantages that go beyond scalable syn-
thesis. Being embedded in Rosette, MemSynth provides a platform for rapid de-
velopment of high-performance tools for reasoning about memory models. For
example, we use MemSynth to implement the verification query in five lines of
code, obtaining a tool that outperforms dedicated relational solvers [72, 99] and is
comparable to existing hand-crafted verifiers [7, 90]. We also implement a novel
ambiguity query for identifying ambiguities in the set of litmus tests with respect
to a framework sketch. The ambiguity query checks whether a memory model
uniquely explains a set of litmus tests, and if not, synthesizes anothermodel along
with a distinguishing test that illustrates the difference between the two models.

We evaluate the scalability and utility of MemSynth’s queries using a frame-
work sketch based onwork byAlglave et al. [7]. Given this sketch,MemSynth syn-
thesizes a specification for the notoriously relaxed PowerPC architecture from
768 litmus tests in under 12 seconds, including definitions for the subtle cumula-
tivity behavior of PowerPC fences. We also synthesize a specification for the total
store ordering (TSO) memory model used by the x86 architecture in under two
seconds, using the litmus tests from the Intel Software Developer’s Manual [71].
In both cases, our ambiguity queryfinds that the given litmus tests donot uniquely
define their intended memory model—several other models are also consistent
with the set of tests. MemSynth synthesizes sets of tests missing from the valida-
tion suite of Alglave et al. [7] (for PowerPC) and the Intel manual (for x86) that
resolve these ambiguities.

We evaluateMemSynth as a tool-building platformby reproducing results from
an existing paper [90] on comparingmemorymodels. In the process, we automat-
ically synthesize a repair for a discrepancy between our framework sketch and the
original work—due to a misprint in the paper—which we were unable to fix by
hand. The repaired sketch of the paper’s framework was developed in two days
and achieves the same performance as the existing tool.

3.2 ocelot: a solver-aided relational logic language

MemSynth is an engine for automated reasoning about memory models. It builds
on a new domain-specific language for relational logic called Ocelot [25]. Ocelot
extends bounded relational logic [72, 128]with expression holes, which enable sketch-
ingofmemorymodel frameworks.Thanks to its expressive underlying logic,Mem-
Synth can host many existing frameworks for reasoning about classes of mem-
ory models. This section reviews the syntax and semantics of relational logic, and
presents our extensions for synthesis problems.

18 synthesis of memory consistency model specifications

3.2.1 Bounded Relational Logic

Relational logic [72] extends classic first-order logic with transitive closure and
relational algebra. The inclusion of closure and relations makes this logic ideally
suited for reasoning about memory models. In fact, many recent axiomatic mem-
orymodel frameworks [7, 90, 129, 139] are expressed as first-order constraints on
relations that ordermemory events.MemSynth is based onOcelot, a new embed-
ding of bounded relational logic [128] in the Rosette solver-aided language [126,
127]. This embedding includes an explicit construct for sketching, and its engine
offers optimizations for answering (satisfiability) queries about memory models
orders of magnitude faster than general-purpose relational solvers [72, 99].

Syntax. Bounded relational logic (Fig. 3.1) includes the standard connectives
and quantifiers of first-order logic, alongwith the standard operators of relational
algebra. A specification LU;D; fM in this logic consists of a universe of discourseU, a
set of relation declarationsD, and a formula f. The universeU is a finite, non-empty
set of uninterpreted symbols. A relation declaration r :k [Rl,Ru] introduces a
free variable r (in essence, a Skolem constant), which denotes a relation of arity k.
Each tuple in this relation consists of k elements drawn from the universeU. The
relationsRl andRu are called the lower and upper boundon r, and specify the tuples
that rmust andmay contain, respectively.The formula fmay refer to the variables
r declared in D, but it may not include any other free (unquantified) variables.

Semantics. We define the meaning of a relational specification s = LU;D; fM
with respect to an interpretation as follows. An interpretation I consists of a uni-
verse U(I) and a map of variables to relations drawn from U(I). We say that I
satisfies the specification s, written as I |= s, if I and s have the same universe of
discourse (i.e., U(I) = U), if Rl ⊆ I(r) ⊆ Ru for each r :k [Rl,Ru] in D, and if the
formula f evaluates to ‘true’ in the environment defined by I, i.e., JfKI = ⊤.

The semantics of formulas and expressions are standard [128], but we review
the most relevant constructs next. The constant univ denotes the universal rela-
tion {〈a〉 | a ∈ U}, and iden is the identity relation {〈a, a〉 | a ∈ U}. The multi-
plicity predicates no, some, and one constrain their argument to contain zero, at
least one, and exactly one tuple, respectively. The cross productX→ Y of two re-
lations is the Cartesian product of their tuples.The joinX.Y of two relations is the
pairwise join of their tuples, omitting the last column of X and first column of Y,
on which the two relations are matched. As we will see in Section 3.3.2, memory
model specifications make heavy use of these constructs.
Example 3.1. Let the universe be U = {a, b, c, d}, X = {〈a〉, 〈c〉} a relation
of arity 1 with two tuples, and Y = {〈a, b〉, 〈b, d〉} a relation of arity 2 with two
tuples.We can take the cross product, join, and transitive closure of these relations
as follows: X→ Y = {〈a, a, b〉, 〈a, b, d〉, 〈c, a, b〉, 〈c, b, d〉}, X.Y = {〈b〉}, Y.Y =
{〈a, d〉}, and ^Y = {〈a, b〉, 〈b, d〉, 〈a, d〉}. If we provide the declarations p :1
[{}, {〈a〉, 〈c〉, 〈d〉}] and q :2 [{〈a, b〉}, {〈a, b〉, 〈b, d〉}], then the interpretation
I = {p 7→ X, q 7→ Y} satisfies the specification LU; p, q; no q.pM but does not
satisfy LU; p, q; q.q in qM.

3.2 ocelot: a solver-aided relational logic language 19

specification s ::= LU;D; fM

universe U ::= {a[, a]∗}

declarations D ::= {} | {d[, d]∗}

declaration d ::= r :k [b, b]

bound b ::= {(⟨a[, a]∗⟩)∗}

formula f ::= true | false | e in e | e = e | no e |

some e | one e | not f | f and f | f or f |
f implies f | f iff f |

all x : e. f | exists x : e. f

expression e ::= r | c | e + e | e & e | e − e | e.e |

e → e | ^e | ∼e | {x : e | f}

arity k ::= positive integer
relation r ::= identifier
variable x ::= identifier
scalar a ::= identifier
constant c ::= univ | iden

(a) Abstract syntax

JLU; d1, . . . , dn; fMKI =
n∧

i=1

JdiKI ∧ JfKI ∧ (U(I) = U)

Jr :k [bL, bU]KI = bL ⊆ I(r) ⊆ bU
JtrueKI = ⊤

JfalseKI = ⊥

Jp in qKI = JpKI ⊆ JqKI
Jp = qKI = JpKI = JqKI
Jno pKI = JpKI ⊆ ∅

Jsome pKI = ∅ ⊂ JpKI
Jone pKI = |JpKI| = 1
Jnot fKI = ¬JfKI

Jf and gKI = JfKI ∧ JgKI
Jf or gKI = JfKI ∨ JgKI

Jf implies gKI = JfKI ⇒ JgKI
Jf iff gKI = JfKI ⇔ JgKI

Jall x : p. fKI = ∧v∈JpKIJfK(I[x := v])
Jexists x : p. fKI = ∨v∈JpKIJfK(I[x := v])

JrKI = I(r)
JunivKI = {⟨a⟩ | a ∈ U(I)}
JidenKI = {⟨a, a⟩ | a ∈ U(I)}

Jp + qKI = JpKI ∪ JqKI
Jp & qKI = JpKI ∩ JqKI
Jp − qKI = JpKI \ JqKI

Jp.qKI = {⟨p1, . . . , pn, q1, . . . , qm⟩ |
⟨p1, . . . , pn, z⟩ ∈ JpKI ∧ ⟨z, q1, . . . , qm⟩ ∈ JqKI}

Jp → qKI = {⟨p1, . . . , pn, q1, . . . , qm⟩ |
⟨p1, . . . , pn⟩ ∈ JpKI ∧ ⟨q1, . . . , qm⟩ ∈ JqKI}

J^pKI = JpKI ∪ Jp.pKI ∪ Jp.p.pKI ∪ . . .

J∼pKI = {⟨p2, p1⟩ | ⟨p1, p2⟩ ∈ JpKI}
J{x : p | f}KI = {v ∈ JpKI | JfK(I[x := v])}

(b) Semantics

Figure 3.1: The syntax and semantics of bounded relational logic [128].

20 synthesis of memory consistency model specifications

Interpret(p, I)
Inputs: Relational syntax p; interpretation I
Output: Encoding of the semantics of p (according to Fig. 3.1) with respect

to (possibly symbolic) bindings in I

Instantiate(D)
Input: Set of relation declarationsD = {d1, . . . , dn}
Output: Interpretation I that binds each decl. r :k [Rl,Ru] in D to a matrix

with entries

m[i1, . . . , ik] =

⊤ 〈ui1 , . . . , uik〉 ∈ Rl

freshSymBool() 〈ui1 , . . . , uik〉 ∈ Ru \ Rl

⊥ otherwise

Figure 3.2: Functions provided by the Ocelot DSL for interpreting relational formulas.

3.2.2 Expression Holes

To support synthesis, we extend relational logic with expression holes, which de-
fine the search space for a synthesis query to explore [122]. An expression hole
G(N,T, d, k) is a relational expression that evaluates nondeterministically to one
of a finite set of concrete expressions. The set contains all expressions of arity k
that can be produced with derivation trees of depth d from a context-free gram-
mar with non-terminals N and terminals T, where the non-terminals are drawn
from expression operators in relational logic. Expression holes are a key differ-
ence between Ocelot and other relational logic languages such as Kodkod [128]
and Alloy∗ [99], which would require another layer of embedding—building an
interpreter for relational logic inside relational logic—to achieve the same result.
Example 3.2. Let X be a relation of arity 1, Y a relation of arity 2, T = {X,Y},
andN = {+,→}. ThenG(N,T, 1, 1) contains only the expressionsX andX+X,
G(N,T, 2, 1) additionally containsX+X+X andX+X+X+X, andG(N,T, 1, 2)
contains Y, Y+ Y, and X→ X.

3.2.3 Relational DSL

Ocelot is implemented (Fig. 3.2) as a domain-specific language (DSL) inRosette [126,
127].TheOcelot interpreter Interpret(p, I) takes as input relational syntax p and
an interpretation I, and executes the semantics in Fig. 3.1. The interpreter repre-
sents relations of arity k in the standard way [72, 128], as boolean matrices of size
|U|k, with each cell denoting the presence or absence of a given k-tuple. Relational
expressions are then interpreted asmatrix operations and formulas as constraints
over matrix entries; e.g., relational join becomes matrix multiplication.

3.3 framework sketches 21

Being embedded in Rosette, Ocelot is both an interpreter for bounded rela-
tional logic and an engine for answering relational satisfiability queries—such as
finding an interpretation I that satisfies a specification s, if one exists. We ob-
tain this engine for free by exploiting Rosette’s symbolic evaluation facilities. To
search for a satisfying interpretation I |= s, Ocelot simply evaluates Interpret(s, I)
against an interpretation I that binds the free variables in s to matrices populated
with symbolic boolean values (using the Instantiate function in Fig. 3.2). The re-
sult of Interpret(s, I) is a symbolic encoding of the semantics of s, which is then
checked for satisfiability with an off-the-shelf SMT solver [53]. This lifted evalua-
tion works both on symbolic interpretations and on specifications that are made
symbolic by the inclusion of expression sketches. This evaluation strategy also
offers precise state space control: by exploiting domain-specific knowledge to
reduce the number of symbolic values in I, Ocelot outperforms state-of-the-art
relational solvers [99] as we show in Section 3.6.

3.3 framework sketches

Like existing tools [9, 129, 136], MemSynth specifies memory models as axioms
in relational logic that constrain the set of executions allowed for a concurrent
program. But unlike existing tools, which take a complete memory model spec-
ification as input, MemSynth accepts a sketched specification in the form of a
framework sketch provided by a memory model designer. Framework sketches are
at the core of MemSynth’s flexibility as a tool-building platform.

This section defines framework sketches in terms of relational logic, and intro-
duces FAlglave, an example sketch of the Alglave et al. [7] framework for memory
models. We use FAlglave to illustrate the automated reasoning queries (Section 3.4)
supported by our engine (Section 3.5), and to demonstrate their scalability (Sec-
tion 3.6).

3.3.1 Definitions

A framework sketch (Definition 3.3) consists of two components: a set of axioms φ
that contain expression holes (Section 3.2.2), and a function Enc that encodes the
syntax and semantics of a litmus test in bounded relational logic. Concurrent pro-
grams (without unbounded control flow) have a natural representation [129] in
our logic: a program defines a finite universe of discourseU and a set of relations
V = S ∪ E over U that encode the test’s syntax (S) and its candidate executions
(E). For example, S often includes unary relations for each type of instruction in
a concurrent program P (such as Read and Write), as well as the program-order
relation po that relates instructions in the same thread. The relations in E encode
possible executions of P by, for example, defining a happens-before ordering [83]
on the instructions in P (see [7, 89, 129]). The holes in the axioms φ are specified
over the relations S∪E emitted byEnc. A framework sketch (φ,Enc) thus defines
a class of memory models (Definition 3.4) with respect to a framework-specific
definition of a litmus test.

22 synthesis of memory consistency model specifications

Definition3.3 (Framework sketch). A framework sketch is a pair (φ, Enc), where:

• φ is a relational formula containing zero or more expression holes. The relations
in φ are partitioned into sets S and E, where relations in S characterize the syntax
of a concurrent program, and relations in E characterize an execution of that
program.

• Enc is a function that takes as input a concurrent program P, and returns a pair
(U,V) of a relational universe U and set of relation declarations V , such that
every relation in S ∪ E is bound by V .

We say that a framework sketch allows a concurrent program P if there exists an inter-
pretation I such that I |= LU;V; φM, where (U,V) = Enc(P). Otherwise, the sketch
forbids P.

Definition3.4 (Memorymodel). AmemorymodelM is a framework sketch (φM, Enc)
in which φM contains no expression holes. We say thatM belongs to a framework sketch
F = (φF, Enc), written M ∈ F, if and only if φM can be obtained from φF by substi-
tuting every hole h = G(N,T, d, k) in φF with a relational expression e ∈ h.

By not mandating a specific definition of a concurrent program P, MemSynth al-
lows framework sketches to define instruction sets and other program structures
(e.g., control flow) that are relevant to a given class of memory models. For exam-
ple, a language memory model would include release/acquire operations [20]; an
architectural model, such as FAlglave below (Section 3.3.2), would include fences
for a specific architecture (e.g., mfence on x86 or sync and lwsync on PowerPC);
and a GPU memory model would include scopes on fence operations [4]. Mem-
Synth requires only that the framework sketch separate the relations S defining
a litmus test from the relations E defining an execution of that test, so that it can
support a variety of automated reasoning queries in a framework-agnostic way
(described in Section 3.4).

3.3.2 FAlglave

This section illustrates a framework sketch based on an axiomatic framework by
Alglave et al. [7]. We call the corresponding framework sketch FAlglave. We use
FAlglave for most of our experiments, although in Section 3.6.2 we construct a sec-
ond framework sketch based on a different framework.

3.3.2.1 Litmus Tests

In FAlglave, a litmus test is a small multi-threaded program together with a candi-
date outcome, expressed as a constraint on the program’s final state. For example,
the Intel Software Developer’s Manual [71] includes the following litmus test to
illustrate a surprising behavior allowed by the x86 memory model, where reads
may be reordered with earlier writes:

3.3 framework sketches 23

Test x86/3

Thread 1 Thread 2
1: X← 1 3: Y← 1

2: r1← Y 4: r2← X

Outcome: r1 = 0 ∧ r2 = 0
x86: allowed

We assume that all memory locations (denoted by capital letters) and registers
(denoted by r1, r2, etc.) initially hold the value 0 unless stated otherwise. The in-
struction X ← 1 means that 1 is written to the memory location X, and r1 ← Y

means that the value at memory location Y is read into register r1. The outcome
is a conjunction of equalities that specify final values of memory (optional) and
registers (mandatory).

Given a litmus test, FAlglave’s encoding function EncA constructs a universe of
memory events (i.e., read,write, and fence instructions), locations, threads, and values
that appear in the test (Definition 3.5). It also constructs the relations S that en-
code the syntax of the test, including, for example, unary relations (such asRead)
for the types of each instruction of the test. The contents of the syntax relations
S are known statically (i.e., the values observed by each read are known from the
test’s outcome predicate, and we do not handle control dependencies) and ex-
tracted automatically from the test.

Definition 3.5 (Litmus test). A litmus test in FAlglave is a small concurrent program
together with a postcondition constraint. Given a litmus test T, FAlglave’s encoding func-
tion EncA(T) returns a finite universe of discourse U and a set of relation declarations
S over U, defined as follows:

• Every relation declaration in S takes the form r :k [R,R]. That is, I(r) = R for
all interpretations I, and we say that r is constant.

• Unary relations Event, Thread, Location, and Value partition the universe
U into memory events, threads, locations, and values. Value always includes
the distinguished value 0. Event is partitioned by Read, Write, Fence, and
LWFence relations, which contain reads, writes, heavyweight fences, and lightweight
fences, respectively.

• The thd relation is a function from Event to Thread.

• loc and val map each event e ∈ Read + Write to the Location and Value,
respectively, that they read or write.

• The program order relation po is a strict partial order overEvent (i.e., irreflexive,
transitive, and asymmetric); if (e1, e2) ∈ po, then events e1 and e2 share a thread
(i.e., e1.thd = e2.thd) and event e1 executes before event e2.

• The dependencies relation dep is a subset of po; if (e1, e2) ∈ dep then event e2
depends on event e1.

24 synthesis of memory consistency model specifications

• The final value relation final is a partial function from Location toValue, spec-
ifying constraints on the final state of memory imposed by the test’s candidate
outcome.

Example 3.6. Consider the test x86/3 above. EncA(x86/3) defines a universe
U = E∪L∪T∪Vwith four events E = {e1, e2, e3, e4}, two locations L = {X, Y},
two threads T = {t1, t2}, and two values V = {0, 1}. Its relations V are:

Read = {〈e2〉, 〈e4〉} Write = {〈e1〉, 〈e3〉}
Fence = {} Thread = {〈t1〉, 〈t2〉}
LWFence = {} Location = {〈X〉, 〈Y〉}

Value = {〈0〉, 〈1〉} dep = {}

po = {〈e1, e2〉, 〈e3, e4〉} final = {}

thd = {〈e1, t1〉, 〈e2, t1〉, 〈e3, t2〉, 〈e4, t2〉}
loc = {〈e1, X〉, 〈e2, Y〉, 〈e3, Y〉, 〈e4, X〉}
val = {〈e1, 1〉, 〈e2, 0〉, 〈e3, 1〉, 〈e4, 0〉}

3.3.2.2 Executions

FAlglave uses two relations, rf andws, to define the execution of a litmus test (Def-
inition 3.7). The reads-from relation rf maps each write event to the reads that
observe it: if (w, r) ∈ rf , then w and r are a write and a read, respectively, to the
same address and with the same value. The write serialization relation ws places
a total order on all writes to the same location. The encoding function EncA re-
turns {rf,ws} as the set of execution relationsE for a litmus testT, and it specifies
bounds on their contents by automatically extracting them from T.

Definition 3.7 (FAlglave Execution). In FAlglave, an execution E of a litmus test T
declares two relations:

• The reads-from relation rf is a subset of Write→ Read, such that if (w, r) ∈
rf then (1) w.loc = r.loc and w.val = r.val, and (2) for all w′ ∈ Write, if
w′ 6= w then (w′, r) 6∈ rf .

• The write serialization relation ws is a subset of Write → Write, such that
if (w1,w2) ∈ ws then w1.loc = w2.loc, and for every memory location li ∈
Location, the relation {(w1,w2) ∈ ws | w1.loc = li} is a total order.

3.3.2.3 Memory Model

FAlglave defines amemorymodel as a relational formulaφA that constructs a happens-
before order and checks its acyclicity.FAlglave’smemorymodel definition is parametric—
many different memory models can be defined within the same framework. This
freedom is exposed through three relations 〈ppo, grf, fences〉 that define the al-
lowed intra-thread reorderings, inter-thread reorderings, and reorderings across
fences, respectively. Fig. 3.3 shows examples of these relations for the common
sequential consistency (SC) and total store order (TSO) models. The FAlglave for-
mula φA replaces these three relations with expression holes for use in synthesis.

3.3 framework sketches 25

ppoSC ≜ po

grfSC ≜ rf

fencesSC ≜ ∅

(a) Sequential consistency

ppoTSO ≜ po− (Write→ Read)

grfTSO ≜ rf − (thd.∼thd)

fencesTSO ≜ ∅

(b) Total store order

Figure 3.3: Examples of common memory models defined by hand in the FAlglave frame-
work.

Preserved Program Order. The preserved program order relationppo defineswhich
thread-local reorderings are allowed by a memory model. Given the program or-
der relation po of a litmus test, ppo ⊆ po specifies the program-order edges in
po that cannot be reordered. In Fig. 3.3, sequential consistency allows no thread-
local reordering, while total store order (TSO) allows writes to be reordered be-
yond later reads by excluding write-to-read edges from ppo.

Global Reads-From. The global reads-from relationgrf defineswhich inter-thread
communications create ordering requirements between events. Given the reads-
from relation rf from an execution (Definition 3.7), grf specifies the edges in rf

that must be globally ordered. In Fig. 3.3, sequential consistency allows no re-
ordering, and so every edge in rf creates an ordering obligation. On the other
hand, total store order (TSO) allows threads to read their own writes early, and
so if a read observes a write on the same thread, it should not create an ordering
obligation for other threads.

Fences. The fences relation fences defines which events are ordered by a mem-
ory fence. For example, the x86 architecture has an mfence instruction that se-
rializes all reads and writes issued prior to it. The TSO example in Fig. 3.3 al-
ready includes fences in ppo, and so fences is still empty. But some relaxed mem-
ory models, such as PowerPC and ARM, also have a notion of fence cumula-
tivity [69], in which fence operations create orderings between events on other
threads; FAlglave uses fences to model cumulativity. The rules for cumulativity are
subtle, but MemSynth correctly synthesizes them for PowerPC in under 12 sec-
onds, as we show in Section 3.6.1.

Axioms. Given the definitions ofppo, grf , and fences, FAlglave uses the axioms in
Fig. 3.4 to specify the framework sketch’s formula φA. The axioms follow Alglave
et al. [7], with two changes for better solving performance. First, we omit initial-
ization write events (events that initialize each memory location to 0) in favor of
an Init axiom. Second, we use an explicit Final axiom to encode outcome con-
straints on memory locations, rather than simulating all possible memory states
as Alglave et al.’s herd tool does [9].

The first five axioms in Fig. 3.4b define well-formedness of an execution E. The
Execution axiom applies the rules in Definition 3.7 to the rf andws relations.The
initialization axiom Init states that reads absent from the reads-from relation rf

observe the initial value 0. The uniprocessor axiomUniproc requires executions to
respect coherence at eachmemory location.The thin-air axiomThin prevents ex-

26 synthesis of memory consistency model specifications

fr ≜ (∼rf.ws) + {〈r,w〉 : Read→Write | (no rf.r) and (r.loc = w.loc)}
ghb ≜ ppo+ ws+ fr + grf + fences

(a) Auxiliary relations

Execution ≜ rf in (Write→ Read) & (loc.∼loc) & (val.∼val)
and no (rf.∼rf − iden)
and ws in (Write→Write) & loc.∼loc
and no iden& ws
and ws.ws in ws
and all a : Write. all b : Write.

(not (a = b) and a.loc = b.loc)
implies (〈a, b〉 in ws or 〈b, a〉 in ws)

Init ≜ all r : Read. (no rf.r) implies r.val = 0
Uniproc ≜ no ^(rf + ws+ fr + (po& loc.∼loc)) & iden

Thin ≜ no ^(rf + dep) & iden

Final ≜ all w : Write. (w in (univ.ws− ws.univ) and some (w.loc).final)
implies w.val = w.loc.final

Acyclic ≜ no ^ghb& iden

Valid ≜ Execution and Init and Uniproc and Thin and Final and Acyclic

(b) Axioms

Figure 3.4: The axioms of the FAlglave framework extend those of Alglave et al. [7], with
changes to remove initialization write events and support outcomes for
memory locations.

3.4 memory model queries 27

ecutions that create values out of thin air (i.e., involve cyclic dependencies). Lastly,
the final value axiom Final imposes the constraints defined by the final relation.

To define whether an execution is allowed, FAlglave constructs a global happens-
before order ghb reflecting the orderings between events induced by the memory
model.TheValid axiomallows a test if there exists some valid execution forwhich
the global happens-before relation is acyclic (i.e., no event is transitively reachable
from itself). That is, FAlglave’s framework sketch (φA,EncA) defines φA ≜ Valid.

3.4 memory model queries

MemSynth is designed to efficiently answer four queries about memory models
from a given framework sketch:

Verification determineswhether a litmus test is allowedor forbiddenby amemory
model;

Synthesis searches for a memory model that produces desired outcomes on a
set of litmus tests;

Equivalence determines whether two memory models are equivalent (within
finite bounds); and

Ambiguity decides whether a memory model uniquely explains the outcomes
of a set of litmus tests, and if not, synthesizes a disambiguating test.

This section defines the MemSynth queries and explains their utility in building
and refining memory model specifications. Section 3.5 shows how to implement
these queries to scale to hundreds of litmus tests and large specifications.

3.4.1 Verification

The verification query, determining whether a memory model allows a litmus
test, is well-studied in the literature [7, 87, 90, 129, 139]. Given a litmus test T
and memory modelM = (φ,Enc) (Definition 3.4), the verification query checks
satisfiability of the formula

∃I.JLU;V; φMKI

where (U,V) = Enc(T). If this formula is satisfiable, then M allows the test
T (Definition3.3).Otherwise,M forbidsT.Theverificationquery involves a straight-
forward satisfiability check that can be discharged with any relational solver, in-
cluding MemSynth.

3.4.2 Synthesis

Thesynthesis query searches a framework sketch for amemorymodel that is con-
sistent with the desired outcomes for a set of litmus tests. Given a set TP of tests
that should be allowed, a setTN of tests that should be forbidden, and a framework

28 synthesis of memory consistency model specifications

sketch F = (φ,Enc), the synthesis task is to find amemorymodel (φM,Enc) ∈ F
that allows all tests in TP and forbids all tests in TN.This query amounts to solving
the formula

∃(φM,Enc) ∈ F.
∧

T∈TP

∃I. JLUT;VT; φMMKI

∧
∧

T∈TN

∀I. ¬JLUT;VT; φMMKI
(1)

where (UT,VT) = Enc(T).
The synthesis query involves higher-order universal quantification over the

non-constant relations in VT for forbidden tests TN The recent Alloy∗ solver [99]
supports finite model finding for relational formulas with higher-order quanti-
fiers, and so could in principle solve the synthesis query. In practice, however,
these queries are intractable for Alloy∗ because its language lacks crucial con-
structs for precisely specifying the size and shape of the search space: expression
holes and bounds on the contents of declared relations. These limitations mo-
tivated our embedding of bounded relational logic in Rosette (Section 3.2). In
Section 3.5.2, we present an algorithm for solving synthesis queries that scales
to complex framework sketches and many litmus tests.

3.4.3 Equivalence

MemSynth can compare two memory models MA and MB from a framework F
for equivalence. If they are not equivalent, MemSynth generates a distinguishing
litmus test TD on which they disagree (i.e., one model allows TD while the other
forbids it). As with existing work on generating distinguishing tests [89, 136], the
equivalence check is bounded, proving two models equivalent only up to a bound
on the size of the distinguishing test.These bounds are defined by a symbolic litmus
test (Definition 3.8), inwhich some syntax relations S are not constant (in contrast
to, e.g., Definition 3.5). A symbolic litmus test thus defines a set of concurrent
programs rather than only one such program.

Definition 3.8 (Symbolic litmus test). A symbolic litmus test TS = LU;V; fM for
a framework sketch F = (φ, Enc) is a relational specification in which

• V binds the relations S ∪ E in φ (as in Definition 3.3).

• The formula f is a well-formedness predicate for the litmus test, in which the
only relations are those in S.

Given a symbolic litmus testTS and twomemorymodelsMA = (φA,Enc) and
MB = (φB,Enc), the equivalence query solves for a distinguishing litmus test by
checking the satisfiability of two formulas:

∃IT. JTSKIT ∧ ∃I.JLU;V; φAMK(IT ∪ I)
∧ ∀I.¬JLU;V; φBMK(IT ∪ I)

3.4 memory model queries 29

to find a test on which MA is weaker than MB (i.e., MA allows a test that MB for-
bids), and similarly the second formula

∃IT. JTSKIT ∧ ∃I.JLU;V; φBMK(IT ∪ I)
∧ ∀I.¬JLU;V; φAMK(IT ∪ I)

for a test onwhichMA is stronger thanMB.The symbolic litmus testTS = LU;V; fM
includes a well-formedness predicate f, a relational formula that ensures the re-
sulting test is a syntactically valid program. If either formula is satisfiable, then
TD = Eval(TS, IT) is a litmus test that distinguishes the two models MA and
MB.2 If both formulas are unsatisfiable, then MA and MB are equivalent on all
valid tests in the search space defined by TS.

3.4.4 Ambiguity

The ambiguity query checks whether a memory model M is the only one within
a framework sketch that gives the desired outcomes on a set of allowed (TP) and
forbidden (TN) litmus tests. To do so, the query attempts to synthesize a second
memory model MS and a distinguishing litmus test TD such that MS and M dis-
agree on TD but agree on all tests in TP and TN. If such a model and test exist,
the set of given tests is ambiguous: there are two semantically distinct memory
models that both explain the input tests TP ∪ TN.

Given a memory model M = (φM,Enc), a framework sketch F = (φ,Enc), a
symbolic litmus test TS = LUS;VS; fM, and sets of allowed and forbidden tests TP
and TN, detecting ambiguity involves checking the satisfiability of a formula that
combines synthesis and equivalence:

∃IT.∃(φS,Enc) ∈ F. JTSKIT ∧
∧

T∈TP

∃I. JLUT;VT; φSMKI

∧
∧

T∈TN

∀I. ¬JLUT;VT; φSMKI

∧ ∃I.JLUS;VS; φSMK(IT ∪ I)
∧ ∀I.¬JLUM;VM; φMMK(IT ∪ I)

where (UT,VT) = Enc(T), and a second formula that swaps MS and M in the
final two conjuncts (akin to the two equivalence formulas). If either formula is
satisfiable, then MS = (φS,Enc) is a second memory model that produces the
desired outcomes on all tests in TP and TN, and TD = Eval(TS, IT) is a litmus
test that distinguishesM andMS. If both formulas are unsatisfiable, thenM is the
only memory model that produces the desired outcomes. This uniqueness result
is with respect to two bounds: the finite search space defined by the framework
sketch F, and the finite search space for the symbolic litmus test TS.

The ambiguity query identifies missing tests from the input sets, and so can
form the basis of a refinement loop to guide the development of a memory model

2 Eval(TS, IT) substitutes each variable v in TS with the value I(v).

30 synthesis of memory consistency model specifications

1 function Verify(M = (φM,Enc),T)
2 (U,V)← Enc(T)
3 I← Instantiate(V)
4 ϕ← Interpret(φM, I)
5 return Solve(ϕ) = SAT

Figure 3.5: MemSynth’s verification procedure Verify takes as input a memory modelM
and litmus test T and determines whetherM allows T.

1 function EncA(T)
2 (U,V)← EncSyntax(T) ▷ Encode relations in Definition 3.5
3 I← Instantiate(V) ▷ Make an interpretation from V
4 Brfu ← Interpret((Write→ Read) & (loc.∼loc) & (val.∼val), I)
5 Bwsu ← Interpret((Write→Write) & (loc.∼loc), I) ▷ Fig. 3.4
6 return (U,V ∪ {rf :2 [∅,Brfu],ws :2 [∅,Bwsu]})

Figure 3.6: The EncA procedure computes relational bounds for an execution E in the
FAlglave framework.

specification. For example, if we take TP to contain only the test x86/3 from Sec-
tion 3.3.2, and TN to be empty, then many distinct memory models within FAlglave
produce the desired outcomes (TSO, RMO, PowerPC, etc.). If we takeM to be one
suchmodel, the ambiguity query will identify a secondmodel that also allows test
x86/3, and produce a new distinguishing litmus test TD to resolve the ambigu-
ity. By deciding the desired outcome for TD and adding it to the appropriate set
(TP or TN), we can repeat the synthesis process to refine the memory model M.
The user can decide on the desired outcome forTD by inspecting documentation,
executing the test on hardware, consulting with system architects, or otherwise.

3.5 reasoning engine

This section presentsMemSynth’s engine for answering the queries in Section 3.4.
We show the algorithms to implement these queries, and describe key optimiza-
tions to make them scale to real-world memory models.

3.5.1 Verification

The verification query (Section 3.4.1) determines whether a memory model M
allows a litmus test T. The Verify procedure in Fig. 3.5 takes as input a memory
model M = (φ,Enc) and litmus test T, and returns true iff M allows T. The
Verify procedure first encodes the litmus test as a finite universe U and set of
relation declarations V using the memory model’s Enc function (Definition 3.3).
Given these bounds, it then checks the satisfiability of the relational specification
LU;V; φM.The implementation of Verify is only four lines of code, demonstrating
the utility of our relational DSL for reasoning about memory models.

3.5 reasoning engine 31

BoundsCompaction. Fig. 3.6 shows an example implementationof theEnc func-
tion. The EncA procedure computes bounds for the relations in a FAlglave execu-
tion (Definition 3.7). A naive bound that includes every tuple of the appropriate
arity is sound, but tighter bounds can significantly improve performance, since
the difference between the upper and lower bounds for each free relation defines
the size of the search space for the solver query. For FAlglave, an execution consists
of two relations rf andws that specify a reads-from and write serialization order,
respectively. EncA computes upper bounds for each relation from the Execution
axiom in Fig. 3.4. The rf relation contains only tuples (w, r) where w is a write, r
is a read, and bothw and r access the same locationwith the same value. Likewise,
thews relation contains only tuples (w1,w2)where both entries are writes to the
same location. Compared to naive upper bounds, this more compact search space
improve verification time by an average of 27× on the PowerPC tests discussed
in Section 3.6.1.

3.5.2 Synthesis

The synthesis query (Section 3.4.2) generates a memory model that gives the de-
sired outcomes on a set of litmus tests. The space of candidate solutions is defined
by a framework sketch F = (φ,Enc) (Definition 3.3), which contains expression
holes that define a candidate space of memory models.

Our synthesis procedure, Synthesize (Fig. 3.7), takes as input a framework
sketch F = (φ,Enc), a set of allowed litmus tests TP, and a set of forbidden lit-
mus testsTN. Given these inputs, it uses our relational DSL (embedded in Rosette)
to generate and solve quantified formulas using an off-the-shelf SMT solver [53].
Because MemSynth represents relations as matrices of boolean values, these for-
mulas quantify over boolean variables.We found the Z3 SMT solver [53] to be ex-
tremely effective at discharging these formulas—an average of 2–5× faster than
our own specialized implementation of counterexample-guided inductive syn-
thesis [122].

Synthesize does not try to find a correct model for all tests in TP and TN at
once, since this would require encoding every test against the framework sketch
predicate φ. Instead, tests are added to the synthesis query incrementally. The or-
der in which tests are added influences synthesis performance; we use a simple
heuristic that adds tests in increasing order of size, which optimizes for small
search spaces.This incrementalization reduces the size of the synthesis query sub-
stantially: in Section 3.6.1, we show that only 16 of 768 tests were added to the
query when synthesizing a model for PowerPC.

TheSynthesize procedure is sound, and it is completewith respect to the input
sketch: if a correct model exists within the input sketch, Synthesize will return
a solution.

Theorem 3.9 (Soundness). If Synthesize(F, TP, TN) returns a memory model M,
then M satisfies Eq. (1).

Proof. Synthesize(F, TP, TN) can return a memory model M only from line 14.
To reach this point,Tmust be⊥, which happens only if there is a candidatemodel

32 synthesis of memory consistency model specifications

1 function Synthesize(F = (φ,Enc), TP, TN)
2 S← new IncrementalSMTSolver()
3 TU ← {} ▷ Set of used tests
4 φM ← false ▷ Model that forbids all outcomes
5 T← NextTest(φM, TP, TN, TU) ▷ Choose an initial test
6 while T 6= ⊥ do
7 AddTest(S, F,T, TP) ▷ Add encoding of T to S
8 TU ← TU ∪ T
9 Ib ← Solve(S) ▷ Boolean interpretation or UNSAT

10 if Ib = UNSAT then ▷ No model exists
11 return UNSAT
12 φM ← Eval(φ, Ib) ▷ Use Ib to fill the holes in φ
13 T← NextTest(φM,Enc, TP, TN, TU) ▷ Choose the next test
14 return (φM,Enc) ▷M gives the expected outcome on all tests in TP ∪ TN

(a) Main synthesis routine
1 function AddTest(S, F = (φ,Enc),T, TP)
2 (U,V)← Enc(T)
3 I← Instantiate(V) ▷ Symbolic relational interpretation I
4 ϕ← Interpret(φ, I) ▷ Boolean encoding
5 if T ∈ TP then
6 Assert(S, ϕ) ▷ Add an allowed test
7 else
8 X← Symbolics(I) ▷ All symbolic booleans in I
9 Assert(S, ∀X. ¬ϕ) ▷ Add a forbidden test

(b) Test evaluation

1 functionNextTest(φM,Enc, TP, TN, TU)
2 for T ∈ (TP ∪ TN) \ TU do ▷ Iterate over unused tests
3 if Verify((φM,Enc),T) 6= (T ∈ TP) then
4 return T ▷M gives the wrong outcome on T
5 return⊥ ▷M gives the expected outcome on all unused tests

(c) Test selection

Figure 3.7: MemSynth’s synthesis procedure Synthesize takes as input a memory model
sketchM, a set TP of allowed litmus tests, and a set TN of forbidden litmus
tests, and returns a memory model that produces the given outcomes on all
tests.

3.5 reasoning engine 33

M for which NextTest returns⊥. NextTest returns⊥ only if M is correct for
every test in the set (TP ∪ TN) \ TU; that is,M satisfies:

∧

T∈TP\TU

∃I. JAllow(M,T,Exec(T))KI

∧
∧

T∈TN\TU

∀I. ¬JAllow(M,T,Exec(T))KI

So M satisfies Eq. (1) for all tests other than those in TU.
Because the solver S is incremental, and is never reset, a candidate model M

returned from the call to Solve on line 9 satisfies all constraints ever added to S.
Only AddTest adds constraints to S, and it is invoked once for each test added to
TU. For any T ∈ TU, if T ∈ TP then the constraint

∃I. JAllow(F,T,Exec(T))KI

is added to S at line 6 of AddTest. Otherwise, T ∈ TN, and the constraint

∀I. ¬JAllow(F,T,Exec(T))KI

is added to S by lines 8–9 of AddTest. Observe that the holes in F are also en-
coded using symbolic boolean values, and these values appear in the encodings
for both allowed and forbidden tests. Therefore, whenever Solve is invoked by
Synthesize, the state of S is:

∧

T∈TP∩TU

∃I. JAllow(F,T,Exec(T))KI

∧
∧

T∈TN∩TU

∀I. ¬JAllow(F,T,Exec(T))KI

So any satisfying boolean interpretation Ib returned by Solve includes a memory
modelM = Eval(F, Ib) that satisfies Eq. (1) for all tests in TU. Combining the two
results, we have that if Synthesize returnsM thenM satisfies Eq. (1).

Theorem 3.10 (Termination). Synthesize(F, TP, TN) terminates when TP and TN
are finite sets.

Proof. The formulas sent to the solver S fall into the effectively propositional frag-
ment of first-order logic, which is decidable by SMT solvers such as Z3, and so
calls to Solve will always terminate. Synthesize can always terminate early if
NextTest returns ⊥ because the current candidate M is correct. In the worst
case, since TP and TN are finite, and each loop iteration in Synthesize grows TU
by exactly one test, NextTest will eventually be invoked with TU = TP∪TN, and
will therefore return ⊥ (since the domain of its loop is empty), terminating the
Synthesize loop.

Theorem 3.11 (Completeness). If there exists a model M in the framework sketch
F that satisfies Eq. (1), and TP and TN are finite sets, then Synthesize(F, TP, TN) will
return a model.

34 synthesis of memory consistency model specifications

Proof. Suppose there is such a model M. By Theorem 3.10, we know that Syn-
thesize terminates, so we need only show that it terminates while returning a
model. Suppose for a contradiction that Synthesize instead returnsUNSAT.This
happens only if the synthesis query on line 9 is unsatisfiable. From the proof of
Theorem 3.9, whenever line 9 is invoked, the state of the synthesizer S is of the
form

∧

T∈TP∩TU

∃I. JAllow(M,T,Exec(T))KI

∧
∧

T∈TN∩TU

∀I. ¬JAllow(M,T,Exec(T))KI

But note that Eq. (1) implies this formula, since each conjunction is a subset of the
tests in Eq. (1). So if this formula is unsatisfiable, so is Eq. (1), which is a contra-
diction.

3.5.3 Equivalence

MemSynth can determine if two memory models are equivalent (up to given
bounds) by searching for a litmus test on which they disagree. Our equivalence-
checking procedure Compare(MA,MB,TS) takes as input two memory models
MA and MB, and a designer-provided symbolic litmus test TS (Definition 3.8).
Given these inputs, it returns either a litmus test T such that Verify(MA,T) 6=
Verify(MB,T), or⊥ if no such test exists within the bounds of TS. To search for
a distinguishing test T, Compare solves the two quantified boolean equivalence
formulas shown in Section 3.4.3 using the Z3 SMT solver (as with Synthesize),
with two additional optimizations described next.

Symmetry Breaking. For most framework sketches, a naive specification of a
symbolic litmus test will define a search space that containsmany redundant can-
didate tests. For example, after checking a test T in FAlglave, there is no need to
also check a test T′ that differs from T by a permutation of the used memory lo-
cations (e.g., T′ swaps all instances of X and Y in the loc relation of T). To improve
query performance, our definition of TS for FAlglave applies lex-leader symmetry
breaking [50] to rule out tests that differ only by a permutation of threads, ad-
dresses, or values, similar to existing work [89]. The well-formedness predicate
f for TS also adds assertions to rule out other uninteresting litmus tests, such as
tests that refer to a memory location exactly once, which has no visible effect on
inter-thread memory reorderings. These optimizations reduce the run time of
equivalence queries by 2–10×, and generalize beyond FAlglave.

Concretization with Metasketches. As another critical optimization, we express
the symbolic litmus testTS using a metasketch (Chapter 4), which decomposesTS
into a set of partially concretized symbolic tests. In particular,TS describes the set of
all litmus tests with up to k threads and up to n instructions per thread.The corre-
sponding metasketch describes the same search space using a set of symbolic tests
of the form T⟨k,(t1,...,tk),(w1,...,wk)⟩

S , each of which encodes the space of all litmus

3.5 reasoning engine 35

tests with a concrete number of threads (k), instructions per thread (t1, . . . , tk),
and writes per thread (w1, . . . ,wk). For example, the setT⟨2,(2,3),(1,2)⟩S contains all
tests with two threads, with two instructions (one of which is a write) on the first
thread, and three instructions (two ofwhich arewrites) on the second thread.This
concretization enables each symbolic litmus test in the metasketch to use more
compact bounds (e.g., the thread relation thd becomes entirely concrete), which
reduces the search space exponentially. Without this optimization, the equiva-
lence queries in Section 3.6.3 are up to two orders of magnitude slower.

3.5.4 Ambiguity

The final MemSynth query checks whether a memory model is unique for a set
of allowed tests TP and forbidden tests TN, and if not, synthesizes a disambiguat-
ing litmus test. The ambiguity procedure Disambiguate(M, TP, TN, F,TS) takes
as input a memory model M, sets of allowed tests TP and forbidden tests TN, a
framework sketch F = (φ,Enc), and a symbolic litmus test TS. It returns a new
memory model MS and test TD, such that for all T ∈ TP ∪ TN, Verify(M,T) =
Verify(MS,T), but Verify(M,TD) 6= Verify(MS,TD). In other words, the set of
tests TP ∪ TN is ambiguous, because both M and MS satisfy every test in the set.
Since the ambiguity query involves synthesizing a memory modelMS and litmus
test TD, the implementation of Disambiguate extends Synthesize (Fig. 3.7) and
benefits from the same optimizations as Compare, i.e., metasketches and sym-
metry breaking. Metasketches also enable solving in parallel [27], which Disam-
biguate exploits to gain up to 3× speedup on 8 threads in our experiments.

3.5.5 Discussion

Limitations. As with other tools based on syntax-guided synthesis [122], Mem-
Synth’s results are inherently bounded. Both framework sketches (for synthesis)
and symbolic litmus tests (for equivalence and ambiguity) define large but finite
search spaces, whichMemSynth explores exhaustivelywith an SMT solver.While
incomplete, such bounded reasoning provides useful results on real-world prob-
lems, as Section 3.6 shows; in most of those experiments, increasing the bounds
yielded no meaningful difference in the results.

MemSynth’s synthesis queries also face the potential for overfitting, like other
example-based synthesis tools. The relational DSL (Section 3.2) reduces this risk
by not including operators prone to overfitting (e.g., if-then-else expressions), and
by offering control over the size of the search space for expression holes. The
Compare andDisambiguate queries can also exploitmetasketch support for cost
functions [27] to minimize the size of the synthesized tests.

Integration. MemSynth queries read andwrite litmus tests in the commonHerd
format [9], allowing them to integrate with existing tools for memory models.
MemSynth’s relationalDSL can also exportmodels toAlloy∗ specifications,which
are used by some memory model tools [129, 136]. MemSynth’s relational DSL
(Section 3.2) is similar to the cat language [3] for specifying memory models,

36 synthesis of memory consistency model specifications

and so MemSynth models could be exported for use by that toolchain. But cat
includes fixpoint operations, while our DSL does not, so importing cat mod-
els into MemSynth would require more work (e.g., bounded unwinding of fix-
points [136]).

3.6 case studies

Todemonstrate thatMemSynth is an effective approach to reasoning aboutmem-
ory models, we sought to answer three research questions:

• Can MemSynth scale to real-world memory models such as PowerPC and
x86?

• DoesMemSynthprovide a basis for rapidly buildinguseful automatedmem-
ory model tools?

• DoesMemSynthoutperformexisting relational solvers andmemorymodel
tools?

Methodology and Code. Experiments in this section were performed on a quad-
core IntelCore i7-7700KCPUat 4.8 GHz,with 16GBofRAM.WeusedRosette [126,
127] version 2.2 and Z3 [53] version 4.5.0. Both MemSynth and our relational
DSL,Ocelot, are open source and available fromhttp://memsynth.uwplse.org,
togetherwith the synthesizedmodels and tests from this section and a virtualma-
chine artifact for reproducing the results.

3.6.1 Can MemSynth scale to real-world memory models such as PowerPC and x86?

This sectionusesMemSynth to synthesize specifications for thePowerPC [69] and
x86 [71] memory models. The results (summarized in Fig. 3.8) show that Mem-
Synth scales to complex real-world models, and that its queries can aid in the
design ofmemorymodel specifications by identifying ambiguities and redundan-
cies in tests and documentation.

3.6.1.1 Synthesizing a PowerPC Model

ThePowerPC architecture iswell-known for relaxedmemory behaviors that have
proven difficult to formalize. Existing formalization efforts have identified subtle
mis-specifications [5, 7, 91], making an automated process particularly appealing.
To synthesize a specification for PowerPC, MemSynth uses a set of 768 litmus
tests from Alglave et al. [6, 7], which they generated with their diy tool [8]. These
tests vary from 6–24 instructions across 2–5 threads, and while they examine
most aspects of the PowerPC memory model, they are not intended to be ex-
haustive. We use the Alglave et al. [7] model to decide whether each test should be
allowed, although we could use hardware observations instead, as discussed later.

We employ FAlglave as the basis for the synthesis process.The framework sketch
contains expression holes for theppo,grf , and fences relations. All three holes use
a grammar containing all relational expressions e in Fig. 3.1 other than set com-
prehension and closure. For the barrier expression fences, we provide a sketch

3.6 case studies 37

Input Tests Framework Sketch

Arch. |TP| |TN| Time
ppo/grf
Depth

fences

Depth
State
Space

PPC 163 605 12 s 4 4 21406

x86 2 8 2 s 4 0 2624

(a) Synthesis results

Symbolic Litmus Test

Arch. New Tests Time
Num.

Threads
Num.
Events

State
Space

PPC 9 110min 2–4 2–6 2165

x86 4 67min 2–4 2–6 2114

(b) Ambiguity results

Figure 3.8: Results of real-world memory model synthesis and ambiguity experiments
for PowerPC and x86. We describe the framework sketches and symbolic lit-
mus tests both in terms of their parameters (e.g., expression hole depth) and
the number of candidate solutions they contain (i.e., their state space). The
ambiguity results (b) for a given architecture use the same framework sketch
as the synthesis results (a) for that architecture.

of the form fences ≜ FFence + FLWFence, where FFence and FLWFence are expres-
sion holes containing Fence and LWFence, respectively, as terminals. This sketch
expresses the high-level insight that PowerPC features two kinds of cumulative
barriers (heavyweight sync fences and lightweight lwsync fences) that do not in-
teract.

Synthesis. MemSynth synthesizes a model, which we call PPC 0, that agrees
withAlglave et al.’s hand-writtenmodel on all 768 tests.The synthesis takes 12 sec-
onds, and due to its heuristics for test ordering, the incremental synthesis algo-
rithm (Fig. 3.7) uses only 16 of the 768 tests.

Ambiguity. While the 768 tests described above cover much of the semantics
of PowerPC, they do not identify a unique model. To resolve this ambiguity, we
apply MemSynth’s Disambiguate query (Section 3.4.4) to enlarge the set until it
identifies a single model. We use the Alglave et al. model as an oracle to decide the
correct outcome for the generated distinguishing tests.

MemSynth finds 9 new tests to add to the set. The tests deal with the semantics
of PowerPC barriers; for example:

38 synthesis of memory consistency model specifications

Test ppc/ambig/3

Thread 1 Thread 2
1: r1← B 4: r2← A

2: lwsync 5: lwsync

3: A← 1 6: B← 1

Outcome: r1 = 1 ∧ r2 = 1
PowerPC: forbidden

After adding the 9 tests, the new synthesized model PPC 1 is equivalent to the
Alglave et al. [7] model on all tests up to 6 instructions across 4 threads, and is the
only model (within our sketch) that produces the given outcomes on all tests.

Discussion. MemSynth is complementary to test-generation tools such asdiy [7]:
these tools can seed the synthesis process with initial tests, and MemSynth can
then identify ambiguities and synthesize new tests to resolve them. While our ex-
periments use the hand-written model of Alglave et al. [7] as an oracle, we could
instead determine litmus test outcomes by manually consulting documentation
or by hardware experiments. For example, Alglave et al. [6] also ran their 768
tests onPowerPChardware andobservedwhether each behavior occurred.Mem-
Synth is able use the results of these experiments as an oracle, and synthesizes a
new modelPPCH in 13 seconds. The resulting model is not equivalent toPPC 0
(MemSynth synthesizes a distinguishing test with its equivalence query in 6 sec-
onds) because some allowed outcomes were not observed on the hardware.

3.6.1.2 x86 Ambiguity and Redundancy

The x86 architecture specifies a variant of total store ordering (TSO) as its memory
model. The x86 TSO memory model is defined in the Intel Software Developer’s
Manual [71] with prose and a set of 10 litmus tests. Though TSO is one of the
simplest memory models, formalizing the subtleties of its x86 variant has been
challenging [31, 32, 114, 119].

We used MemSynth to synthesize a specification of the x86 memory model.
To do so, we extended FAlglave with support for atomic operations (adding a new
unary Atomic relation to Definition 3.5 to model x86’s xchg instruction) and the
mfence fullmemory fence (populating theFence relation inDefinition 3.5).Mem-
Synth synthesizes a formalization TSO0 that is correct on the Intel manual’s 10
litmus tests in under two seconds. Fig. 3.9 shows the framework sketch FAlglave
and the synthesized modelTSO0.

Ambiguity. But MemSynth’s Disambiguate query (Section 3.4.4) determines
that another weaker memory model, TSO1, also satisfies all 10 tests, while dis-
agreeing withTSO0 on a new distinguishing test:

3.6 case studies 39

1 (define (hole depth arity non-terms terms)
2 ...) ; Expression hole (Section 3.2.2)

4 (define (FAlglave ppo grf fences)
5 ...) ; Axioms from Fig. 3.4

7 ; Common components of memory model specifications
8 (define (SameAddr X) (& (-> X X) (join loc (~ loc))))
9 (define rfi (& rf (join thd (~ thd))))

10 (define rfe (- rf (join thd (~ thd))))

12 ; Expression holes for FAlglave model (Section 3.3.2)
13 (define ppo
14 (hole 4 2 (list + - -> & SameAddr)
15 (list po dep Event Read Write Fence Atomic)))
16 (define grf (hole 4 2 (list + - -> & SameAddr)
17 (list rf rfi rfe none univ)))
18 ; x86 fences are not cumulative
19 (define fences (-> none none))

21 ; Final sketch
22 (define x86-sketch (FAlglave ppo grf fences))

(a) Framework sketch FAlglave

1 ; Before disambiguation
2 (define ppo0

3 (& po (- (-> Event (+ Write Read))
4 (-> (- Write Atomic) Read))))
5 (define grf0 (- rf (join thd (~ thd))))
6 (define TSO0 (FAlglave ppo0 grf0 fences))

8 ; After resolving 4 ambiguities
9 (define ppo4 (- po (-> (- Write Atomic) Read)))

10 (define grf4 (- rf (join thd (~ thd))))
11 (define TSO4 (FAlglave ppo4 grf4 fences))

(b) Synthesized modelsTSO0 andTSO4

Figure 3.9: The framework sketch FAlglave for synthesizing a memory model for the x86
architecture (a), and synthesized models TSO0 and TSO4 before and after
resolving ambiguities (b).The expression holes for ppo and grf define a search
space of size 2624, as described in Fig. 3.8.The fences relation is empty because
x86 fences are not cumulative.

40 synthesis of memory consistency model specifications

Test x86/ambig/1

Thread 1 Thread 2
1: r1← A 3: B← 1

2: r2← B 4: xchg(A, r3)

Initially: r3 = 1
Outcome: r1 = 1 ∧ r2 = 0

This test is a variant of themanual’s example 8-1 [71], butwith an atomic exchange
instead of a plain write to A. The documentation indicates that x86 should forbid
this outcome, as TSO0 does but TSO1 does not.

Repeating the ambiguity query after adding x86/ambig/1 finds 3 more dis-
tinguishing tests that further examine the semantics of atomic operations and
mfence. According to the documentation, the resulting tests should also be for-
bidden. After adding these tests to the synthesis process, MemSynth is able to
prove that a new synthesized modelTSO4 is unique, up to the bounds in Fig. 3.8
on the size of the model specification and distinguishing litmus test.

The TSO4 model in Fig. 3.9b correctly captures the intent of the x86 TSO
model, and is similar to both Fig. 3.3 and Alglave [2]. The synthesized ppo4 allows
writes to be reordered past later reads, while grf4 allows a thread to read its own
writes early. TSO4 also models the semantics of the xchg and mfence instruc-
tions, both of which are included in ppo4 and so prevent reordering.3 We further
validated the synthesized model by comparing it to the x86-TSO model of Sewell
et al. [119] on the 24 litmus tests in their paper [104];TSO4 agrees with x86-TSO
on all such tests. The 4 distinguishing tests synthesized by MemSynth are either
single-fenced variants of Sewell et al.’s amd5 litmus test, or xchg-based variants
of other Intel tests, similar to their n8 test.

Potential Redundancy. In the paper on their earlier x86-CC formalization of the
x86 memory model, Sarkar et al. [114] write that “P8 may be redundant,” where
P8 is a principle from the Intel manual about which reorderings are allowed:

“§8.2.3.9: Loads and stores are not reordered with locked instruc-
tions.” [71]

The manual section describing this principle includes two litmus tests demon-
strating forbidden reorderings. We found that if we omit these two tests from the
synthesis process, the ambiguity experiment above re-discovers them, suggesting
they are needed to uniquely identify x86’s memory model.

3.6.2 Does MemSynth provide a basis for rapidly building useful automated memory
model tools?

While previous sections build on the FAlglave framework sketch, based on the Al-
glave et al. [7] framework, MemSynth’s engine generalizes to other framework

3 We model Atomic as a subset of Write, so the expression (- Write Atomic) allows only plain
writes to be reordered.

3.6 case studies 41

sketches. In this section, we present FMH, a framework sketch constructed from a
framework developed byMador-Haim, Alur, andMartin [89, 90].The implemen-
tation took only two days of work by this dissertation’s author. Moreover, we use
MemSynth to automatically rectify a discrepancy between our implementation
and the paper’s results that we could not resolve by hand.

3.6.2.1 The FMH Framework

Mador-Haim, Alur, and Martin’s memory model framework [89, 90] was devel-
oped to contrast memory model specifications by generating a distinguishing lit-
mus test on which two models disagree (as MemSynth’s equivalence query does).
A memory model is defined by a “must-not-reorder” function F(x, y) that deter-
mines whether two instructions x and y can be reordered. The framework places
syntactic restrictions on F such that it admits only 90 models. The authors prove
that the size of litmus test needed to distinguish models in this set is bounded,
and that only 82 of the 90 models are semantically distinct.

3.6.2.2 Repairing the Framework

After implementing FMH, we found that our results differed from those in the
original paper. The paper states there should be 82 distinct models, but our im-
plementation found only 12 distinct models. Moreover, the paper identifies the
following as a distinguishing litmus test (i.e., some models allow it while others
forbid it):

Test mh/L2

Thread 1 Thread 2
1: X← 1 3: r1← X

2: X← 2 4: r2← X

Outcome: r1 = 2 ∧ r2 = 0

Yet our implementation reported this test (which contains a load-load coherence
violation allowed by SPARC’s RMO model) to be disallowed by all 90 memory
models.

Our manual investigation implicated one of the paper’s axioms for happens-
before relations:

5. Ignore local: If x is after y in programorder, thenx cannot happen
before y.

Omitting this axiom from our implementation gave 86 distinct models, not 82 as
expected, and so we hypothesized that the axiom was necessary but too strong.
Since the paper correctly reports that mh/L2 is allowed by RMO, we believe the
paper’s results are correct but this axiom was misprinted in the paper. However,
the paper’s authors were unable to provide their implementation for us to com-
pare against [13].

42 synthesis of memory consistency model specifications

1

10

100

Alloy herd MemSynth

Tool

V
er

if
ic

at
io

n
 t

im
e

(s
)

(a) Verification query

0

10

20

30

40

1 10 100 1000

Time per problem (s)

P
ro

b
le

m
s

so
lv

ed

MemSynth

Alloy

(b) Equivalence query

Figure 3.10: Performance comparisons betweenMemSynth and existing tools for (a) ver-
ification and (b) equivalence.

We first tried to fix the axiom by hand, but despite several attempts, a correct
fix eluded us: our closest results identified 78 or 86 distinct models rather than
82. Instead, we used MemSynth’s relational logic DSL to synthesize a repair. In
relational logic, axiom 5 is written as “no (∼po) & hb”, where hb is the happens-
before relation for an execution. To repair the axiom, we replaced ∼po with an
expression hole of depth 3, and synthesized a completion that gave the correct
outcomes on the 9 litmus tests from the original paper on both TSO and RMO
memory models. We were able to synthesize the following repair in 4 seconds:

no (∼((po− rf) & (Write→ Read))) & hb

In prose:

5a. Ignore local: If x is after y in program order, x is a read, y is
a write, and x does not read the value written by y, then x cannot
happen before y.

The repaired axiom allows reads to see local writes early without affecting the
happens-before relation. We believe it is intended to allow models such as TSO
to observe their own writes early by ignoring the happens-before order. With
the repaired axiom, our pairwise comparison results produce 82 distinct models,
identical to the original paper.

3.6.3 DoesMemSynth outperform existing relational solvers andmemorymodel tools?

This section comparesMemSynth to existing relational engines andmemorymodel
tools on verification, equivalence, and synthesis queries.

Verification. Fig. 3.10a shows the time for MemSynth, Alloy (v4.2_2015-02-22)
[72, 128], andherd (v7.43) [9] to verify 768PowerPC litmus tests fromSection3.6.1.
The Alloy results use the PPC 1 specification synthesized by MemSynth, while
herd (configured in “speed check” mode) already supports PowerPC. The results
show thatMemSynth outperformsAlloy by 10×, and is comparable to herd’s cus-
tom decision procedure for memory models.

3.7 related work 43

Equivalence. We used MemSynth and Alloy∗ (v0.2) [99] to perform a pairwise
comparison of 10 different synthesized PowerPC models. Both MemSynth and
Alloy∗ used a symbolic litmus testwith up to 2 threads and6 instructions. Fig. 3.10b
shows that MemSynth outperforms Alloy∗ on most of these queries: MemSynth
can solve 3× more queries in under one second, and the hardest problem takes
8 s for MemSynth versus 10min for Alloy∗. With symmetry breaking and con-
cretization (which cause the large steps in the MemSynth line in Fig. 3.10b) dis-
abled, MemSynth could not solve any of the comparisons in under an hour.

Synthesis. The synthesis query (Section 3.4.2) requires higher-order quantifica-
tion, and sowe comparedMemSynth to Alloy∗ [99]. Because Alloy∗ does not sup-
port expression holes (Section 3.2), we designed a framework sketchM that sim-
ply chooses betweenhard-codedmemorymodels.WhengivenM = {SC,TSO},
bothMemSynth andAlloy∗ return in under a second.However, when givenM =
{SC,TSO, PSO}, MemSynth still returns in under a second, but Alloy∗ times out
after one hour.This result suggests Alloy∗ would not be able to synthesize models
from complex framework sketches.

3.7 related work

MemSynth is, to our knowledge, the first tool to provide synthesis and other
higher-order queries formemorymodel specifications. It builds on existing work
in formalizing and reasoning about memory models, which this section reviews.

Formalization. Few architectures formalize their memory models (with the ex-
ception of SPARC [134] and Alpha [48]), and so this task has fallen to researchers.
A notable success is the x86-TSO model [119], which formalizes the memory
model of the x86 architecture.Thismodelwas refined through several papers [103,
114], which revealed ambiguities in the x86 documentation. In Section 3.6.1.2,
MemSynth’s Disambiguate query automatically identified more such ambigui-
ties.

Another effort has developed several formalizations of the PowerPC architec-
ture [5, 7, 9, 91, 113].ThePowerPCmemorymodel allowsmanymore reorderings
than x86, and features cumulative barriers to restore stronger behavior.The spec-
ification for PowerPC is complex, and several ambiguities in the PowerPC man-
ual [69] required detailed experimentation to resolve.ThePowerPC formalization
effort also developed a suite of memory model experimentation tools, which we
use in Section 3.6.1 and Section 3.6.3.

Formalization efforts have also brought clarity to emerging programming lan-
guage memory models, particularly C11 and C++11 [19, 20]. These efforts have
helped check that the target models provide basic guarantees about important
classes of programs—for example, that all data-race-free programs have sequen-
tially consistent memory ordering [1]. Like hardware memory models, language
memory models are also relational, and some (e.g., the Java Memory Model [92])
have already been formalized [129] in bounded relational logic. We therefore be-

44 synthesis of memory consistency model specifications

lieve MemSynth could also be effective for language models, with appropriate
design of a framework sketch.

Frameworks. Recent work has developed generic memory model frameworks
that can be instantiated with different architectures.TheNemos framework [139]
offers axiomatic specifications for a variety of models, such as causal consistency,
but (to our knowledge) cannot express microprocessor models such as TSO. Al-
glave, Maranget, and Tautschnig [2, 7, 9] developed an axiomatic framework for
microprocessormemorymodels. It admitsmodels for complex architectures such
as PowerPC, and is the basis for our FAlglave framework sketch (Section 3.3.2)
and most experiments in Section 3.6. Mador-Haim, Alur, and Martin [90] de-
veloped a framework for store-atomic memory models, which we implement in
Section 3.6.2. It captures common models such as TSO, but is restricted enough
to prove upper bounds on the size of distinguishing litmus tests.

Automated Reasoning. One common application of formal memory models is
inserting synchronization instructions that restore sequential consistency in a
concurrent program. Alglave et al. [7] address this problem for PowerPC with
a specification of the platform’s barrier semantics, including cumulativity; we au-
tomatically synthesize this specification in Section 3.6.1. Another common appli-
cation is verification of concurrent code under relaxed memory models, and sev-
eral tools have been developed for this purpose (e.g., [52, 54]). All of them rely on
formal specifications ofmemorymodels that can be synthesizedwithMemSynth.

MemSAT [129] is an automated tool that implements the verification query of
Section 3.4.1 for axiomaticmemorymodel specifications.MemSAT found several
discrepancies in the formalization of the Java Memory Model [92]. MemSynth is
similar to MemSAT in its use of relational logic, but focuses on hardware models
and offers richer automated reasoning queries including synthesis. Wickerson et
al. [136] use Alloy∗ [99] to implement a tool for automatically comparingmemory
consistency models, similar to MemSynth’s equivalence query. They show results
for both processor and language memory models, but their tool does not support
MemSynth’s synthesis and ambiguity queries, and it is unclear how to adapt their
quantifier elimination strategy (“deadness”) to specification synthesis. Lustig et al.
[88] use Alloy [72] to synthesize suites of litmus tests that examine a set of pre-
definedmemory ordering relaxations, which together compose a design spacewe
could use as a framework sketch.

3.8 conclusion

MemSynth is a synthesis-aided system for reasoning about axiomatic specifi-
cations of memory consistency models. As opposed to existing memory model
tools that perform verification of hand-written models, MemSynth can synthe-
size memory model formalizations based on a framework sketch provided by a
designer. MemSynth’s expressive specification language builds on an optimized
bounded relational logic engine, which serves as a platform for developing novel
automated reasoning queries. We showed that MemSynth can synthesize specifi-

3.8 conclusion 45

cations for complex architectures, refine those specifications by identifying ambi-
guities, and support rapid development of memory model tools that outperform
hand-crafted versions. As new parallel architectures continue to emerge, Mem-
Synth can help formalize their memory models rapidly and precisely.

4METASKETCHES

Many advanced programming tools—for both end-users and expert developers—
rely on program synthesis to automatically generate implementations from high-
level specifications.These tools often need to employ tricky, custom-built synthe-
sis algorithms because they require synthesized programs to be not only correct,
but also optimal with respect to a desired cost metric, such as program size. Find-
ing these optimal solutions efficiently requires domain-specific search strategies,
but existing synthesizers hard-code the strategy, making them difficult to reuse.

This chapter presentsmetasketches, a general framework for specifying and solv-
ing optimal synthesis problems.1 Metasketches make the search strategy a part of
the problem definition by specifying a fragmentation of the search space into an
ordered set of classic sketches. Two search algorithms cooperate to effectively
solve metasketches. A global optimizing search coordinates the activities of lo-
cal searches, informing them of the costs of potentially-optimal solutions as they
explore different regions of the candidate space in parallel. The local searches ex-
ecute an incremental form of counterexample-guided inductive synthesis to in-
corporate information sent from the global search. Synapse is an implementation
of these algorithms that effectively solves optimal synthesis problems with a va-
riety of different cost functions. In addition, metasketches can be used to accel-
erate classic (non-optimal) synthesis by explicitly controlling the search strategy,
and Synapse solves classic synthesis problems that state-of-the-art tools cannot.
Metasketches have been used to accelerate several synthesis tools, including for
chemical reaction networks [39] and education [33].

4.1 overview

Program synthesis is the classic problem of automatically producing an imple-
mentation from a high-level correctness specification. Recent research efforts
have addressed this problem successfully for a variety of application domains,
from browser layout [97] to executable biology [79]. But for many applications,
such as synthesis-aided compilation [107, 115] or end-user programming [59,
66], it is not enough to produce any correct program. These applications require
the synthesized implementation to also be optimal with respect to a desired cost
function—for example, the number of instructions or the sum of their latencies.

Optimal synthesis involves producing a program that is both correct with re-
spect to a (logical) specification and optimal with respect to a cost function. Ex-
isting tools for optimal synthesis are highly specialized, employing custom search
strategies to quickly find the best solution in a large space of candidate programs.
For example, a superoptimizer [75, 115] finds the least expensive instruction se-

1 This chapter was first published as the paper Optimizing Synthesis with Metasketches, by James Born-
holt, Emina Torlak, Dan Grossman, and Luis Ceze, at POPL 2016 [27].

47

48 metasketches

quence (according to a cost model) equivalent to a given reference implementa-
tion. Tomake this task tractable, a superoptimizermust be able to focus its search
on candidate programs cheaper than the currently-optimal solution. Building such
a tool on topof existing synthesizers is impractical, because they providenomeans
for the tool to guide or control the search strategy. Instead, tool developers are
forced to implement their own synthesis engines from scratch, giving up the po-
tential to benefit from advances in general synthesis technology.

Metasketches are a general framework for specifying and solving optimal syn-
thesis problems. A metasketch is an ordered set of sketches [122], together with a
cost function to minimize and a gradient function to direct the search. A sketch is
a syntactic template that defines a finite space of candidate programs. The union
of the (possibly overlapping) sketches describes the candidate space of the metas-
ketch. The ordered set of sketches, together with the cost and gradient functions,
expresses a high-level search strategy: the sketches fragment the candidate space
into regions that can be explored in parallel, while the sketch ordering and the
two functions focus the search toward cheaper regions of the space. Because a
metasketch consists of a set of classic sketches, solving a metasketch reduces to
solving a set of classic synthesis problems, and so tools built with metasketches
benefit from progress in the underlying synthesis techniques.

To solve an optimal synthesis problem expressed as a metasketch, we employ
two cooperating algorithms: a global optimizing search over the entire candidate
space, and many parallel instances of a local combinatorial search over the in-
dividual sketches in the metasketch. The local search algorithm implements an
incremental form of counterexample-guided inductive synthesis (CEGIS). The
global search drives this incremental local exploration in two ways. First, it uses
the gradient function to select which sketches to explore locally whenever a sat-
isfying solution (and therefore a tighter upper bound on the cost) is found. The
gradient function is simple: given a numerical cost, it returns the set of all sketches
from themetasketch that (may) contain a cheaper candidate program. Second, the
global search communicates the cost of discovered solutions to all running local
searches, which integrate these results to prune their own candidate spaces. The
search process proceeds until an optimal solution is found or the global search
space is exhausted. This search strategy is highly effective, solving both classic
and optimal synthesis problems that cannot be solved by existing techniques.

In addition to enabling efficient search, metasketches also bring new expres-
sive power to syntax-guided synthesis. By representing the search space as a set
of sketches, a metasketch can describe candidate spaces such as “the set of all pro-
grams, of any length, that are in static single assignment (SSA) form and that con-
tain no unused variables.” A space of this form cannot be expressed with a single
sketch (because it is infinite) nor can it be expressed with a context-free grammar
(because neither the SSA nor the used-variable constraints are context-free). A
set-of-sketches space description also supports an effective new form of encod-
ing optimization, which we call structure constraints. These constraints take the
form of assertions within an individual sketch, which rule out candidates that are
semantically equivalent to cheaper programs from other sketches. The resulting

4.2 optimal syntax-guided synthesis 49

metasketch avoids redundant work in the local searches, thus accelerating the
global synthesis process.

We have implemented our optimal synthesis approach in a tool called Synapse,
built on top of the Rosette language [126, 127]. We have used Synapse to de-
velop and solve metasketches for a variety of optimal synthesis problems, from
superoptimization to fixed-point approximation of computational kernels. Our
experiments show that Synapse is not only effective at solving optimal synthe-
sis problems, but that it can also solve standard synthesis benchmarks [10] that
are intractable for state-of-the-art syntax-guided synthesizers (due to their large,
monolithic search spaces that we fragment with metasketches). The fragmented
search space exposed by a metasketch also allows Synapse to realize significant
parallel speedup for large synthesis problems. We find that for many optimal syn-
thesis problems, the search algorithm spends most of its time proving optimality
of the final candidate solution, suggesting that the search can quickly output in-
termediate results that will likely be optimal. Finally, we show that Synapse can
effectively reason about a variety of cost functions through several examples: fit-
ting a linear model to a training data set, optimizing worst-case execution time
of a program, and training a small neural network.

4.2 optimal syntax-guided synthesis

This section briefly reviews syntax-guided synthesis [11, 122] and formalizes the
problem of optimal syntax-guided synthesis. We also introduce a small Scheme-
like synthesis language, Syn, that will be used to present (optimal) synthesis ex-
amples throughout this chapter. Our approach is independent of Syn, however,
and can be applied to any language that supports basic sketching constructs (such
as Sketch [122] or Rosette [126]).

Synthesis. The program synthesis problem is to automatically discover a pro-
gram P that implements a desired specification φ. Programs are written in a lan-
guage L, and specifications in a decidable theory T (or a decidable combination
of theories Ti). We assign a deterministic semantics JPK to each program P ∈ L.
For a set of programs S ⊆ L, we write JSK to denote the set {JPK | P ∈ S}. A
specification is a formula φ(x, JPK(x)) in the theory T that relates program in-
puts to outputs. Given a specification φ, the program synthesis task is to find a
program P ∈ L such that the formula ∀x. φ(x, JPK(x)) is valid modulo T .

Programs and Specifications. For examples in this chapter, we take the language
L to be Syn, a subset of core Scheme [111] shown in Figure 4.1. Syn expressions
are constructed from booleans, signed finite-precision integers, lambda terms,
applications, conditionals, and sequential let-binding expressions. The language
also includes the usual built-in procedures for operating onbooleans and integers.
We take the specification theory T to be the quantifier-free theory of fixed-width
bitvectors. For convenience, specifications can be expressed as assertions in Syn

50 metasketches

expressions e ::= l | x | (lambda (x …) e) | (e e …) |
(if e e e) | (let* ([x e] …) e) | (assert e)

l ::= true | false | integer literal
x ::= identifier | = | > | + | - | * | / | & | …

definitions d ::= (define x e)
forms f ::= d | e
programs p := f | p f

Figure 4.1: Syntax of programs in the simple Scheme-like language Syn we use for exam-
ples.

programs in the standard manner.2 An assertion succeeds if the value of the ex-
pression argument is not false. The semantics of Syn is standard [111], except
that all built-in integer operators also accept boolean arguments, treating true as
1 and false as 0.

Example 1. Suppose that we are trying to synthesize a Syn implementation
of the max function. In the theory of bitvectors, the specification for max is
straightforward:

φmax(〈x, y〉, JPK(x, y)) ≡ JPK(x, y) = ite(x > y, x, y)

There aremanyprograms in Syn thatmeet this specification, such as the following
SSA-style implementation:3

(define (max1 i1 i2)
(let* ([o1 (> i1 i2)]

[o2 (if o1 i1 i2)])
o2))

A program synthesizer should return max1 or another correct implementation
from Syn.

Syntax-Guided Synthesis. Syntax-guided synthesis is a form of program synthe-
sis that restricts the search for P to a space of candidate implementations C ⊆
L defined by a syntactic template [11]. This restriction makes the search more
tractable, and it enables the programmer to describe the desired implementation
using a mix of syntactic and semantic constraints.

Syntactic constraints commonly take the form of a context-free grammar [11]
or a sketch [122]. A sketch is a partial implementation of a program, with missing
expressions called holes to be discovered by the synthesizer. Holes are constrained
to admit expressions from a finite set of choices—for example, a hole could be re-
placed with a 32-bit integer constant or with an expression obtained from a finite
unrolling of a context-free grammar. Unlike context-free grammars, sketches can

2 In particular, Syn assertions can be reduced to formulas in the theory of bitvectors for all finite Syn
programs, using existing methods [126].

3 We write (define (x y …) e) to abbreviate (define x (lambda (y…) e)).

4.2 optimal syntax-guided synthesis 51

express only finite candidate spaces C. In return, however, they provide the pro-
grammer with more control over the shape of the search space, as well as the
ability to express syntactic constraints that are not context-free.

Sketches. To enable sketching in Syn, we add a hole construct:

expressions e ::= … | (?? e…)

The hole construct can be used in one of two ways. When it is applied to no ex-
pressions, (??), it represents a placeholder for an integer constant. Otherwise, it
is a placeholder that selects from among the provided expressions.

We call a program in Syn a sketch if it contains holes. A sketch S ∈ L defines
a set of candidate programs S, which is the set of all possible programs produced
by replacing the holes H in P with concrete expressions. We can define the syn-
thesis problem in terms of completing the holes: given a sketch S, the program
synthesis task is to find a completion h⃗ for the holes H in S such that the formula
∀x. φ(x, JS[H := h⃗]K(x)) is valid modulo T . We abuse notation to write JSK for
the set of semantics JSK of all possible programs produced by a sketch.

Example 2. Sketches allow programmers to capture domain insights that can
make synthesis more tractable. For example, a Syn sketch for max might specify
that the last operation is always an if:

(define (max1-sketch i1 i2)
(let* ([o1 ((?? > >= = < <=) (?? i1 i2) (?? i1 i2))]

[o2 (if o1 i1 i2)])
o2))

Theadvantage of a sketch is that the synthesizer need only discover an assignment
to the holes that satisfies the specification φ, without having to explore all possible
programs in Syn.

Optimal Syntax-Guided Synthesis. Evenwith syntactic constraints, there is rarely
a unique solution to a given synthesis problem. Our simple max1-sketch, for ex-
ample, has four correct solutions, and the synthesizer is free to return any one of
them. But for many applications, some solutions are more desirable than others
due to requirements such as program size, execution time, or memory or regis-
ter usage. For these applications, the synthesis task becomes one of optimization
rather than search.

We define the optimal syntax-guided synthesis problem as a generalization of
syntax-guided synthesis. The optimal program synthesis problem is the task of
searching a space of candidate programs C for a lowest-cost implementation P
that satisfies the given specification φ. The search is performed with respect to a
cost function κ, which assigns a numeric cost to each program P ∈ L.

Definition 4.1 (Optimal Syntax-Guided Synthesis). Let L be a programming lan-
guage, and T a decidable theory. Given a specification formula φ(x, JPK(x)) in T , a
cost function κ : L → R, and a search space C ⊆ L of candidate programs, the optimal
(syntax-guided) synthesis problem is to find a program P ∈ C such that the formula
∀x. φ(x, JPK(x)) is valid modulo T , and κ(P) is minimal among all such programs.

52 metasketches

Note thatwhen the cost function κ is constant, optimal synthesis reduces to syntax-
guided synthesis.

To ensure that the optimal synthesis problem remains decidable, wemust place
restrictions on the cost function κ. Existing optimal synthesis techniques often
require κ to reason only about program syntax. For our synthesis approach (Sec-
tion 4.4), it is sufficient to require that the evaluation of κ on a program P be re-
ducible to a term in a decidable theory T . This allows us to encode cost functions
that reason not only about program syntax but also about program semantics. For
example, in Section 4.5.6, we demonstrate a simplified worst-case execution time
metasketch, which reasons about feasible paths through the program’s control
flow.

Example 3. Optimal synthesis chooses among multiple correct candidate pro-
grams by minimizing a given cost function. Different cost functions will produce
different optimal solutions. For example, suppose we want to find an implemen-
tation P ∈ Syn of our φmax specification that minimizes the sum of operation
costs:

programs κ(p) =
∑

f∈p κ(f)

definitions κ ((define x e)) = κ(e)

expressions κ ((if e1 e2 e3)) = 1+ κ(e1) + κ(e2) + κ(e3)

κ ((let* ([xiei] . . .) e)) = κ(e) +
∑

i κ(ei)

κ ((lambda (x . . .) e)) = κ(e)

κ ((assert e)) = 0

κ ((e ei . . .)) = κ(e) +
∑

i κ(ei)

κ (x) = 1 if x is a built-in operator
= 0 otherwise

The program max1 from Example 1 has a cost of 2, and it is an optimal solution
under the cost function κ. However, suppose thatwe are targeting an environment
where branches are expensive and to be avoided. We can update the cost function
to penalize branches as follows:

expressions κ ((if e1 e2 e3)) = 8+ κ(e1) + κ(e2) + κ(e3)

Under this cost function, the max1 solution has a cost of 9. The new optimal solu-
tion has a cost of 4 and implements an arithmetic manipulation for the maximum
of two (finite precision) integers:

(define (max2 i1 i2)
(let* ([o1 (- i2 i1)]

[o2 (<= i1 i2)]
[o3 (* o1 o2)]
[o4 (+ i1 o3)])

o4))

4.3 metasketches 53

Given φmax, C = Syn, and our new cost function, an optimal synthesizer should
return max2, or another correct program with the same cost as max2.

4.3 metasketches

This section introduces metasketches (Def. 4.2), a new abstraction for specifying
and solving optimal synthesis problems. Metasketches generalize sketches, en-
abling a description of an infinite space of candidate programs with a countable,
ordered set of finite sketches. This representation permits fine-grained control
over the shape of the candidate space, which is critical for effective search. A
metasketch additionally provides a means of assigning cost to programs and of
directing the search toward lower-cost regions of the candidate space. This sec-
tion defines metasketches, describes their properties, and illustrates their utility
for capturing insights that enable efficient search. Section 4.4 presents a synthesis
algorithm that exploits the search strategy exposed by metasketches.

4.3.1 The Metasketch Abstraction

A metasketch consists of three components: (1) a space of candidate programs,
represented as a countable, ordered set of finite sketches; (2) a cost function from
programs to numeric cost values; and (3) a gradient function fromeach cost value c
to a set of sketches (i.e., a subspace) that may contain a program with a lower cost
than c. The space component provides a way to fragment a monolithic search
space into a set of finite regions that can be explored independently of one an-
other. Because each region is described by a sketch, the programmer gains the
ability (as we show later) to use context-sensitive structure constraints to reduce
overlap between the regions—thus making both the global and local search tasks
easier. The cost and gradient functions provide a way to navigate the local and
global search spaces in a cost-sensitive way. Together, these components enable
the programmer to easily convey key problem-specific insights to a generic search
algorithm.

Definition 4.2 (Metasketch). A metasketch is a tuple m = 〈S, κ, g〉, where:

• The space S ⊆ L is a countable set of sketches in L, equipped with a total
ordering relation�.

• The cost function κ : L → R assigns a cost to each program in the language
L.

• The gradient function g : R→ 2S returns an overapproximation of the set of
sketches in S that contain programs with lower cost than a given value c ∈ R:

g(c) ⊇ {S ∈ S | ∃⃗h. κ(S[H := h⃗]) < c} (2)

Given a specification φ, a metasketch m = 〈S, κ, g〉 defines an instance of the
optimal program synthesis problem (Def. 4.1), in which the search space C is the
union

∪

S∈S Sof the search spaces of each sketch in the setS, and the cost function
is given by κ .

54 metasketches

4.3.2 Properties of Metasketches

Metasketches bring new expressive power to (optimal) syntax-guided synthesis in
two ways. First, they can express richer candidate spaces than either sketches or
context-free grammars alone: unlike a classic sketch, a metasketch can capture an
infinite space of candidate programs, and unlike a context-free grammar, it can
express syntactic constraints on the search space that are context-sensitive (see
Section 4.3.3 for examples). Second, unlike other forms of syntactic templates,
metasketches describe both a search space and a search strategy.

In particular, by specifying the candidate space as an ordered set of sketches,
the programmerprovides a decompositionof the problem into independent parts,
as well as an order in which those parts should be explored. At one extreme, if
each sketch S ∈ S is a concrete program with no holes, the metasketch is an im-
plementation of brute force search. Ordering these programs according to AST
depth yields a bottom-up brute force search, a common synthesis technique [10,
130]. At the other extreme, if S contains only a single finite sketch, the program-
mer is choosing to solve the problem monolithically with the underlying synthe-
sizer’s search strategy, such as reduction to SMT [122, 127]. But there are many
other search strategies between these two extremes that are also easily captured
with a metasketch—for example, adaptive concretization [73] randomly replaces
some holes in a sketch with concrete values, thus creating a family of sketches of
roughly the same complexity (asmeasured by the number of holes) that are solved
independently.

While the space component of a metasketch expresses a search strategy, the
gradient function expresses an optimization strategy—essentially, a cost-based fil-
ter for the optimal synthesizer to apply to the global search space once it finds
some solution. For commonly used cost functions (such as program length or the
sum of instruction latencies), it is easy to provide a function that precisely deter-
mines whether a finite sketch contains a program with a cost lower than a given
value. Of course, this may be difficult or impossible for more complex cost func-
tions. For this reason, a metasketch only requires g to be an overapproximation
(Equation 2): it can return sketches that have no solution with cost less than c, but
to be sound, must not filter out a sketch that does have such a solution. As a de-
generate case, the gradient function g(c) = S is a trivial overapproximation that
filters out no sketches. Using a trivial gradient will not affect the correctness of
the search, nor will it affect its optimality over finite spaces, but as we discuss in
Section 4.4, a more constrained gradient is required to guarantee optimality over
infinite spaces.

4.3.3 Examples

We illustrate the process of creatingmetasketches for twooptimal synthesis prob-
lems: superoptimization [68, 75, 94, 115, 133] and approximate computing [38,
57, 100]. Superoptimization is the problem of finding the optimal sequence of in-
structions that implements a given specification. Approximate computing allows
small calculation errors in programs (such as image processing kernels) that result

4.3 metasketches 55

S = {Si | i ∈ N+}

� = {〈Si, Sj〉 | i ≤ j}

κ(P) = i for P ∈ Si

g(c) = {Si | i < c}

Si = (lambda (x . . .)
(let* ([o1 (expr x . . .)]

. . .
[oi (expr x . . . o1 . . . oi−1)])

oi))

(expr e . . .) = (?? ((?? - ~) (?? e . . .))
((?? + - * & . . .) (?? e . . .) (?? e . . .))
(if (?? e . . .) (?? e . . .) (?? e . . .)))

Figure 4.2: A basicmetasketch for superoptimization.This formulation defines the search
space to consist of all Syn programs in SSA form. The sketches are ordered
according to size. The cost function κ : Syn → N measures the number of
conditionals and applications of built-in operators.

in lower energy expenditure or execution time. A common formulation of the ap-
proximate computing task boils down to an optimal synthesis problem, in which
the cost function encodes the desired performance metric, and the specification
constrains the synthesized program to be sufficiently accurate with respect to the
reference program. We show three simple metasketches for these applications.
Despite their simplicity, however, our metasketches capture enough insight to
enable optimal synthesis of superoptimization and approximation benchmarks
that cannot be solved—even ignoring optimality—with existing techniques (Sec-
tion 4.5).

Superoptimization Figure 4.2 shows a basic superoptimization metasketch, de-
signed to find a shortest program in SSA form using a given set of operators (in
our case, all built-in Syn operators). The space of all SSA programs cannot be ex-
pressedwith a context-free grammar, since SSA constraints are context-sensitive.
However, it is easily expressed as a set of sketches. Ourmetasketch assumes a cost
function κ that measures the number of conditionals and applications of built-in
operators (that is, the original cost function from Example 3). The search space
consists of all finite SSA sketches Si with i defined variables (whose names are
canonical), and the sketches are ordered according to howmany defined variables
they contain. For our cost function, the number of defined variables in a sketch
completely determines the cost of all programs in that sketch, which is reflected
in the gradient function g.

The metasketch in Figure 4.2 encodes a simple iterative deepening strategy for
superoptimization, inwhich smaller search spaces (corresponding to shorter pro-
grams) are explored first. However, this encoding is inefficient: a sketch of size i
includes programs that can be trivially reduced to a shorter programby dead code
elimination. As a result, any search over the space defined by the sketch Si will

56 metasketches

explore programs that are also covered by sketches Sj � Si. To reduce overlap
between sketches, we can amend our encoding of Si to force all defined variables
to be used at least once. To do so, we simply lift the choice of the kth variable’s
input arguments into fresh variables v⃗k, and add, for each oj, the following asser-
tion to the body of the let* expression:

∨

k>j,v∈v⃗k oj = v. We call such assertions
(that only constrain the holes) structure constraints. In this case, the structure con-
straints remove from a sketch of length i (a large class of) programs that are also
found in shorter sketches.We have used the resultingmetasketch to solve existing
synthesis benchmarks orders-of-magnitude faster than other symbolic synthesis
techniques, and in many cases as fast as the winner of the 2014 syntax-guided
synthesis competition [10].

Adaptive Superoptimization Superoptimization (e.g., [75, 115]) often involves richer
cost functions than program length. For example, wemaywant to use a static cost
model of operator latencies, defined by modifying the cost function κ from Ex-
ample 3 to assign different weights to built-in operators and to conditionals:

κ ((if e1 e2 e3)) = cif + κ(e1) + κ(e2) + κ(e3)

κ (x) = cx if x is a built-in operator

To obtain a gradient for this cost function, we simply change g from Figure 4.2
to g(c) = {Si | i ∗ cmin < c}, where cmin is the lowest operator cost according
to κ. The new metasketch continues to encode length-based iterative deepening,
but given its cost function, we can refine the search strategy by adding a second
dimension to the sketches: the set of operators that may appear in the program.

In particular, to bias the search toward exploring cheaper sub-spaces first, we
sort the available operators according to cost, and then create a set of sketches Si,j
where i is the length of the sketch, as in Figure 4.2, and j specifies the prefix of
the sorted operators used to build expressions. The ordering on sketches now be-
comes the lexicographical order over 〈i, j〉 (although other orders are possible as
well), and we add one more structure constraint to Si,j that forces the jth operator
to define at least one of the i variables, thus reducing overlap between sketches
along the instruction-set dimension. The resulting adaptive superoptimization
metasketch enables us to find optimal, fast approximations of image processing
kernels that cannot be found tractably with other approximation techniques.

Piecewise Polynomial Approximation Typical targets for approximate computing
include small computational kernels that are invoked many times by an outer
loop.These kernels often perform expensive floating-point arithmetic using tran-
scendental functions. For example, the followingC code shows a kernel that com-
putes the inverse kinematics of a robotic arm with two joints:

void inversek2j(float x, float y, float* th1 , float* th2) {
*th2 = acos (((x*x) + (y*y) - 0.5) / 0.5);
*th1 = asin((y * (0.5 + 0.5* cos(*th2)) - 0.5*x*sin(*th2))

/ (x*x + y*y));
}

Existing techniques [57] for approximating kernels such as inversek2j rely on
hardware-acceleratedneural networks, limiting their usability by requiring custom-

4.3 metasketches 57

S = {Sk,n | k ∈ N+, n ∈ N}

� = {〈Sk,n, Su,v〉 | k < u ∨ (k = u ∧ n ≤ v)}

κ(P) = a ∗ k+ b ∗ n for P ∈ Sk,n

g(c) = {Sk,n | a ∗ k+ b ∗ n < c}

S1,n = (lambda (x1 . . . xm)
(polyn x1 . . . xm))

Sk>1,n = (lambda (x1 . . . xm)
(if (bnd x1 . . . xm)

(polyn x1 . . . xm) ; 1st piece
(…

(if (bnd x1 . . . xm)
(polyn x1 . . . xm)
(polyn x1 . . . xm) ; kth piece
)…)))

(bnd x1 . . . xm) = (and (< x1 (??)) . . . (< xn (??)))

(polyn x1 . . . xm) = (+ (* (??) (expt x1 n)) . . .
(* (??) (expt xm n)) . . .
(* (??) (expt x1 1)) . . .
(* (??) (expt xm 1)) . . .
(??))

Figure 4.3: A basicmetasketch for piecewise polynomial approximation.The search space
consists of all Syn programs that implement a piecewise polynomial function
with k pieces and the maximum degree of n. The sketches are ordered lexico-
graphically by 〈k, n〉. The cost function κ : Syn → Z is a linear combination
of k and n.

designed hardware. We present a metasketch that implements the first software-
based technique for approximating these kernels successfully, using only condi-
tionals and fixed-point addition and multiplication.

Our metasketch, shown in Figure 4.3, implements a piecewise polynomial ap-
proximationof amathematical function.Thecandidate space is decomposed along
two dimensions: the number k of pieces and the degree n of each polynomial. The
sketch Sk,n contains k− 1 unknown branching conditions defining k pieces, and
each branch contains a polynomial of degree n with unknown coefficients. Be-
cause our optimal synthesis problem involves approximating a function over a
set of points sampled from its domain, the cost κ minimizes a linear combination
of pieces and degree, in order to prevent overfitting to the sample set.

As in the case of (adaptive) superoptimization, we can reduce overlap between
the sketches in Figure 4.3 with structure constraints. In particular, we force some
piece in every Sk,n to include an nth degree term with a non-zero coefficient, and
we force the branching conditions to differ in at least one term. In other words,
our constraints prevent sketches of size 〈k, n〉 from containing (a class of) pro-
grams that belong to smaller sketches after constant propagation and dead code
elimination. Finally, we also break symmetries in the Sk,n search space by order-
ing the constants in the branching conditions, so that the ith bound for the ar-

58 metasketches

gument xi is no greater than its i + 1st bound. Our optimal synthesis algorithm
solves the resulting metasketch for several standard approximation benchmarks,
including inversek2j, for which it finds an approximation with 16% error and
35× speedup.

4.4 optimal synthesis algorithm

Our synthesis approach takes advantage of themetasketch abstraction by layering
a global search atop individual local searches running in parallel.Theglobal search
executes the high-level strategy encoded in a metasketch, and coordinates the ac-
tivities of local searches to satisfy the optimality requirement. Local searches exe-
cute an incremental formof counterexample-guided inductive synthesis (CEGIS) [121],
which can accept additional constraints during the inductive synthesis loop. This
section presents the global and local search algorithms, characterizes their prop-
erties, and describes performance-oriented implementation details.

4.4.1 Global Search

To solve a metasketch m = 〈S, κ, g〉, the global search coordinates individual
solvers operating on sketches drawn from the space S. This coordination takes
two forms. First, the global search uses the ordered set S and the gradient func-
tion g to select which sketches to send to individual solvers. The total order �
on S defines the order in which to search sketches; the search order can signif-
icantly change the performance of the synthesis procedure, as Section 4.4.4 dis-
cusses.The gradient function g filtersS once a satisfying solution is found to only
search sketches with potentially cheaper solutions. Second, the global search re-
ceives candidate solutions from the individual solvers as they execute. The global
search broadcasts information about these candidates to all local solvers, focusing
their search efforts on cheaper solutions.

Figure 4.4 shows the global search algorithm Synthesize. The global search
runs τ local solvers in parallel, each executing ∃∀SolveAsync on a logical en-
coding of the synthesis problem for a particular sketch S from S. Our algorithm
assumes the existence of a procedure (as provided by, for example, Sketch [122]
or Rosette [126]) that can encode the application of an arbitrary program from
a sketch as a term in the theory T . A local solver that completes a search with the
sketch S returns a tuple 〈S, result , h〉 of results to the global search on line 12.
The variable result is SAT if there is a completion of the sketch S that satisfies φ,
or UNSAT otherwise. If result is SAT, the program S[H := h] is a completion of
S that satisfies φ; if result is UNSAT, h is⊥.

If a local solver produces a new solution that is the best seen so far (line 15), the
global search filters S with the gradient function g (line 17). The gradient func-
tion restricts S to include only sketches that may contain programs cheaper than
the new best cost c∗. The global search then announces c∗ to all currently running
solvers as a new constraint in theory T . Consequently, the application of κ to an
arbitrary program from S needs to be reducible to a term in T (as mentioned in
Section 4.2). The local solvers use this constraint to prune their candidate space

4.4 optimal synthesis algorithm 59

1 global τ ▷ Number of parallel threads

2 function Synthesize(φ,m = ⟨S, κ, g⟩)
3 V ← ∅ ▷ Completed sketches
4 P∗, c∗ ← ⊥,∞ ▷ Optimal program and cost
5 R ← Take(S, τ) ▷ Remove first τ sketches from S
6 for all S ∈ R do
7 η← VarsForHoles(S) ▷ Logical variables for holes
8 x← VarsForInputs(S) ▷ Logical variables for inputs
9 ψ ← λe.λa.φ(a,ToSMT(S[H := e](a)))

10 ∃∀SolveAsync(S, ∃η.∀x.ψ(η, x)) ▷ Start solving S

11 whileR ̸= ∅ do
12 S, result , h← WaitForResult(R)

13 P← S[H := h]
14 t← 0 ▷ Number of new sketches to launch
15 if result = SAT ∧ κ(P) < c∗ then ▷ New optimal solution
16 P∗, c∗ ← P, κ(P)
17 S ← g(c∗)
18 for all S ∈ R do
19 if S ∈ S then ▷ Allow S to continue
20 ϕ← λe.λa.ToSMT(κ(S[H := e])) < c∗

21 SendConstraint(S, ϕ)
22 else ▷ Prune S
23 KillSolver(S)
24 R ← R \ {S}; V ← V ∪ {S}; t← t+ 1

25 else if result = UNSAT then ▷ No (more) solutions to S
26 KillSolver(S)
27 R ← R \ {S}; V ← V ∪ {S}; t← t+ 1

28 if t > 0 then
29 N ← Take(S \ (R∪ V), t)
30 for all S ∈ N do
31 η← VarsForHoles(S)
32 x← VarsForInputs(S)
33 ψ ← λe.λa.φ(a,ToSMT(S[H := e](a)))∧

ToSMT(κ(S[H := e])) < c∗

34 ∃∀SolveAsync(S, ∃η.∀x.ψ(η, x))
35 R ← R∪N

36 return P∗

Figure 4.4: The global optimal synthesis algorithm Synthesize takes as input a specifica-
tion φ and a metasketch 〈S, κ, g〉, and finds a program P ∈

∪

S∈S S that sat-
isfies φ and minimizes κ . The synthesis runs τ local solvers (∃∀SolveAsync),
each executing in parallel on its own thread, and coordinates their search ac-
tivities by sharing constraints.

60 metasketches

to include only programs cheaper than c∗. As an optimization, the global search
can also kill local solvers that are no longer in the setS after applying the gradient
function. This is sound because if a gradient function g(c∗) filters out a sketch S,
then by Equation (2), the sketch S has no solutions with cost less than c∗. There-
fore, when the local search for S receives the new constraint that its cost be less
than c∗, it will return UNSAT.

If a local solver produces no solution (line 25), it is marked as completed and
new solvers are launched on new sketches fromS. In addition to the specification
φ, these new solvers take an additional constraint that requires their solutions to
be cheaper than the best known solution so far.

4.4.2 Local Searches

The global search invokes a local search procedure ∃∀SolveAsync (Figure 4.5)
on individual sketches S from the space S of the metasketch. The local search
implements an incremental version of the CEGIS [122] algorithm for solving
∃η.∀x.ψ(η, x) synthesis queries—that is, for finding a binding h for η that makes
the formula ∀x.ψ(η := h, x) valid. The classic CEGIS algorithm uses one (incre-
mental) solver instance, called the synthesizer, to search for an h that is correct
for a set Z of values for x, by checking the satisfiability of the formula

∃η.
∧

z∈Z

ψ(η, x := z).

If the synthesis formula is satisfiable, another solver instance, called the verifier,
checks the satisfiability of the formula ∃x.¬ψ(η := h, x), looking for a value of x,
called a counterexample, that invalidates the candidate solution h. If such a value
exists, it is added to Z. This loop repeats until either the verifier returns UNSAT,
indicating that h is valid, or the synthesizer returns UNSAT, indicating that there
are no candidates left.

The ∃∀SolveAsync algorithm extends CEGIS to accept additional constraints
inside of theCEGIS loop. After each iteration of theCEGIS loop, our incremental
algorithm can accept a new constraint ψ′(η, x) (line 22) to obtain a new synthesis
problem∃η.∀x.ψ(η, x)∧ψ′(η, x).This constraint is added to the set of constraints
seen so far (line 24), and asserted to the synthesizer for each counterexample col-
lected so far (line 23).The synthesizer then searchers for amodel of the new prob-
lem (line 9), and if the result is a valid solution (line 11),∃∀SolveAsync emits that
solution to its output channel (line 17). As in classic CEGIS, an invalid solution
leads to a counterexample, which is added to Z (lines 12–14). If there is no model
for the problem, the search terminates (lines 19–20).When the algorithm satisfies
all the constraints it has received so far, it blocks until it receives new constraints.

4.4.3 Characterization

We now show that the global search Synthesize is sound (it returns only correct
programs), complete (it returns a correct program if one exists), and optimal (it re-
turns the cheapest correct program). To start, we prove soundness and complete-

4.4 optimal synthesis algorithm 61

1 function ∃∀SolveAsync(id, ∃η. ∀x. ψ(η, x))
2 GS ← new IncrementalSMTSolver()
3 y← ValuesFor(x) ▷ Arbitrary initial binding for x
4 Z← {y} ▷ CEGIS counterexamples
5 Ψ ← {ψ} ▷ All constraints
6 Assert(GS, ψ(η, x := y)) ▷ Assert that ψ holds for y
7 while true do
8 block ← True
9 result , h← Solve(GS) ▷ Solve for η

10 if result = SAT then ▷ h is a candidate model
11 result , z← Verify(Ψ, η := h, x)
12 if result = SAT then ▷ Candidate is incorrect
13 Assert(GS,

∧
ϕ∈Ψ ϕ(η, x := z))

14 Z← Z ∪ {z} ▷ z is a counterexample
15 block ← False ▷ Do not wait for more constraints
16 else ▷ Candidate is valid; send to global search
17 SendResult(id, SAT, h)
18 else ▷ Ψ is not valid
19 SendResult(id,UNSAT,⊥)
20 return
21 if block ∨ a constraint has been received then
22 ϕ← ReceiveConstraint()
23 Assert(GS,

∧
z∈Z ϕ(η, x := z))

24 Ψ ← Ψ ∪ {ϕ}

25 function Verify(Ψ, η := h, x)
26 GV ← new SMTSolver()
27 Assert(GV,

∨
ϕ∈Ψ ¬ϕ(η := h, x))

28 return Solve(GV) ▷ Solve for x

Figure 4.5: The local synthesis algorithm ∃∀SolveAsync takes as input a constraint ψ
over a list of existentially quantified variables η and universally quantified
variables x. The algorithm is an incremental form of counterexample-guided
inductive synthesis (CEGIS) that accepts new constraints within the CEGIS
loop. These new constraints are conjoined to ψ in the order in which they are
received. ∃∀SolveAsync emits models for η that make the resulting conjunc-
tions valid. The search terminates if the current conjunction becomes unsat-
isfiable.

62 metasketches

ness of ∃∀SolveAsync. Next, we use the soundness of ∃∀SolveAsync to estab-
lish the soundness of Synthesize. We then observe that Synthesize is not guar-
anteed to terminate on an arbitrary metasketch with an infinite search space. To
prove completeness and optimality, we therefore introduce compact metasketches
(Def. 4.8), which place a simple compactness requirement on the gradient func-
tion g. This requirement is true of all metasketches with finite search spaces, and,
in practice, is easy to satisfy for infinite search spaces as well. But Synthesize is
still useful for non-compact metasketches: because it will always discover a solu-
tion if one exists (a property we call online completeness), an implementation that
emits intermediate results (on line 16 of Figure 4.4) can be used to find the best
solution within a given time budget.

Local Search. The global search invokes ∃∀SolveAsync on the ∃∀ synthesis
query for a given sketch Swith respect to the correctness specification φ. To prove
that the global search is sound, we need to show simply that no solution produced
by ∃∀SolveAsync violates φ (Lemma 4.3). Completeness of ∃∀SolveAsync is
more subtle, however. Unlike classic CEGIS, the incremental CEGIS explicitly fil-
ters out some solutions satisfying φ by receiving additional constraints.We prove
completeness of ∃∀SolveAsync in the case where it has received a set of con-
straints Ψ, but then receives no further constraints until it sends a result (Lemma
4.5). This completeness result is sufficient for proving completeness of the global
search on compact metasketches.

Lemma 4.3 (Soundness of ∃∀SolveAsync). Let ∃η. ∀x. ψ(η, x) be the problem
with which ∃∀SolveAsync is initialized. If the algorithm emits a result of the form
〈id, SAT, h〉, then ∀x. ψ(η := h, x) is valid modulo T .

Proof. If ∃∀SolveAsync sends a result 〈id, SAT, h〉 from line 17 in Figure 4.5,
then the verification on line 11 must have returned UNSAT. By the definition of
Verify, thismeans that∄z.

∨

ϕ∈Ψ ¬ϕ(η := h, z), and therefore that∀z.
∧

ϕ∈Ψ ϕ(η :=
h, z). Since ψ ∈ Ψ and additional constraints in Ψ can only rule out solutions, we
have that ∀x. ψ(η := h, x) is valid modulo T .

Lemma 4.4 (∃∀SolveAsync loop invariant). At line 8 of Figure 4.5, the state of the
incremental solver GS is the assertion

∧

ϕ∈Ψ
∧

z∈Z ϕ(η, x := z).

Proof. By induction on loop iterations. On loop entry, Ψ = {ψ} and Z = {y},
and the only assertion isψ(η, x := y).Nowsuppose the state is

∧

ϕ∈Ψ
∧

z∈Z ϕ(η, x :=
z) at the start of the current iteration. The iteration can add only a single new
counterexample z′; if it does, it will assert

∧

ϕ∈Ψ ϕ(η, x := z′) (line 13), and set
Z′ = Z ∪ {z′}; if not, it will set Z′ = Z. (line 14) Then the iteration can add a
single new constraint ϕ′; if it does, it will assert

∧

z∈Z′ ϕ′(η, x := z) (line 23) and
set Ψ′ = Ψ ∪ {ϕ′} (line 24); if not, it will set Ψ′ = Ψ. Therefore, at the start of
the next iteration, the assertion store contains

∧

ϕ∈Ψ′

∧

z∈Z′ ϕ(η, x := z).

Lemma 4.5 (Completeness of ∃∀SolveAsync). Let ∃η. ∀x. ψ(η, x) be the prob-
lem with which ∃∀SolveAsync is initialized. Suppose that ∃∀SolveAsync receives con-
straints ϕ1, . . . , ϕk, such that Ψ = {ψ, ϕ1, . . . , ϕk}. If no more constraints are re-

4.4 optimal synthesis algorithm 63

ceived, and there exists some assignment h such that ∀x.
∧

ϕ∈Ψ ϕ(η := h, x) is valid
modulo T , then ∃∀SolveAsync will eventually send a SAT result.

Proof. Suppose we are at line 8 of Figure 4.5, when the previous iteration of the
loop received the last message ϕk. Let Z′ be the set Z of counterexamples at this
point.Wenowhave a set of specificationsΨ thatwill not change again. ByLemma4.4,
the accumulated state of GS is the assertion

∧

ϕ∈Ψ
∧

z∈Z′ ϕ(η, x := z). From this
point, the algorithm reduces to classic CEGIS, which is sound and complete on
bounded input domains.

Global Search. The correctness of the global search depends on the soundness
and completeness of the local search. We first show that Synthesize is sound for
the classic synthesis problem.

Theorem 4.6 (Soundness of Synthesize). Let m = 〈S, κ, g〉 be a metasketch and
φ a specification. If Synthesize(φ,m) returns a program P, then P is a solution to the
classic synthesis problem; that is, ∀x. φ(x, JPK(x)) is valid modulo T .

Proof. Follows immediately from Lemma 4.3.

As stated, the Synthesize procedure is not complete: it is not guaranteed to
return a solution if one exists, because it is not guaranteed to terminate. The issue
is that both the space S and the sets returned by the gradient function g may be
countably infinite. However, we can show that Synthesize will always discover a
solution if one exists; that is, Synthesize is a semi-decision procedure. We call
this property online completeness.

Theorem4.7 (Online completeness of Synthesize). Letm = 〈S, κ, g〉 be ametas-
ketch and φ a specification. Suppose that there exists a program P ∈

∪

S∈S S in the
search space defined by the metasketch such that ∀x. φ(x, JPK(x)) is valid modulo T .
Then at some point during execution, the call to WaitForResult on line 12 returns a
tuple with result = SAT.

Proof. Because P ∈
∪

S∈S S, there exists a sketch S ∈ S such that P ∈ S. Then
there are three possibilities for how Synthesize treats the sketch S, all of which
guarantee that the global search receives a SAT message:

• S is launched by a call to ∃∀SolveAsync which then receives no constraint
messages from the global search. Then by Lemma 4.5, because S is satisfi-
able, the global search eventually receives a SAT message with sketch S.

• S is launched by a call to ∃∀SolveAsync and receives at least one con-
straint message from the global search. But constraint messages are only
sent from line 21 of Figure 4.4, which is only reachable when WaitForRe-
sult receives a SAT message.

• If S is never launched, it must have been removed from S. This removal
can only happen on line 23 of Figure 4.4, which is only reachable when
WaitForResult receives a SAT message.

64 metasketches

Online completeness is useful because an implementation of Synthesize could
emit intermediate results while continuing its search. As results in Section 4.5.4
show, Synthesize spends most of its execution time proving optimality of a can-
didate program, and so emitting intermediate results can make synthesis much
faster at the expense of a weaker optimality guarantee. Online completeness en-
sures that Synthesize will always emit an intermediate solution if any solutions
exist.

Compact Metasketches The global search is not guaranteed to terminate on an
arbitrarymetasketch, as explained above. To guarantee termination,we introduce
an additional compactness constraint on the gradient function of a metasketch.
This constraint is sufficient to prove that Synthesize is complete and optimal.

Definition 4.8 (Compact Metasketch). A compact metasketch is a metasketch
m = 〈S, κ, g〉 satisfying Definition 4.2 with the additional property that for all c ∈ R,
g(c) is finite.

Theorem 4.9 (Completeness of Synthesize). Let m = 〈S, κ, g〉 be a compact
metasketch and φ a specification. Suppose that there exists a program P′ ∈

∪

S∈S S in
the search space defined by the metasketch such that ∀x. φ(x, JP′K(x)) is valid modulo
T . Then there exists a program P such that Synthesize(φ,m) returns P.

Proof. By Theorem 4.7, there is at least one sketch S and program P such that
WaitForResult will return the message 〈SAT, S, P〉. Let this be the first such
SAT message. Then c∗ = ∞, and so line 17 will set S ′ = g(κ(P)). Since m is a
compact metasketch, S ′ is finite, and since line 17 is only called when a new cost
is smaller than c∗, no new sketches can be added to S ′. Therefore there are only
finitely many sketches remaining to explore. Each sketch has only finitely many
solutions and, whenever a sketch returns a SAT message, it either receives a new
constraint ruling that solution out (if the solution it returned has cost κ(P) < c∗),
or a constraint ruling that solution out is already waiting on its queue (if κ(P) ≥
c∗). Therefore, local solvers can only return finitely many more solutions, after
which they will return UNSAT and be added toV . Eventually, the setS\(R∪V)
of unexplored sketches will be empty, the running sketches will return UNSAT,
and Synthesize will return a program.

Theorem4.10 (Optimality of Synthesize). Letm = 〈S, κ, g〉 be a compact metas-
ketch and φ a specification. Suppose that Synthesize(φ,m) returns a program P with
cost c. Then P is an optimal program: there is no program P′ ∈

∪

S∈S S such that
∀x. φ(x, JP′K(x)) is valid modulo T , and κ(P′) < c.

Proof. We proceed by contradiction. Suppose Synthesize returns Pwith κ(P) =
c, but there is a sketch S′ ∈ S that contains a correct program P′ with κ(P′) =
c′ < c. Since the assignment to c∗ is guarded by line 15, c∗ can only decrease,
and by assumption, will never be smaller than c. By the definition of the gradient
function, the sketch S′ is never filtered out by line 17, since c′ < c ≤ c∗. Hence,
when Synthesize receives a SAT message with a sketch S and cost c, either a

4.4 optimal synthesis algorithm 65

local search for S′ is still running, or it has not started. In both cases, the local
search for S′ will receive the constraint ToSMT(κ(S[H := e])) < c (at line 21
or at line 34), and it will receive no further constraints (since we assumed that
Synthesize returns a program with cost c). By Lemma 4.5, the local search will
run to completion and will be satisfiable, returning a correct solution P′ with cost
κ(P′) < c. This solution will be received by Synthesize on line 12, contradicting
the assumption that Synthesize returns P.

4.4.4 Implementation

We implemented our optimal synthesis approach in a new tool we call Synapse,
built on top of the Rosette language (Chapter 2). Here we highlight some imple-
mentation details.

Sharing Counterexamples. The incremental CEGIS algorithm in Figure 4.5 can
receive new constraints after each iteration. But the algorithm can be extended
to also receive other messages. Synapse exchanges CEGIS counterexamples be-
tween different local solvers in an effort to speed up each search. When a local
solver sends a SAT or UNSAT message, it also includes the set Z of counterex-
amples it used to generate that result. The global search broadcasts the new coun-
terexamples it receives to all running solvers, andmaintains a set of all counterex-
amples that it provides to new local solvers. This optimization is sound because
it does not affect the Verify check in ∃∀SolveAsync. Synapse uses the shared
counterexamples only to accelerate the Verify check in ∃∀SolveAsync, by first
checking that the assertion on line 27 is not trivially invalidated by any of the ex-
isting counterexamples. This optimizations allows solvers to reduce the number
of solver queries. We measure the effect of this optimization in Section 4.5.5.

Timeouts. While individual sketches are finite and therefore local searches will
terminate, the queries made by local searches can take too long to be practical.
We control this effect by adding a timeout parameter to ∃∀SolveAsync. Once
the timeout expires, the local solver sends a timeout message to the global search.
The global search treats a timed-out search in the same way as an unsatisfiable
one: it kills the local solver and launches the next sketch.

Timeouts weaken the optimality guarantee that Synapse provides. A solution
output by Synapse is only guaranteed to be optimal among those sketches that did
not time out. In practice, the metasketches we designed were unlikely to contain
cheaper solutions in sketches that timed out, and extending the time out by an
order of magnitude did not change our results.

Search Order. The completeness of Synapse does not depend on the order� of
the set of sketchesS in ametasketch.Theonly requirement is that the order is total
(as Definition 4.2 states), so that for every sketch S ∈ S, Synthesize eventually
either tries to solve that sketch, or prunes it by finding a cheaper solution.

However, the search order can have a significant effect on performance. In the
example metasketch designs in Section 4.3.3, we were careful to select a search

66 metasketches

order� that preferred simpler sketches to more complex ones. This order avoids
wasted work on complex sketches that are likely to time out. It also best exploits
the counterexample sharing optimization described above, as smaller sketches
quickly generate a set of counterexamples that later local searches can use. We
found the Cantor and Szudzik orders [81, 124] to be particularly effective.

4.5 evaluation

To demonstrate that Synapse effectively solves optimal synthesis problems ex-
pressed as metasketches, we evaluated it on four sets of benchmarks drawn from
existing work. We sought to answer the following questions:

1. Is Synapse a practical approach to solvingdifferent kinds of synthesis prob-
lems? In particular, can it solve optimal synthesis problems? Do metas-
ketches also enable more effective classic synthesis compared to existing
syntax-guided synthesizers?

2. Does the fragmentation of the search space by a metasketch translate into
parallel speedup?

3. Is online completeness empirically useful?What proportion of Synapse’s run
time is spent finding an optimal solution versus proving its optimality?

4. How beneficial are our optimizations at the level of metasketches (real-
ized through structure constraints) and within the implementation (real-
ized through counterexample sharing)?

5. Can Synapse reason about dynamic cost functions; that is, cost functions
that execute the synthesized program?

This section presents our benchmarks, experiments, and results. The results pro-
vide affirmative answers to all five questions. Synapse, our benchmarks, and our
experimental data are available online4 and have been artifact evaluated.

4.5.1 Benchmarks

Table 4.1 shows the benchmarks used in our evaluation. The benchmark prob-
lems come from two sources: the 2014 and 2015 syntax-guided synthesis (Sy-
GuS) competitions [10], and common approximate computing benchmarks [57].
We selected 67 problems from four categories of the SyGuS competition, rang-
ing in difficulty from easy (i.e., solvable by most solvers) to hard (i.e., unsolvable
by most solvers). The approximate computing benchmarks consist of 7 programs
that cannot be approximated with existing software-based techniques. We devel-
opedmetasketches for each set of problems. Section 4.3.3 described some of these
metasketches, and we describe the rest below.

4 http://synapse.uwplse.org

4.5 evaluation 67

Table 4.1: The benchmarks used in our evaluation. For each benchmark suite, we wrote
a metasketch whose set of sketches together form the relevant search space, as
described in Section 4.3.3.

Benchmark Suite Problems Source Metasketch Cost Function

Array Search 14 SyGuS’14 [10] Array programs Expression depth
Search a sorted array of size n for a given element and return its index

Conditional Integer
Arithmetic (CIA)

13 SyGuS’15 [12] Integer programs Expression depth

Integer programs that use complex branching structure
Hacker’s Delight d0 20 SyGuS’14 [10] Superoptimization Program length

Bit-manipulating programs, with sketches in the metasketch containing only the min-
imal set of bitvector operators necessary to implement the reference program.

Hacker’s Delight d5 20 SyGuS’14 [10] Superoptimization Program length
Bit-manipulating programs, with sketches in the metasketch containing all operators
from the theory of bitvectors.

Parrot 3 Parrot [57] Adaptive superopt. Static cost model
Approximate computing kernels: kmeans and sobel (×2 convolution matrices)

Parrot (polynomial) 4 Parrot [57] Piecewise polynomial Pieces + Degree
Approximate computing kernels: fft (×2 outputs) and inversek2j (×2 outputs)

Hacker’s Delight. Thefirst category contains 20bit-manipulating problems, used
as superoptimization benchmarks in previous synthesis work [68, 115], appear-
ing in two different difficulties, d0 and d5. The metasketch for a d0 problem in-
cludes only the bitvector operators that appear in the reference solution for that
problem. The metasketch for d5 problems includes all bitvector operators.

Array Search. The second category contains 14 array search problems from the
SyGuS competition [10]. The problem arraysearch-n is to synthesize a program
that returns the index of a search key in a sorted array of size n, or zero if the
key is not present in the array. The most efficient solution to these problems im-
plements binary search. The metasketch for array search problems is an infinite
set of sketches generated by two mutually recursive functions that encode SyGuS
grammars for integer and boolean expressions. Each sketch in this metasketch is
parameterized by the depth of the deepest integer and boolean expressions, re-
spectively.

Conditional Integer Arithmetic (CIA). The third category contains 13 conditional
integer arithmetic problems5 new to the 2015 syntax-guided synthesis compe-
tition [12]. Each problem involves synthesizing a program from a grammar that
includes the program inputs; constants 0, 1, and 3; integer addition and subtrac-
tion; and the qm operation

(define (qm a b)
(if (< a 0) b a))

5 The conditional integer arithmetic benchmarks are labeled qm in the SyGuS competition dataset.

68 metasketches

The metasketch for CIA problems is an infinite set of sketches generated by this
grammar, with one sketch per depth of production from the grammar. Several of
the CIA benchmarks were unsolved by any solver in the SyGuS competition; we
present only those solved by at least one SyGuS solver or by Synapse.

Parrot. The fourth category contains 7 problems drawn from the approximate
computing literature [57]. The specification for these problems allows the syn-
thesized program to differ from the reference program by a given application-
specific quality bound.Weuse twometasketches for theParrot benchmarks: piece-
wise polynomial approximation (for benchmarks that use transcendental func-
tions) and adaptive superoptimization (for all other benchmarks).

Methodology. We performed all experiments on an 18-core Intel Xeon E5-2666
CPU at 2.9GHz, with 60GB of RAM. For SyGuS benchmarks, we timed out each
metasketch after onehour, for consistencywith the SyGuS competition setup [10].
For Parrot benchmarks, we did not use a timeout for any metasketch. In both
cases, individual sketches within a metasketch were timed out after 15 minutes.
Section 4.4.4 describes the effect of timeouts on Synapse’s optimality guarantee;
we found that extending the individual sketch timeout by an order of magnitude
did not discover cheaper solutions for any problem. All timing results are wall-
clock times for the entire Synapse execution.Where speedups are presented, they
are aggregated over all benchmarks in a category before being normalized to the
relevant baseline [120].

4.5.2 Is Synapse a practical approach to solving different kinds of synthesis problems?

To evaluate the effectiveness of Synapse as a generic synthesis engine, we ap-
plied it to all of our benchmarks in sequential mode—that is, running only a sin-
gle local search at a time. This gives a baseline for comparison against existing
syntax-guided synthesis solvers, which are single-threaded. Figure 4.6 shows the
sequential solving performance of Synapse on our benchmarks.

For the Hacker’s Delight benchmarks at difficulty d0, Synapse solves all 20
problems. The performance is competitive with results from the syntax-guided
synthesis (SyGuS) competition [10], showing that metasketches do not introduce
additional overhead for easy problems. However, Synapse also solves problem
20, which none of the SyGuS solvers could solve in either 2014 or 2015.

For Hacker’s Delight benchmarks at difficulty 5, Synapse is able to solve 18
of the 20 problems within a one hour timeout. This result is better than other
SMT-based SyGuS solvers: the symbolic solver in 2014 [11, 68] times out on all
20 problems, the Sketch-based [122] solver in 2014 solves only problems 1–8, and
the CVC4-based solver that won the 2015 competition [112] cannot solve prob-
lems 14 or 15. The winner of the SyGuS competition in 2014 used an enumera-
tive brute force strategy, and solved the same 18 problems that Synapse solves in
comparable time (same order of magnitude).

Synapse solves all Array Searchproblems. In comparison, the best SyGuS solver
on these problems in 2014 was the Sketch-based [122] solver, which could solve

4.5 evaluation 69

*

* *

Hacker's Delight d0 Hacker's Delight d5

Array Search CIA Parrot

01
−

d
0

02
−

d
0

03
−

d
0

04
−

d
0

05
−

d
0

06
−

d
0

07
−

d
0

08
−

d
0

09
−

d
0

10
−

d
0

11
−

d
0

12
−

d
0

13
−

d
0

14
−

d
0

15
−

d
0

16
−

d
0

17
−

d
0

18
−

d
0

19
−

d
0

20
−

d
0

01
−

d
5

02
−

d
5

03
−

d
5

04
−

d
5

05
−

d
5

06
−

d
5

07
−

d
5

08
−

d
5

09
−

d
5

10
−

d
5

11
−

d
5

12
−

d
5

13
−

d
5

14
−

d
5

15
−

d
5

16
−

d
5

17
−

d
5

18
−

d
5

19
−

d
5

20
−

d
5

ar
ra

y
se

ar
ch

−
2

ar
ra

y
se

ar
ch

−
3

ar
ra

y
se

ar
ch

−
4

ar
ra

y
se

ar
ch

−
5

ar
ra

y
se

ar
ch

−
6

ar
ra

y
se

ar
ch

−
7

ar
ra

y
se

ar
ch

−
8

ar
ra

y
se

ar
ch

−
9

ar
ra

y
se

ar
ch

−
10

ar
ra

y
se

ar
ch

−
11

ar
ra

y
se

ar
ch

−
12

ar
ra

y
se

ar
ch

−
13

ar
ra

y
se

ar
ch

−
14

ar
ra

y
se

ar
ch

−
15

q
m

_
ch

o
o

se
_
01

q
m

_
ch

o
o

se
_
y

z

q
m

_
lo

o
p

_
1

q
m

_
lo

o
p

_
2

q
m

_
lo

o
p

_
3

q
m

_
m

ax
2

q
m

_
m

ax
3

q
m

_
n

eg
_
1

q
m

_
n

eg
_
2

q
m

_
n

eg
_
3

q
m

_
n

eg
_
4

q
m

_
n

eg
_
eq

_
1

q
m

_
n

eg
_
eq

_
2

ff
t−

co
s

ff
t−

si
n

in
v
er

se
k

2j
−

1

in
v
er

se
k

2j
−

2

k
m

ea
n

s

so
b
el

−
x

so
b
el

−
y

10

100

1000

10000

10

100

1000

10000

Benchmark

S
o

lv
in

g
 t

im
e

(s
ec

s)

Figure 4.6: Sequential solving performance for all benchmarks. Asterisks indicate bench-
marks that timed out after one hour.

these problemsonly up to length 7.Theenumerative solver,whichwon the syntax-
guided synthesis competition, could only solve lengths 2 and3. In 2015, theCVC4-
based solver [112] also solved all Array Search problems. However, its solutions
were highly non-optimal: for arraysearch-15, Synapse produces the expected bi-
nary search solution with AST depth 5 and size 349 bytes, while CVC4 produces
a solution with AST depth 45 and size 7.1MB.

Synapse is also able to solve all seven Parrot problems. We attempted to solve
the Parrot benchmarks using SyGuS solvers, Sketch [122], and the Stoke stochas-
tic superoptimizer [115] without success. We encoded the adaptive superopti-
mization Parrot problems in the SyGuS benchmark format and in Sketch. Only
the CVC4-based SyGuS solver [112] and Sketch produced solutions for these
problems, but the solutions failed to meet the specification. The other publicly-
available SyGuS solvers did not return solutions in 4 hours, which is the maxi-
mum time taken by Synapse to solve any Parrot benchmark. The piecewise poly-
nomial Parrot problems are not expressible in the SyGuS format, because they
require synthesizing (arbitrary numeric) constants. Sketch supports synthesis of
constants, but it was unable to solve any of these problems in 4 hours. Implement-
ing the benchmarks in C and passing them to Stoke also resulted in no solutions.

70 metasketches

●

●

●
●

1

2

3

4

5

1 2 4 8

Threads

S
p

ee
d

u
p

Benchmarks
● Array Search

CIA
Hacker's Delight d5
Parrot

Figure 4.7: Parallel solving performance for all benchmarks except Hacker’s Delight d0
(which are too small to benefit). Parrot sees substantial parallel speedup.
Hacker’s Delight d5 sees speedup up to four threads, but then a single local
search dominates solving time. Array Search and Conditional Integer Arith-
metic benchmarks see minimal speedup because most solving time is spent
on a single local search.

4.5.3 Does the fragmentation of the search space by a metasketch translate into par-
allel speedup?

To evaluate the benefits of coarse-grained parallelism exposed by metasketches,
we applied Synapse to our benchmarks using 2, 4, and 8 threads. Figure 4.7 shows
the resulting parallel solving performance. We omit Hacker’s Delight at difficulty
d0 because these small benchmarks do not benefit from parallelization. Results
are speedups in total execution time aggregated over all benchmarks in a category,
excluding benchmarks that timed out at any number of threads.

Synapse realizes substantial parallel speedups for the Parrot problems, which
are the hardest synthesis problems in our benchmark suite. These speedups are
similar to or better than recentwork inparallel programsynthesis [73]. ForHacker’s
Delight problems, the parallel speedups are significant up to four threads, but
eventually a single local search (which executes sequentially) becomes the bot-
tleneck. For Array Search and Conditional Integer Arithmetic problems, parallel
speedups areminimal, becausemost sketches early in the search order are quickly
found to be unsatisfiable, so solving time is again dominated by a single sequential
local search.

4.5.4 Is online completeness empirically useful?

Unlike a classic program synthesizer, which can terminate as soon as it discovers
a solution, an optimal program synthesizer such as Synapse must also prove the
optimality of a candidate solution. Metasketches provide an abstraction that al-
lows this search to terminate despite exploring an infinite space of candidate pro-
grams. But the proof of optimality can still consume a significant portion of the
search time: the gradient function of a metasketch returns sketches that may con-

4.5 evaluation 71

0

25

50

75

0 500 1000 1500

Time (secs)

S
k

et
ch

es
 o

r
C

o
st

Sketches remaining

Sketches complete

Best cost

Figure 4.8: Search progress for the sobel-y benchmark on 4 threads. When solutions are
discovered, the size of the remaining search space to explore drops signifi-
cantly. Synapse finds the optimal solution after 112 s, but must spend an ad-
ditional 1,628 s proving it optimal.

tain cheaper candidate programs, and so the search can spend significant amounts
of time searching sketches that do not contain cheaper solutions.

Figure 4.8 shows the progress over time of a search for the sobel-y Parrot
benchmark. The x-axis is the time since starting the search, and the y-axis plots
both the number of sketches completed and remaining in the search, and the cost
of the best solution so far. Note that the number of sketches remaining is infinite
before a first solution is found. The search discovers the optimal solution after
112 s with cost 6. However, the gradient function returns 56 sketches that may
contain solutions of lower cost. The search spends another 1,628 s exploring each
of these sketches to prove they do not contain such solutions. The slope of the
sketches-remaining line in Figure 4.8 shows that many of these sketches can be
quickly pruned, due to the added constraint they receive from the global search
that their solutions must be cheaper than 6. For some sketches, however, the local
search is unable to quickly deduce unsatisfiability despite this added constraint.
These sketches dominate the search time.

4.5.5 How beneficial are our metasketch and implementation optimizations?

Synapse admits two optimizations beyond existing CEGIS-based solvers, as Sec-
tion 4.4.4 describes. First, the global search can exchange counterexamples be-
tween local searches, which can improve their performance by reducing the num-
ber of calls to the verifier. Second, a metasketch can impose structure constraints
on the individual local searches, which can rule out some semantically-equivalent
programs from being considered by multiple searches.

Figure 4.9 shows the effect of these optimizations for a single-threaded search.
Results are speedups in total execution time aggregated over all benchmarks in a
category, excluding benchmarks that timedout in any configuration. BothHacker’s
Delight and Array Search benchmarks see minimal benefits from the optimiza-
tions, because they consist mainly of sketches that are easily proven unsatisfiable.
The Parrot problems benefit significantly (50%) from structure constraints, be-

72 metasketches

None

Structure

CEXs

Both

0 1 2 3

Speedup

O
p

ti
m

iz
at

io
n

s

Benchmarks

Array Search

CIA

Hacker's Delight d5

Parrot

Figure 4.9: Effect of optimizations on Synapse’s performance for a single-threaded
search. Synapse can exchange counterexamples (CEXs) between local
searches, and can impose structure constraints that prevent different local
searches traversing some semantically-equivalent programs.

cause the sketches in the Parrot metasketches contain significant semantic over-
lap. The Conditional Integer Arithmetic benchmarks, on the other hand, benefit
significantly (3×) from counterexample exchange.

4.5.6 Can Synapse reason about dynamic cost functions?

Metasketches place only very general restrictions on cost functions: the applica-
tion of the cost function to a program must reduce to a term in a decidable theory
(as discussed in Section 4.2). This restriction allows for static cost functions, such
as static instruction cost models, but also for dynamic cost functions that execute
the synthesized program to establish its cost. We illustrate Synapse’s support for
a variety of dynamic cost functions with three small examples.

Least-Squares Regression. Least squares regression fits a model function f to a
data set {xi, yi} by minimizing the objective function

∑n
i=1(yi− f(xi))2. We im-

plemented a modified version of the piecewise polynomial metasketch presented
in Section 4.3.3 to perform least-squares regression. Each sketch in this metas-
ketch is a piecewise polynomial with a fixed number of pieces and fixed degree.
We defined the cost function to be the least-squares objective function, which is
dynamic because it requires evaluating the synthesized program f at each xi in the
data set. The metasketch uses the trivial gradient function g(c) = S, and because
this metasketch is not compact (Def. 4.8), we provided a finite set S of sketches.
We used as a data set 30 samples of the polynomial

p(x) = x3 − 8x2 + x− 9

from the interval x ∈ [−1, 10] with added Gaussian noise (σ = 5). Synapse
synthesized the polynomial

q(x) = x3 − 8x2 + x− 7

4.5 evaluation 73

??

??

??

{cat
not cat

.

64
inputs

??

??

??

??

??

Figure 4.10: The sketch for a neural network is an SSA-form implementation of its eval-
uation function, with holes for each weight. In this example, the input nodes
are the grayscale values of each pixel in the input image, and the output is a
binary classification.

in 30 seconds as the optimal (integer) solution to this problem. Synapse also ex-
plored the other sketches in the metasketch, which correspond to other possible
models for the data (including linear, quadratic, and quartic functions), but cor-
rectly found the cubic function to be the best fit.

Worst-Case ExecutionTime. Thesuperoptimizationmetasketches in Section4.3.3
used static measures of program performance. The metasketch abstraction also
supports dynamic measures, such as worst case execution time. To illustrate the
effects of dynamic and static measures on the results of optimal synthesis, we se-
lected problem 13 from theHacker’s Delight benchmark suite, which implements
the sign function for 32-bit integers.We created twometasketches for this bench-
mark: 〈S, κs, g〉 and 〈S, κd, g〉, whereS is a finite set of sketches and g is the trivial
gradient g(c) = S. Our sketches were drawn from a subset of the Syn grammar
that includes conditional expressions and a minimal set of operators needed to
implement benchmark 13. We defined κs to be an additive static cost function (as
in Example 3 of Section 4.2) that assigns cost 2 to conditional expressions and
cost 1 to all other expressions, including constants and variables. On the other
hand, κd is a dynamic cost function that measures the worst-case execution time
(over all feasible paths) using the same costs for Syn expressions as κs. We applied
Synapse to both metasketches and obtained two different optimal programs.

The staticmetasketch 〈S, κs, g〉produces the reference implementation for bench-
mark 13 as the optimal solution (with cost 8):

(define (sgn-s x)
(| (>>> (- x) 31) (>> x 31)))

The dynamic metasketch 〈S, κd, g〉, on the other hand, produces a different opti-
mal solution (also with cost 8):

(define (sgn-d x)
(if (< 0 x)

(>>> -1 31) ; 1
(>> x 31)))

The sgn-d function has cost 11 under the static cost function κs, and so is not an
optimal solution to the static metasketch. Synapse finds each solution in a few
seconds.

74 metasketches

Neural Networks. We developed a simple metasketch to train a feed-forward
neural network classifier froma training set.Theneural networkmetasketch 〈S, κ, g〉
contains a sketch St in S for each of a (finite) set of neural network topologies t.
A sketch St is an implementation of a feed-forward neural network in the SSA
language of Figure 4.2 using fixed-point arithmetic and rectifier activation func-
tions [102]. Each weight in the neural network is a hole in the sketch, as shown
in Figure 4.10. The cost function κ simply counts the number of misclassified ex-
amples. Notably, we did not have to explicitly encode a training algorithm such
as backpropagation.

We used this metasketch to train a simple image classifier to distinguish be-
tween cats and other images. We used 40 training examples (20 cats, 20 not-cats)
from the CIFAR-10 dataset [80], resized to 8×8 pixels and converted to grayscale.
Synapse synthesized a neural network in 35mins that achieved 95% recognition
accuracy on the 40 examples. The synthesized network has 64 input nodes (one
per pixel in the input image), a hidden layer of one node, a second hidden layer
of three nodes, and a single output node. In training this network, Synapse also
explored the rest of the metasketch, consisting of all topologies with at most 2
layers and 4 nodes per layer (a total of 20 topologies).

Of course, this example is no advance inmachine learning: we do not have any-
where near enough training examples, the recognition accuracy is measured on
the training set, and the training time is many orders of magnitude slower than
backpropagation. Rather, this example demonstrates that the underlying synthe-
sizer can discover a training strategy given only an implementation of forward
evaluation and the error function to minimize. It also demonstrates that Synapse
can handle large, under-constrained programs: the SSA-form program for the
synthesized neural network contains 284 instructions, and some other topolo-
gies in the metasketch consist of over 1500 instructions.

4.6 related work

Program synthesis is well studied in the literature. Some program synthesizers,
and some applications of synthesis, implicitly or explicitly optimize an objec-
tive function. This section reviews related work on program synthesis, domain-
specific synthesizers, and on optimal or quantitative synthesis.

Program Synthesis. Our work builds on recent advances in syntax-guided syn-
thesis (e.g., [11, 68, 74, 115, 127, 130]), which are based on counterexample-guided
search [122]. In addition to a correctness specification, a syntax-guided synthe-
sizer takes as input a space of candidate programs, defined by a syntactic template,
and searches it for a program (if any) that satisfies the specification. Existing ap-
proaches employ a variety of search procedures, including bottom-up enumer-
ation [130], symbolic solving [68, 74, 122, 127], and stochastic search [115]. The
recently developed syntax-guided synthesis (SyGuS) framework [11] unifies these
approaches, providing a common language for expressing synthesis problems, a
suite of standard benchmarks, and a set of search procedures for solving SyGuS
problems. We drew several of our benchmarks from the SyGuS framework.

4.6 related work 75

A number of SyGuS solvers implicitly minimize (or nearly minimize) a fixed
objective function. A bottom-up enumerative solver [130] implicitly minimizes
program length: shorter solutions will be discovered before longer ones. Some
symbolic synthesis algorithms [68] use a fixed library of components, which is
expanded only when the problem is unsatisfiable, implicitly directing the search
toward simpler programs. In both cases, however, the optimization is implicit,
and not easily extended to different cost functions.Thewinner of the 2015 SyGuS
competition builds support for refutation-based synthesis into the CVC4 SMT
solver [112]. While the refutation approach quickly produces correct solutions,
those solutions are often extremely long. Extending the refutation approach with
support for optimization would be non trivial.

Domain-Specific Synthesizers. Optimality is desirable in a number of synthesis
applications, and so domain-specific synthesizers often implement an optimiza-
tion strategy. Chlorophyll [107] is a synthesis-aided compiler for a low-power
spatial architecture that performsmodular superoptimization.The superoptimizer
executes a binary searchover programs given a costmodel: it uses counterexample-
guided inductive synthesis (CEGIS) to synthesize a program of cost k, and if one
exists, to synthesize a programof cost k/2, and so on. Tomake the superoptimiza-
tion scale to real-world programs, the process uses “sliding windows” to break a
program into smaller pieces. Metasketches also give structure to the search, but
our synthesis approach can provide whole-program optimality guarantees that
the sliding windows technique cannot, and can reason about more general cost
functions.

Feser, Chaudhuri, and Dillig [59] present a synthesis algorithm for producing
data structure transformations from input-output examples.The algorithm guar-
antees optimality of the generated transformationwith respect to an additive cost
function over program syntax, which is defined similarly to the cost function in
Example 3 of Section 4.2. In contrast, our approach is generic: it is applicable to a
broad range of synthesis problems, and it can optimize a variety of cost functions,
as long as their semantics is expressible in a decidable theory.

McSynth [123] is a synthesizer that generates machine code instructions from
semantic specifications of their behavior.WhileMcSynth alone does not consider
optimality, the authors note that it could be extended to generate optimal solu-
tionswith a naive algorithm that generates every solution to the synthesis problem
and returns the one among them with minimum cost. Metasketches provide con-
siderably more structure to the optimal synthesis process, and can accommodate
an unbounded space of sketches (and therefore solutions).

Optimal Synthesis. Recent work has considered optimality in synthesis, with
various forms of ranking and weighting formulations [67, 96, 109], and in SMT
problems in general. Chaudhuri, Clochard, and Solar-Lezama [42], for example,
propose a smoothed proof search technique for synthesizing parameter holes
in a program while optimizing a quantitative objective. Smoothed proof search
reduces optimal synthesis to a sequence of optimization problems that can be
solved numerically to satisfy the specification in the limit. The use of numeri-

76 metasketches

cal optimization allows this technique to perform probabilistic reasoning, which
Synapse does not support. However, the technique’s sketching language is less
expressive than a metasketch, allowing only linear operations on holes. The opti-
mality guarantee also holds only over a single monolithic sketch, which restricts
synthesis to a finite set of candidate programs; in contrast, a metasketch can rep-
resent an unbounded set of candidate programs.

Symba [85] is an SMT-based optimization algorithm for objective functions in
the theory of linear real arithmetic (LRA). Symba optimizes the objective func-
tion by maintaining an under-approximation of the maximal cost, and using the
SMT solver to generate new models for the specification that violate that under-
approximation (i.e., are more optimal). This approach builds on a line of work on
optimization for SMT problems [45, 116]. Unlike Symba, our approach supports
non-linear cost functions (in, for example, the theory of bitvectors) and can op-
timize over an unbounded space of candidate programs. However, Symba is able
to detect when the cost function it is maximizing has no upper bound, whereas a
(compact) metasketch must explicitly rule out this possibility. Integrating Symba
with our approach is a promising direction for future work.

4.7 conclusion

Metasketches are a general framework for specifying and solving optimal syn-
thesis problems. A metasketch fragments the search space of a synthesis prob-
lem into an ordered set of sketches, provides a cost function to optimize, and
specifies a gradient function to direct the search toward cheaper regions of the
space. This three-part abstraction enables the programmer to succinctly express
both the desired (optimal) synthesis problem and a high-level strategy for solving
it. By making the search strategy programmable, metasketches enable rapid cre-
ation of competitive (optimal) synthesis tools, ranging from superoptimization
to approximation of computational kernels. Moreover, metasketches bring new
expressive power to syntax-guided synthesis, including sketching of unbounded
search spaces and use of dynamic cost functions that reason about program se-
mantics. Our synthesis approach, implemented in Synapse, exploits the structure
of metasketches to search for solutions in parallel, employing effective generic
and problem-specific optimizations. Our results demonstrate that custom search
strategies expressed via metasketches make it possible for Synapse to solve hard
synthesis problems, both optimal and classic, which cannot be solvedwith general
state-of-the-art synthesis algorithms.

5SYMBOLIC PROF IL ING

Solver-aided tools rely on symbolic evaluation to reduce programming tasks, such
as verification and synthesis, to satisfiability queries. Many reusable symbolic
evaluation engines are now available as part of solver-aided languages and frame-
works, which have made it possible for a broad population of programmers to
create and apply solver-aided tools to new domains. But to achieve results for
real-world problems, programmers still need to write code that makes effective
use of the underlying engine, and understand where their code needs careful de-
sign to elicit the best performance. This task is made difficult by the all-paths ex-
ecution model of symbolic evaluators, which defies both human intuition and
standard profiling techniques.

This chapter presents symbolic profiling, a new approach to identifying and di-
agnosing performance bottlenecks in programs under symbolic evaluation.1 To
help with diagnosis, we develop a catalog of common performance anti-patterns
in solver-aided code. To locate these bottlenecks, we develop SymPro, a new pro-
filing technique for symbolic evaluation. SymPro identifies bottlenecks by ana-
lyzing two implicit resources at the core of every symbolic evaluation engine:
the symbolic heap and symbolic evaluation graph. These resources form a novel per-
formance model of symbolic evaluation that is general (encompassing all forms
of symbolic evaluation), explainable (providing programmers with a conceptual
framework for understanding symbolic evaluation), and actionable (enabling pre-
cise localization of bottlenecks). Performant solver-aided code carefully manages
the shape of these implicit structures; SymPro makes their evolution explicit to
the programmer.

To evaluate SymPro, we implement profilers for the Rosette solver-aided lan-
guage and the Jalangi program analysis framework. Applying SymPro to 15 pub-
lished solver-aided tools, we discover 8 previously undiagnosed performance is-
sues. Repairing these issues improves performance by orders of magnitude, and
our patches were accepted by the tools’ developers. We also conduct a small user
study with Rosette programmers, finding that SymPro helps them both under-
stand what the symbolic evaluator is doing and identify performance issues they
could not otherwise locate. SymPro has also been integrated into other tools, in-
cluding the Crucible symbolic evaluation engine developed by Galois [61].

5.1 overview

Solver-aided tools have automated a wide range of programming tasks, from test
generation to program verification and synthesis. Such tools work by reducing
programming problems to satisfiability queries that are amenable to effective SAT

1 This chapter was first published as the paper Finding Code That Explodes Under Symbolic Evaluation,
by James Bornholt and Emina Torlak, published at OOPSLA 2018 [24].

77

78 symbolic profiling

or SMTsolving.This reduction is performedby the tool’s symbolic evaluator, which
encodes program semantics as logical constraints. Effective symbolic evaluation
is thus key to effective solver-aided automation.

Building and applying solver-aided automation used to be the province of ex-
perts, who would invest years of work to obtain an efficient symbolic evaluator
for a new application domain. This barrier to entry is now greatly reduced by the
availability of solver-aided languages (e.g., [126, 131]) and frameworks (e.g., [30,
117]), which provide reusable symbolic evaluation engines for programmers to
target. These platforms have made it possible for a broader population of pro-
grammers, from high-school students to professional developers, to rapidly cre-
ate solver-aided tools for many new domains (e.g., Table 5.1).

But scaling solver-aided programs to real problems, either as a developer or a
user, remains challenging. As with classic programming, writing code that per-
forms well (under symbolic evaluation) requires the programmer to be able to
identify and diagnose performance bottlenecks—which parts of the program are
costly to evaluate (symbolically) andwhy. For example, if a program synthesis tool
is timing out on a given task, the tool’s user needs to knowwhether the bottleneck
is in the problem specification or the solution sketch [122]. Similarly, if neither the
specification nor the sketch is the bottleneck, then the tool’s developer needs to
know where and how to improve the interpreter that specifies the semantics of
the tool’s input language. Yet unlike classic runtimes, which employ an execution
model that is familiar to programmers and amenable to time- andmemory-based
profiling, symbolic evaluators employ an unfamiliar execution model (i.e., evalu-
ating all paths through a program) that defies standard profilers. As a result, pro-
grammers currently rely on hard-won intuition and ad hoc experimentation to
diagnose and optimize solver-aided code.

This chapter presents symbolic profiling, a systematic new approach to identify-
ing and diagnosing code that performs poorly under symbolic evaluation. Our
contribution is three-fold. First, we develop SymPro, a new (and only) profil-
ing technique that can identify root causes of performance bottlenecks in solver-
aided code. Here, we use the term ‘solver-aided code’ to generically refer to any
program (in any programming language) that is being evaluated symbolically to
produce logical constraints. Second, to help programmers diagnose these bot-
tlenecks, we develop a catalog of the most common programming anti-patterns
for symbolic evaluation. Third, we conduct an extensive empirical evaluation of
symbolic profiling, showing it to be an effective tool for finding and fixing per-
formance problems in real applications.

Symbolic Profiling. What characterizes the behavior of programs under sym-
bolic evaluation? The fundamental challenge for symbolic profiling is to answer
this question with a performance model of symbolic evaluation that is general,
explainable, and actionable. A general model applies to all solver-aided platforms
and must therefore encompass all forms of symbolic evaluation, from symbolic
execution [47, 77] to bounded model checking [21]. An explainable model pro-
vides a conceptual framework for programmers to understand what a symbolic
evaluator is doing, without having to understand the details of its implementa-

5.1 overview 79

tion. Finally, an actionable model enables profiling tools to precisely identify root
causes of performance bottlenecks in symbolic evaluation.

To illustrate the symbolic profiling challenge, consider applying a standard
time-based profiler to the toy program in Fig. 5.1a. The program checks that the
sum of any n ≤ N even integers is also even. Under symbolic evaluation for
N = 20, the take call (line 5) takes an order of magnitude more time than filter

(line 4), so a time-based profiler identifies take as the location to optimize. The
source of the problem, however, is the call to filter, which generates O(2N)
paths when applied to a symbolic list of lengthN (Fig. 5.1c). The take procedure,
in contrast, generatesO(N) paths. A time-based profiler incorrectly blames take
because it is evaluated 2N times, once for each path generated by filter. The cor-
rect fix is to avoid calling filter (Fig. 5.1d).This repair location ismissed not only
by time-based profiling but also by models that rely on common concepts from
the symbolic evaluation literature, such as path condition size or feasibility. For
instance, a simple model that counts the total number of paths generated by a call
will also blame take. It is, of course, possible to design more sophisticated time-
and path-based models that can handle our toy example, and we examine such
designs in Section 5.4.1, but they fall short on real code.

Symbolic profiling employs a new performance model of symbolic evaluation
that is based on the following key insight: effective symbolic evaluation involves
maximizing (opportunities for) concrete evaluation while minimizing path ex-
plosion. Classic concrete execution is thus a special,ideal case of symbolic evalu-
ation, in which all operations are evaluated on concrete values along a single path
of execution. Since this ideal cannot be achieved in the presence of symbolic val-
ues, symbolic evaluators choose which goal to prioritize at a given point by bas-
ing their evaluation strategy on either symbolic execution (SE) or boundedmodel
checking (BMC). As illustrated in Fig. 5.4, SE maximizes concrete evaluation but
suffers frompath explosion,while BMCavoids path explosion but affords fewop-
portunities for concrete evaluation. Performant solver-aided code elicits a prac-
tical balance between SE- and BMC-style evaluation in the underlying engine.
The challenge for a symbolic profiler is therefore to help programmers identify
the parts of their code that deviate most from concrete evaluation by generating
excessive symbolic state or paths.

SymPro. Weaddress this challengewith SymPro, a newprofiling technique that
tracks two abstract resources, the symbolic heap and the symbolic evaluation graph,
which form our performance model. The symbolic heap consists of all symbolic
values (constants, terms, etc.) created by the program, while the symbolic evalu-
ation graph reflects the engine’s evaluation strategy (which paths were explored
individually, which were merged, etc.). In concrete execution, the symbolic heap
is empty, and the evaluation graph consists of a single path. In symbolic evalua-
tion, these resources evolve depending on the evaluation strategy. For example,
the evaluation graph is a tree for SE engines, a DAG for BMC engines, and a mix
of sub-trees and sub-DAGs for hybrid engines. The symbolic heap and graph are
implicit in every forward symbolic evaluation engine, making our model gen-
eral. They also capture the full spectrum of symbolic evaluation behaviors in an

80 symbolic profiling

1 (define (sum-of-even-integers-is-even N)
2 (define-symbolic* xs integer? [N]) ; xs = list of N symbolic ints
3 (define-symbolic* n integer?) ; n = single symbolic integer
4 (define ys (filter even? xs)) ; ys = even integers from xs
5 (define zs (take ys n)) ; zs = first n elements of ys
6 (assert (even? (apply + zs)))) ; Check that sum of zs is even

(a) A program that checks that the sum of any n ≤ N even integers is even.

● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

0

500

1000

1500

0 10 20 30 40 50

N

T
im

e
(m

s) ● Original
Repaired

(b) The original program (a) performs poorly as N grows.

(x1 x2)

(x1 x2) (x1) (x2) ()

() (x1) (x1 x2) () (x1) () (x2) ()

xs =

ys =

zs =

(filter even? xs)

(take ys n)

(even? x1) ¬ (even? x1)

(even? x2) ¬ (even? x2) (even? x2) ¬ (even? x2)

n = 0 1 2 n = 0 1 n = 0 1 n = 0

(c) The original program (a) createsO(N2N) paths (here,N = 2).

1 (define (sum-of-even-integers-is-even N)
2 (define-symbolic* xs integer? [N])
3 (define-symbolic* n integer?)
4 (define zs (take xs n))
5 (when (andmap even? zs)
6 (assert (even? (apply + zs)))))

(d) Repairing (a) to obtain asymptotically better performance.

Figure 5.1: A toy solver-aided program that performs poorly under symbolic evaluation.

5.2 example workflow 81

implementation-independent way, making our model explainable and action-
able. SymPro tracks the evolution of the symbolic heap and graph, identifying
where new symbolic values are created, which values are frequently accessed,
which values are eventually used in queries sent to a satisfiability solver, and how
evaluation paths are merged at control-flow joins. It ranks procedure calls by
these metrics to present the most expensive calls to the programmer. Given our
motivating example from Fig. 5.1a, SymPro correctly identifies the call to filter

as the bottleneck.

Anti-Patterns. To help the programmer diagnose the identified bottlenecks, we
present a catalog of the most common performance anti-patterns in solver-aided
code.These include algorithmic, representational, and concreteness problems. For ex-
ample, the program in Fig. 5.1a suffers from irregular representation. It constructs
a symbolic representation of n ≤ N even integers that describes O(N2N) con-
crete lists. The repaired program in Fig. 5.1d, in contrast, constructs a symbolic
representation of n ≤ N integers that describes O(N) concrete lists; this repre-
sentation is then combined with a precondition (that all of its elements are even)
before checking the desired property. We present a canonical example of each
kind of anti-pattern, along with a repair the programmer could make.

Evaluation. We have implemented SymPro for the Rosette solver-aided lan-
guage (Chapter 2).Our implementation is open-source and integrated intoRosette [125].
To evaluate the effectiveness of our profiler, we performed a literature survey of
recent programming languages research, gathering 15 tools built using Rosette.
Applying SymPro to these tools, we found 8 previously unknown bottlenecks.
Repairing these bottlenecks improved the tools’ performance by orders of mag-
nitude (up to 290×), and several developers accepted our patches.

To demonstrate that SymPro profiles are actionable, we present detailed case
studies on three of these Rosette-based tools, describing how a programmer can
use SymPro to iteratively improve the performance of such a tool using language
constructs afforded by Rosette and algorithmic changes guided by profile data. To
show that SymPro is explainable, we conduct a small user study with Rosette pro-
grammers, showing that SymPro helps them identify performance bottlenecks
in Rosette programs more efficiently than with standard (time-based) profiling
tools. Finally, to show that symbolic profiling is general, we build a prototype sym-
bolic profiler for Jalangi [117], a JavaScript program analysis framework with a
symbolic execution pass [118], and show that it finds bottlenecks in JavaScript
programs that a time profiler misses. As further evidence of generality, Galois,
Inc. has integrated symbolic profiling into their Crucible symbolic evaluation en-
gine [61], requiring only minimal changes to generate the input data for the sym-
bolic profiling performance model.

5.2 example workflow

This section illustrates symbolic profilingon a small solver-aidedprogram (Fig. 5.2).
The performance bottleneck in this program is a recursive procedure (lines 18–

82 symbolic profiling

24) used byUhler andDave [131] to describe a common symbolic evaluation anti-
pattern. We first show that time-based profiling fails to identify this procedure as
the bottleneck, then apply symbolic profiling to identify, diagnose, and fix the is-
sue.

ASmall Solver-Aided Program. Our example program (Fig. 5.2) iswritten inRosette,
the solver-aided language introduced in Chapter 2. Programs written in Rosette
behave like Racket programs when executed on concrete values, but Rosette lifts
their semantics, via symbolic evaluation, to also operate on unknown symbolic
values. These symbolic values are used to formulate solver-aided queries, such as
searching for inputs on which a program violates its specification (verification),
or searching for a program that meets a given specification (synthesis). The exam-
ple implements a tool that verifies optimizations for a toy calculator language.

The calculate procedure (lines 4–16) defines the semantics of the calculator
language with a simple recursive interpreter. A calculator program is a list of in-
structions that manipulate a single 4-bit storage cell, acc. An instruction consists
of a 2-bit opcode and, optionally, a 4-bit argument.The language includes instruc-
tions for adding to, subtracting from, and squaring the value in the acc cell.

The toy calculator language is also equipped with procedures for optimizing
calculator programs. One such procedure, sub->add (lines 25-29), takes as input
a program and an index, and if the instruction at that index is a subtraction, sub-
>add replaces it with an equivalent addition instruction.

To check that these optimizations are correct, we implement a tiny verifica-
tion tool, verify-xform (lines 31–41), using Rosette’s verify query. The tool first
constructs a symbolic calculator program P (lines 32–36) that represents all syn-
tactically correct concrete programs of length N. This is done using Rosette’s
(define-symbolic* id type) form, which creates a fresh symbolic constant of
the given type and binds it to the variable id every time the form is evaluated.
Next, the tool applies the (verify expr) form to check that the input optimiza-
tion xform preserves the semantics of P for all values of acc and the application
index idx. This form searches for a concrete interpretation of the symbolic con-
stants that violates an assertion encountered during the (symbolic) evaluation of
expr. As expected, no such interpretation, or counterexample, exists for the sub->

add optimization and programs of lengthN ≤ 5.

Performance Bottlenecks. Verifying sub->add for larger values ofN produces no
counterexamples either, but the performance of the verify-xform tool begins to
degrade, from less than a second forN = 5 to a dozen seconds forN = 20. While
such degradation is inevitable given the computational complexity of the under-
lying satisfiability query, we have the (usual) practical goal of extracting as much
performance as possible from our tool. With this goal in mind, we would like to
find out what parts of the code in Fig. 5.2 are responsible for the degradation and
how to improve them.

A first step in investigating the program’s performancemight be to use Racket’s
existing profiling support [18], or any other time-based profiler. The Racket pro-
filer reports that most time is spent in verify-xform. It also cannot elide the in-

5.2 example workflow 83

1 (define-values (Add Sub Sqr Nop) ; Calculator opcodes.
2 (values (bv 0 2) (bv 1 2) (bv 2 2) (bv 3 2)))

4 (define (calculate prog [acc (bv 0 4)])
5 (cond ; An interpreter for
6 [(null? prog) acc] ; calculator programs.
7 [else ; A program is list of
8 (define ins (car prog)) ; '(op) or '(op arg)
9 (define op (car ins)) ; instructions that up-

10 (calculate ; date acc, where op is
11 (cdr prog) ; a 2-bit opcode and arg
12 (cond ; is a 4-bit constant.
13 [(eq? op Add) (bvadd acc (cadr ins))]
14 [(eq? op Sub) (bvsub acc (cadr ins))]
15 [(eq? op Sqr) (bvmul acc acc)]
16 [else acc]))]))

18 (define (list-set lst idx val) ; Functionally sets
19 (match lst ; lst[idx] to val.
20 [(cons x xs)
21 (if (= idx 0)
22 (cons val xs)
23 (cons x (list-set xs (- idx 1) val)))]
24 [_ lst]))

25 (define (sub- >add prog idx) ; Replaces Sub with
26 (define ins (list-ref prog idx)) ; Add if possible.
27 (if (eq? (car ins) Sub)
28 (list-set prog idx (list Add (bvneg (cadr ins))))
29 prog))

31 (define (verify-xform xform N) ; Verifies the given
32 (define P ; transform for all
33 (for/list ([i N]) ; programs of length N.
34 (define-symbolic* op (bitvector 2))
35 (define-symbolic* arg (bitvector 4))
36 (if (eq? op Sqr) (list op) (list op arg))))
37 (define-symbolic* acc (bitvector 4))
38 (define-symbolic* idx integer?)
39 (define xP (xform P idx))
40 (verify ; ∀ acc, idx, P. P(acc) = xform(P, idx)(acc)
41 (assert (eq? (calculate P acc) (calculate xP acc)))))

Figure 5.2: A toy verifier in the Rosette solver-aided language. The performance bottle-
neck is the list-set procedure, originally used by Uhler and Dave to illus-
trate a symbolic evaluation anti-pattern they encountered when program-
ming in the Smten solver-aided language [131].

84 symbolic profiling

the-profiled-thunk

verify-xform

calculate

calculate

calculate

calculate

calculate

calcul…

calcu…

calc…

calc…

cal…

ca…

calculate

calculate

calculate

calculate

calculate

calculate

calculate

calculate

calculate

calculate

calculate

calculate

calculate

sub->add

list-set

list-set

list-set

list-set

list-set

list-set

list-set

list-set

list-set

list-set

list-set

list-set

@list-ref

C
a

ll
S

ta
c
k

0.000s 0.010s 0.019s 0.029s 0.038s 0.048s 0.057s 0.067s 0.076s 0.086s 12.953s

Function Score Time (ms) Term Count Unused Terms Union Size Merge Cases

list-set xform.rkt:22 20 calls 3.3 19 2520 60 420 1700

verify-xform xform.rkt:36 1 call 1.4 12868 186 40 40 40

calculate xform.rkt:8 40 calls 1.3 41 380 180 0 280

Figure 5.3: Output of the SymPro symbolic profiler when run on the program in Fig. 5.2.
Time spent in solver calls is collapsed into the dashed lines. SymPro identi-
fies list-set as the performance bottleneck, ranking it highest in the Score
column and highlighting it red.

ternal implementation details of Rosette from the profile, and so reports many
spurious function calls that do not exist in the program as written. But even a
Rosette-aware time-based profiler (essentially, the Time column in Fig. 5.3) re-
ports verify-xform as the hot spot in this program, with the majority of the exe-
cution time spent directly in this procedure—specifically, calling an SMT solver
fromwithin the verify form.While useful, this information is not actionable, since
it does not tell us where to attempt optimizations. When the solver is taking most
of the time, whatwewant to know is the following: are there are any inefficiencies
in the program that are causing the symbolic evaluator to emit a hard-to-solve
(e.g., unnecessarily large) encoding?

Symbolic Profiling. To help answer this question, our symbolic profiler, SymPro,
produces the output in Fig. 5.3 for N = 20. The table at the bottom of Fig. 5.3
identifies list-set as the main bottleneck, highlighting it in red and ranking it
highest in the Score column.The score is computed (as Section 5.4 describes) from
five statistics that quantify the effect of a procedure on the symbolic heap and
evaluation graph:

• Time is the exclusive wall-clock time spent in a call;

• Term Count is the number of symbolic values created during a call;

• Unused Terms is the number of those values that do not appear in the query
sent to the solver (i.e., the symbolic equivalent of garbage objects);

• Union Size is the sumof the out-degrees of all nodes added to the evaluation
graph; and,

• Merge Cases is the sum of the in-degrees of those nodes.
The chart at the top of Fig. 5.3 visualizes the evolution of the call stack over time.
Given this profile, it is easy to see that list-set has the largest effect on the heap
and the evaluation graph, as well as the size of the final encoding, even though

5.3 symbolic evaluation anti-patterns 85

both verify-xform and calculate are slower. Running the profiler on this bench-
mark has only minimal overhead: 4% slowdown and 19% additional memory.

Diagnosis and Repair. But why does list-set perform poorly under symbolic
evaluation, and how can we repair it? The output in Fig. 5.3 shows that list-set
createsmany terms and performsmany statemerges. As noted byUhler andDave
[131] and described in Section 5.3, the core issue is algorithmic. In particular, the
recursive call to list-set is guarded by a short-circuiting condition (= idx 0)

that is symbolic when idx is unknown. The symbolic evaluation engine must
therefore explore both branches of this conditional, leading to quadratic growth
in the symbolic representation (i.e., the term count in Fig. 5.3) of the output list:

1 > (define-symbolic* i integer?)
2 > (list-set '(1 2 3) i 4)
3 (list (ite (= 0 i) 4 1)
4 (ite (= 0 i) 2 (ite (= 0 (- i 1)) 4 2))
5 (ite (= 0 i) 3 (ite (= 0 (- i 1)) 3
6 (ite (= 0 (- i 2)) 4 3))))

The solution is to revise list-set to recurse unconditionally:

1 (define (list-set lst idx val)
2 (match lst
3 [(cons x xs)
4 (cons (if (= idx 0) val x)
5 (list-set xs (- idx 1) val))]
6 [_ lst]))

8 > (list-set '(1 2 3) i 4)
9 (list (ite (= 0 i) 4 1)

10 (ite (= 0 (- i 1)) 4 2)
11 (ite (= 0 (- i 2)) 4 3))

With this revision, calls to list-set add at most O(N) values to the symbolic
heap, and the solving time for our verification query is cut in half forN = 20.

5.3 symbolic evaluation anti-patterns

At the core of every symbolic evaluator is a strategy for reducing a program’s
semantics to constraints, and knowing what programming patterns are well or
ill suited to an evaluator’s strategy is the key to writing performant solver-aided
code. This section presents three common anti-patterns that lead to poor perfor-
mance under most evaluation strategies. We review the space of strategies first,
followed by an illustration of each anti-pattern and a potential repair for it.

5.3.1 Strategies for Reducing Programs to Constraints

Symbolic evaluation engines rely on twobasic strategies for reducing programs to
constraints: symbolic execution (SE) [47, 77] and bounded model checking (BMC) [21].
There are engines that use just SE [36, 63, 64] or just BMC [17, 46, 138] or a hybrid

86 symbolic profiling

1 (define-symbolic* a boolean?)
2 (define-symbolic* b boolean?)

4 (define x (if a 1 0))
5 (define y (if b 1 0))

7 (assert (> (+ x y) 0))

(a) A program with a simple invalid assertion.

s1
a 7→ A
b 7→ B

s2
a 7→ A
b 7→ B
x 7→ 1

s3
a 7→ A
b 7→ B
x 7→ 0

s4
a 7→ A
b 7→ B
x 7→ 1
y 7→ 1

s5
a 7→ A
b 7→ B
x 7→ 1
y 7→ 0

s6
a 7→ A
b 7→ B
x 7→ 0
y 7→ 1

s7
a 7→ A
b 7→ B
x 7→ 0
y 7→ 0

A ∧ B ∧ ⊤
⇒ 1+ 1 > 0

A ∧ ¬B ∧ ⊤
⇒ 0+ 1 > 0

¬A ∧ B ∧ ⊤
⇒ 1+ 0 > 0

¬A ∧ ¬B ∧ ⊤
⇒ 0+ 0 > 0

A, 4 ¬A, 4

B, 5 ¬B, 5 B, 5 ¬B, 5

⊤, 7 ⊤, 7 ⊤, 7 ⊤, 7

(b) Symbolic execution explores each control
flow path through a program separately, re-
sulting in a tree-shaped symbolic evaluation
graph.

s1
a 7→ A b 7→ B

s2
a 7→ A b 7→ B
x 7→ 1

s3
a 7→ A b 7→ B
x 7→ 0

s4
a 7→ A b 7→ B
x 7→ ite(A, 1, 0)

s5
a 7→ A b 7→ B
x 7→ ite(A, 1, 0) y 7→ 1

s6
a 7→ A b 7→ B
x 7→ ite(A, 1, 0) y 7→ 0

s7
a 7→ A b 7→ B
x 7→ ite(A, 1, 0) y 7→ ite(B, 1, 0)

⊤ ⇒ ite(A, 1, 0) + ite(B, 1, 0) > 0

A, 4 ¬A, 4

⊤, 4 ⊤, 4

B, 5 ¬B, 5

⊤, 5 ⊤, 5

⊤, 7

(c) Bounded model checking merges states
from different paths at every control-flow
join, resulting in a symbolic evaluationDAG.

Figure 5.4: An example of basic symbolic evaluation strategies. Symbolic execution and
bounded model checking result in evaluation graphs of different shapes. Edge
labels indicate the additional guard and the line of code that caused the tran-
sition.

of the two [62, 82, 118, 126]. We illustrate both SE and BMC on the program in
Fig. 5.4a, and briefly review a hybrid approach [126]. For amore complete survey,
we refer the reader to Torlak and Bodik [126] or Cadar and Sen [37].

Symbolic Execution. Symbolic execution (SE) reduces a program’s semantics to
constraints by evaluating and encoding individual paths through the program.
Fig. 5.4b shows the symbolic evaluation graph (defined in Section 5.4) created by
applying SE to the sample program in Fig. 5.4a. The nodes in the graph are pro-
gram states, and the edges are transitions between states. Each edge is labeledwith
a guard and a program location that indicate where, and under what constraint,
the transition is taken. The conjunction of all guards along a given path is called
a path condition. The encoding of the program’s semantics is the conjunction of
the formulas pc ⇒ φ at the leaves of the symbolic evaluation tree, where pc is
the path condition and φ is the assertion at the end of that path. This encoding
is worst-case exponential in program size, which is the key disadvantage of SE.
The crucial advantage of SE is that it maximizes opportunities for concrete eval-
uation (e.g., line 7 is evaluated concretely along each path), leading to simpler and
easier-to-solve queries.

5.3 symbolic evaluation anti-patterns 87

Bounded Model Checking. Boundedmodel checking (BMC) avoids the exponen-
tial explosion of SE bymerging program states at each control flow join, as shown
in Fig. 5.4c. The resulting encoding of the program’s semantics (i.e., the conjunc-
tion of the formulas at the leaves of the symbolic evaluationDAG) is polynomial in
program size. The disadvantage of BMC, however, is the loss of opportunities for
concrete evaluation. In our example, line 7 is evaluated symbolically, producing
an encoding that requires reasoning about symbolic integers; the corresponding
SE encoding, in contrast, uses only propositional logic. So while BMC encodings
are compact, they are also harder to solve in practice.

Hybrid Approaches. Recent symbolic evaluation engines [118, 126] employ a hy-
brid of SE andBMC to offset the disadvantages of using either strategy on its own.
These hybrid approaches generally prefer SE, applying BMC selectively to merge
some paths and their corresponding states. For example, Rosette [126] performs
BMC-style merging for values of the same primitive type; structural merging for
values of the same shape (e.g., lists of the same length); and union-based merging
(i.e., SE) for all other values:

1 (define-symbolic* b boolean?)

3 > (if b 1 0) ; BMC-style merging
4 (ite b 1 0)
5 > (if b '(1 2) '(3 4)) ; structural merging
6 (list (ite b 1 3) (ite b 2 4))
7 > (if b 1 #f) ; union-based merging (SE)
8 {[b 1] [(! b) #f]}

This evaluation strategy produces a compact encoding, like BMC, while creating
more opportunities for concrete evaluation, like SE. But careful programming is
still needed to achieve good performance, as we show next.

5.3.2 Three Anti-Patterns in Solver-Aided Programs

This section presents three kinds of anti-patterns in solver-aided code that lead to
poor performance during symbolic evaluation. For each, we show an example of
the issue and suggest potential repairs.

Algorithmic Mismatch. As observed by Uhler and Dave [131], small algorithmic
changes can have a large impact on the efficiency of symbolic evaluation. Con-
sider, for example, the list-set algorithm in Fig. 5.2 and the revised version
presented in Section 5.2. The revised version is asymptotically better for engines
that merge lists (e.g., [126, 131]). Yet the original version is asymptotically bet-
ter when no merging of lists is performed (e.g., [118]). Such a mismatch between
the algorithm and the underlying evaluation strategy can often be remedied with
small changes to the algorithm’s control flow. Symbolic profiling helpsmake these
changes by informing the programmer of an algorithm’s effect on the symbolic
heap and the evaluation graph.

88 symbolic profiling

Irregular Representation. Poor choice of data structures is another frequent source
of performance problems in solver-aided programs. Some common program-
ming patterns, such as tree manipulations, require careful data structure design
(see, e.g., [40]) to yield an effective symbolic encoding. In general, performance
issues arise when the representation of a data type is irregular (e.g., a list of length
one or two), increasing the number of paths that need to be evaluated to operate
on a symbolic instance of that type.

To illustrate, consider the instructiondata type for the calculator language from
Fig. 5.2. Because an instruction is a list of the form '(op) or '(op arg), apply-
ing cadr to a symbolic instruction at lines 13–14 involves evaluating two paths:
one feasible (when the argument is present) and one infeasible (otherwise). Once
the algorithmic mismatch in list-set is fixed, SymPro identifies this representa-
tional issue as the bottleneck by ranking calculate and cadrhighest in the profile.
Making the representation more regular—in our case, by replacing line 36 with (

list op arg)—fixes the problem and leads to an additional 30% improvement in
solving time. As this example illustrates, a less space-efficient but more uniform
data representation is usually the better choice for symbolic evaluation.

Missed Concretization. In addition to employing careful algorithmic and repre-
sentational choices, performant solver-aided code is also structured to provide
as much information as possible about the feasible choices for symbolic values.
Failing to make this information explicit is a common cause of bottlenecks that
manifest as large evaluation graphs with many infeasible paths.

For example, consider the following toy procedure:

1 (define (maybe-ref lst idx) ; Return lst[idx]
2 (if (<= 0 idx 1) ; if idx is 0 or 1,
3 (list-ref lst idx) ; otherwise return -1.
4 -1))

Applying this procedure to a list of size N and a symbolic index results in an
evaluation graph with O(N) paths, only three of which are feasible. Refactoring
the code to make explicit the concrete choices for idx leads to an asymptotically
smaller evaluation graph and encoding:

1 (define (maybe-ref-alt lst idx)
2 (cond [(= idx 0) (list-ref lst 0)]
3 [(= idx 1) (list-ref lst 1)]
4 [else -1]))

6 (define-symbolic* idx integer?)
7 > (maybe-ref '(1 2 3 4 5 6) idx) ; O(N) encoding
8 (ite (&& (<= 0 idx) (<= idx 1))
9 (ite* (⊢ (= 0 idx) 1) . . . (⊢ (= 5 idx) 6))

10 -1)
11 > (maybe-ref-alt '(1 2 3 4 5 6) idx) ; O(1) encoding
12 (ite (= 0 idx) 1 (ite (= 1 idx) 2 -1))

In practice, this anti-pattern shows up in a more subtle form, where the feasi-
ble choices for a symbolic value are only known at run time. The fix then relies

5.4 symbolic profiling 89

on the host platform to provide a facility for expressing the set of feasible choices
to the symbolic evaluator. We show an example of this more subtle issue and the
corresponding fix in Section 5.5.1.

5.4 symbolic profiling

This section presents symbolic profiling, a new approach to identifying and diag-
nosing performance bottlenecks in programs under symbolic evaluation. As with
any profiler, the key choice is what data to measure and where. We first review
the space of alternative designs and then present our approach. We define the key
parts of our performance model, the symbolic heap and evaluation graph; de-
scribe how a symbolic profiler analyzes them; and present two implementations
of symbolic profiling.

5.4.1 Designing a Symbolic Profiler

To help programmers identify performance bottlenecks in the symbolic evalu-
ation of their code, a profiler must satisfy three key objectives. First, its output
must be explainable: it must provide a few key concepts that programmers can
use to understand the behavior of their code under symbolic evaluation, without
understanding the implementation details of the underlying engine. Second, its
output must be actionable, pointing programmers to the root cause of any dis-
covered bottleneck—a location in the code that needs to be repaired to improve
performance. Finally, a symbolic profiling technique should ideally be general, to
handle the wide variety of symbolic evaluation strategies (from SE to BMC) and
applications (e.g., bug finding, verification, and synthesis). Drawing on existing
profiling and symbolic evaluation research, we evaluated several potential sym-
bolic profiler designs against these criteria before settling on our approach.

Input-Sensitive Profiling. Our first design was based on input-sensitive profil-
ing [49]. For each procedure in a program, input-sensitive profiling estimates its
computational complexity as a function of its input size by fitting a function to its
observed behavior. For example, such a profiler can determine that a linked-list
traversal takes O(n) time. Our intuition was that poor symbolic evaluation per-
formance often comes from program locations that experience high complexity
due to path explosion; a symbolic profiler could apply input-sensitive profiling
and report the procedures with the worst computational complexity.

We implemented a prototype input-sensitive symbolic profiler to explore this
hypothesis. However, we found that the correlation between input size and per-
formance is often poor for code using symbolic evaluation. Minor perturbations
in the input can cause the underlying engine to change its evaluation strategy,
causing drastic changes in performance that make the estimated computational
complexity inaccurate and noisy. For example, Fig. 5.5 shows the results from
applying our prototype to the calculator program in Fig. 5.2 and the Ferrite case
study in Section 5.5.1. For the calculator (a), the stratified results for calculate

identify it as the most computationally complex function, even though list-set

90 symbolic profiling

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

0

10

20

30

40

50

0 50 100 150 200 250

Input size
T

im
e

(m
s)

Procedure
● calculate

list−set

(a) Calculator (Fig. 5.2)

●● ●●●●●●

●

●● ●●●●●●

●

1

10

100

1000

10000

0 1000 2000 3000 4000

Input size

T
im

e
(m

s)

Procedure
● take

vector−set!

(b) Ferrite (§5.5.1; note logarithmic y-axis)

Figure 5.5: Results from our input-sensitive profiling [49] prototype applied to two pro-
grams with known bottlenecks. In (a), the outlier results for calculate pro-
mote it to be the most computationally complex procedure. In (b), the profiler
cannot fit a good function for take, and so identifies vector-set! instead.

is the true bottleneck. For Ferrite (b), there is no good function to fit for take, and
so the profiler prefers functions such as vector-set!with more available data. In
both cases, noise obscures the true bottlenecks.

Path-Based Profiling. Our second design was inspired by the heuristics used in
symbolic evaluation engines (e.g., [82]) to control path explosion. The resulting
prototype symbolic profiler ranked functions based on the number of infeasible
paths they explored and the total size of the path conditions generated during
evaluation. Our intuition was that poorly performing procedures would gener-
ate many large, infeasible paths, and be likely candidates for repair.

However, this approach fell short in several ways. First, infeasible paths are
not always the source of performance degradation. Applications such as pro-
gram synthesis intentionally generate many large, feasible paths (e.g., to encode
a sketch [122]), making this analysis ineffective. Second, when they are required,
feasibility checks must be discharged by a constraint solver and so are extremely
expensive; we observed profiler overheads of 100× on even simple benchmarks.
Finally, a path-based profiler does not generalize to BMC-style evaluation, where
performance bottlenecksmanifest in the creation of large symbolic values during
state merging, as illustrated in Section 5.2 for the list-set procedure.

With these experiences inmind,we sought to identify a performancemodel for
symbolic profiling that would offer actionable advice in terms of a few abstract

5.4 symbolic profiling 91

1 (define-symbolic* x y integer?)
2 ; sq. dist from <x, y> to <1, 1>
3 (define dist
4 (+ (* (- x 1) (- x 1))
5 (* (- y 1) (- y 1))))

(a) A program that computes the squared distance between a
symbolic and concrete point.

+

* *

- -

x 1 y

(b) The symbolic heap for the
program.

Figure 5.6: The symbolic heap of a program tracks the structure of allocated symbolic val-
ues.

concepts, and accommodate the full spectrumof symbolic evaluation approaches.
The remainder of this section describes our chosen design; our case studies in Sec-
tion 5.5 and evaluation in Section 5.6measure its success against these objectives.

5.4.2 Instrumenting Symbolic Evaluation

Our key insight is that every symbolic evaluator can be understood in terms of
its interaction with two abstract data structures, the symbolic heap and the sym-
bolic evaluation graph, which form our performance model for symbolic profil-
ing. While explicit in our presentation, these data structures are usually implicit
in an evaluator’s implementation. We therefore also define a simple interface that
any evaluator can implement to enable a symbolic profiler to reconstruct both
data structures on the fly. The next section shows how to analyze these structures
to produce actionable profile data.

Symbolic Heap. As an evaluator creates new symbolic values to reflect the pro-
gram’s semantics, it implicitly constructs a symbolic heap. For profiling purposes,
the symbolic heap is analogous to the concrete heap: procedures that allocate
many values on the heap are candidate bottlenecks.

Definition 5.1 (Symbolic heap). A symbolic heap is a directed acyclic graph (V,E)
where each vertex v ∈ V is a term. A term is either a concrete constant, or a symbolic
constant, or an expression. Constants have no outgoing edges. Expressions are labeled
with an operator, and have an outgoing edge to each of their subterms. Each symbolic
constant and expression is annotated with a program location l(v) that created the term.

For example, consider the program in Fig. 5.6a. The first line allocates two new
symbolic constants x and y of type integer and binds them to the variables x and
y. The second line constructs expressions out of these symbolic constants and the
concrete constant 1. The resulting symbolic heap, shown in Fig. 5.6b, comprises
five expressions and three constants. The symbolic constants x and y have loca-
tions l(x) = l(y) = 1, while the expressions have locations l(·) = 3. Most sym-
bolic evaluators use canonicalization (e.g., [56]) to improve sharing of symbolic
terms, so only one instance of the terms (− x1) and (− y1) is usually constructed.

92 symbolic profiling

Symbolic Evaluation Graph. Where the symbolic heap reflects the flow of data
during symbolic evaluation, the symbolic evaluation graph captures the control
flow. This graph reflects the engine’s evaluation strategy—where it explored mul-
tiple paths separately, and where those paths were merged together. By analyzing
the symbolic evaluation graph, a symbolic profiler can identify candidate bottle-
necks with significant branching or merging activity.

Definition 5.2 (Symbolic evaluation graph). A symbolic evaluation graph is a di-
rected acyclic graph (V,E) in which each vertex s ∈ V is a state of the program. Each
edge (si, sj) ∈ E is a transition between two program states, and is annotated with a lo-
cation l(si, sj) reflecting the point in the program that caused the transition, and a guard
constraint guard(si, sj) reflecting the condition under which the transition was taken.

As an example, consider again the program inFig. 5.4a.Different evaluation strate-
gies will produce different symbolic evaluation graphs for this program. In sym-
bolic execution (Fig. 5.4b), each if statement will cause execution to diverge into
two paths that never meet, and so the definition of y (line 5) will execute twice
and the assertion (line 7) four times. On the other hand, bounded model checking
(Fig. 5.4c) will immediatelymerge the two paths generated by each if, and so both
the definition of y and the assertion will execute only once, on merged states.

Symbolic Profiling Interface. Most symbolic evaluators create the symbolic heap
and evaluation graph only implicitly—the heap is implicit in a canonicalization
cache, and the graph in the evaluator’s control flow. To enable a symbolic pro-
filer to track the evolution of these data structures, we define a generic symbolic
profiler interface that engines should implement at important points in symbolic
evaluation. A symbolic profiler can construct the symbolic heap and evaluation
graph by instrumenting calls to this interface. In practice, these calls are often al-
ready implemented by symbolic evaluators, simplifying adoption. Section 5.4.4
describes implementations of the interface in two different symbolic evaluators.

Definition 5.3 (Symbolic profiler interface). The symbolic profiler interface com-
prises five instrumentation points that a symbolic evaluator should implement to expose
profiling data:

• new(x, l) Allocate a fresh symbolic constant named x at program location l.

• new(op, x1, . . . , xn, l) Allocate a new expression op(x1, . . . , xn) at program
location l, where each xi is a concrete constant or a previously allocated symbolic
term.

• step(s0, 〈g1, e1〉, . . . , 〈gn, en〉) Starting fromprogram state s0, evaluate each pro-
gram expression ei (annotated with a corresponding program location li) under the
guard gi. Return a list of the resulting states s1, . . . , sk, where k ≥ n.

• merge(s1, . . . , sm, l) Merge the states s1, . . . , sm at program location l using the
evaluator’s merging strategy, returning a new list of states s′1, . . . , s′j , where 1 ≤ j ≤
m.

5.4 symbolic profiling 93

• solve(x, l) Call a constraint solver at program location l to determine the satisfi-
ability of the expression x.

The two new calls in the profiler interface construct the symbolic heap. The
symbolic evaluator invokes new each time it allocates a new symbolic term—
either a fresh symbolic constant or an expression. The profiler adds the corre-
sponding new node to the symbolic heap, with edges to the relevant (immediate)
subterms if the new term is an expression.

The step andmerge calls in the profiler interface reconstruct the symbolic eval-
uation graph. The symbolic evaluator calls step to evaluate a set of expressions
(e.g., two branches of a conditional) under disjoint and exhaustive guards. It calls
merge to merge a set of states, usually at a control-flow join point. For example,
at line 4 in Fig. 5.4a, the evaluator invokes step(s1, 〈a, 1〉, 〈¬a, 0〉), which adds
the edges 〈s1, s2〉 and 〈s1, s3〉, with the guards a and ¬a, to the evaluation graph.
From this point, different evaluation strategies result in different calls to the pro-
filer interface. A symbolic execution engine (Fig. 5.4b) never calls merge, instead
evaluating each path separately by calling step twice for line 5 (once per path).
A bounded model checker (Fig. 5.4c) immediately callsmerge(s2, s3, 4) to merge
the two states at line 4, producing a single new state s4. In either case, by instru-
menting the step and merge calls, a symbolic profiler can reify the (otherwise
implicit) evaluation graph.

Finally, the solve call in the interface allows a profiler to determinewhich parts
of the symbolic heap flow to a constraint solver. The symbolic evaluator invokes
solve(x, l) whenever it solves a constraint x, either to check the feasibility of a
path condition or to discharge a solver-aided query. In the next section, we use
this data to analyze the symbolic heap for terms unseen by the solver, which can
indicate wasted allocations.

5.4.3 Analyzing a Symbolic Profile

Our symbolic profiler, SymPro, analyzes the symbolic heap (Definition 5.1) and
evaluation graph (Definition 5.2) in three ways to present suggestions to users:
computing summary statistics about each procedure in the program; determining
data flow through the program to identify wasted allocations and work; and rank-
ing procedures based on these two analyses to identify themost likely bottlenecks.

Summary Statistics. SymPro computes four summary statistics about each pro-
cedure call:

• Time is the exclusive wall-clock time spent in the call;

• Term count is the number of symbolic terms added to the symbolic heap;

• Union size is the sum of the out-degrees of all nodes added to the symbolic
evaluation graph;

• Merge cases is the sum of the in-degrees of those nodes.
These statistics summarize the key aspects of symbolic evaluation: the time spent
in each procedure; the size of the symbolic state allocated; how many times path

94 symbolic profiling

splitting (symbolic execution)was performed; andhowmany timesmerging (bounded
model checking) occurred.

Data Flow. In addition to computing the summary statistics, SymPro uses the
symbolic heap and the solve instrumentation to determine which terms in the
heap are “used” by the program. To a first approximation, terms in a solver-aided
program are not useful if they are never sent to the underlying constraint solver
as part of a feasibility check or a solver-aided query. SymPro exploits this obser-
vation to produce an analysis of unused terms in the program. For each solve(x, l)
call made by the symbolic evaluator, SymPro computes the set of all terms in the
symbolic heap that are transitively reachable from x. Any term y that is in none
of these transitive closures is unused: it is not part of any constraint sent to the
solver.

Unused terms indicate either dead code (terms that were created but never
used) or simplification by the symbolic evaluator. For example, consider the fol-
lowing program:

1 (define-symbolic* x boolean?) ; add x to the heap
2 (define A (or x (not x))) ; add ¬x to the heap
3 > A ; but simplify x ∨ ¬x
4 #t
5 > (solve (assert A)) ; both x and ¬x unused

SymPro would report the terms x and ¬x as unused, because the evaluator sim-
plified them out of the query sent to the solver. Both causes of unused terms
represent optimization opportunities: dead code should be removed, while ex-
cessive simplification suggests redundancy that a better algorithm or encoding
could eliminate.

Ranking. Based on the summary statistics and data flow analysis, SymPro ranks
each procedure in the program to suggest the most likely bottlenecks to the user.
It first normalizes each statistic (time, term count, union size, merge count, and
unused terms) to the range 0–1. Then it assigns each procedure a score by sum-
ming the normalized statistics. This score, a number between 0 and the number
of statistics, is a simple ranking of which procedures do the most symbolic work.
Our case studies in Section 5.5 and evaluation in Section 5.6 show this ranking
is highly effective for navigating symbolic profiles. We also experimented with
a machine-learned ranking scheme, training a binary classifier (a support vector
machine) to identify bottlenecks using some of the benchmarks from Table 5.2
as training data. The resulting classifier had high recall but poor precision, iden-
tifying many false positive bottlenecks. For that reason, and because our manual
ranking scheme is easier to explain, SymPro uses that scheme as the default.

5.4.4 Implementation

We have implemented the symbolic profiler interface (Definition 5.3) in two dif-
ferent symbolic evaluators—a fully featured implementation for Rosette [126,

5.4 symbolic profiling 95

127], and a proof of concept one for the Jalangi JavaScript analysis framework [117,
118].

Rosette. Our Rosette profiler instruments several key points in Rosette’s evalu-
ation engine, most of which are directly analogous to the calls in the profiler in-
terface. To implement the new interface, we instrument Rosette’s term creation
cache, which performs hash-consing to canonicalize terms. To implement step,
we record the creation of symbolic unions, which Rosette uses to track the mul-
tiple possible values of a variable during symbolic evaluation. Finally, to imple-
mentmerge and solve, we instrument Rosette’s corresponding procedures merge
and solver-check. This instrumentation changes only 21 lines of the Rosette en-
gine implementation. The code for the SymPro analyses comprises 1,000 lines
of Racket and 1,400 lines of TypeScript. The Rosette profiler is open-source and
integrated into the latest Rosette release [125].

Jalangi. Jalangi [117] uses a symbolic execution engine called MultiSE [118] to
provide concolic test generation for JavaScript. We modified MultiSE to imple-
ment the symbolic profiler interface as follows. To implement new, we track calls
to the constructors of symbolic term objects (strings, numbers, and booleans).
MultiSE rewrites JavaScript programswith additional control flow to implement
step, and so we track each time a new path is generated from a branch in the pro-
gram. To instrument merge, we modify MultiSE’s implementation of value sum-
maries, which are lists of guard-value pairs reflecting the possible values of each
variable. Section 5.6.4 presents our results with this proof-of-concept profiler.

5.4.5 Discussion

Two kinds of performance issues are outside the scope of symbolic profiling,
which focuses on analyzing the behavior of symbolic evaluation. First, if the bot-
tleneck is in constraint solving, a symbolic profiler can report that solving is tak-
ing the most time, but it cannot identify the cause of the issue. Second, while
bottlenecks in concrete execution can be identified by symbolic profiling (which
includes a measure of execution time), they will be ranked below symbolic eval-
uation bottlenecks because they cause no activity in the symbolic heap and eval-
uation graph.

Some bottlenecks can be repaired inmultipleways at different locationswithin
a program; when symbolic profiling identifies such a bottleneck, it may not sug-
gest the easiest location to repair. For example, consider this program,with a sym-
bolic boolean input b passed to outer:

1 (define (outer b)
2 (when b
3 (inner)))
4 (define (inner)
5 ...)

Suppose the inner function has side effects (e.g., mutating global variables) that
result in a bottleneck. Symbolic profilingwill identify outer as the bottleneck, but

96 symbolic profiling

the issue could be repaired by modifying either outer (to not call inner under a
symbolic path condition) or inner (by mutating less global state). As another ex-
ample, irregular data representations (Section 5.3.2), such as the one on line 36 of
Fig. 5.2, are most easily repaired where the data is constructed, even though sym-
bolic profiling will identify the location the data is used (lines 13–14 of Fig. 5.2)
as the bottleneck.

5.5 actionability case studies

To demonstrate that SymPro produces actionable profiles, we performed a series
of case studies on real-world Rosette programs. We collected a suite of bench-
marks by performing a literature survey of all papers citing Rosette [126]. This
suite, shown in Table 5.1, comprises all 15 tools that were open source (or that
the authors made available to us) and that ran on the latest Rosette release.

We applied SymPro to each benchmark and used it to identify 8 performance
bottlenecks summarized in Table 5.2.This section presents our results, with three
in-depth case studies and brief overviews of four other findings. In each case
study, we highlight a bottleneck found by SymPro, relate it to the anti-patterns
of Section 5.3, and present repairs. Six of the eight bugs we found were in code
bases with which we were not previously familiar. Section 5.6 evaluates SymPro
against our other design criteria, explainability and generality.

5.5.1 File System Crash-Consistency

Ferrite [23] is a tool for reasoning about crash safety of programs running on
modern file systems, which offer only weak consistency semantics. It consists of
a verifier and a synthesizer. Given a litmus test program (i.e., a small, straight-line
sequence of system calls), and a specification of crash safety for it, the verifier
checks whether the program satisfies the safety specification under the relaxed
semantics of a file system such as ext4, even in the face of crashes. If not, the syn-
thesizer attempts to repair the program by inserting barriers (i.e., calls to fsync).

Ferrite represents files as a backing store (a list of bytes) together with the
length of the file:

1 (struct file (contents length) #:transparent)
2 (define BLOCK_SIZE 4096)
3 (define F (file (make-list BLOCK_SIZE #x00) 0))

Tomodel awrite to the file F, which persists only if the systemdoes not crash, Fer-
rite introduces a symbolic boolean value crash? to represent a non-deterministic
crash:

1 (define N 2)
2 (define-symbolic* crash? boolean?)
3 (unless crash? ; If not crashed
4 (match-define (file contents length) F)
5 (define new-contents ; write 0x1 to first N bytes
6 (append (make-list N #x01) (drop contents N)))
7 (set! F (file new-contents (+ length N))))

5.5 actionability case studies 97

Table 5.1: Rosette benchmarks used in our evaluation. LoC is lines of code. Performance
results show the overhead of SymPro’s analysis as the average of five runs; 95%
confidence intervals for overhead are< 5 pp.

Time Peak Memory

Benchmark LoC Time (sec) Slowdown Memory (MB) Overhead

Bagpipe [135] 3317 16.1 51.1% 314 30.9%
Bonsai [40] 641 55.1 22.1% 341 128.7%
Cosette [44] 2709 12.8 7.4% 296 17.6%
Ferrite [23] 350 21.5 2.7% 690 5.0%
Fluidics [137] 145 17.7 5.7% 198 18.9%
GreenThumb [108] 934 2358.5 0.1% 2258 0.0%
IFCL [126] 574 96.4 0.7% 248 28.7%
MemSynth [26] 3362 24.0 45.7% 349 33.5%
Neutrons [106] 37317† 45.3 14.8% 1702 98.4%
Nonograms [34] 6693 15.1 3.1% 300 18.6%
Quivela [14] 5946 78.6 1.4% 496 20.0%
RTR [76] 2007 374.6 12.6% 822 35.5%
SynthCL [126] 3732 27.7 61.2% 445 133.2%
Wallingford [28] 3866 7.9 2.4% 618 86.3%
WebSynth [126] 2057 14.2 47.7% 467 122.8%
† Includes a 36,847-line Racket file automatically generated from the software being verified, which
SymPro must instrument.

Table 5.2: Summary of performance bottlenecks found by applying SymPro to the bench-
marks in Table 5.1, together with the speedups obtained by repairing them.

Program Anti-Pattern Description Speedup

Bonsai Irregular representation Shape of tree data structure is enumerated multiple times (§5.5.4) 1.35×
Cosette Missed concretization Possible table sizes are enumerated in a nested loop (§5.5.2) > 6×†

Algorithmic mismatch Inefficient reduction builds a complex intermediate list (§5.5.2) 75×
Ferrite Missed concretization Length of an array is merged despite few feasible values (§5.5.1) 24×
Fluidics Irregular representation Grid data structure implemented with nested mutable vectors (§5.5.4) 2×
Neutrons Irregular representation Log of possible paths is maintained symbolically (§5.5.3) 290×
Quivela Missed concretization Object references are merged and obscure dynamic dispatch (§5.5.4) 29×
RTR Algorithmic mismatch Unnecessary fold over list of symbolic length (§5.5.4) 6×

† Without the repair, Cosette does not terminate within one hour.

98 symbolic profiling

To check the safety specification, Ferrite retrieves the final contents of the file:

1 (define cnts (take (file-contents F) (file-length F)))
2 (assert (or (equal? cnts '()) (equal? cnts '(1 1))))

This implementation is sufficient to verify crash safety at small block sizes (e.g.,
32 bytes). But since many crash consistency bugs rely on boundary conditions
around the size of disk blocks, Ferrite sets BLOCK_SIZE to a realistic value for a
modern device (here, 4 kB). With this block size, even simple litmus tests cannot
be verified (or repaired) in reasonable time.

Identifying the Bottleneck. SymPro identifies the call to take in the final step
above as the source of poor performance. It ranks take high based on its large
number of created symbolic terms and the fact that almost none of those terms
reach the solver. In contrast, a time-based profiler ranks the subsequent equal?
call as the hottest method.

Diagnosing the Bottleneck. The root cause of this issue is a missed concretization.
Rosette merges the second input to take, representing the length of the file, into
a symbolic termof the form (ite crash? 0 2).When take receives a symbolic length
argument, it performs symbolic execution, generating onepath per potential length
of the returned list. Since the input list (file-contents F) has length BLOCK_SIZE

= 4096, the take call generates 4097 distinct paths, each with a path condition
of the form (ite crash? 0 2) = n for 0 ≤ n ≤ 4096. All but two of these paths are
infeasible.

Repairing the Bottleneck. To repair the program, we recover the feasible con-
crete values for the file’s length in two steps. First, we remove the #:transparent
annotation from the definition of the file data type, to prevent structural (field-
wise) merging of files. Instead, Rosette will use symbolic unions (Section 5.3.1) to
merge files. Second, we use Rosette’s for/all annotation to evaluate the take call
separately for each value in the symbolic union F:

1 (define contents
2 (for/all ([f F])
3 (take (file-contents f) (file-length f))))

The for/all annotation is Rosette’s symbolic reflection facility [126], which allows
programmers to control path splitting and merging. By default, Rosette evaluates
the arguments to take first, merges the results, and then applies take once to the
merged value. The for/all annotation tells Rosette to instead apply take to each
possible value of F separately and then merge the results. This repair speeds up
Ferrite by 24×, enabling it to replicate—in just a few minutes—a complex ext4
delayed allocation bug in Google Chrome [22].

5.5 actionability case studies 99

5.5.2 SQL Query Equivalence Verification

Cosette [43, 44] is an automated prover for deciding the equivalence of two SQL
queries. It uses Rosette to search for small counterexamples to equivalence, and
Coq to construct proofs of equivalence if no counterexample is found.

Cosette’s counterexample finder works by constructing a symbolic represen-
tation of a SQL table as a bag of tuples. Both the multiplicity of each tuple and
its constituent elements are symbolic values. To execute a query against a table,
Cosette constructs a new table in which the multiplicity of each tuple reflects the
semantics of the query. For example, the result of executing the query SELECT A

FROM table WHERE C="a" on a table is another table:

A B C #

e0 e1 e2 c0
e3 e4 e5 c1

=⇒

A #

e0 (if (= e2 "a") c0 0)

e3 (if (= e5 "a") c1 0)

To check if two queries are equivalent, Cosette executes each query on the same
symbolic table, constructs a constraint asserting the two resulting tables are dif-
ferent, and solves this constraint using Rosette. Cosette makes extensive use of
advanced Rosette features, including eval of dynamically generated code, mak-
ing manual reasoning about performance particularly challenging.

A recent change to Cosette adjusted its encoding of SQL WHERE clauses to ac-
commodate a richer subset of SQL’s filter syntax. Previously,Cosette implemented
filtering by removing the appropriate tuples from the bag; the change instead fil-
ters by setting those tuples’ multiplicities to zero. After making this change, a
Cosette benchmark that previously returned in under 15 seconds no longer re-
turnedwithin anhour.Our initial investigation showed the SMTsolverwas never
called, suggesting the bottleneck was in symbolic evaluation, but offered no fur-
ther details.

Identifying the Bottleneck. To identify the source of this bottleneck,weusedSym-
Pro’s support for streaming profile data during execution. The streaming profiler
applies the analyses in Section 5.4 incrementally as the symbolic heap and sym-
bolic evaluation graph evolve, and periodically sends the resulting data to the pro-
filer interface. For Cosette, the profiler implicated the following call to the filter
function:

1 (map (lambda (t)
2 (sum (filter (lambda (r) (eq? t r)) table)))
3 table)

The profiler ranked these filter calls far above any other calls in the program
due to their high number of new terms allocated on the symbolic heap and large
numbers of merges in the symbolic evaluation graph.

Diagnosing the Bottleneck. This bottleneck is caused by a combination of two
issues, a missed concretization and an algorithmic mismatch, which manifest as two
distinct sources of path explosion.

100 symbolic profiling

The missed concretization is due to table being a symbolic union, reflecting
the table’s value along several control-flow paths generated by symbolic execu-
tion.The nested use of table thus creates quadratic path explosion—for each path
in table explored when calling map, the evaluator explores every path in table

when evaluating the inner filter.
The algorithmic mismatch is due to using filter to create an intermediate list

just to sum its contents. The predicate used by filter depends on symbolic state,
and so there areO(2N) paths for the return value of filter, as in the toy example
from Fig. 5.1. The sum procedure must then run once for each such path.

Repairing the Bottleneck. An easy repair for themissed concretization is to apply
symbolic reflection:

1 (for/all ([table table])
2 (map (lambda (t)
3 (sum (filter (lambda (r) (eq? t r)) table)))
4 table))

Here, the for/all evaluates its body once for each path in table. During each such
evaluation, table is bound to a single concrete value rather than a union, avoiding
the first source of path explosion. With this repair, the problematic benchmark
completes within 10 minutes—better than non-termination but still worse than
the original version of Cosette.

To repair the algorithmic mismatch, we avoid building the intermediate list
with filter. Instead, the procedure passed to map performs a fold over table to
sum the values that satisfy the filter predicate. With this additional repair, the
problematic benchmark completes in 8 seconds—faster than even the original
Cosette implementation. We reported the regression to the Cosette developers,
and they accepted our patch.

5.5.3 Safety-Critical System Verification

Neutrons [106] is a tool for verifying the safety of a radiotherapy system in clinical
use. The system is controlled by a large program written in the EPICS dataflow
language [55].Neutrons provides a symbolic interpreter for EPICS programs, and
a verifier (built with Rosette) to check that EPICS programs satisfy key safety
properties. The Neutrons verifier is used for active development of the system’s
software, so its performance is important for developer use.

Identifying and Diagnosing the Bottleneck. We used SymPro to profile the Neu-
trons symbolic interpreter, and found a bottleneck with the interpreter’s tracing
feature. As the interpreter executes an EPICS program, it records each executed
instruction in a trace—a list of executed instructions—which is used to visualize
counterexamples:

1 (define (record-trace msg)
2 (set! trace (append trace (list msg))))

5.5 actionability case studies 101

However, since this call is made with a symbolic path condition, Rosette must
merge the new and existing values of trace when performing the mutation. This
leads to excessive path creation and merging, since Rosette will track each po-
tential length of trace separately by symbolic execution, and the length of trace
depends upon the execution path. In essence, trace has an irregular representation.
SymPro identifies this tracing procedure as the key bottleneck.

Repairing the Bottleneck. To improve this program, we observe that tracking the
shape of the trace is unnecessary for counterexample visualization. For each exe-
cuted instruction, we need only record the path condition that was true when the
instruction executed, together with the instruction:

1 (define (record-trace msg)
2 (raw-set! trace (append trace (list (cons (pc) msg)))))

Here, (pc) retrieves the current path condition, and raw-set! is Racket’s unlifted
implementation of set! that overwrites trace without any merging. The trace

is now a list of every instruction executed by any possible interpretation of the
EPICS program. When using this trace to visualize a counterexample, we sim-
ply hide any instruction whose corresponding path condition is not satisfied by
the counterexample. This program transformation—which essentially adjusts the
trace list to always have a concrete length—improves Neutrons’ verification per-
formance by 290× on a representative example. We reported this issue to the
Neutrons developers, and they accepted our patch.

5.5.4 Other Findings

Our other findings in Table 5.2 include examples of all three anti-patterns pre-
sented in Section 5.3.2.

Type System Soundness Checking. Bonsai [40] is a synthesis-based tool for check-
ing the soundness of type systems. It uses a novel tree representation for type
checking, and has been used to replicate a soundness bug in the Scala type system.
We applied SymPro to Bonsai and found two irregular representation issues. First,
Bonsai represents trees as nested lists; since the trees have unknown size, these
lists are merged into a symbolic union. When the tree is used multiple times dur-
ing the same type checking call, the symbolic evaluator enumerates the members
of this union once per use and merges the results. Instead, we used Rosette’s for
/all facility to perform this enumeration only once, as done in the Cosette case
study. Second, each (recursive) type checking step can return either a subtree or a
boolean (in case of failure), whichRosettewill alwaysmerge into a symbolic union
due to their different types. Instead, we usedmultiple return values to separate the
returned boolean failure flag from the returned subtree. Together, these changes
improved Bonsai’s performance by 35% when checking the Scala type system.

Cryptographic Protocol Verification. Quivela [14] is a tool for verifying the secu-
rity of cryptographic protocols. It takes as input an implementation and a specifi-

102 symbolic profiling

cation of a cryptographic protocol, along with a series of refinement steps be-
tween them, and checks that each refinement is valid. We applied SymPro to
Quivela and identified a missed concretization issue. Quivela represents protocols
in a simple object-oriented language in which all method calls are virtual; each
object can store references to other objects, which Quivela represents as integer
addresses. Because these references are integers, the symbolic evaluator’s default
strategy is tomerge them. But themerged references obscure the targets of virtual
method calls forcing the engine to evaluatemany infeasible paths, as in the Ferrite
case study. We modified Quivela to instead track references concretely, by wrap-
ping references into an opaque structure type that cannot bemerged.This change
improvedQuivela’s verification performance by up to 29× on small benchmarks,
and allowed it to quickly verify larger protocols that previously caused out-of-
memory failures.

Microfluidics Control Synthesis. Fluidics [137] is a prototype tool for synthesiz-
ing programs that control a digital microfluidics array, used for executing bio-
logical wet-lab protocols. It takes as input the initial arrangement of samples on
the array, and the desired final arrangement (potentially including mixtures of
the samples), and synthesizes a series of movement and mixing instructions that
produce the desired outcome. We applied SymPro to Fluidics and identified an
irregular representation issue. Fluidics represents the state of the array as a two-
dimensional vector of vectors, indexed by y and then x coordinates. However,
this nested structure makes updates to the array expensive: because vectors are
mutable data structures, the inner vector must be duplicated for each update to
correctly track later mutations. Replacing the nested data structure with a flat
one-dimensional vector improves Fluidics’ performance by 2×, allowing it to
synthesize more complex control programs and reason about larger microflu-
idics arrays.

Refinement Type Checker for Ruby. RTR [76] is a type checker for a new re-
finement type system for Ruby. It takes as input a Ruby program translated to a
Rosette-based intermediate verification language, and checks that user-specified
refinement types hold in the (translated) program. The RTR verification language
reflects Ruby’s object structure and control-flow constructs. We applied SymPro
toRTR and identified an algorithmic mismatch issue in thewayRTR initializes new
Ruby objects. In Ruby, an array initialization supplies a length together with an
anonymous function (a “block”) defining the value at each index:

1 Array.new(5){ |i| i*2 }
2 #=> [0, 2, 4, 6, 8]

RTR represents arrays as a pair of a vector (holding the array’s contents) and an
integer (holding the array’s actual length). To support bounded verification, array
lengths can be symbolic. RTR’s array initialization creates a separate vector/in-
teger pair for each possible length of the array, taking quadratic time. SymPro
identifies the array initialization procedure as the bottleneck. We repaired this
issue by initializing a concrete vector of length equal to the upper bound on the

5.6 explainability, generality, and performance 103

symbolic length; since RTR already tracks each list’s length separately, the extra-
neous elements can simply be ignored. This repair improved RTR’s performance
on its slowest benchmark (Matrix) by 6×, from 6.1 minutes to 61 seconds, and
reduces its peak memory usage by 3×. RTR’s developers accepted our patch.

5.6 explainability, generality, and performance

To evaluate the performance, explainability, and generality of symbolic profiling,
we sought to answer four research questions:

1. Is the overhead of symbolic profiling reasonable for development use?

2. Is the data collected by SymPro necessary for correctly identifying bottle-
necks?

3. Are programmers more effective at identifying bottlenecks with SymPro?

4. Is SymPro effective at profiling different symbolic evaluation engines?

The first two questions address the key performance aspects of SymPro—run-
time overhead and the necessity of the collected data for generating actionable
feedback. The third question evaluates the explanatory power of SymPro’s pro-
files. The fourth question assesses the generality of our approach. We use the
Rosette profiler to investigate the first three questions, and the Jalangi profiler
for the fourth. We find positive answers to all four questions.

5.6.1 Is the overhead of symbolic profiling reasonable for development use?

Table 5.1 shows the time and memory overheads for SymPro on a collection of
real-world Rosette programs. All results were collected using an AMD Ryzen 7
1700 eight-core processor at 3.7 GHz and 16GB of RAM, running Racket v6.12.
For each benchmark we report the average overhead across five runs; 95% confi-
dence intervals are below 5 percentage points for all overhead results.

Overall, SymPro slows applications by 0.1%–61.2% (geometric mean 16.9%),
and increases peakmemoryuse by0.0%–133.2% (geometricmean45.6%).These
overheads are reasonable for development use, and are better than other tracing-
based profiling tools. For example, the Racket version of profile-guided metapro-
gramming [29] averages 4–12× slowdown, and input-sensitive profiling [49] av-
erages 30× slowdown for C programs. The highest overheads occur for bench-
marks with many short-lived recursive calls. It would be possible to implement a
sampling-based profiler if this overhead were to become unacceptable.

5.6.2 Is the data collected by SymPro necessary for correctly identifying bottlenecks?

To understand the importance of the data SymPro gathers, we performed a sensi-
tivity analysis using all benchmarks in which we identified new bottlenecks (Ta-
ble 5.2), as well as a collection of benchmarkswith previously known bottlenecks.

104 symbolic profiling

●

●

● ●

●

●

●

●

●

Bonsai Cosette Ferrite Fluidics IFC MemSynth Neutrons Quivela RTR

7

6

5

4

3

2

1

Benchmark

B
o

tt
le

n
ec

k
 r

an
k

Data used in ranking
● Time

Heap
Graph
Heap & Graph
All

Figure 5.7: Sensitivity of profiler rankings to the data sources used in ranking. Each point
is the rank of the bottleneck function in a profile of the program when using
the specified data in the ranking function. Benchmarks are those in which we
found new bottlenecks (Table 5.2) or had previously known bottlenecks.

For each benchmark, we manually investigated its profile to identify a single pro-
cedurewe believe should be ranked as the primary cause of poor performance.We
then varied the data available to SymPro, giving it access to only wall-clock time,
only the symbolic heap, only the symbolic evaluation graph, or combinations of
the three components.

Fig. 5.7 shows the results of the sensitivity experiment. For each benchmark,
the y-axis measures the ranking of the known bottleneck when using only the
specified source of profiling data. These results have three key highlights. First,
timing data ● alone (i.e., the time spent in each procedure) identifies only three
of nine bottlenecks. Second, no single data source is sufficient to identify the
key bottleneck in every benchmark. While the symbolic heap ▼ and evaluation
graph ▲ are each more effective than time alone, both are required ♦ to correctly
rank all bottlenecks. Third, once both the symbolic heap and evaluation graph are
available, including timing data ■ does not improve the quality of the rankings.
However, SymPro still includes timing data in rankings, to help profile the parts
of programs that do not perform symbolic evaluation.

5.6.3 Are programmers more effective at identifying bottlenecks with SymPro?

To help understand how effective SymPro is in real-world use, we conducted a
small user study with Rosette programmers. Our study had eight graduate stu-
dent participants, who each had previous Rosette experience ranging from “a few
hours” tomultiple published papers using Rosette.We first provided each partici-
pant a short tutorial on how to use both SymPro and existing Racket performance
tools (the time form and the built-in Racket profiler [18]).We then asked each par-
ticipant to study four benchmarks—three realistic solver-aided tools and a simple
calculator program—and identify (but not repair) the primary performance bot-
tleneck. For each benchmark, each participant was randomly assigned to either
the baseline group (which had access to any tool except SymPro) or the SymPro
group (which had access to SymPro as well). To help control for learning effects,
each participant saw the benchmarks in a random order, and had atmost 20 min-
utes to analyze each benchmark.

Quantitative Results. Fig. 5.8 shows the average time taken for users to identify
the performance issue in each benchmark. SymPro improves the identification

5.6 explainability, generality, and performance 105

0

5

10

15

20

25

Calculator Ferrite Fluidics RuleSynth

Task

T
im

e
(m

in
s)

Baseline

SymPro

Figure 5.8: Average time taken for users to identify the performance issue in four bench-
marks, with or without SymPro. Error bars are 95% confidence intervals for
n = 4 users.

time for every benchmark, though due to the small sample size (n = 4 for each
treatment), we do not claim statistical significance. There were 6 cases where a
user in the baseline group failed to find the issue in a benchmark within the 20
minutes available; no users in the SymPro group ever reached this time limit.

Qualitative Observations. Given the limited size of our study, its main value was
in the qualitative observations reported by the participants. Users with access to
SymPro said it gave “insight intowhatRosette is actually doing”which they lacked
from other tools. One user said that SymPro was “extremely useful for investi-
gating a performance issue,” and that they could “see how I would optimize my
own code using the [symbolic] profiler.” Users generally reported they thought
the symbolic profiler would be even more successful when run against their own
code, because they “know what to ignore.”

We found that users were most successful when using SymPro to conduct an
initial investigation. SymPro’s data analysis generally directed users to fruitful
locations in the code to inspect more quickly than either manual exploration or
analysis by existing performance tools. While we did not require users to identify
potential repairs to the performance issues they found, they were more willing
and able to do so voluntarilywhen using SymPro, suggesting a better understand-
ing of the code.

5.6.4 Is SymPro effective at profiling different symbolic evaluation engines?

In addition to the Rosette profiler evaluated above, we also built a prototype sym-
bolic profiler for the Jalangi dynamic analysis framework [117], as Section 5.4.4
describes. We applied the profiler to the three slowest publicly available bench-
marks reported by Sen et al. [118]. For each benchmark, we ran both the symbolic
profiler and a traditional time-based profiler to identify hotspots, and compared
the results. The symbolic profiler added only negligible overhead (< 1%).

Red-Black Tree. The red-black tree benchmark implements a self-balancing bi-
nary search treewith integer keys.The symbolic version of the benchmark inserts
five unknown, symbolic keys into the binary search tree. The time-based profiler

106 symbolic profiling

identifies an internal key-comparison function as the only hotspot in the bench-
mark. But the symbolic profiler helps pinpoint why the key comparison is slow: it
identifies the tree’s insert procedure as being responsible for the creation ofmost
symbolic state (due to branching), and reports that the key comparison creates
very large terms on the symbolic heap. Guided by this profile, wemodified the key
comparison function to be branch-free, which improved the benchmark’s perfor-
mance by 2×. The profiler also suggests that path pruning with the SMT solver is
ineffective on this benchmark: most paths are generated by the key-comparison
function, but they are always feasible. Surprisingly, we found that the tree’s re-
balancing operations were not the sources of expensive symbolic operations.

Calculator Parser. The calculator parser benchmark implements a simple gram-
mar for arithmetic expressions, and attempts to parse an expression from a sym-
bolic input. The time-based profiler identifies the function getsym, which gener-
ates the next character of symbolic input, as the bottleneck. The symbolic pro-
filer instead identifies accept and its callers, which interpret the output of getsym
and form the core of the parser. In particular, the symbolic profiler identifies
the grammar’s “factor” production as being a bottleneck due to a large number
of branches. Inspecting this function, we found most branches perform similar
work, and so we refactored it to move that work outside of the branches. This
small refactoring improved the benchmark’s performance by 1.8×.

Binary Decision Diagram. The binary decision diagram (BDD) benchmark con-
structs a BDD with three unknown, symbolic operations (that can be either ∧ or
∨), each of which operates on two unknown, symbolic operands. The time-based
profiler can only identify the top-level driver function of this benchmark as a
potential hotspot. The symbolic profiler is more effective, identifying an internal
hash table and the BDD put operation as the sources of symbolic complexity. We
replaced the hash table with a linked list, improving performance by 10%. With
this repair, the profiler now identifies get as the bottleneck instead of put (as we
would expect, since get must now search the list). While a linked list is clearly
less efficient for concrete code, it is more amenable to verification, and so this
transformation may be preferable for verifying clients of the BDD library. In gen-
eral, we expect SymPro to be useful for developing models of libraries and frame-
works, which are simplified implementations intended for verification purposes
and used by automated verification tools [36].

5.7 related work

Optimizing Symbolic Evaluation. A high-performance symbolic evaluation en-
gine must make good decisions about when to merge states from different paths.
Query count estimation (QCE) is a heuristic for estimating the number of paths
that will be created by merging at a given program point [82]. A QCE engine
merges states only if the “hot” variables in each branch are the same, or are already
symbolic.The “hot” variables are identified heuristically; a variable v is hot ifmany
additional paths are likely to be generated bymaking v symbolic. In essence, QCE

5.8 conclusion 107

is a heuristic for predicting the shape of the symbolic evaluation graph. SymPro,
in contrast, tracks the shape of the graph and lets the programmer use this infor-
mation to guide symbolic evaluation.

In addition to improving the performance of symbolic evaluation at the en-
gine level (through better strategies and encodings), prior work has also pro-
posed making improvements at the program level. Wagner, Kuznetsov, and Can-
dea [132] advocate for a special compiler optimization mode tuned for emitting
code amenable to symbolic execution, avoiding program transformations that ex-
hibit poor behavior under symbolic evaluation. Cadar [35] presents a collection
of program transformations (both semantics-preserving and -altering) designed
to enable scalable symbolic execution. SymPro is an ideal companion to these ap-
proaches: when automated optimizations fail (as Cadar shows is often the case),
a profiler can help identify potential bottlenecks for manual repair.

Profiler-Aided Development. Recent research has focused on howprofiling infor-
mation should be integrated into development workflows. For example, the opti-
mization coach [16] feature of Racket communicates successful and failed compiler
optimizations to programmers, while profile-guided meta-programming [29] in-
tegrates profilingdata into the source-to-source transformations inRacket’smacro
system. One important property of a profiler is that its advice must be actionable:
optimizing the functions it suggests as hot should improve execution time. The
Coz causal profiler [51] achieves this by performing experiments at run time. To
determine if a function f is hot, Coz simulates optimizing f by artificially slowing
down every other function in the program. We took inspiration from all three of
these techniques when designing SymPro.

Interactive Profiling. Ammons et al. [15]’s Bottlenecks tool is an interactive in-
terface for profile data. Profilers implement a common interface defined by Bot-
tlenecks, which then layers a command-line user interface on top of the gener-
ated data. Through that interface, Bottlenecks suggests interesting profile points
using navigation heuristics that skip over uninteresting data; for example, pro-
cedures with little exclusive time are likely less interesting than their callees, so
navigation “zooms” over these points. Ammons et al. used Bottlenecks to find
14 performance issues in IBM’s WebSphere Application Server, and improve its
throughput by 23%. SymPro’s user interface (Fig. 5.3) and its common symbolic
evaluator interface (Definition 5.3) both take influence from Bottlenecks.

5.8 conclusion

Symbolic profiling is a new approach to identifying and diagnosing performance
bottlenecks in programs under symbolic evaluation. Symbolic profiling makes
explicit the key resources—the symbolic heap and evaluation graph—that pro-
grammersmustmanage to create performant solver-aided applications.These re-
sources form a new performance model of symbolic evaluation that is actionable,
explainable, and general. Our case studies show that symbolic profiling produces
actionable profiles. Guided by these profiles, we identified, diagnosed, and re-

108 symbolic profiling

paired performance bottlenecks in published, state-of-the-art solver-aided tools,
obtaining orders-of-magnitude speedups. Our experiments show that symbolic
profiles have high explanatory power, helping programmers understandwhat the
symbolic evaluator is doing, and that our profiling approach generalizes to differ-
ent symbolic evaluation engines. As programmers increasingly apply solver-aided
automation tonewdomains, symbolic profiling canhelp themmore quickly reach
the scale they need to solve real-world problems.

6CONCLUS ION

The pervasiveness of computer systems demands new techniques to ensure their
reliability. This dissertation argues that the solution to this challenge lies in au-
tomated programming tools, and in particular in the ability to build specialized
automated tools for each new problem domain. We have demonstrated the po-
tential of such specialized tools by building one for memory consistency models
(Chapter 3); the resulting tool foundundocumented issues in twomajor computer
architectures. To aid in building such tools, we have introduced metasketches
(Chapter 4), a new abstraction for program synthesis tools, and shown that they
can be used to solve synthesis problems that other state-of-the-art tools cannot.
Finally, to help programmers scale automated tools, we developed symbolic pro-
filing (Chapter 5), a technique for identifying and diagnosing performance bot-
tlenecks in automated programming tools that has been used to speed up state-
of-the-art projects by orders of magnitude. Together, these contributions show
that new abstractions and tools can empower programmers to build specialized
automated programming tools that ensure software reliability.

But many challenges still remain. Our work on MemSynth benefited from ex-
istingDSLs for specifyingmemorymodels. In general,much of thework of devel-
oping a synthesis tool is spent on DSL design. Helping programmers design new
DSLs that are sufficiently expressive while remaining amenable to automation is
an open problem [33]. Similarly, the new abstractions and techniques this disser-
tation develops still require human insight to use—For example, designing a good
metasketch requires understanding how synthesis algorithms work, while inter-
preting the results of a symbolic profile requirse knowledge of possible repairs.
In both cases, we have provided design patterns to help programmers use these
tools, but ideally this process should be more automated. We should be able to
automatically design a good metasketch for a particular synthesis problem; there
are some early results suggesting this task can be automated [73, 101], but more
work is needed to automatically identify good metasketches. Similarly, symbolic
profiling should be able to automatically suggest repairs to an automated tool to
improve its scalability. As this dissertation shows, well-designed automation and
the right abstractions can help bring new advanced programming tools to more
domains and a wider range of programmers.

109

BIBL IOGRAPHY

[1] Sarita V. Adve andMarkD.Hill.Weak ordering - a newdefinition. In: Pro-
ceedings of the 17th International Symposium onComputer Architecture (ISCA).
Seattle, WA, USA, June 1990, pages 2–14 (cited on page 43).

[2] Jade Alglave. A formal hierarchy of weakmemorymodels. In: Form. Meth-
ods Syst. Des. 41.2 (2012), pages 178–210 (cited on pages 40, 44).

[3] Jade Alglave. Modeling of Architectures. In: Advanced Lectures of the 15th
International School on Formal Methods. 2015 (cited on page 35).

[4] Jade Alglave, Mark Batty, Alistair F. Donaldson, Ganesh Gopalakrishnan,
Jeroen Ketema, Daniel Poetzl, Tyler Sorensen, and John Wickerson. GPU
concurrency:weak behaviors and programming assumptions. In: Proceed-
ings of the 20th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS). Istanbul, Turkey,
Mar. 2015, pages 577–591 (cited on pages 16, 22).

[5] Jade Alglave, Anthony Fox, Samin Ishtiaq, Magnus O. Myreen, Susmit
Sarkar, Peter Sewell, andFrancescoZappaNardelli.The semantics of Power
and ARM multiprocessormachine code. In: Proceedings of the Workshop on
Declarative Aspects of Multicore Programming (DAMP). Savannah, GA, USA,
Jan. 2009, pages 13–24 (cited on pages 15, 36, 43).

[6] JadeAlglave andLucMaranget.The Phat Experiment. http://diy.inria.
fr/phat/. 2010 (cited on pages 36, 38).

[7] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Fences in
weak memory models. In: Proceedings of the 22nd International Conference
on Computer Aided Verification (CAV). Edinburgh, United Kingdom, July
2010, pages 258–272 (cited on pages 15–18, 21, 22, 25–27, 36–38, 40, 43,
44).

[8] JadeAlglave, LucMaranget, Susmit Sarkar, and Peter Sewell. Litmus: run-
ning tests against hardware. In: Proceedings of the 17th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS). Saarbrücken, Germany, Mar. 2011, pages 41–44 (cited on
page 36).

[9] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: mod-
elling, simulation, testing, and data mining for weak memory. In: ACM
Trans. Program. Lang. Syst. 36.2 (2014) (cited on pages 16, 21, 25, 35, 42–
44).

[10] RajeevAlur, RastislavBodik, EricDallal,DanaFisman, PranavGarg,Garvit
Juniwal, Hadas Kress-Gazit, P.Madhusudan,MiloM. K.Martin,Mukund
Raghothaman, Shamwaditya Saha, Sanjit A. Seshia, Rishabh Singh, Ar-
mandoSolar-Lezama, EminaTorlak, andAbhishekUdupa. Syntax-guided

111

112 bibliography

synthesis. In: Dependable Software Systems Engineering. Volume 40. 2015
(cited on pages 49, 54, 56, 66–68).

[11] Rajeev Alur, Rastislav Bodik, Garvit Juniwal,MiloM. K.Martin,Mukund
Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama,
Emina Torlak, and AbhishekUdupa. Syntax-guided synthesis. In: Proceed-
ings of the 13th International Conference on Formal Methods in Computer-
Aided Design (FMCAD). Portland, OR, USA, Oct. 2013, pages 1–8 (cited
on pages 7, 49, 50, 68, 74).

[12] Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama.
The second competition on syntax-guided synthesis. In: Proceedings of the
4thWorkshop on Synthesis (SYNT). SanFrancisco,CA,USA, July 2015, pages 3–
26 (cited on page 67).

[13] Rajeev Alur and Milo M. K. Martin. Personal communication. July 2016
(cited on page 41).

[14] AmazonWebServices.Quivela. 2018. url: https://github.com/awslabs/
quivela (cited on pages 97, 101).

[15] GlennAmmons, Jong-DeokChoi,ManishGupta, andNikhil Swamy. Find-
ing and removing performance bottlenecks in large systems. In: Proceed-
ings of the 18th EuropeanConference onObject-Oriented Programming (ECOOP).
Oslo, Norway, June 2004, pages 170–194 (cited on page 107).

[16] Vincent St-Amour, Sam Tobin-Hochstadt, and Matthias Felleisen. Opti-
mization coaching: optimizers learn to communicate with programmers.
In:Proceedings of the 27th ACMSIGPLAN International Conference onObject-
Oriented Programming, Systems, Languages, andApplications (OOPSLA). Tus-
con, AZ, USA, Oct. 2012, pages 163–178 (cited on page 107).

[17] Domagoj Babić and Alan J. Hu. Calysto: scalable and precise extended
static checking. In: Proceedings of the 30th International Conference on Soft-
ware Engineering (ICSE). Leipzig,Germany,May2008, pages 211–220 (cited
on pages 3, 85).

[18] Eli Barzilay.Profile: Statistical Profiler. http://docs.racket-lang.org/profile/.
2017 (cited on pages 82, 104).

[19] Mark Batty, Alastair F. Donaldson, and John Wickerson. Overhauling SC
atomics in C11 and OpenCL. In: Proceedings of the 43rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL). St. Pe-
tersburg, FL, USA, Jan. 2016, pages 634–648 (cited on page 43).

[20] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Wjark We-
ber. Mathematizing C++ concurrency. In: Proceedings of the 38th ACM
SIGPLAN-SIGACTSymposium onPrinciples of Programming Languages (POPL).
Austin, TX, USA, Jan. 2011, pages 55–66 (cited on pages 22, 43).

bibliography 113

[21] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic model checking without bdds. In: Proceedings of the 5th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS). Amsterdam, The Netherlands, Mar. 1999, pages 193–
207 (cited on pages 78, 85).

[22] Nicolas Boichat. Issue 502898: ext4: Filesystem corruption on panic. https:
//code.google.com/p/chromium/issues/detail?id=502898. June
2015 (cited on page 98).

[23] JamesBornholt, AntoineKaufmann, JialinLi, ArvindKrishnamurthy, Em-
inaTorlak, andXiWang. Specifying and checkingfile systemcrash-consistency
models. In: Proceedings of the 21st International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). At-
lanta, GA, USA, Apr. 2016, pages 83–98 (cited on pages 8, 96, 97).

[24] JamesBornholt andEminaTorlak. Finding code that explodes under sym-
bolic evaluation. In: Proceedings of the ACM on Programming Languages
2.OOPSLA (2018), 149:1–149:26 (cited on pages 3, 77).

[25] JamesBornholt andEminaTorlak.Ocelot. 2017. url: https://jamesbornholt.
github.io/ocelot (cited on pages 2, 17).

[26] James Bornholt and Emina Torlak. Synthesizing memory models from
framework sketches and litmus tests. In: Proceedings of the 38th ACM SIG-
PLANConference on Programming LanguageDesign and Implementation (PLDI).
Barcelona, Spain, June 2017, pages 467–481 (cited on pages 2, 15, 97).

[27] James Bornholt, Emina Torlak, Dan Grossman, and Luis Ceze. Optimiz-
ing synthesiswithmetasketches. In:Proceedings of the 43rdACMSIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL). St. Pe-
tersburg, FL, USA, Jan. 2016, pages 775–788 (cited on pages 3, 35, 47).

[28] Alan Borning. Wallingford: toward a constraint reactive programming
language. In: Proceedings of the Constrained and Reactive Objects Workshop
(CROW). Málaga, Spain, Mar. 2016 (cited on page 97).

[29] William J. Bowman, Swaha Miller, Vincent St-Amour, and R. Kent Dyb-
vig. Profile-guided meta-programming. In: Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI). Portland,OR,USA, June 2015, pages 229–239 (cited onpages 103,
107).

[30] Stefan Bucur, Johannes Kinder, and George Candea. Prototyping sym-
bolic execution engines for interpreted languages. In: Proceedings of the
19th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS). Salt Lake City, UT, USA, Mar.
2014, pages 239–254 (cited on page 78).

[31] Sebastian Burckhardt and Madanlal Musuvathi. Effective program verifi-
cation for relaxed memory models. In: Proceedings of the 20th International
Conference on Computer Aided Verification (CAV). Princeton, NJ, USA, July
2008, pages 107–120 (cited on page 38).

114 bibliography

[32] Jabob Burnim, Koushik Sen, and Christos Stergiou. Sound and complete
monitoring of sequential consistency for relaxedmemorymodels. In: Pro-
ceedings of the 17th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). Saarbrücken,Germany,Mar.
2011, pages 11–25 (cited on page 38).

[33] EricDavidButler. AutomaticGeneration of Procedural KnowledgeUsing
Program Synthesis. PhD thesis. University of Washington, 2018 (cited on
pages 47, 109).

[34] Eric Butler, Emina Torlak, andZoran Popović. Synthesizing interpretable
strategies for solving puzzle games. In: Proceedings of the 12th International
Conference on the Foundations of Digital Games (FDG). 10. Hyannis, MA,
USA, Aug. 2017 (cited on pages 8, 97).

[35] Cristian Cadar. Targeted program transformations for symbolic execu-
tion. In: Proceedings of the 10th Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE). Bergamo, Italy, Aug. 2015, pages 906–
909 (cited on page 107).

[36] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: unassisted and
automatic generation of high-coverage tests for complex systems pro-
grams. In: Proceedings of the 8th Symposium on Operating Systems Design and
Implementation (OSDI). SanDiego, CA,Dec. 2008, pages 209–224 (cited on
pages 85, 106).

[37] CristianCadar andKoushik Sen. Symbolic execution for software testing:
three decades later. In: Communications of the ACM 56.2 (2013), pages 82–
90 (cited on page 86).

[38] Michael Carbin, Sasa Misailovic, and Martin C. Rinard. Verifying quan-
titative reliability for programs that execute on unreliable hardware. In:
Proceedings of the 28th ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA). In-
dianapolis, IN, USA, Oct. 2013, pages 33–52 (cited on page 54).

[39] Luca Cardelli, Milan Češka, Martin Fränzle, Marta Kwiatkowska, Luca
Laurenti, Nicola Paoletti, and Max Whitby. Syntax-guided optimal syn-
thesis for chemical reaction networks. In: Proceedings of the 29th Interna-
tional Conference on Computer Aided Verification (CAV). Heidelberg, Ger-
many, July 2017, pages 375–395 (cited on page 47).

[40] Kartik Chandra and Rastislav Bodik. Bonsai: synthesis-based reasoning
for type systems. In: Proc. ACM Program. Lang. 2.POPL (Jan. 2018), 62:1–
62:34 (cited on pages 88, 97, 101).

[41] Satish Chandra, Emina Torlak, Shaon Barman, and Rastislav Bodı́k. An-
gelic debugging. In: Proceedings of the 33rd International Conference on Soft-
ware Engineering (ICSE). Honolulu, HI, USA, May 2011, pages 121–130
(cited on page 10).

bibliography 115

[42] Swarat Chaudhuri,MartinClochard, andArmando Solar-Lezama. Bridg-
ing boolean and quantitative synthesis using smoothed proof search. In:
Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL). SanDiego,CA,USA, Jan. 2014, pages 207–
220 (cited on pages 3, 75).

[43] ShumoChu,ChenglongWang,KonstantinWeitz, andAlvinCheung.Cosette.
2017. url: http://github.com/uwdb/Cosette (cited on page 99).

[44] ShumoChu,ChenglongWang,KonstantinWeitz, andAlvinCheung.Cosette:
an automated prover for SQL. In: Proceedings of the 8th Biennial Conference
on Innovative Data Systems (CIDR). Chaminade, CA, USA, Jan. 2017 (cited
on pages 97, 99).

[45] AlessandroCimatti, Anders Franzén,AlbertoGriggio, Roberto Sebastiani,
and Cristian Stenico. Satisfiability modulo the theory of costs: founda-
tions and applications. In: Proceedings of the 16th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Paphos, Cyprus, Mar. 2010, pages 99–113 (cited on page 76).

[46] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking
ANSI-C programs. In: Proceedings of the 10th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Barcelona, Spain, Mar. 2004, pages 168–176 (cited on pages 3, 85).

[47] Lori A. Clarke. A system to generate test data and symbolically execute
programs. In: IEEETransactions on Software Engineering 2.3 (1976), pages 215–
222 (cited on pages 3, 78, 85).

[48] Compaq.Alpha Architecture Reference Manual. 4th. 2002 (cited on page 43).
[49] EmilioCoppa,CamilDemetrescu, and IreneFinocchi. Input-sensitive pro-

filing. In:Proceedings of the 33rd ACMSIGPLANConference on Programming
LanguageDesign and Implementation (PLDI). Beijing,China, June 2012, pages 89–
98 (cited on pages 89, 90, 103).

[50] James Crawford, Matthew L. Ginsberg, Eugene Luks, and Amitabha Roy.
Symmetry-breaking predicates for search problems. In: Proceedings of the
5th International Conference on Principles of Knowledge Representation and
Reasoning (KR). Cambridge, MA, USA, Nov. 1996, pages 148–159 (cited
on page 34).

[51] Charlie Curtsinger and Emery D. Berger. Coz: finding code that counts
with causal profiling. In: Proceedings of the 25th ACM Symposium on Operat-
ing Systems Principles (SOSP). Monterey, CA, USA, Oct. 2015, pages 184–
197 (cited on pages 3, 107).

[52] Andrei Dan, Yuri Meshman, Martin Vechev, and Eran Yahav. Effective
abstractions for verification under relaxed memory models. In: Proceed-
ings of the 16th International Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI). Mumbai, India, Jan. 2015, pages 449–466
(cited on page 44).

116 bibliography

[53] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In:
Proceedings of the 14th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS). Budapest, Hungary, Mar.
2008, pages 337–340 (cited on pages 8, 21, 31, 36).

[54] BrianDemsky and Patrick Lam. SATCheck: SAT-directed statelessmodel
checking for SC and TSO. In: Proceedings of the 30th ACM SIGPLAN In-
ternational Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA). Pittsburgh, PA, USA, Oct. 2015, pages 20–36
(cited on page 44).

[55] EPICS.Experimental Physics and Industrial Control System. 2017. url: http:
//www.aps.anl.gov/epics/ (cited on page 100).

[56] A. P. Ershov. On programming of arithmetic operations. In: Communica-
tions of the ACM 1.8 (1958), pages 3–6 (cited on page 91).

[57] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Neu-
ral acceleration for general-purpose approximate programs. In: Proceed-
ings of the 45th IEEE/ACMInternational Symposium onMicroarchitecture (MI-
CRO). Vancouver, BC,Canada,Dec. 2012, pages 449–460 (cited onpages 54,
56, 66–68).

[58] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. Program synthe-
sis using conflict-driven learning. In: Proceedings of the 39th ACM SIG-
PLANConference on Programming LanguageDesign and Implementation (PLDI).
Philadelphia, PA, USA, June 2018, pages 420–435 (cited on page 2).

[59] John K. Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data struc-
ture transformations from input-output examples. In: Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI). Portland, OR, USA, June 2015, pages 229–239 (cited
on pages 47, 75).

[60] MatthewFlatt and PLT.Reference: Racket. Technical report PLT-TR-2010-
1. PLT Design Inc., 2010 (cited on page 7).

[61] Galois, Inc. Crucible. 2018. url: https : / / github . com / GaloisInc /
crucible (cited on pages 4, 77, 81).

[62] Malay Ganai and Aarti Gupta. Tunneling and slicing: towards scalable
BMC. In: Proceedings of the 45th Design Automation Conference (DAC). Ana-
heim, CA, USA, June 2008, pages 137–142 (cited on page 86).

[63] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed auto-
mated random testing. In: Proceedings of the 26th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI). Chicago,
IL, USA, June 2005, pages 213–223 (cited on page 85).

[64] PatriceGodefroid,Michael Y. Levin, andDavidMolnar. Automatedwhite-
box fuzz testing. In: Proceedings of the 15th Network and Distributed Sys-
tem Security Symposium (NDSS). San Diego, CA, USA, Feb. 2008 (cited on
page 85).

bibliography 117

[65] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. Gprof: a
call graph execution profiler. In: Proceedings of the 1982 SIGPLAN Sympo-
sium onCompiler Construction (CC). Boston,MA,USA, June 1982, pages 120–
126 (cited on page 3).

[66] SumitGulwani. Automating string processing in spreadsheets using input-
output examples. In: Proceedings of the 38th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL). Austin, TX, USA,
Jan. 2011, pages 217–330 (cited on page 47).

[67] Sumit Gulwani, William R. Harris, and Rishabh Singh. Spreadsheet data
manipulation using examples. In: Commun. ACM 55.8 (Aug. 2012) (cited
on page 75).

[68] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkate-
san. Synthesis of loop-free programs. In: Proceedings of the 32nd ACM SIG-
PLANConference on Programming LanguageDesign and Implementation (PLDI).
San Jose, CA, USA, June 2011, pages 62–73 (cited on pages 54, 67, 68, 74,
75).

[69] Power ISA Version 2.06 Revision B. IBM, 2010 (cited on pages 25, 36, 43).
[70] Jeevana Priya Inala, Rohit Singh, and Armando Solar-Lezama. Synthesis

of domain specific CNF encoders for bit-vector solvers. In: Proceedings of
the 19th International Conference on Theory and Applications of Satisfiabil-
ity Testing (SAT). Bordeaux, France, July 2016, pages 302–320 (cited on
page 11).

[71] Intel 64 and IA-32 Architectures Software Developer’s Manual. Revision 53.
Intel Corporation, 2015 (cited on pages 17, 22, 36, 38, 40).

[72] Daniel Jackson. Software Abstractions: logic, language, and analysis. 2nd.MIT
Press, 2009 (cited on pages 16–18, 20, 42, 44).

[73] Jinseong Jeon, Xiaokang Qiu, Armando Solar-Lezama, and Jeffery S. Fos-
ter. Adaptive concretization for parallel program synthesis. In: Proceedings
of the 27th International Conference on Computer Aided Verification (CAV).
San Francisco, CA, USA, June 2015, pages 377–394 (cited on pages 54,
70, 109).

[74] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-
guided component-basedprogramsynthesis. In: ICSE. 2010 (cited onpage 74).

[75] Rajeev Joshi, Greg Nelson, and Keith Randall. Denali: a goal-directed su-
peroptimizer. In: Proceedings of the 2002 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI). Berlin, Germany,
June 2002, pages 304–314 (cited on pages 47, 54, 56).

[76] Milod Kazerounian, Niki Vazou, Austin Bourgerie, Jeffrey S. Foster, and
Emina Torlak. Refinement types for ruby. In: Proceedings of the 19th Inter-
national Conference on Verification, Model Checking, and Abstract Interpreta-
tion (VMCAI). Los Angeles, CA, USA, Jan. 2018, pages 269–290 (cited on
pages 97, 102).

118 bibliography

[77] James C. King. Symbolic execution and program testing. In: Communica-
tions of the ACM 19.7 (1976), pages 385–394 (cited on pages 3, 78, 85).

[78] Ali Sinan Köksal, Viktor Kuncak, and Philippe Suter. Constraints as con-
trol. In:Proceedings of the 39th ACMSIGPLAN-SIGACTSymposium on Prin-
ciples of Programming Languages (POPL). Philadelphia, PA, USA, Jan. 2012,
pages 151–164 (cited on page 10).

[79] Ali Sinan Köksal, Yewen Pu, Saurabh Srivastava, Rastislav Bodik, Jasmin
Fisher, and Nir Piterman. Synthesis of biological models from mutation
experiments. In: Proceedings of the 40th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL). Rome, Italy, Jan. 2013,
pages 469–482 (cited on page 47).

[80] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images.
Technical report. University of Toronto, 2009 (cited on page 74).

[81] Ivan Kuraj, Viktor Kuncak, and Daniel Jackson. Programming with enu-
merable sets of structures. In: Proceedings of the 30th ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA). Pittsburgh, PA, USA, Oct. 2015, pages 37–56
(cited on page 66).

[82] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Can-
dea. Efficient state merging in symbolic execution. In: Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI). Beijing,China, June 2012, pages 89–98 (cited onpages 86,
90, 106).

[83] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. In: Commun. ACM 21.7 (1978) (cited on pages 16, 21).

[84] K. Rustan M. Leino. Dafny: an automatic program verifier for functional
correctness. In: Proceedings of the 16th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning (LPAR). Dakar, Senegal,
Apr. 2010, pages 348–370 (cited on page 2).

[85] Yi Li, Aws Albarghouthi, Zachary Kincaid, Arie Gurfinkel, and Marsha
Chechik. Symbolic optimization with SMT solvers. In: Proceedings of the
41st ACMSIGPLAN-SIGACTSymposium on Principles of Programming Lan-
guages (POPL). San Diego, CA, USA, Jan. 2014, pages 607–618 (cited on
pages 3, 76).

[86] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John Regehr.
Provably correct peephole optimizations with Alive. In: Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI). Portland, OR, USA, June 2015, pages 22–32 (cited on
page 11).

[87] Daniel Lustig,Michael Pellauer, andMargaretMartonosi. PipeCheck: spec-
ifying and verifying microarchitectural enforcement of memory consis-
tency models. In: Proceedings of the 47th IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO). Cambridge, United Kingdom, Dec.
2014, pages 635–646 (cited on page 27).

bibliography 119

[88] Daniel Lustig, AndrewWright, AlexandrosPapakonstantinou, andOlivier
Giroux. Automated synthesis of comprehensive memory model litmus
test suites. In: Proceedings of the 22nd International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS).
Xi’an, China, Apr. 2017, pages 119–133 (cited on page 44).

[89] Sela Mador-Haim, Rajeev Alur, and Milo M. K. Martin. Generating lit-
mus tests for contrasting memory consistency models. In: Proceedings of
the 22nd International Conference on Computer Aided Verification (CAV). Ed-
inburgh, United Kingdom, July 2010, pages 273–287 (cited on pages 16,
21, 28, 34, 41).

[90] Sela Mador-Haim, Rajeev Alur, and Milo M. K. Martin. Litmus tests for
comparing memory consistency models: how long do they need to be? In:
Proceedings of the 48th Design Automation Conference (DAC). SanDiego, CA,
USA, June 2011, pages 504–509 (cited on pages 16–18, 27, 41, 44).

[91] Sela Mador-Haim, Luc Maranget, Susmit Sarkar, Kayvan Memarian, Jade
Alglave, Scott Owens, Rajeev Alur, Milo M. K. Martin, Peter Sewell, and
Derek Williams. An axiomatic memory model for POWER multiproces-
sors. In: Proceedings of the 24th International Conference on Computer Aided
Verification (CAV). Berkeley, CA, USA, July 2012, pages 495–512 (cited on
pages 15, 36, 43).

[92] JeremyManson,WilliamPugh, andSaritaV.Adve.The Javamemorymodel.
In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL). Long Beach, CA, USA, Jan. 2005,
pages 378–391 (cited on pages 43, 44).

[93] João P.Marques Silva andKaremA. Sakallah. GRASP—anew search algo-
rithm for satisfiability. In: Proceedings of the 1996 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). San Jose, CA, USA, Nov.
1996, pages 220–227 (cited on page 2).

[94] Alexia Massalin. Superoptimizer: a look at the smallest program. In: Pro-
ceedings of the 2nd International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS). Palo Alto, CA, USA,
Oct. 1987, pages 122–126 (cited on page 54).

[95] Paul E.McKenney.AFormalModel of Linux-KernelMemoryOrdering. Linux
Plumbers Conference. 2016 (cited on page 16).

[96] Aditya Krishna Menon, Omer Tamuz, Sumit Gulwani, Butler Lampson,
and Adam Tauman Kalai. A machine learning framework for program-
ming by example. In: Proceedings of the 30th International Conference on
Machine Learning (ICML). Atlanta, GA, USA, June 2013, pages 187–195
(cited on page 75).

[97] Leo A. Meyerovich. Parallel Layout Engines: Synthesis and Optimization
of Tree Traversals. PhD thesis. University of California, Berkeley, 2013
(cited on page 47).

120 bibliography

[98] Aleksandar Milicevic, Derek Rayside, Kuat Yessenov, and Daniel Jackson.
Unifying execution of imperative and declarative code. In: Proceedings of
the 33rd International Conference on Software Engineering (ICSE). Honolulu,
HI, USA, May 2011, pages 511–520 (cited on page 10).

[99] Aleksander Milicevic, Joseph P. Near, Eunsuk Kang, and Daniel Jackson.
Alloy∗: a general-purpose higher-order relational constraint solver. In:
Proceedings of the 37th International Conference on Software Engineering (ICSE).
Florence, Italy, May 2015, pages 609–619 (cited on pages 16–18, 20, 21,
28, 43, 44).

[100] Thierry Moreau, Mark Wyse, Jacob Nelson, Adrian Sampson, Hadi Es-
maeilzadeh, Luis Ceze, and Mark Oskin. SNNAP: approximate comput-
ing on programmable SoCs via neural acceleration. In: Proceedings of the
21st IEEE International Symposium on High Performance Computer Architec-
ture (HPCA). Burlingame, CA, USA, Feb. 2015, pages 603–614 (cited on
page 54).

[101] Vijayaraghavan Murali, Letao Qi, Swarat Chaudhuri, and Chris Jermaine.
Neural sketch learning for conditional program generation. In: Proceed-
ings of the 6th International Conference on Learning Representations (ICLR).
Vancouver, BC, Canada, Apr. 2018 (cited on page 109).

[102] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve re-
stricted Boltzmann machines. In: Proceedings of the 27th International Con-
ference on Machine Learning (ICML). Haifa, Israel, June 2010, pages 807–
814 (cited on page 74).

[103] ScottOwens, Susmit Sarkar, andPeter Sewell. A better x86memorymodel:
x86-TSO. In: Proceedings of the 22nd International Conference on Theorem
Proving in Higher Order Logics (TPHOLs). Munich, Germany, Aug. 2009,
pages 391–407 (cited on pages 15, 43).

[104] Scott Owens, Susmit Sarkar, and Peter Sewell. A Better x86 Memory Model:
x86-TSO (extended version). Technical report UCAM-CL-TR-745. Uni-
versity of Cambridge, 2009 (cited on page 40).

[105] Seungjoon Park and David L. Dill. An executable specification, analyzer
and verifier for RMO (Relaxed Memory Order). In: Proceedings of the 7th
ACM Symposium on Parallel Algorithms and Architectures (SPAA). Santa Bar-
bara, CA, USA, July 1995, pages 34–41 (cited on page 16).

[106] Stuart Pernsteiner, Calvin Loncaric, Emina Torlak, Zachary Tatlock, Xi
Wang, Michael D. Ernst, and Jonathan Jacky. Investigating safety of a ra-
diotherapy machine using system models with pluggable checkers. In:
Proceedings of the 28th International Conference on Computer Aided Verifica-
tion (CAV). Volume 2. Toronto, ON, Canada, July 2016, pages 23–41 (cited
on pages 97, 100).

bibliography 121

[107] Phitchaya Mangpo Phothilimthana, Tikhon Jelvis, Rohin Shah, Nishant
Totla, Sarah Chasins, and Rastislav Bodik. Chlorophyll: synthesis-aided
compiler for low-power spatial architectures. In: Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI). Edinburgh, UnitedKingdom, June 2014, pages 396–407
(cited on pages 47, 75).

[108] Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodik, and
Dinakar Dhurjati. Scaling up superoptimization. In: Proceedings of the 21st
International Conference onArchitectural Support for Programming Languages
and Operating Systems (ASPLOS). Atlanta, GA, USA, Apr. 2016, pages 297–
310 (cited on page 97).

[109] Oleksandr Polozov and Sumit Gulwani. FlashMeta: a framework for in-
ductive program synthesis. In: Proceedings of the 30th ACM SIGPLAN In-
ternational Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA). Pittsburgh, PA, USA, Oct. 2015, pages 107–
126 (cited on page 75).

[110] TheRacket Programming Language. 2017. url: https://racket-lang.org
(cited on page 7).

[111] JohnD.Ramsdell. An operational semantics for Scheme. In: SIGPLANLisp
Pointers V.2 (1992), pages 6–10 (cited on pages 49, 50).

[112] Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and
Clark Barrett. Counterexample-guided quantifier instantiation for syn-
thesis in SMT. In: Proceedings of the 27th International Conference on Com-
puter AidedVerification (CAV). SanFrancisco,CA,USA, July 2015, pages 198–
216 (cited on pages 68, 69, 75).

[113] Susmit Sarkar, Peter Sewell, JadeAlglave, LucMaranget, andDerekWilliams.
Understanding POWER multiprocessors. In: Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI). San Jose,CA,USA, June 2011, pages 175–186 (cited onpages 15,
43).

[114] Susmit Sarkar, Peter Sewell, FrancescoZappaNardelli, ScottOwens, Tom
Ridge, Thomas Braibant, Magnus O. Myreen, and Jade Alglave. The se-
mantics of x86-CC multiprocessor machine code. In: Proceedings of the
36th ACMSIGPLAN-SIGACTSymposium on Principles of Programming Lan-
guages (POPL). Savannah, GA, USA, Jan. 2009, pages 379–391 (cited on
pages 2, 15, 38, 40, 43).

[115] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimiza-
tion. In: Proceedings of the 18th International Conference on Architectural
Support for Programming Languages andOperating Systems (ASPLOS). Hous-
ton, TX, USA, Mar. 2013, pages 305–316 (cited on pages 47, 54, 56, 67,
69, 74).

122 bibliography

[116] Roberto Sebastiani and Silvia Tomasi. Optimization in SMTwithLA(Q)
cost functions. In: Proceedings of the 6th International Joint Conference on
Automated Reasoning (IJCAR). Manchester, United Kingdom, June 2012,
pages 484–498 (cited on page 76).

[117] Koushik Sen, SwaroopKalasapur, TasneemBrutch, andSimonGibbs. Jalangi:
a selective record-replay and dynamic analysis framework for JavaScript.
In: Proceedings of the 9th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE). Saint Petersburg, Russian Federation, Aug.
2013, pages 488–498 (cited on pages 4, 78, 81, 95, 105).

[118] Koushik Sen, George Necula, Liang Gong, and Wontae Choi. Multise:
multi-path symbolic execution using value summaries. In: Proceedings of
the 10th Joint Meeting of the European Software Engineering Conference and
the ACMSIGSOFTSymposium on the Foundations of Software Engineering (ES-
EC/FSE). Bergamo, Italy, Aug. 2015, pages 842–853 (cited on pages 3, 81,
86, 87, 95, 105).

[119] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and
MagnusO.Myreen. x86-TSO: a rigorous and usable programmer’smodel
for x86 multiprocessors. In: Commun. ACM 53.7 (July 2010), pages 89–97
(cited on pages 2, 15, 38, 40, 43).

[120] JamesE. Smith.Characterizing computer performancewith a single num-
ber. In: Communications of the ACM 31.10 (Oct. 1988), pages 1202–1206
(cited on page 68).

[121] ArmandoSolar-Lezama. Programsynthesis by sketching. PhD thesis.Uni-
versity of California, Berkeley, 2008 (cited on pages 7, 58).

[122] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Vijay Saraswat,
and Sanjit Seshia. Combinatorial sketching for finite programs. In: Pro-
ceedings of the 12th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS). San Jose, CA, USA,
Oct. 2006, pages 404–415 (cited on pages 2, 7, 16, 20, 31, 35, 48–50, 54,
58, 60, 68, 69, 74, 78, 90).

[123] Venkatesh Srinivasan and Thomas Reps. Synthesis of machine code from
semantics. In: Proceedings of the 36th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI). Portland, OR, USA,
June 2015, pages 596–607 (cited on page 75).

[124] Matthew Szudzik. An elegant pairing function. In:NKS 2006 Wolfram Sci-
ence Conference. Washington, DC, USA, June 2006 (cited on page 66).

[125] Emina Torlak. Rosette. 2018. url: http://github.com/emina/rosette
(cited on pages 7, 81, 95).

[126] Emina Torlak and Rastislav Bodik. A lightweight symbolic virtual ma-
chine for solver-aided host languages. In: Proceedings of the 35th ACM SIG-
PLANConference on Programming LanguageDesign and Implementation (PLDI).
Edinburgh,UnitedKingdom, June 2014, pages 530–541 (cited onpages 2–
4, 7, 16, 18, 20, 36, 49, 50, 58, 78, 86, 87, 94, 96–98).

bibliography 123

[127] Emina Torlak and Rastislav Bodik. Growing solver-aided languages with
Rosette. In: Proceedings of the 2013 ACM Symposium on New Ideas in Pro-
gramming and Reflections on Software (Onward!) Indianapolis, IN,USA,Oct.
2013, pages 135–152 (cited on pages 2, 4, 7, 16, 18, 20, 36, 49, 54, 74, 94).

[128] Emina Torlak and Daniel Jackson. Kodkod: a relational model finder. In:
Proceedings of the 14th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS). Braga, Portugal, Mar.
2007, pages 632–647 (cited on pages 16–20, 42).

[129] Emina Torlak, Mandana Vaziri, and Julian Dolby. MemSAT: checking ax-
iomatic specifications of memory models. In: Proceedings of the 31st ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI). Toronto, ON, Canada, June 2010, pages 341–350 (cited on
pages 16, 18, 21, 27, 35, 43, 44).

[130] Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-
Haim, Milo M. K. Martin, and Rajeev Alur. Transit: specifying protocols
with concolic snippets. In: Proceedings of the 34th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI). Seattle,
WA, USA, June 2013, pages 287–296 (cited on pages 54, 74, 75).

[131] Richard Uhler and Nirav Dave. Smten with satisfiability-based search. In:
Proceedings of the 29th ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, andApplications (OOPSLA). Port-
land, OR, USA, Oct. 2014, pages 157–176 (cited on pages 78, 82, 83, 85,
87).

[132] Jonas Wagner, Volodymyr Kuznetsov, and George Candea. -Overify: Op-
timizing Programs for Fast Verification. In: Proceedings of the 14th Work-
shop on Hot Topics in Operating Systems (HotOS). Santa Ana Pueblo, NM,
USA, May 2013 (cited on page 107).

[133] HenryS.Warren Jr.Hacker’s Delight. Addison-Wesley, 2007 (cited onpage 54).
[134] David L. Weaver and Tom Germond. The SPARC architecture manual (ver-

sion 9). SPARC International, 1994 (cited on page 43).
[135] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D. Ernst, Arvind

Krishnamurthy, andZacharyTatlock. Scalable verificationof border gate-
way protocol configurations with an smt solver. In: Proceedings of the 31st
ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA). Amsterdam, The Nether-
lands, Oct. 2016, pages 765–780 (cited on pages 8, 97).

[136] John Wickerson, Mark Batty, Tyler Sorensen, and George A. Constan-
tinides. Automatically comparing memory consistency models. In: Pro-
ceedings of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL). Paris, France, Jan. 2017, pages 190–204
(cited on pages 16, 21, 28, 35, 36, 44).

124 bibliography

[137] Max Willsey, Luis Ceze, and Karin Strauss. Puddle: An Operating System
for Reliable, High-Level Programming of Digital Microfluidic Devices.
In: Proceedings of the 23rd International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), Wild and
Crazy Ideas Session. Williamsburg, VA, USA, Mar. 2018 (cited on pages 97,
102).

[138] Yichen Xie and Alex Aiken. Scalable error detection using boolean satis-
fiability. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL). Long Beach, CA, USA, Jan.
2005, pages 351–363 (cited on page 85).

[139] Yue Yang, Ganesh Gopalakrishnan, Gary Lindstrom, and Konrad Slind.
Nemos: a framework for axiomatic and executable specifications ofmem-
ory consistencymodels. In: Proceedings of the 18th International Parallel and
Distributed Processing Symposium (IPDPS). Santa Fe, NM, USA, Apr. 2004
(cited on pages 18, 27, 44).

[140] Francesco Zappa Nardelli, Peter Sewell, Jaroslav S̆evc̆ík, Susmit Sarkar,
Scott Owens, Luc Maranget, Mark Batty, and Jade Alglave. Relaxed mem-
ory models must be rigorous. In: Proceedings of the Workshop on Exploiting
Concurrency Efficiently and Correctly (EC2). Grenoble, France, June 2009
(cited on page 15).

	Abstract
	Dedication
	Acknowledgments
	Contents
	Introduction
	Applying Automated Programming to Memory Consistency
	Scaling Program Synthesis with Metasketches
	Targeting Scalability Issues with Symbolic Profiling
	Contributions and Outline

	Prelude: Building a Synthesis Tool
	Getting Started with Rosette
	Domain-Specific Languages
	Synthesis with DSLs
	Building Sketches
	Benefits and Pitfalls

	Synthesis of Memory Consistency Model Specifications
	Overview
	Ocelot: A Solver-Aided Relational Logic Language
	Framework Sketches
	Memory Model Queries
	Reasoning Engine
	Case Studies
	Related Work
	Conclusion

	Metasketches
	Overview
	Optimal Syntax-Guided Synthesis
	Metasketches
	Optimal Synthesis Algorithm
	Evaluation
	Related Work
	Conclusion

	Symbolic Profiling
	Overview
	Example Workflow
	Symbolic Evaluation Anti-Patterns
	Symbolic Profiling
	Actionability Case Studies
	Explainability, Generality, and Performance
	Related Work
	Conclusion

	Conclusion
	Bibliography

