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Approximate computing is the idea that we are hindering computer systems’ ef-
ficiency by demanding too much accuracy from them. While precision is crucial
for some tasks, many modern applications are fundamentally approximate. Per-
fect answers are unnecessary or even impossible in domains such as computer vi-
sion, machine learning, speech recognition, search, graphics, and physical simu-
lation. Today’s systemswaste time, energy, and complexity to provide uniformly
pristine operation for applications that do not require it.

Resilient applications are not, however, a license for computers to abandon
predictability in favor of arbitrary errors. We need abstractions that incorporate
approximate operation in a disciplined way. Application programmers should be
able to exploit these richer abstractions to treat accuracy as a resource and trade
it off for more traditional resources such as time, space, or energy.

This dissertation explores new abstractions for approximate computing across
hardware and software. It develops these abstractions from two perspectives:
from the point of view of programmers, where the challenge is constraining im-
precision to make it acceptable, and from a system perspective, where the goal
is to exploit programs’ constraints to improve efficiency. For approximate pro-
gramming, this dissertation proposes:

• a type system that uses information flow to separate an application’s error-
resilient components from its critical control structures;

• an extended type system that restricts the probability that a value is incor-
rect, along with type inference and optional dynamic tracking for these
probabilities; and

• a construct for expressing probabilistic constraints on programs along
with a technique for verifying them efficiently using symbolic execution
and statistical properties.

For approximate execution, it describes:

• twomechanisms for trading off accuracy for density, performance, energy,
and lifetime in solid-state memory technologies; and

• an end-to-end compiler framework for exploiting approximation on com-
modity hardware, which also serves as research infrastructure for experi-
menting with new approximation ideas.





The ordered swirl of houses and streets, from this high angle, sprang at her now
with the same unexpected, astonishing clarity as the circuit card had… There’d
seemed no limit to what the printed circuit could have told her (if she had tried
to find out); so in her first minute of San Narciso, a revelation also trembled just

past the threshold of her understanding.

— Thomas Pynchon, The Crying of Lot 49
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APPROX IMATE COMPUT ING





1
OVERV IEW

1.1 introduction

Accuracy and reliability are fundamental tenets in computer system design. Pro-
grammers can expect that the processor never exposes timing errors, and net-
working stacks typically aim to provide reliable transports even on unreliable
physical media. When errors do occasionally happen, we treat them as excep-
tional outliers, not as part of the system abstraction. Cosmic rays can silently flip
bits in DRAM, for example, but the machine will typically use error-correcting
codes to maintain the illusion for programmers that the memory is infinitely re-
liable.

But abstractions with perfect accuracy come at a cost. Chips need to choose
conservative clock rates to banish timing errors, storage and communication
channels incur error-correction overhead, and parallelism requires expensive
synchronization.

Meanwhile, many applications have intrinsic tolerance to inaccuracy. Applica-
tions in domains like computer vision, media processing, machine learning, and
sensor data analysis already incorporate imprecision into their design. Large-
scale data analytics focus on aggregate trends rather than the integrity of indi-
vidual data elements. In domains such as computer vision and robotics, there
are no perfect answers: results can vary in their usefulness, and the output qual-
ity is always in tension with the resources that the software needs to produce
them. All these applications are approximate programs: a range of possible values
can be considered “correct” outputs for a given input.

From the perspective of an approximate program, today’s systems are over-
provisioned with accuracy. Since the program is resilient, it does not need every
arithmetic operation to be precisely correct and every bit of memory to be pre-
served at the same level of reliability. Approximate computing is a research agenda
that seeks to better match the accuracy in system abstractions with the needs of
approximate programs.

disciplined approximation The central challenge in approximate com-
puting is forging abstractions that make imprecision controlled and predictable
without sacrificing its efficiency benefits. This goal of this dissertation is to de-
sign hardware and software around approximation-aware abstractions that, to-
gether, make accuracy–efficiency trade-offs attainable for programmers. My
work examines approximate abstractions in the contexts of programming lan-
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6 overview

guages, computer architecture, memory technologies, compilers, and software
development tools.

1.2 research principles

The work in this dissertation is organized around five principles for the design
of disciplined approximate abstractions. These themes represent the collective
findings of the concrete research projects described later. The principles are:

1. Result quality is an application-specific property.

2. Approximate abstractions should distinguish between safety properties
and quality properties.

3. Hardware and software need to collaborate to reach the best potential of
approximate computing.

4. Approximate programming models need to incorporate probability and
statistics.

5. The granularity of approximation represents a trade-off between general-
ity and potential efficiency.

This section outlines each finding in more detail.

1.2.1 Result Quality is Application Specific

Since approximate computing navigates trade-offs between efficiency and result
quality, it needs definitions of both sides of the balance. While efficiency can have
universal definitions—the time to completion, for example, or the number of
joules consumed—output quality is more subtle. A key tenet in this work is is
that applications must define “output quality” case by case: the platform cannot
define quality without information from the programmer.

Following this philosophy, the system designs in this dissertation assume that
each approximate program comes with a quality metric, expressed as executable
code, that scores the program’s output on a continuous scale from 0.0 to 1.0. A
quality metric is the approximate-computing analog to a traditional software
specification, which typically makes a binary decision about whether an imple-
mentation is correct or incorrect. Just as ordinary verification and optimization
tools start froma specification, approximate-computing tools startwith a quality
metric.

1.2.2 Safety vs. Quality

At first glance, a quality metric seems like sufficient information to specify an
application’s constraints on approximation. If the system can guarantee that a
program’s output will always have a quality score above q, and the programmer
decides that q is good enough, what could possibly go wrong?
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In reality, it can be difficult or impossible for systems to prove arbitrary quality
bounds with perfect certainty. Realistic tools can often only certify, for example,
that any output’s quality score will be at least q with high probability, or that nearly
every output will exceed quality q but rare edge cases may do worse. Even more
fundamentally, it can be difficult for programmers to devise formal quality met-
rics that capture every possible factor in their intuitive notion of output quality.
Quality metrics can be simpler if their scope is narrowed to data where they are
most relevant: the pixels in an output image, for example, but not the header
data.

To that end, this dissertation embraces safety as a separate concept from qual-
ity. A safety property, in the context of approximate computing, is a guaran-
tee that part of a program never deviates from its precise counterpart—in other
words, that it matches the semantics of a traditional, non-approximate system. A
quality property, in contrast, constrains the amount that approximate program
components deviate from their precise counterparts.

In practice, we find a first-order distinction between no approximation at all
and approximation of some nonzero degree both simplifies reasoning for program-
mers and makes tools more tractable. My work has demonstrated that the two
kinds of properties can be amenable to very different techniques: information
flow tracking (Chapter 3) is appropriate for safety, for example, but statistical
hypothesis testing (Chapter 5) is better for quality.

1.2.3 Hardware–Software Co-Design

Some of the most promising ideas unlock new sources of efficiency that are only
available in hardware: exploiting the analog behavior of transistors, for exam-
ple, or mitigating the cost of error correction in memory modules. Because ap-
proximation techniques have subtle and wide-ranging effects on program be-
havior, however, designs that apply them obliviously are unworkable. Instead,
researchers should co-design hardware techniques with their software abstrac-
tions to ensure that programmers can control imprecision.

Hardware designs can also rely on guarantees from software—the language or
compiler—to avoid unnecessary complexity. The Truffle approximate CPU [59],
for example, avoids expensive hardware consistency checks by exploiting En-
erJ’s compile-time enforcement of type safety. Wherever possible, hardware re-
searchers should offload responsibilities to complementary software systems.

1.2.4 Programming with Probabilistic Reasoning

Often, the most natural ways to reason about approximation and quality use
probabilistic tools. Probabilistic reasoning lets us show show statements such
as this output will be high-quality with at least probability P or an input randomly se-
lected from this distribution leads to a high-quality output with probability P′. These
probabilistic statements can simultaneously match the nondeterministic behav-
ior of approximate systems [59, 60, 181] and correspond to software quality cri-
teria [22, 182].
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To support reasoning about quality, approximate programming models need
to incorporate abstractions for statistical behavior. The DECAF type system, in
Chapter 4, and probabilistic assertions, in Chapter 5, represent two complemen-
tary approaches to reasoning about probabilistic quality properties.

These approaches dovetail with the recent expansion of interest in probabilis-
tic programming languages, which seek to augment machine-learning techniques
with language abstractions [69]. Approximate programming systems can adapt
lessons from this body of research.

1.2.5 Granularity of Approximation

The granularity at which approximate computing applies is a nonintuitive but
essential factor in its success. My and other researchers’ work has explored ap-
proximation strategies at granularities of both extremes: fine-grained approxi-
mations that apply to individual instructions and individual words of memory
(e.g., Truffle [59]); and coarse-grained approximations that holistically transform
entire algorithms (e.g., neural acceleration [60]).

A technique’s granularity affects its generality and its efficiency potential. A
fine-grained approximation can be very general: an approximate multiplier unit,
for example, can potentially apply to any multiplication in a program. But the
efficiency gains are fundamentally limited to non-control components, since con-
trol errors can disrupt execution arbitrarily. Even if an approximate multiplier
unit can be very efficient, the same technique can never improve the efficiency of
a branch, an address calculation, or even the scheduling of an approximate mul-
tiply instruction. Approximations that work at a coarser granularity can address
control costs, so their potential gains are larger. But these techniques tend to ap-
plymore narrowly: techniques that pattern-match on algorithm structures [176],
for example, place nuanced restrictions on the code they can transform.

The EnerJ language in Chapter 3 was initially designed for fine-grained hard-
ware approximation techniques such as low-voltage functional units. While the
granularity was good for programmability, it was bad for efficiency: our detailed
hardware design for fine-grained hardware approximation [59] demonstrated
limited benefit. The ACCEPT compiler in Chapter 7 bridges the gap: its analy-
sis library and optimizations exploit the fine-grained annotations from EnerJ to
safely apply coarse-grained optimizations.

1.3 abstractions for disciplined approximation

This dissertation supports the above research principles using a set of concrete
system designs. The systems comprise programming-language constructs that
express applications’ resilience to approximation along with system-level tech-
niques for exploiting that latent resilience to gain efficiency. This section serves
as an overview of the interlocking designs; Parts II and III give the full details.
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1.3.1 Controlling Safety and Quality

The first set of projects consists of language abstractions that give programmers
control over safety and quality in approximate programs.

1.3.1.1 Information Flow Tracking for General Safety

EnerJ, described in Chapter 3, is a type system for enforcing safety in the pres-
ence of approximation. The key insight in EnerJ is that approximate programs
tend to consist of two intermixed kinds of storage and computation: critical con-
trol components and non-critical data components. The latter, which typically
form the majority of the program’s execution, are good candidates for approxi-
mation, while the former should be protected from error and carry traditional
semantics.

EnerJ lets programmers enforce a separation between critical and non-critical
components. It uses a type system that borrows from static information flow
systems for security [138, 174] to provide a static noninterference guarantee for
precise data. EnerJ extends Javawith two type qualifiers, @Approx and @Precise,
and uses a subtyping relationship to prevent approximate-to-precise informa-
tion flow. Using EnerJ, programmers can rely on a proof that data marked as
precise remains untainted by the errors arising from approximation.

A key design goal in EnerJ is its generality: the language aims to encapsulate
a range of approximation strategies under a single abstraction. Its type system
covers approximate storage via the types of variables and fields; approximate
processor logic via overloading of arithmetic operators; and even user-defined
approximate algorithms using dynamic method dispatch based on its approxi-
mating qualifiers.

EnerJ addresses safety, not quality: a variable with the type @Approx float

can be arbitrarily incorrect and EnerJ does not seek to bound its incorrectness.
By leaving the complementary concern of controlling quality to separate mech-
anisms, EnerJ keeps its type system simple.

1.3.1.2 Extending EnerJ with Probability Types

DECAF, in Chapter 4, extends EnerJ’s type-based approach to safety with qual-
ity guarantees. The idea is to generalize the original @Approx type qualifier to a
parameterized qualifier @Approx(p), where p dictates the degree of approxima-
tion. Specifically, in DECAF, p is the lower bound on the probability that a value
is correct: that the value in an approximate execution equals its counterpart in a
completely precise execution of the same program. DECAF defines sound type
rules for introducing and propagating these correctness probabilities.

DECAF’s added sophistication over EnerJ’s simple two-level system comes at
a cost in complexity: a type system that requires probability annotations on ev-
ery expression would quickly become infeasible for programmers. To mitigate
annotation overhead, DECAF adds type inference. Sparse probability annota-
tions on the inputs and outputs of coarse-grained subcomputations are typically
enough for DECAF’s inference system to determine the less-intuitive probabili-
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ties for intermediate values. Crucially, DECAF places no constraints on where
programmers can write explicit annotations: developers can write probabilities
where they make the most sense and leave the remaining details to the compiler.

DECAF addresses the limitations of a conservative quality analysis using an
optional dynamic-tracking mechanism. The inference system also allows effi-
cient code reuse by specializing functions according to the accuracy constraints
of their calling contexts.

1.3.1.3 Probabilistic Assertions

DECAF’s approach to controlling quality achieves strong probabilistic guaran-
tees by constraining the range of possible approximation strategies: it works
onlywith techniqueswhere errors appear at an operation granularity; whey they
occur randomly but rarely; and when the error probability is independent of the
input values.

A complementary project takes the opposite approach: it accommodates any
probability distribution, but it offers weaker guarantees. The idea is to use statis-
tical hypothesis tests to prove properties up to a confidence level: to allow a small
probability of “verifying” a false property.

The technique is based on a new language construct called a probabilistic asser-
tion. The construct is analogous to a traditional assertion: assert e expresses
that the expression e must always be true. A probabilistic assertion:
passert e, p, c

indicates that e must be true with at least probability p, and the system has to
prove the property at confidence level c. These assertions can encode important
quality properties in approximate programs, such as bounds on the frequency
of “bad” pixels produced by an image renderer. The same construct is useful in
other domains where probabilistic behavior is essential, such as when dealing
with noisy sensors.

Chapter 5 describes probabilistic assertions in more detail along with a work-
flow for verifying them efficiently. The verifier uses a symbolic-execution tech-
nique to extract a representationof a program’s probabilistic behavior: aBayesian
network. The verifier can optimize this Bayesian-network representation using
off-the-shelf statistical properties that are difficult to apply to the original pro-
gram code. The complete workflow can make probabilistic-assertion verifica-
tion dozens of times faster to check than a naive stress-testing approach.

1.3.2 Exploiting Resilience for Efficiency

The second category of research is on the implementation of systems that exploit
programs’ tolerance for approximation to improve efficiency. This dissertation
describes two projects: an architectural technique and an end-to-end compiler
toolchain. A primary concern in both systems is exposing an abstraction that fits
with the safety and quality constraints introduced in the above language abstrac-
tions.
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1.3.2.1 Approximate Storage for Solid-State Memory Technologies

One system design, detailed in Chapter 6, builds on a trend in hardware tech-
nologies. It exploits unique properties of new solid-statememories, such as flash
memory and phase-changememory, to implement two orthogonal trade-offs be-
tween resource and accuracy.

The first technique recognizes that the underlying material in these memory
technologies is analog. Traditional designs build a clean digital abstraction on
top of a fundamentally analog memory cell. Our technique addresses the cost of
that digital abstraction by letting applications opt into stochastic data retention.

The second technique embraces resistive memory technologies’ tendency to
wear out. Ordinarily, architectures need to detect failed memory blocks and
avoid storing data in them—limiting the memory module’s useful lifetime. In-
stead, in the context of an approximate application, we can harvest the otherwise-
unusable blocks and store approximate data in them.

Both strategies need a new set of common CPU and operating-system inter-
faces to let software communicate error resilience and bit layout information.
We develop these abstractions to match the structure and semantics of EnerJ.

1.3.2.2 ACCEPT: An Approximate Compiler

The final system design takes a different tactic: rather than simulating hypothet-
ical hardware, the idea is to build a practical infrastructure for experimenting
with approximation in the nearer term. Chapter 7 introduces ACCEPT, an open-
source compiler workflowdesigned both for practitioners, to try out approxima-
tion techniques on their code, and for researchers, to prototype and evaluate new
ideas for approximation strategies.

The first challenge that ACCEPT faces is to bridge the granularity gap (see Sec-
tion 1.2.5, above). EnerJ’s fine-grained annotations can be more general and eas-
ier to apply to programs, but coarse-grained optimizations can offer better effi-
ciency gains—especially in the pure-software domain. ACCEPT’s interactive op-
timization architecture, compiler analysis library, and auto-tuner infrastructure
help connect fine-grained safety annotations to coarse-grained optimizations.

ACCEPT also addresses a second persistent challenge in approximate pro-
grammability: balancing automation with programmer control. Fully manual
approximation can be tedious and error prone, but fully automatic systems can
also frustrate developers by isolating them from decisions that can break their
code. ACCEPT relies on the distinction between quality and safety (see Sec-
tion 1.2.2) to reconcile the extremes. Type annotations resembling EnerJ’s en-
force safety, but programmers are kept in the loop with an interactive optimiza-
tionworkflow to rule out unexpected quality effects. Together, the systems lever-
age the best of both factors: programmer insight for preserving application-
specific properties and automatic compiler reasoning for identifying obscure
data flows.
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1.4 other work

The work in this document is intimately connected to other research I collabo-
rated on while at the University of Washington. While this dissertation does not
fully describe these related projects, their influence is evident in the trajectory
of projects that do appear here. For context, this section describes a handful of
other projects on approximate hardware and developer tools.

1.4.1 An Approximate CPU and ISA

Truffle is a processor architecture that implements EnerJ’s semantics to save en-
ergy [59]. It uses a secondary, subcritical voltage that allows timing errors in a
portion of the logic and retention errors in a portion of the SRAM.

To expose the two voltages to software, we designed an ISA extension that
includes a notation of abstract approximation. The code can choose dynamically
to enable approximation per instruction, per register, and per cache line. A key
challenge in the design was supporting an ISA that could efficiently support an
EnerJ-like programmingmodel, where the precise and approximate components
of a program remain distinct but interleave at a fine grain.

Our simulation of the Truffle design space yielded results ranging from a 5%
energy consumption increase to a 43% reduction. These results emphasize the ef-
ficiency limits of very fine-grained approximation (see the granularity principle
in Section 1.2.5). Even in a maximally approximate program—in which every
arithmetic instruction and every byte of memory is marked as approximate—
much of Truffle’s energy is spent on precise work. Fetching code, scheduling in-
structions, indexing into SRAMs, computing addresses, and tracking precision
state all must be performed reliably. Modern processors spend as much energy
on control as they do on computation itself, so any technique that optimizes only
computation will quickly encounter Amdahl’s law.

The Truffle work in appears in the dissertation of Hadi Esmaeilzadeh [57].

1.4.2 Neural Acceleration

Neural acceleration is a technique that explores the opposite end of the granular-
ity spectrum [60, 137]. The idea is to use machine learning to imitate a portion
of a computation by observing its input–output behavior. Then, we build a con-
figurable hardware accelerator to efficiently execute the learned model in place
of the original code. Our specific design uses neural networks: since neural net-
works have efficient hardware implementations, the transformed function can
be much faster and lower-power than the original code.

The coarse granularity pays off in efficiency: our simulations demonstrated a
3× average energy reduction. But the coarser granularity comes at a cost of pro-
grammer visibility and control. Since the NPU technique treats the target code
as a black box, the programmer has no direct influence over the performance and
accuracy of the resulting neural network. These conflicting objectives demon-
strate the need for techniques that bridge the granularity gap.
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Theoriginal neural accelerationwork also appears inHadi Esmaeilzadeh’s dis-
sertation [57]. I also worked on a recent extension of the idea for programmable
logic [137].

1.4.3 Monitoring and Debugging Quality

Many approaches to making approximation programmable focus on proving
conservative, static bounds. As in traditional software development, approxi-
mate computing also needs complementary dynamic techniques. To this end,
I contributed to a pair of techniques for dynamically controlling result qual-
ity [169].

The first dynamic system is a framework for monitoring quality in deploy-
ment. The goal is to raise an exception whenever the program produces a “bad”
output. While the ideal monitoring system would directly measure the quality
degradation of every output, perfect measurement is too expensive for run-time
deployment. Our framework provides a range of techniques for specific scenar-
ios where we can make monitoring cheap enough to be feasible.

The second system is a debugging tool. The idea is that certain subcomputa-
tions can be more important to quality than others, but that this difference is
not necessarily obvious to programmers. The tool identifies and blames specific
approximation decisions in a large codebase when they are responsible for too
much quality degradation.

The work on dynamic quality analysis appears in the dissertation of Michael
F. Ringenburg [167].

1.5 organization

The next chapter is a literature survey of work on efficiency–accuracy trade-offs.
Historical context is particularly important to this dissertation because the fun-
damental idea of exchanging accuracy for returns in efficiency is so old: analog
computers and floating-point numbers, for example, are prototypical examples
of approximate-computing strategies.

Parts II and III form the core of the dissertation. They comprise five indepen-
dent but interlocking research projects that together build up abstractions for
making approximate computing both tractable and efficient. Part II describes
three approaches to abstracting approximation in programming languages: En-
erJ, a type system that uses type qualifiers to make approximation safe; DECAF,
an extension of EnerJ that adds probabilistic reasoning about the likelihood that
data is correct; and probabilistic assertions, a strategy for efficiently verifying
complex probabilistic properties via sampling. Part III describes two system de-
signs for implementing efficiency–accuracy trade-offs: a hardware architecture
that exploits the nuances of resistivememory technologies such as phase-change
memory; and an open-source compiler toolkit that provides the scaffolding to
quickly implement new approximation strategies while balancing programma-
bility with approximation’s potential benefits.
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Finally, Chapters 8 and 9 look forward and backward, respectively. The retro-
spective chapter distills lessons from the work in this dissertation about approx-
imate computing and hardware–software co-design in general, and the prospec-
tive chapter suggests next steps for bringing approximation into themainstream.

This dissertation also includes appendices that formalize the programming-
languages techniques in Part II and prove their associated theorems.

1.6 previously published material

This dissertation comprises work published elsewhere in conference papers:

• Chapter 3: EnerJ: Approximate Data Types for Safe and General Low-Power
Computation. Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen
Gnanapragasam, Luis Ceze, and Dan Grossman. In Programming Lan-
guage Design and Implementation (PLDI), 2011. [180]

• Chapter 4: Probability Type Inference for Flexible Approximate Programming.
Brett Boston, Adrian Sampson, Dan Grossman, and Luis Ceze. To appear
in Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), 2015. [22]

• Chapter 5: Expressing and Verifying Probabilistic Assertions. Adrian Samp-
son, Pavel Panchekha, Todd Mytkowicz, Kathryn McKinley, Dan Gross-
man, and Luis Ceze. In Programming Language Design and Implementa-
tion (PLDI), 2014. [182]

• Chapter 6: Approximate Storage in Solid-State Memories. Adrian Sampson,
Jacob Nelson, Karin Strauss, and Luis Ceze. In the IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), 2013. [181]

The appendices draw on expanded material accompanying these papers: Ap-
pendix A reflects the EnerJ technical report [179], Appendix B uses text from
the DECAF paper’s included appendix [22], and Appendix C corresponds to the
accompanying digital material for the probabilistic assertions paper [183].
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SURVEY

Approximate computing research combines insights fromhardware engineering,
architecture, system design, programming languages, and even application do-
mains like machine learning. This chapter summarizes research on implement-
ing, exploiting, controlling, and reasoning about approximation in computer sys-
tems. To confine the scope, the survey focuses on work that exposes error to ap-
plications (unlike fault tolerance, which seeks to hide errors), and on work that
is in some sense general (not, for example, a new approximation strategy for one
specific graphics algorithm).

2.1 application tolerance studies

Many authors have identified the property of error tolerance in existing “soft”
applications. A large class of studies have examined this property by injecting
errors into certain parts of applications and assessing the execution quality in
terms of both crashes and output fidelity [42, 63, 76, 96, 108–110, 123, 172, 206,
207, 226, 230]. Related studies have evaluated error-resilience in integrated cir-
cuit designs [24, 44]. This category of study repeatedly finds that different parts
of the application have different impacts on reliability and fidelity. Some con-
clude that there is a useful distinction between critical and non-critical program
points, typically instructions [76, 113, 206, 207]. This conclusion reflects the
safety principle in Section 1.2.2: certain program components, especially those
involved in control flow, need to be protected from all of approximation’s effects.

This work tends to assume an existing, domain-specific notion of “quality” for
each application. As the principle in Section 1.2.1 suggests, these quality metrics
need careful consideration: one quality metric is not necessarily just as good
as another. Recent work has proposed guidelines for rigorous quality measure-
ment [4].

2.2 exploiting resilience in architecture

Hardware techniques for approximation can lead to gains in energy, performance,
manufacturing yield, or verification complexity. We categorize hardware-based
approximation strategies according to the hardware component they affect: com-
putational units, memories, or entire system architectures.

15
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2.2.1 Functional Units

Researchers have designed floating-point units that dynamically adapt mantissa
width [210, 229], “fuzzily” memoize similar arithmetic computations [5], or tol-
erate timing errors [78, 86, 136]. Alternative number representations work in
tandem with relaxed functional units to bound the numerical error that can re-
sult from bit flips [198].

The VLSI community has paid particular attention to variable-accuracy adder
designs, which are allowed to yield incorrect results for some minority of input
combinations [72, 73, 87, 90, 111, 126, 191, 218, 223, 228, 238].

2.2.2 Memory

SRAM structures spend significant static power on retaining data, so they repre-
sent another opportunity for fidelity trade-offs [35, 99, 193]. Similarly, DRAM
structures can reduce the power spent on refresh cycles where bit flips are al-
lowed [113, 117]. In persistent memories where storage cells can wear out, ap-
proximate systems can reduce the number of bits they flip to lengthen the useful
device lifetime [64]. Similarly, low-power writes to memories like flash can ex-
ploit its probabilistic properties while hiding them from software [112, 175, 211].
Spintronic memories exhibit similarly favorable trade-offs between access cost
and error [161].

These memory approximation techniques typically work by exposing soft er-
rors and other analog effects. Recent work in security has exploited patterns in
these variability-related errors to deanonymize users [158].

2.2.3 Circuit Design

A broad category of work has proposed general techniques for making quality
trade-offs when synthesizing and optimizing general hardware circuits [11, 20,
125, 157, 160, 215, 216, 227]. Other tools focus on analyzing approximate circuit
designs [212, 217].

Near-threshold voltage domains also present a new opportunity for embrac-
ing unpredictable circuit operation [89].

2.2.4 Relaxed Fault Tolerance

As a dual to adding errors in some circuits, some researchers have explored dif-
ferential fault protection in the face of universally unreliable circuits. As pro-
cess sizes continue to shrink, it is likely that reliable transistors will become the
minority; redundancy and checking will be necessary to provide reliable oper-
ation [106]. Circuit design techniques have been proposed that reduce the cost
of redundancy by providing it selectively for certain instructions in a CPU [202],
certain blocks in a DSP [6, 75, 88], or to components of a GPU [143]. Other
work has used criticality information to selectively allocate software-level error
detection and correction resources [92, 97, 192].
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2.2.5 Microarchitecture

Microarchitectural mechanisms can exploit different opportunities from circuit-
level techniques. Specifically, “soft coherence” relaxes intercore communica-
tion [116], and load value approximation [128, 208] approximates numerical val-
ues instead of fetching them from main memory on cache misses.

Recent work has proposed system organizations that apply approximation at
a coarser grain. One set of techniques uses external monitoring to allow errors
even in processor control logic [232, 233]. Other approaches compose sepa-
rate processing units with different levels of reliability [103]. Duwe [53] pro-
poses run-time coalescing of approximate and precise computations to reduce
the overhead of switching between modes. Other work allocates approximation
among the lanes of a SIMD unit [2]. In all cases, the gains from approximation
can be larger than for lower-level techniques that affect individual operations.
As the granularity principle from Section 1.2.5 outlines, techniques like these
that approximate entire computations, including control flow, have the greatest
efficiency potential.

2.2.6 Stochastic Computing

Stochastic computing is an alternative computational model where values are rep-
resented using probabilities [9, 34, 43, 120, 139, 142, 219]. For example, a wire
could carry a random sequence of bits, where the wire’s value corresponds to
the probability that a given bit is a 1. Multiplication can be implemented in this
model using a single and gate, so simple circuits can be low-power and area-
efficient. A persistent challenge in stochastic circuits, however, is that reading
and output value requires a number of bits that is exponential in the value’s mag-
nitude. Relaxing this constraint represents an opportunity for an time–accuracy
trade-off.

2.3 exploiting resilience with program transformations

Aside fromhardware-level accuracy trade-offs, there are opportunities for adapt-
ing algorithms to executewith varyingprecision. Algorithmic quality–complexity
trade-offs are not new, but recent work has proposed tools for automatically
transforming programs to take advantage of them. Transformations include re-
movingportions of a program’s dynamic execution (termed code perforation) [194],
unsound parallelization of serial programs [131], eliminating synchronization in
parallel programs [124, 134, 162, 164], identifying and adjusting parameters that
control output quality [80], randomizing deterministic programs [132, 239], dy-
namically choosing between different programmer-provided implementations
of the same specification [7, 8, 14, 62, 214, 222], and replacing subcomputations
with invocations of a trained neural network [60].

Some work on algorithmic approximation targets specific hardware: notably,
general-purpose GPUs [70, 176, 177, 185]. In a GPU setting, approximation
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strategies benefit most by optimizing for memory bandwidth and control diver-
gence.

Recently, a research direction has developed in automated program repair and
other approaches to heuristically patching software according to programmer-
specified criteria. These techniques are typically approximate in that they aban-
don a traditional compiler’s goal of perfectly preserving the original program’s
semantics. Notably, Schulte et al. [188] propose to use program evolution to op-
timize for energy.

Precimonious [173] addresses the problem of choosing appropriate floating-
pointwidths, which amount to a trade-offbetweennumerical accuracy and space
or operation cost. Similarly, STOKE’s floating-point extension [187] synthesizes
new versions of floating-point functions from scratch tomeet different accuracy
requirements with optimal efficiency.

Neural acceleration is a recent technique that treats code as a black box and
transforms it into a neural network [40, 60, 121, 204]. It is, at its core, an algo-
rithmic transformation, but it integrates tightly with hardware support: a digital
accelerator [60], analog circuits [197], FPGAs [137], GPUs [70], or, recently, new
analog substrates using resistive memory [105] or memristors [114]. See Sec-
tion 1.4.2 for a more detailed overview of neural acceleration.

2.4 exploiting resilience in other systems

While architecture optimizations and program transformations dominate the
field of proposed exploitations of approximate software, some recent work has
explored the same trade-off in other components of computer systems.

Network communication, with its reliance on imperfect underlying channels,
exhibits opportunities for fidelity trade-offs [84, 118, 189, 199]. Notably, Soft-
Cast [84] transmits images and video by making the signal magnitude directly
proportional to pixel luminance. BlinkDB, a recent instance of research on ap-
proximate query answering, is a database system that can respond to queries that
include a required accuracy band on their output [3]. Uncertain<T> [21] and
Lax [200] propose to expose the probabilistic behavior of sensors to programs.
In a distributed system or a supercomputer, approximation techniques can es-
chew redundancy and recovery for efficiency [79].

2.5 languages for expressing approximation

Recently, language constructs that express and constrain approximation have be-
come a focus in the programming-languages research community. Relax [97]
is a language with ISA support for tolerating architectural faults in software.
Rely [29] uses specifications that relate the reliability of the input to an approxi-
mate region of code to its outputs.

A related set of recent approximate-programming tools attempt to adapt a
program to meet accuracy demands while using as few resources as possible.
Chisel [130] is an extension to Rely that searches for the subset of operations
in a program that can safely be made approximate. ExpAX [58] finds safe-to-
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approximate operations automatically and uses a metaheuristic to find which
subset of them to actually approximate.

Some other programming systems that focus on energy efficiency include ap-
proximation ideas: Eon [196] is a language for long-running embedded systems
that can drop tasks when energy resources are low, and the Energy Types lan-
guage [48] incorporates a variety of strategies for expressing energy requirements.

2.6 programmer tools

Aside from programming languages, separate programmer tools can help ana-
lyze and control the effects of approximation.

A quality-of-service profiler helps programmers identify parts of programs
thatmay be good targets for approximation techniques [133]. Conversely, debug-
ging tools can identify components where approximation is too aggressive [169].
Some verification tools and proof systems help the programmer prove relation-
ships between the original program and a candidate relaxed version [27, 28, 30,
224].

As an alternative to statically bounding errors, dynamic techniques can moni-
tor quality degradation at run time. The critical challenge for these techniques is
balancing detection accuracy with the added cost, which takes away from the ef-
ficiency advantages of approximation. Some work has suggested that program-
mers can provide domain-specific checks on output quality [71, 169]. Recent
work has explored automatic generation of error detectors [91]. A variety of
techniques propose mechanisms for run-time or profiling feedback to adapt ap-
proximation parameters [8, 14, 80, 236].

2.7 probabilistic languages

One specific research direction, probabilistic programming languages, focuses on
expressing statistical models, especially for machine learning [18, 33, 69, 93, 94,
150, 184, 225]. The goal is to enable efficient statistical inference over arbitrary
models written in the probabilistic programming language.

Earlier work examines the semantics of probabilistic behavior in more tra-
ditional programming models [95]. Similarly, the probability monad captures
a variable’s discrete probability distribution in functional programs [159]. Sta-
tistical model checking tools can analyze programs to prove statistical proper-
ties [100, 104]. Recently, Bornholt et al. [21] proposed a construct for explicitly
representing probability distributions in a mainstream programming language.

2.8 robustness analysis

As the studies in Section 2.1 repeatedly find, error tolerance varies greatly in
existing software, both within and between programs. Independent of approx-
imate computing, programming-languages researchers have sought to identify
and enhance error resilience properties.
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SJava analyzes programs to prove that errors only temporarily disrupt the
execution path of a program [54]. Program smoothing [36–38] and robustifica-
tion [195] both find continuous, mathematical functions that resemble the input–
output behavior of numerical programs. Auto-tuning approaches can help em-
pirically identify error-resilient components [171]. Finally, Cong and Gururaj
describe a technique for automatically distinguishing between critical and non-
critical instructions for the purpose of selective fault tolerance [49].
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3
A SAFE AND GENERAL LANGUAGE ABSTRACT ION

3.1 introduction

Studies repeatedly show that approximate applications consist of both critical
and non-critical components [96, 97, 103, 108, 110, 113, 133, 166, 194, 226]. For
example, an image renderer can tolerate errors in the pixel data it outputs—a
small number of erroneous pixels may be acceptable or even undetectable. How-
ever, an error in a jump table could lead to a crash, and even small errors in the
image file format might make the output unreadable.

Distinguishing between the critical and non-critical portions of a program is
difficult. Prior proposals have used annotations on code blocks (e.g., [97]) and
data allocation sites (e.g., [113]). These annotations, however, do not offer any
guarantee that the fundamental operation of the program is not compromised.
In other words, these annotations are either unsafe and may lead to unacceptable
program behavior or need dynamic checks that end up consuming energy. We
need a way to allow programmers to compose programs from approximate and
precise components safely. Moreover, we need to guarantee safety statically to
avoid spending energy checking properties at runtime. The key insight in this
work is the application of type-based information-flow tracking [174] ideas to
address these problems.

This chapter proposes a model for approximate programming that is both safe
and general. We use a type system that isolates the precise portion of the program
from the approximate portion. The programmer must explicitly delineate flow
from approximate data to precise data. The model is thus safe in that it guaran-
tees precise computation unless given explicit programmer permission. Safety
is statically enforced and no dynamic checks are required, minimizing the over-
heads imposed by the language.

We present EnerJ, a language for principled approximate computing. EnerJ ex-
tends Java with type qualifiers that distinguish between approximate and precise
data types. Data annotated with the “approximate” qualifier can be stored ap-
proximately and computations involving it can be performed approximately. En-
erJ also provides endorsements, which are programmer-specified points at which
approximate-to-precise data flow may occur. The language supports program-
ming constructs for algorithmic approximation, in which the programmer pro-
duces different implementations of functionality for approximate and precise
data. We formalize a core of EnerJ and prove a non-interference property in the
absence of endorsements.

23
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Our programming model is general in that it unifies approximate data storage,
approximate computation, and approximate algorithms. Programmers use a sin-
gle abstraction to apply all three forms of approximation. The model is also high-
level and portable: the implementation (compiler, runtime system, hardware) is
entirely responsible for choosing the energy-saving mechanisms to employ and
when to do so, guaranteeing correctness for precise data and “best effort” for the
rest.

WhileEnerJ is designed to support general approximation strategies and there-
fore ensure full portability and backward-compatibility, we demonstrate its ef-
fectiveness using a proposed approximation-aware architecture with approxi-
mate memory and imprecise functional units. We have ported several applica-
tions to EnerJ to demonstrate that a small amount of annotation can allow a
program to save a large amount of energy while not compromising quality of
service significantly.

3.2 a type system for approximate computation

This section describes EnerJ’s extensions to Java, which are based on a system of
type qualifiers. We first describe the qualifiers themselves. We next explain how
programmers precisely control when approximate data can affect precise state.
We describe the implementation of approximate operations using overloading.
We then discuss conditional statements and the prevention of implicit flows. Fi-
nally, we describe the type system’s extension to object-oriented programming
constructs and its interaction with Java arrays.

EnerJ implements these language constructs as backwards-compatible addi-
tions to Java extended with type annotations [56]. Table 1 summarizes our ex-
tensions and their concrete syntax.

3.2.1 Type Annotations

Every value in the program has an approximate or precise type. The program-
mer annotates types with the @Approx and @Precise qualifiers. Precise types
are the default, so typically only @Approx is made explicit. It is illegal to assign
an approximate-typed value into a precise-typed variable. Intuitively, this pre-
vents direct flow of data from approximate to precise variables. For instance, the
following assignment is illegal:
@Approx int a = ...;

int p; // precise by default

p = a; // illegal

Approximate-to-precise data flow is clearly undesirable, but it seems natural to
allow flow in the opposite direction. For primitive Java types, we allow precise-
to-approximate data flowvia subtyping. Specifically, wemake each precise prim-
itive Java type a subtype of its approximate counterpart. This choice permits, for
instance, the assignment a = p; in the above example.

For Java’s reference (class) types, this subtyping relationship is unsound. The
qualifier of a reference can influence the qualifiers of its fields (see Section 3.2.5),
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Construct Purpose Section
@Approx, @Precise, @Top Type annotations: qualify any

type in the program. (Default is
@Precise.)

3.2.1

endorse(e) Cast an approximate value to its pre-
cise equivalent.

3.2.2

@Approximable Class annotation: allow a class to
have both precise and approximate
instances.

3.2.5

@Context Type annotation: in approximable
class definitions, the precision of the
type depends on the precision of the
enclosing object.

3.2.5.1

_APPROX Method naming convention: this
implementation of the method may
be invokedwhen the receiver has ap-
proximate type.

3.2.5.2

Table 1: Summary of EnerJ’s language extensions.

so subtyping on mutable references is unsound for standard reasons. We find
that this limitation is not cumbersome in practice.

We also introduce a@Topqualifier to denote the common supertype of@Approx
and @Precise types.

semantics of approximation EnerJ takes an all-or-nothing approach
to approximation. Precise values carry traditional guarantees of correctness; ap-
proximate values have no guarantees. The language achieves generality by leav-
ing approximation patterns unspecified, but programmers can informally expect
approximate data to be “mostly correct” and adhere to normal execution seman-
tics except for occasional errors.

An approximate program’s result quality is an orthogonal concern (see Sec-
tion 1.2.2). Separate systems should complement EnerJ by tuning the frequency
and intensity of errors in approximate data. The next two chapters in this part
of the dissertation, on probability types and probabilistic assertions, propose sys-
tems that address the output-quality question.

3.2.2 Endorsement

Fully isolating approximate and precise parts of a program would likely not be
very useful. Eventually a program needs to store data, transmit it, or present
it to the programmer—at which point the program should begin behaving pre-
cisely. As a general pattern, programs we examined frequently had a phase of
fault-tolerant computation followed by a phase of fault-sensitive reduction or
output. For instance, one application consists of a resilient image manipulation
phase followed by a critical checksum over the result (see Section 3.6.3). It is es-



26 a safe and general language abstraction

sential that data be occasionally allowed to break the strict separation enforced
by the type system.

We require the programmer to control explicitly when approximate data can
affect precise state. To this end, we borrow the concept (and term) of endorsement
from past work on information-flow control [10]. An explicit static function
endorse allows the programmer to use approximate data as if it were precise.
The function acts as a cast from any approximate type to its precise equivalent.
Endorsements may have implicit runtime effects; they might, for example, copy
values from approximate to precise memory.

The previous example can be made legal with an endorsement:
@Approx int a = ...;

int p; // precise by default

p = endorse(a); // legal

By inserting an endorsement, the programmer certifies that the approximate
data is handled intelligently and will not cause undesired results in the precise
part of the program.

3.2.3 Approximate Operations

Thetype system thus far provides amechanism for approximating storage. Clearly,
variables with approximate type may be located in unreliable memory modules.
However, approximate computation requires additional features.

We introduce approximate computation by overloading operators and meth-
ods based on the type qualifiers. For instance, our language provides two signa-
tures for the + operator on integers: one taking two precise integers and produc-
ing a precise integer and the other taking two approximate integers and produc-
ing an approximate integer. The lattermay compute its result approximately and
thus may run on low-power hardware. Programmers can extend this concept by
overloading methods with qualified parameter types.

bidirectional typing The above approach occasionally applies precise
operations where approximate operations would suffice. Consider the expres-
sion a = b + c where a is approximate but b and c are precise. Overloading
selects precise addition even though the result will only be used approximately.
It is possible to force an approximate operation by upcasting either operand to
an approximate type, but we provide a slight optimization that avoids the need
for additional annotation. EnerJ implements an extremely simple form of bidi-
rectional type checking [45] that applies approximate arithmetic operators when
the result type is approximate: on the right-hand side of assignment operators
and in method arguments. We find that this small optimization makes it simpler
to write approximate arithmetic expressions that include precise data.
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3.2.4 Control Flow

To provide the desired property that information never flows from approximate
to precise data, we must disallow implicit flows that occur via control flow. For
example, the following program violates the desired isolation property:
@Approx int val = ...;

boolean flag; // precise

if (val == 5) { flag = true; } else { flag = false; }

Even though flag is precise and no endorsement is present, its value is affected
by the approximate variable val.

EnerJ avoids this situation by prohibiting approximate values in conditions
that affect control flow (such as if and while statements). In the above example,
val == 5 has approximate type because the approximate version of == must be
used. Our language disallows this expression in the condition, though the pro-
grammer can work around this restriction using if(endorse(val == 5)).

This restriction is conservative: it prohibits approximate conditions evenwhen
the result can affect only approximate data. Amore sophisticated approachwould
allow only approximate values to be produced in statements conditioned on ap-
proximate data. We find that our simpler approach is sufficient; endorsements
allow the programmer to work around the restriction when needed.

3.2.5 Objects

EnerJ’s type qualifiers are not limited to primitive types. Classes also support ap-
proximation. Clients of an approximable class can create precise and approximate
instances of the class. The author of the class defines the meaning of approxima-
tion for the class. Approximable classes are distinguished by the @Approximable
class annotation. Such a class exhibits qualifier polymorphism [67]: types within
the class definition may depend on the qualifier of the instance.

Precise class types are not subtypes of their approximate counterparts, as is
the case with primitive types (Section 3.2.1). Since Java uses references for all
object types, this subtyping relationship would allow programs to create an ap-
proximate alias to a precise object; the object could then be mutated through
that reference as if it were approximate. To avoid this source of unsoundness,
we make object types invariant with respect to EnerJ’s type qualifiers.

3.2.5.1 Contextual Data Types

The @Context qualifier is available in definitions of non-static members of ap-
proximable classes. The meaning of the qualifier depends on the precision of the
instance of the enclosing class. (In terms of qualifier polymorphism, @Context
refers to the class’ qualifier parameter, which is determinedby the qualifier placed
on the instance.) Consider the following class definition:
@Approximable class IntPair {

@Context int x;

@Context int y;
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@Approx int numAdditions = 0;

void addToBoth(@Context int amount) {

x += amount;

y += amount;

numAdditions++;

}

}

If a is an approximate instance of IntPair, then the three fields on the object, a.x,
a.y, and a.numAdditions, are all of approximate integer type. However, if p is a
precise instance of the class, then p.x and p.y are precise but p.numAdditions is
still approximate. Furthermore, the argument to the invocation p.addToBoth()

must be precise; the argument to a.addToBoth() may be approximate.

3.2.5.2 Algorithmic Approximation

Approximable classesmay also specializemethod definitions based on their qual-
ifier. That is, the programmer can write two implementations: one to be called
when the receiver has precise type and another that can be called when the re-
ceiver is approximate. Consider the following implementations of a mean calcu-
lation over a list of floats:
@Approximable class FloatSet {

@Context float[] nums = ...;

float mean() {

float total = 0.0f;

for (int i = 0; i < nums.length; ++i)

total += nums[i];

return total / nums.length;

}

@Approx float mean_APPROX() {

@Approx float total = 0.0f;

for (int i = 0; i < nums.length; i += 2)

total += nums[i];

return 2 * total / nums.length;

}

}

EnerJ uses a naming convention, consisting of the _APPROX suffix, to distinguish
methods overloaded on precision. The first implementation of mean is called
when the receiver is precise. The second implementation calculates an approx-
imation of the mean: it averages only half the numbers in the set. This imple-
mentation will be used for the invocation s.mean() where s is an approximate
instance of FloatSet. Note that the compiler automatically decides which im-
plementation of the method to invoke depending on the receiver type; the same
invocation is used in either case.

It is the programmer’s responsibility to ensure that the two implementations
are similar enough that they can be safely substituted. This is important for back-
wards compatibility (a plain Java compiler will ignore the naming convention
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and always use the precise version) and “best effort” (the implementation may
use the precise version if energy is not constrained).

This facility makes it simple to couple algorithmic approximation with data
approximation—a single annotation makes an instance use both approximate
data (via @Context) and approximate code (via overloading).

3.2.6 Arrays

The programmer can declare arrays with approximate element types, but the ar-
ray’s length is always kept precise for memory safety. We find that programs of-
ten use large arrays of approximate primitive elements; in this case, the elements
themselves are all approximated and only the length requires precise guarantees.

EnerJ prohibits approximate integers frombeingused as array subscripts. That
is, in the expression a[i], the value i must be precise. This makes it easier for
the programmer to prevent out-of-bounds errors due to approximation.

3.3 formal semantics

To study the formal semantics of EnerJ, we define the minimal language FEnerJ.
The language is based on Featherweight Java [82] and adds precision qualifiers
and state. The formal language omits EnerJ’s endorsements and thus can guar-
antee isolation of approximate and precise program components. This isolation
property suggests that, in the absence of endorsement, approximate data in anEnerJ
program cannot affect precise state.

Appendix A formalizes this language and proves type soundness as well as a
non-interference property that demonstrates the desired isolation of approxi-
mate and precise data.

3.3.1 Programming Language

Figure 1 presents the syntax of FEnerJ. Programs consist of a sequence of classes,
a main class, and a main expression. Execution is modeled by instantiating the
main class and then evaluating the main expression.

A class definition consists of a name, the name of the superclass, and field and
method definitions. The @Approximable annotation is not modeled in FEnerJ;
all classes in the formal language can have approximate and precise instances
and this has @Context type. The annotation is required only in order to provide
backward-compatibility with Java so that this in a non-approximable class has
@Precise type.

We use C to range over class names and P for the names of primitive types.
We define the precision qualifiers q as discussed in Section 3.2.1, but with the
additional qualifier lost; this qualifier is used to express situationswhen context
information is not expressible (i.e., lost). Types T include qualifiers.

Field declarations consist of the field type andname. Methoddeclarations con-
sist of the return type, method name, a sequence of parameter types and identi-
fiers, the method precision, and the method body. We use the method precision
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Prg ::= Cls, C, e
Cls ::= class Cid extends C { fd md }

C ::= Cid | Object
P ::= int | float
q ::= precise | approx | top | context | lost
T ::= q C | q P
fd ::= T f ;

md ::= T m(T pid) q { e }
x ::= pid | this
e ::= null | L | x | new q C() | e. f | e0. f :=e1 | e0.m(e)

| (q C) e | e0 ⊕ e1 | if(e0) {e1} else {e2}

f field identifier pid parameter identifier
m method identifier Cid class identifier

Figure 1: The syntax of the FEnerJ programming language. The symbol A de-
notes a sequence of elements A.

qualifier to denote overloading of the method based on the precision of the re-
ceiver as introduced in Section 3.2.5.2. Variables are either a parameter identifier
or the special variable this, signifying the current object.

The language has the following expressions: the null literal, literals of the prim-
itive types, reads of local variables, instantiation, field reads and writes, method
calls, casts, binary primitive operations, and conditionals. We present the repre-
sentative rules for field reads, field writes, and conditionals.

subtyping Subtyping is defined using an ordering of the precision qualifiers
and subclassing.

The following rules define the ordering of precision qualifiers:

q <:q q′ ordering of precision qualifiers

q ̸=top

q <:q lost q <:q top q <:q q

Recall that top qualifies the common supertype of precise and approx types.
Every qualifier other than top is below lost; every qualifier is below top; and
the relation is reflexive. Note that the precise and approx qualifiers are not
related.

Subclassing is the reflexive and transitive closure of the relation induced by
the class declarations. Subtyping takes both ordering of precision qualifiers and
subclassing into account. For primitive types, we additionally have that a precise
type is a subtype of the approximate type as described in Section 3.2.1.

context adaptation We use context adaptation to replace the context

qualifier when it appears in a field access or method invocation. Here the left-
hand side of ▷ denotes the qualifier of the receiver expression; the right-hand
side is the precision qualifier of the field or in the method signature.

q ▷ q′ = q′′ combining two precision qualifiers
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q′=context ∧ (q∈ {approx, precise, context})
q ▷ q′ = q

q′=context ∧ (q∈ {top, lost})
q ▷ q′ = lost

q′ ̸=context

q ▷ q′ = q′

Note that context adapts to lost when the left-hand-side qualifier is top be-
cause the appropriate qualifier cannot be determined.

We additionally define ▷ to take a type as the right-hand side; this adapts the
precision qualifier of the type.

We define partial look-up functions FType and MSig that determine the field
type and method signature for a given field/method in an access or invocation.
Note that these use the adaptation rules described above.

type rules The static type environment sΓ maps local variables to their de-
clared types.

Given a static environment, expressions are typed as follows:
sΓ ⊢ e : T expression typing

sΓ ⊢ e0 : q C FType(q C, f ) = T
sΓ ⊢ e0.f : T

sΓ ⊢ e0 : q C FType(q C, f ) = T
lost /∈ T sΓ ⊢ e1 : T

sΓ ⊢ e0.f := e1 : T
sΓ ⊢ e0 : precise P sΓ ⊢ e1 : T sΓ ⊢ e2 : T

sΓ ⊢ if(e0) {e1} else {e2} : T

Afield readdetermines the type of the receiver expression and thenuses FType
to determine the adapted type of the field.

A field write similarly determines the adapted type of the field and checks that
the right-hand side has an appropriate type. In addition, we ensure that the adap-
tation of the declared field type did not lose precision information. Notice that
we can read a field with lost precision information, but that it would be unsound
to allow the update of such a field.

Finally, for the conditional expression, we ensure that the condition is of a
precise primitive type and that there is a common type T that can be assigned to
both subexpressions.

3.3.2 Operational Semantics

The runtime system of FEnerJ models the heap h as a mapping from addresses ι

to objects, where objects are a pair of the runtime type T and the field values v
of the object. The runtime environment rΓ maps local variables x to values v.

The runtime system of FEnerJ defines a standard big-step operational seman-
tics:

rΓ ⊢ h, e ⇝ h′, v big-step operational semantics
rΓ ⊢ h, e0 ⇝ h′, ι0 h′(ι0.f )=v

rΓ ⊢ h, e0.f ⇝ h′, v
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rΓ ⊢ h, e0 ⇝ h0, ι0
rΓ ⊢ h0, e1 ⇝ h1, v

h1[ι0.f := v] = h′
rΓ ⊢ h, e0.f := e1 ⇝ h′, v

rΓ ⊢ h, e0 ⇝ h0, (q, rL) rL̸=0
rΓ ⊢ h0, e1 ⇝ h′, v

rΓ ⊢ h, if(e0) {e1} else {e2} ⇝ h′, v
rΓ ⊢ h, e0 ⇝ h0, (q, 0) rΓ ⊢ h0, e2 ⇝ h′, v

rΓ ⊢ h, if(e0) {e1} else {e2} ⇝ h′, v

These rules reflect precise execution with conventional precision guarantees. To
model computation on an execution substrate that supports approximation, the
following rule could be introduced:

rΓ ⊢ h, e ⇝ h′, v h′ ∼= h̃′ v ∼= ṽ
rΓ ⊢ h, e ⇝ h̃′, ṽ

We use∼= to denote an equality that disregards approximate values for compar-
ing heaps and values with identical types. The rule permits any approximate
value in the heap to be replaced with any other value of the same type and any
expression producing a value of an approximate type to produce any other value
of that type instead. This rule reflects EnerJ’s lack of guarantees for approximate
values.

3.3.3 Properties

We prove two properties about FEnerJ: type soundness and non-interference.
Appendix A proves these theorems.

The usual type soundness property expresses that, for a well-typed program
and corresponding static and runtime environments, we know that (1) the run-
time environment after evaluating the expression is still well formed, and (2) a
static type that can be assigned to the expression can also be assigned to the value
that is the result of evaluating the expression. Formally:

⊢ Prg OK ∧ ⊢ h, rΓ : sΓ
sΓ ⊢ e : T
rΓ ⊢ h, e⇝ h′, v

 =⇒
{
⊢ h′, rΓ : sΓ
h′, rΓ(this) ⊢ v : T

Theproof is by rule inductionover the operational semantics; in separate lemmas
we formalize that the context adaptation operation ▷ is sound.

The non-interference property of FEnerJ guarantees that approximate com-
putations do not influence precise values. Specifically, changing approximate
values in the heap or runtime environment does not change the precise parts of
the heap or the result of the computation. More formally, we show:

⊢ Prg OK ∧ ⊢ h, rΓ : sΓ
sΓ ⊢ e : T
rΓ ⊢ h, e⇝ h′, v
h ∼= h̃ ∧ rΓ ∼= r̃Γ

⊢ h̃, r̃Γ : sΓ

 =⇒


r̃Γ ⊢ h̃, e→ h̃′, ṽ
h′ ∼= h̃′
v ∼= ṽ
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For the proof of this propertywe introduced a checked operational semantics that
ensures in every evaluation step that the precise and approximate parts are sep-
arated. We can then show that the evaluation of a well-typed expression always
passes the checked semantics of the programming language.

3.4 execution model

While an EnerJ program distinguishes abstractly between approximate and pre-
cise data, it does not define the particular approximation strategies that are ap-
plied to the program. (In fact, one valid execution is to ignore all annotations and
execute the code as plain Java.) An approximation-aware execution substrate is
needed to take advantage of EnerJ’s annotations. We examine approximation
mechanisms at the architecture level that work at granularity of individual in-
structions and individual memory locations [59, 213]. This section describes our
hardware model, the ISA extensions used for approximation, and how the exten-
sions enable energy savings. The Truffle paper [59] explores the ISA design and
microarchitectural mechanisms for approximation in more detail.

As a complement to the approximate hardware considered here, a compiler or
runtime system on top of commodity hardware can also offer approximate ex-
ecution features: lower floating point precision, elision of memory operations,
etc. (Algorithmic approximation, from Section 3.2.5, is independent of the ex-
ecution substrate.) The ACCEPT compiler infrastructure in Chapter 7 exploits
this category of approximations using an annotation language similar to EnerJ.

3.4.1 Approximation-Aware ISA Extensions

We want to leverage both approximate storage and approximate operations. Our
hardware model offers approximate storage in the form of unreliable registers,
data caches, and main memory. Approximate and precise registers are distin-
guished based on the register number. Approximate data stored in memory is
distinguished from precise data based on address; regions of physical memory
are marked as approximate and, when accessed, are stored in approximate por-
tions of the data cache. For approximate operations, we assume specific instruc-
tions for approximate integer ALU operations as well as approximate floating
point operations. Approximate instructions can use special functional units that
perform approximate operations. Figure 2 summarizes our assumed hardware
model.

An instruction stream may have a mix of approximate and precise instruc-
tions. Precise instructions have the same guarantees as instructions in today’s
ISAs. Note that an approximate instruction is simply a “hint” to the architec-
ture that it may apply a variety of energy-saving approximations when execut-
ing the given instruction. The particular approximations employed by a given
architecture are not exposed to the program; a processor supporting no approx-
imations just executes approximate instructions precisely and saves no energy.
An approximation-aware ISA thus allows a single binary to benefit from new
approximations as they are implemented in future microarchitectures.
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MemoryCPU
L1 Data CacheFunctional UnitsRegisters

Int FP

Int FP

Figure 2: Hardware model assumed in our system. Shaded areas indicate com-
ponents that support approximation. Registers and the data cache have
SRAM storage cells that can be made approximate by decreasing sup-
ply voltage. Functional units support approximation via supply voltage
reduction. Floating point functional units also support approximation
via smallermantissas. Mainmemory (DRAM) supports approximation
by reducing refresh rate.

layout of approximate data Our hardware model supports approxi-
mate memory data at a cache line granularity, in which software can configure
any line as approximate. This can be supported by having a bit per line in each
page that indicates whether the corresponding line is approximate. Based on
that bit, a cache controller determines the supply voltage of a line (lower for ap-
proximate lines), and the refresh rate for regions of DRAM. This bitmap needs
to be kept precise. With a typical cache line size of 64 bytes, this is less than 0.2%
overhead. Note that both selective supply voltage for caches [65] and selective
refresh rate for DRAM [68] are hardware techniques that have been proposed in
the past.

Setting approximation on a cache line basis requires the runtime system to
segregate approximate and precise data in different cache lines. We propose the
following simple technique for laying out objectswith both approximate and pre-
cise fields. First, lay out the precise portion of the object (including the vtable
pointer) contiguously. Each cache line containing at least one precise field is
marked as precise. Then, lay out the approximate fields after the end of the pre-
cise data. Some of this data may be placed in a precise line (that is, a line contain-
ing some precise data already); in this case, the approximate data stays precise
and saves no memory energy. (Note that wasting space in the precise line in or-
der to place the data in an approximate line would use more memory and thus
more energy.) The remaining approximate fields that do not fit in the last precise
line can be placed in approximate lines.

Fields in superclasses may not be reordered in subclasses. Thus, a subclass of
a class with approximate data may waste space in an approximate line in order
to place precise fields of the subclass in a precise line.

Whilewe simulate the artifacts of this layout scheme for our evaluation, a finer
granularity of approximate memory storage would mitigate or eliminate the re-
sulting loss of approximation. More sophisticated layout algorithms could also
improve energy savings; this is a target for compile-time optimization. Note
that even if an approximate field ends up stored in precise memory, it will still
be loaded into approximate registers and be subject to approximate operations
and algorithms.
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The layout problem is much simpler for arrays of approximate primitive types.
The first line, which contains the length and type information, must be precise,
with all remaining lines approximate.

3.4.2 Hardware Techniques for Saving Energy

There are many strategies for saving energy with approximate storage and data
operations. This section discusses some of the techniques explored in prior re-
search. We assume these techniques in our simulations, which we describe later.
The techniques are summarized in Table 2.

voltage scaling Aggressive voltage scaling can result in over 30% energy
reductionwith∼1% error rate [55] and 22% reductionwith∼0.01% error rate.
Recent work [97] proposed to expose the errors to applications that can tolerate
it and saw similar results. In ourmodel, we assume aggressive voltage scaling for
the processor units executing approximate instructions, including integer and
floating-point operations. As for an error model, the choices are single bit flip,
last value, and random value. We consider all three but our evaluation mainly
depicts the random-value assumption, which is the most realistic.

floating point operation width A direct approach to approximate
arithmetic operations on floating point values is to ignore part of themantissa in
the operands. As observed in [210], many applications do not need the full man-
tissa. According to their model, a floating-point multiplier using 8-bit mantissas
uses 78% less energy per operation than a full 24-bit multiplier.

dram refresh rate Reducing the refresh rate of dynamic RAM leads to
potential data decay but can substantially reduce power consumption with a low
error rate. As proposed by Liu et al. [113], an approximation-aware DRAM sys-
tem might reduce the refresh rate on lines containing approximate data. As in
that work, we assume that reducing the refresh rate to 1 Hz reduces power by
about 20%. In a study performed by Bhalodia [17], a DRAM cell not refreshed
for 10 seconds experiences a failurewith per-bit probability approximately10−5.
We conservatively assume this error rate for the reduced refresh rate of 1 Hz.

sram supply voltage Registers and data caches in modern CPUs consist
of static RAM (SRAM) cells. Reducing the supply voltage to SRAM cells lowers
the leakage current of the cells but decreases the data integrity [65]. As examined
by Kumar [98], these errors are dominated by read upsets and write failures, which
occur when a bit is read or written. A read upset occurs when the stored bit
is flipped while it is read; a write failure occurs when the wrong bit is written.
Reducing SRAM supply voltage by 80% results in read upset and write failure
probabilities of 10−7.4 and 10−4.94 respectively. Soft failures, bit flips in stored
data due to cosmic rays and other events, are comparatively rare and depend less
on the supply voltage.
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Mild Medium Aggressive

DRAM refresh: per-second bit flip probability 10−9 10−5 10−3

Memory power saved 17% 22% 24%

SRAM read upset probability 10−16.7 10−7.4 10−3

SRAM write failure probability 10−5.59 10−4.94 10−3

Supply power saved 70% 80% 90%*

float mantissa bits 16 8 4
double mantissa bits 32 16 8
Energy saved per operation 32% 78% 85%*

Arithmetic timing error probability 10−6 10−4 10−2

Energy saved per operation 12%* 22% 30%

Table 2: Approximation strategies simulated in our evaluation. Numbers
marked with * are educated guesses by the authors; the others are taken
from the sources described in Section 3.4.2. Note that all values for the
Medium level are taken from the literature.

Section 3.5.4 describes the model we use to combine these various potential en-
ergy savings into an overall CPU/memory system energy reduction. To put the
potential energy savings in perspective, according to recent studies [61, 119],
the CPU and memory together account for well over 50% of the overall system
power in servers as well as notebooks. In a smartphone, CPU and memory ac-
count for about 20% and the radio typically close to 50% of the overall power [31].

3.5 implementation

We implement EnerJ as an extension to the Java programming language based
on the pluggable type mechanism proposed by Papi et al. [148]. EnerJ is im-
plemented using the Checker Framework1 infrastructure, which builds on the
JSR 3082 extension to Java’s annotation facility. JSR 308 permits annotations on
any explicit type in the program. The EnerJ type checker extends the rules from
Section 3.3 to all of Java, including arrays and generics. We also implement a
simulation infrastructure that emulates an approximate computing architecture
as described in Section 3.4. 3

3.5.1 Type Checker

EnerJ provides the type qualifiers listed in Table 1—@Approx, @Precise, @Top,
and @Context—as JSR 308 type annotations. The default type qualifier for unan-
notated types is @Precise, meaning that any Java program may be compiled as

1 http://types.cs.washington.edu/checker-framework/

2 http://types.cs.washington.edu/jsr308/

3 The EnerJ type checker and simulator are available online: http://sampa.cs.washington.edu/
research/approximation/enerj.html

http://types.cs.washington.edu/checker-framework/
http://types.cs.washington.edu/jsr308/
http://sampa.cs.washington.edu/research/approximation/enerj.html
http://sampa.cs.washington.edu/research/approximation/enerj.html
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an EnerJ program with no change in semantics. The programmer can add ap-
proximations to the program incrementally.

While reference typesmay be annotated as @Approx, this only affects themean-
ing of @Context annotations in the class definition and method binding on the
receiver. Our implementation never approximates pointers.

3.5.2 Simulator

To evaluate our system, we implement a compiler and runtime system that ex-
ecutes EnerJ code as if it were running on an approximation-aware architec-
ture as described in Section 3.4. We instrument method calls, object creation
and destruction, arithmetic operators, and memory accesses to collect statistics
and inject faults. The runtime system is implemented as a Java library and is in-
voked by the instrumentation calls. It recordsmemory-footprint and arithmetic-
operation statistics while simultaneously injecting transient faults to emulate ap-
proximate execution.

To avoid spurious errors due to approximation, our simulated approximate
functional units never raise divide-by-zero exceptions. Approximate floating-
point division by zero returns the NaN value; approximate integer divide-by-
zero returns zero.

3.5.3 Approximations

Our simulator implements the set of approximation techniques enumerated in
Section 3.4.2. Table 2 summarizes the approximations used, their associated er-
ror probabilities, and their estimated energy savings.

Floating-point bit-width reduction is performed when executing Java’s arith-
metic operators on operands that are approximate float and double values.
SRAM read upsets and write failures are simulated by flipping each bit read or
written with a constant probability. For DRAM refresh reduction, every bit also
has an independent probability of inversion; here, the probability is proportional
to the amount of time since the last access to the bit.

For the purposes of our evaluation, we distinguish SRAM and DRAM data
using the following rough approximation: data on the heap is considered to be
stored in DRAM; stack data is considered SRAM. Future evaluations not con-
strained by the abstraction of the JVM could explore a more nuanced model.

3.5.4 Energy Model

To summarize the effectiveness of EnerJ’s energy-saving properties, we estimate
the potential overall savings of the processor/memory system when executing
each benchmark approximately. To do so, we consider a simplified model with
three components to the system’s energy consumption: instruction execution,
SRAM storage (registers and cache), and DRAM storage. Our model omits over-
heads of implementing or switching to approximate hardware. For example, we
do notmodel any latency in scaling the voltage on the logic units. For this reason,
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our results can be considered optimistic; the Truffle paper [59] models approxi-
mate hardware in more detail.

To estimate the savings for instruction execution, we assign abstract energy
units to arithmetic operations. Integer operations take 37 units and floating
point operations take 40 units; of each of these, 22 units are consumed by the
instruction fetch and decode stage and may not be reduced by approximation
strategies. These estimations are based on three studies of architectural power
consumption [25, 107, 140]. We calculate energy savings in instruction execu-
tion by scaling the non-fetch, non-decode component of integer and floating-
point instructions.

We assume that SRAM storage and instructions that access it account for ap-
proximately 35% of the microarchitecture’s power consumption; instruction ex-
ecution logic consumes the remainder. To compute the total CPUpower savings,
then, we scale the savings from SRAM storage by 0.35 and the instruction power
savings, described above, by 0.65.

Finally, we add the savings from DRAM storage to get an energy number for
the entire processor/memory system. For this, we consider a server-like setting,
where DRAM accounts for 45% of the power and CPU 55% [61]. Note that in
a mobile setting, memory consumes only 25% of power so power savings in the
CPU will be more important [31].

3.6 results

We evaluate EnerJ by annotating a variety of existing Java programs. Table 3
describes the applicationswe used; they have been selected to be relevant in both
mobile and server settings.

applications We evaluate the FPU-heavy kernels of the SciMark2 bench-
mark suite to reflect scientific workloads.4 ZXing is a bar code reader library
targeted for mobile devices based on the Android operating system.5 Our work-
load decodes QR Code two-dimensional bar code images. jMonkeyEngine is a
2D and 3D game engine for both desktop and mobile environments.6 We run a
workload that consists of many 3D triangle intersection problems, an algorithm
frequently used for collision detection in games.

ImageJ is an image-manipulation program; our workload executes a flood
fill operation.7 This workload was selected as representative of error-resilient
algorithms with primarily integer—rather than floating point—data. Because
the code already includes extensive safety precautions such as bounds checking,
our annotation for ImageJ is extremely aggressive: even pixel coordinates are
marked as approximate. Raytracer is a simple 3D renderer; our workload exe-
cutes ray plane intersection on a simple scene.

4 SciMark2: http://math.nist.gov/scimark2/
5 ZXing: http://code.google.com/p/zxing/
6 jMonkeyEngine: http://www.jmonkeyengine.com/
7 ImageJ: http://rsbweb.nih.gov/ij/

http://math.nist.gov/scimark2/
http://code.google.com/p/zxing/
http://www.jmonkeyengine.com/
http://rsbweb.nih.gov/ij/
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annotation approach We annotated each application manually. While
manypossible annotations exist for a givenprogram,we attempted to strike a bal-
ance between reliability and energy savings. As a rule, however, we attempted
to annotate the programs in a way that never causes them to crash (or throw an
unhandled exception); it is important to show that EnerJ allows programmers
to write approximate programs that never fail catastrophically. In our experi-
ments, each benchmark produces an output on every run. This is in contrast to
approximation techniques that do not attempt to prevent crashes [108, 113, 226].
Naturally, we focused our effort on code where most of the time is spent.

Three students involved in the project ported the applications used in our eval-
uation. In every case, we were unfamiliar with the codebase beforehand, so our
annotations did not depend on extensive domain knowledge. The annotations
were not labor intensive.

quality metrics For each application, wemeasure the degradation in out-
put quality of approximate executions with respect to the precise executions. To
do so, we define application-specific quality metrics following the principle in
Section 1.2.1. The third column in Table 3 shows our metric for each applica-
tion.

Output error ranges from 0 (indicating output identical to the precise version)
to 1 (indicating completely meaningless output). For applications that produce
lists of numbers (e.g., SparseMatMult’s output matrix), we compute the error as
the mean entry-wise difference between the pristine output and the degraded
output. Each numerical difference is limited by 1, so if an entry in the output is
NaN, that entry contributes an error of 1. For benchmarks where the output is
not numeric (i.e., ZXing, which outputs a string), the error is 0 when the output
is correct and 1 otherwise.

3.6.1 Energy Savings

Figure 3 divides the execution of each benchmark into DRAM storage, SRAM
storage, integer operations, and FP operations and shows what fraction of each
was approximated. Formanyof the FP-centric applicationswe simulated, includ-
ing the jMonkeyEngine and Raytracer as well as most of the SciMark applica-
tions, nearly all of the floating point operations were approximate. This reflects
the inherent imprecision of FP representations; many FP-dominated algorithms
are inherently resilient to rounding effects. The same applications typically ex-
hibit very little or no approximate integer operations. The frequency of loop
induction variable increments and other precise control-flow code limits our
ability to approximate integer computation. ImageJ is the only exception with a
significant fraction of integer approximation; this is because it uses integers to
represent pixel values, which are amenable to approximation.

We quantify DRAM and SRAM approximation using the proportion of the
total byte-seconds in the execution. The data shows that both storage types are
frequently used in approximate mode. Many applications have DRAM approxi-
mation rates of 80% or higher; it is common to store large data structures (often
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arrays) that can tolerate approximation. MonteCarlo and jMonkeyEngine, in
contrast, have very little approximate DRAM data; this is because both applica-
tions keep their principal data in local variables (i.e., on the stack).

The results depicted assume approximation at the granularity of a 64-byte
cache line. As Section 3.4.1 discusses, this reduces the number of object fields
that can be stored approximately. The impact of this constraint on our results
is small, in part because much of the approximate data is in large arrays. Finer-
grain approximatememory could yield a higher proportion of approximate stor-
age.

To give a sense of the energy savings afforded by our proposed approxima-
tion strategies, we translate the rates of approximation depicted above into an
estimated energy consumption. Figure 4 shows the estimated energy consump-
tion for each benchmark running on approximate hardware relative to fully pre-
cise execution. The energy calculation is based on the model described in Sec-
tion 3.5.4. These simulations apply all of the approximation strategies described
in Section 3.4.2 simultaneously at their three levels of aggressiveness. As ex-
pected, the total energy saved increases both with the amount of approximation
in the application (depicted in Figure 3) and with the aggressiveness of approxi-
mation used.

Overall, we observe energy savings from 7% (SOR in the Mild configuration)
to 38% (Raytracer in the Aggressive configuration). The three levels of approx-
imation do not vary greatly in the amount of energy saved—the three config-
urations yield average energy savings of 14%, 19%, and 21% respectively. The
majority of the energy savings come from the transition from zero approxima-
tion to mild approximation. As discussed in the next section, the least aggressive
configuration results in very small losses in output fidelity across all applications
studied.

The fifth column of Table 3 shows the proportion of floating point arithmetic
in each application. In general, applications with principally integer computa-
tion (e.g., ZXing and ImageJ) exhibit less opportunity for approximation than do
floating-point applications (e.g., Raytracer). Not only do floating-point instruc-
tions offer more energy savings potential in our model, but applications that use
them are typically resilient to their inherent imprecision.

3.6.2 Result Quality Trade-off

Figure 5 presents the sensitivity of each annotated application to the full suite of
approximations explored. This output quality reduction is the trade-off for the
energy savings shown in Figure 4.

Whilemost applications shownegligible error for theMild level of approxima-
tion, applications’ sensitivity to error varies greatly for the Medium and Aggres-
sive configurations. Notably, MonteCarlo, SparseMatMult, ImageJ, and Ray-
tracer exhibit very little output degradation under any configuration whereas
FFT and SOR lose significant output fidelity even under the Medium configu-
ration. This variation suggests that an approximate execution substrate for En-
erJ could benefit from tuning to the characteristics of each application, either
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Figure 5: Output error for three different levels of approximation varied to-
gether. Each bar represents the mean error over 20 runs.

offline via profiling or online via continuous quality measurement as in Green
[14]. However, even the conservative Mild configuration offers significant en-
ergy savings.

Qualitatively, the approximated applications exhibit gradual degradation of
perceptible output quality. For instance, Raytracer always outputs an image re-
sembling its precise output, but the amount of random pixel “noise” increases
with the aggressiveness of approximation. Under the Mild configuration, it is
difficult to distinguish the approximated image from the precise one.

We also measured the relative impact of various approximation strategies by
running our benchmark suite with each optimization enabled in isolation. The
DRAM errors we modeled have a nearly negligible impact on application out-
put; floating-point bit width reduction similarly results in at most 12% quality
loss in the Aggressive configuration. SRAM write errors are much more detri-
mental to output quality than read upsets. Functional unit voltage reduction had
the greatest impact on correctness. We considered three possibilities for error
modes in functional units: the output has a single bit flip; the last value computed
is returned; or a random value is returned. The former two models resulted in
significantly less quality loss than the random-value model (25% vs. 40%). How-
ever, we consider the random-value model to be the most realistic, so we use it
for the results shown in Figure 5.

3.6.3 Annotation Effort

Table 3 lists the number of qualifiers and endorsements used in our annotations.
Only a fraction of the types in each program must be annotated: at most 34%
of the possible annotation sites are used. Note that most of the applications are
short programs implementing a single algorithm (the table shows the lines of
code in each program). Our largest application, ZXing, has about 26,000 lines
of code and only 4% of its declarations are annotated. These rates suggest that
the principal data amenable to approximation is concentrated in a small portion
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of the code, even though approximate data typically dominates the program’s
dynamic behavior.

Endorsements are also rare, even though our system requires one for every ap-
proximate condition value. The outlier is ZXing, which exhibits a higher number
of endorsements due to its frequency of approximate conditions. This is because
ZXing’s control flow frequently depends on whether a particular pixel is black.

Qualitatively, we found EnerJ’s annotations easy to insert. The programmer
can typically select a small set of data to approximate and then, guided by type
checking errors, ascertain associated data that must also be marked as approx-
imate. The requirements that conditions and array indices be precise helped
quickly distinguish data that was likely to be sensitive to error. In some cases,
such as jMonkeyEngine and Raytracer, annotation was so straightforward that
it could have been largely automated: for certain methods, every float declara-
tion was replaced indiscriminately with an @Approx float declaration.

Classes that closely represent data are perfect candidates for @Approximable
annotations. For instance, ZXing contains BitArray and BitMatrix classes that
are thin wrappers over binary data. It is useful to have approximate bit matrices
in some settings (e.g., during image processing) but precise matrices in other set-
tings (e.g., in checksum calculation). Similarly, the jMonkeyEngine benchmark
uses a Vector3f class for much of its computation, which we marked as approx-
imable. In this setting, approximate vector declarations:
@Approx Vector3f v;

are syntactically identical to approximate primitive-value declarations:
@Approx int i;

We found that the @Context annotation helped us to approach program anno-
tation incrementally. A commonly-used class that is a target for approximation
can be marked with @Context members instead of @Approxmembers. This way,
all the clients of the class continue to see precise members and no additional an-
notation on them is immediately necessary. The programmer can then update
the clients individually to use the approximate version of the class rather than
addressing the whole program at once.

An opportunity for algorithmic approximation also arose in ZXing. The ap-
proximable class BitArray contains a method isRange that takes two indices
and determines whether all the bits between the two indices are set. We imple-
mented an approximate version of the method that checks only some of the bits
in the range by skipping some loop iterations. We believe that application do-
main experts would use algorithmic approximation more frequently.

In one case, we found it convenient to introduce a slight change to increase
the fault tolerance of code dealing with approximate data. ZXing has a prin-
cipally floating-point phase that performs an image perspective transform. If
the transform tried to access a coordinate outside of the image bounds, ZXing
would catch the ArrayIndexOutOfBoundsException and print amessage saying
that the image transform failed. We modified the algorithm to silently return a
white pixel in this case. The result was that the image transform became more
resilient to transient faults in the transformation coordinates. We marked these
coordinates as approximate and then endorsed them at the point they are used
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as array indices. In no case, however, does an application as we annotated it do
more computation than the pristine version.

3.7 discussion

EnerJ is a language for enforcing safety in approximate programing. The key
observation is that approximate programs tend to intermix error-resilient and
error-vulnerable work within the same program. The former makes up the bulk
of the computation and data, while the latter provides critical structure and con-
trol. EnerJ’s brand of approximate safety protects the control components while
allowing errors in most of the program. It borrows ideas from information-flow
tracking for enforcing security to isolate the critical data from the corrupting
effects of approximation.

The next two chapters shift focus from enforcing safety to controlling quality.
The systems described next all benefit from the separation of concerns that EnerJ
offers: they only need to analyze the approximate component of the program.
EnerJ’s focus on simpler safety properties makes it a foundation for the more
sophisticated abstractions necessary for reasoning about quality.





4
PROBAB IL ITY TYPES

4.1 introduction

In approximate computing, we recognize that not every operation in a program
needs the same level of accuracy. But while programmers may know which out-
puts can withstand occasional errors, it is tedious and error-prone to compose
individual approximate operations to achieve the desired result. Fine-grained re-
liability choices can have subtle and far-reaching implications for the efficiency
and reliability of a whole computation. Programmers need a way to easily max-
imize the efficiency of fine-grained operations while controlling the impact of
unreliability on overall accuracy properties.

The EnerJ language in the previous chapter demonstrates that a type system
can ensure that approximation never corrupts essential program state [180]. But
as the safety vs. quality principle from Section 1.2.2 emphasizes, safety properties
are only part of approximate computing’s programmability challenge. More nu-
anced quality properties dictate howmuch an output can deviate from its precise
equivalent.

This chapter presents DECAF (DECAF, an Energy-aware Compiler to make
ApproximationFlexible), a type-based approach to controlling quality in approx-
imate programs. DECAF’s goal is to let programmers specify important quality
constraints while leaving the details to the compiler. Its design explores five crit-
ical research questions in approximate programming:

How can programmers effectively use complex hardware with many available de-
grees of approximation? Current languages for approximate programming assume
that approximation will be an all-or-nothing affair [29, 130, 180]. But recent
work has suggested that more sophisticated architectures, supporting multiple
levels of reliability, are a better match for application demands [213]. DECAF is
a language abstraction that shields the programmer from reasoning about indi-
vidual operators to compose reliable software. Its probability type system con-
strains the likelihood that any expression in the relaxed program differs from its
equivalent in a reliable execution.

How can automated tuning interact with programmer control? Compiler assis-
tance can help reduce the annotation burden of approximate programming [58,
130, 176]. But fully automated approaches impede programmers from bring-
ing intuition to bear when fine-grained control is more appropriate. DECAF’s
solver-aided type inference adds flexibility: programmers add accuracy require-
ments where they are most crucial and omit them where they can be implied.

47
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Programmers in early development phases can opt to rely more heavily on infer-
ence, while later-stage optimization work can exert total control over any type
in the program.

When static reasoning is insufficient, how can a program safely opt into dynamic
tracking? Purely static systems for reasoning about approximation can be overly
conservative when control flow is dynamic [29] while dynamic monitoring in-
curs run-time overhead [169]. DECAF’s optional dynamic typing interoperates
with its static system to limit overheads to codewhere static constraints are insuf-
ficient. We prove a soundness theorem that shows that DECAF’s hybrid system
of static types, dynamic tracking, and run-time checks conservatively bounds
the chance of errors.

How should compilers reuse approximate code in contexts with different accuracy
demands? An approximate program can invoke a single function in some con-
texts that permitmore approximation and otherswith stricter reliability require-
ments. A fixed degree of “aggressiveness” for a function’s approximation can
therefore be conservative. DECAF’s type inference can automatically synthesize
specialized versions of approximate functions at multiple levels of reliability.

What do language-level constraints imply for the design of approximate hardware?
Approximate hardware designs remain in the research stage. As designs ma-
ture, architectures will need to choose approximation parameters that fit a wide
range of approximate software. We use DECAF’s architecture-aware tuning to
examine the implications of programs’ language-level constraints on approxi-
mate hardware. Our evaluation finds that using a solver to optimize for a hard-
ware configuration can lead to significant gains over a hardware-oblivious ap-
proach to assigning probabilities. We also demonstrate that multi-level architec-
tures can better exploit the efficiency potential in approximate programs than
simpler two-level machines, and we suggest a specific range of probability levels
that a general-purpose approximate ISA should support.

DECAF consists of a static type system that encodes an expression’s probabil-
ity of correctness, a type inference and code specialization mechanism based on
an SMT solver, and an optional dynamic type. We beginwith an overview of DE-
CAF and its goals before detailing each component in turn. We formalize a core
language, prove its soundness in Appendix B, and report on its implementation
and our empirical findings.

4.2 language overview

The goal of DECAF is to enforce quality constraints on programs that execute
on approximate hardware. Some proposals for approximate hardware, and our
focus in this work, provide “relaxed” operations that have a high probability of
yielding a correct output but a nonzero chance of producing arbitrarily wrong
data [59]. Architectures that allow even a very small probability of error can con-
serve a large fraction of operation energy [89, 223]. Recently, Venkataramani et
al. [213] suggested that hardware with multiple reliability levels—i.e., multiple
probabilities of correctness—could provide better efficiency by adapting to the
specific demands of approximate software. However, these fine-grained proba-
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bilistic operations compose in subtle ways to impact the correctness of coarser-
grained outputs.

Consider, for example, a Euclidean distance computation from a clustering
algorithm:
float distance(float[] v1, float[] v2) {

float total = 0.0;

for (int i = 0; i < v1.length; ++i) {

float d = v1[i] - v2[i];

total += d * d;

}

return sqrt(total);

}

This distance function has been shown to be resilient to approximation in clus-
tering algorithms [60]. To manually approximate the function, a programmer
would need to select the reliability of each arithmetic operator and determine
the overall reliability of the output.

In DECAF, the programmer can instead specify only the reliability of the out-
put: here, the return value. For other values, where the “right” reliability levels
are less obvious, the programmer can leave the probability inferred. The pro-
grammer decides only which variables may tolerate some degree of approxima-
tion andwhichmust remain fully reliable. The programmermaywrite, for exam-
ple, @Approx(0.9) float for the return type to specify that the computed value
should have at least a 90% probability of being correct. The intermediate value
d can be given the unparameterized type @Approx float to have its reliability
inferred, and the loop induction variable i can be left reliable to avoid compro-
mising control flow. The programmer never needs to annotate the operators -,
*, and +; these reliabilities are inferred. More simply, the programmer places an-
notations where she can make sense of them and relies on inference where she
cannot. Sections 4.3 and 4.4 describe the type system and inference.

DECAF also adapts reused code for different reliability levels. The sqrt func-
tion in the code above, for example, may be used in several contexts with vary-
ing reliability demands. To adapt the sqrt function to the reliability contexts in
distance and other code, DECAF’s type inference creates a limited number of
clones of sqrt based on the (possibly inferred) types of the function’s arguments
and result. The operations in each clone are specialized to provide the optimal ef-
ficiency for its quality demands. Section 4.4.1 describes how DECAF specializes
functions.

Finally, DECAF provides optional dynamic tracking to cope with code that is
difficult or impossible to analyze statically. In our Euclidean-distance example,
the for loop has a data-dependent trip count, so a sound static analysis would
need to conservatively assume it executes an unbounded number of times. Mul-
tiplying an operator’s accuracy probability approaches zero in the limit, so any
conservative estimate, as in Rely [29], must assign the total variable the prob-
ability 0.0—no guarantees. DECAF’s @Dyn type qualifier adds dynamic analysis
for these situations. By giving the type @Dyn float to total, the programmer re-
quests limited dynamic reliability tracking—the compiler adds code to the loop
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s ≡ T v := e | v := e | s ; s | if e s s |while e s | skip

e ≡ c | v | e⊕p e | endorse(p, e) | check(p, e) | track(p, e)

⊕ ≡ + | − | × | ÷
T ≡ q τ

q ≡ @Approx(p) | @Dyn
τ ≡ int | float
v ∈ variables, c ∈ constants, p ∈ [0.0, 1.0]

(a) Core language.

e ≡ · · · | e⊕ e | check(e)
q ≡ · · · | @Approx

(b) With type inference.

Figure 6: Syntax of the DECAF language. The inferred forms (b) allow omission
of the explicit probabilities in the core language (a).

to compute an upper bound on the reliability loss at run time. The programmer
then requests a dynamic check, and a transition back to static tracking, with an
explicitcheck() cast. Section 4.5 describesDECAF’s dynamic type and run-time
checks.

By combining all of these features, one possible approximate implementation
of distance in DECAF reads:
@Approx(0.9) float distance(float[] v1, float[] v2) {

@Dyn float total = 0.0;

for (int i = 0; i < v1.length; ++i) {

@Approx float d = v1[i] - v2[i];

total += d * d;

}

return sqrt(check(total));

}

4.3 probability type system

The core concept inDECAF is an expression’s probability of correctness: the goal is
to specify and control the likelihood that, in any given execution, a value equals
the corresponding value in an error-free execution. This section describes DE-
CAF’s basic type system, in which each type and operation is explicitly qualified
to encode its correctness probability. Later sections add inference, functions and
function cloning, and optional dynamic tracking.

Figure 6 depicts the syntax for a simplified version of DECAF. A type qualifier
q indicates the probability that an expression is correct: for example, the type
@Approx(0.9) int denotes an integer that is correct in least 90% of executions.
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The basic language also provides approximate operators, denoted⊕p where p is
the chance that the operation produces a correct answer given correct inputs. (We
assume that any operator given an incorrect input produces an incorrect output,
although this assumption can be conservative—for example, when multiplying
an incorrect value by zero.)

The language generalizes the EnerJ language from the previous chapter, where
types are either completely precise or completely approximate (providing no
guarantees). DECAF has no distinct “precise” qualifier; instead, the @Precise

annotation is syntactic sugar for @Approx(1.0). EnerJ’s @Approx is equivalent
to DECAF’s @Approx(0.0). In our implementation, as in EnerJ, the precise qual-
ifier, @Approx(1.0), is the default, so programmers can incrementally annotate
reliable code to safely enable approximation.

information flow and subtyping For soundness, DECAF’s type sys-
tempermits data flow fromhigh probabilities to lower probabilities but prevents
low-to-high flow:
@Approx(0.9) int x = ...;

@Approx(0.8) int y = ...;

y = x; // sound

x = y; // error

Specifically, we define a subtyping rule so that a type is a subtype of other types
with lower probability:

p ≥ p′

@Approx(p) τ ≺ @Approx(p′) τ

We control implicit flows by enforcing that only fully reliable types, of the form
@Approx(1.0) τ, may appear in conditions in if and while statements. (Ap-
pendix B gives the full type type system.)

Endorsement expressions provide an unsound escape hatch from DECAF’s
information flow rules. If an expression e has a type q τ, then endorse(0.8, e)

has the type @Approx(0.8) τ regardless of the original qualifier q.

approximate operations DECAF provides primitive arithmetic opera-
tions parameterized by a correctness probability. For example, the expression
x +0.9 y produces the sum of x and y at least 90% of the time but may return
garbage otherwise. These operators encapsulate approximate arithmetic instruc-
tions implemented in approximate hardware architectures, such as Truffle [59]
and QUORA [213]. These architectures operate more efficiently when perform-
ing operations with lower probabilities. The annotation on an operator in DE-
CAF is a lower bound on the correctness probability for the instruction that im-
plements it. For example, if the hardware provides an approximate add instruc-
tion with a correctness probability of 0.99, then it suffices to implement +0.9 in
DECAF. Similarly, a reliable add instruction suffices to implement an approxi-
mate addition operator with any probability (although it saves no energy).

The correctness probability for an operation x +0.9 y is at least the product of
the probabilities that x is correct, y is correct, and the addition behaves correctly
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(i.e., 0.9). To see this, let Pr[e] denote the probability that the expression e is
correct and Pr

[
⊕p

]
be the probability that an operator behaves correctly. Then

the joint probability for a binary operation’s correctness is:

Pr
[
x ⊕p y

]
= Pr

[
x, y,⊕p

]
= Pr[x] · Pr[y | x] · Pr

[
⊕p | x, y

]
Theoperator’s correctness is independent of its inputs, soPr

[
⊕p | x, y

]
is p. The

conditional probability Pr[y | x] is at least Pr[y]. This bound is tight when the
operands are independent but conservative when they share some provenance,
as in x + x. So we can bound the overall probability:

Pr
[
x ⊕p y

]
≥ Pr[x] · Pr[y] · p

DECAF’s formal type systemcaptures this reasoning in its rule defining the result
type qualifier for operators:

Γ ⊢ e1 : @Approx(p1) τ1

Γ ⊢ e2 : @Approx(p2) τ2 τ3 = optype(τ1, τ2) p′ = p1 · p2 · pop

Γ ⊢ e1 ⊕pop e2 : @Approx(p′) τ3

where optype defines the unqualified types. Appendix B lists the full set of rules.
This basic type system soundly constrains the correctness probability for every

expression. The next two sections describe extensions that improve its expres-
siveness.

4.4 inferring probability types

We introduce type inference to address the verbosity of the basic system. With-
out inference, DECAF requires a reliability level annotation on every variable
and every operation in the program. Wewant to allow the programmer to add re-
liability annotations only at outputs where requirements are intuitive. In the Eu-
clidean distance example above, we want to uphold a 90% correctness guarantee
on the returned value without requiring explicit probabilities on each +, *, and
float. If a programmer wants to experiment with different overall output relia-
bilities for the distance function, she should not need to manually adjust the in-
dividual operators and the sqrt call tomeet a new requirement. Instead, the pro-
grammer should express only important output correctness requirements while
letting the compiler infer the details.

We extend DECAF to make probability annotations optional on both types
and operations. The wildcard type qualifier is written @Approxwithout a param-
eter. Similarly,⊕ without a probability denotes an inferred operator.

DECAF uses a constraint-based type inference approach to determine oper-
ation reliabilities and unspecified types. While constraint-based type inference
is nothing new, our type system poses a distinct challenge in that its types are
continuous. The situation is similar to Chlorophyll’s spatial-scheduling type sys-
tem [151], where a type assignment incurs a computational cost that needs to be
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minimized. We use an SMT solver to find real-valued type assignments given
constraints in the form of inequalities.

As an example, consider a programwith three unknown reliabilities: two vari-
ables and one operator.
@Approx int a, b; ...;

@Approx(0.8) int c = a + b;

Theprogramgenerates a trivial equality constraint for the annotated variable c, a
subtyping inequality for the assignment, and a product constraint for the binary
operator:

pc = 0.8 pc ≤ pexpr pexpr = pa · pb · pop

Here, pop denotes the reliability of the addition itself and pexpr is the reliability
of the expression a + b. Solving the system yields a valuation for pop, the oper-
ator’s reliability.

DECAF’s constraint systems are typically underconstrained. In our example,
the valuation pa = pb = 1, pop = 0.8 satisfies the system, but other valuations
are also possible. We want to find a solution that maximizes energy savings. En-
ergy consumption is a dynamic property, but we can optimize a proxy: specifi-
cally, we minimize the total reliability over all operations in the program while
respecting the explicitly annotated types. We encode this proxy as an objective
function and emit it along with the constraints. We leave other approaches to
formulating objective functions, such as profiling or static heuristics, to future
work.

DECAF generates the constraints for a program and invokes the Z3 SMT
solver [52] to solve them and to minimize the objective function. The compiled
binary, including reliability values for each operator, may be run on a hardware
simulator to observe energy usage.

4.4.1 Function Specialization

DECAF’s inference system is interprocedural: parameters and return values can
have inferred approximate types. In the Euclidean distance code above, for ex-
ample, the square root function can be declared with wildcard types:
@Approx float sqrt(@Approx float arg) { ... }

A straightforward approach would infer a single type for sqrt compatible with
all of its call sites. But this can be wasteful: if sqrt is invoked both from highly
reliable code and from code with looser requirements, a “one-size-fits-all” type
assignment for sqrt will be unnecessarily conservative for the more approxi-
mate context. Conversely, specializing a version of sqrt for every call site could
lead to an exponential explosion in code size.

Instead, we use constraint solving to specialize functions a constant number
of times according to calling contexts. The approach resembles traditional proce-
dure cloning [50] but exploits DECAF’s SMT formulation to automatically iden-
tify the best set of specializations. The programmer enables specialization by
giving at least one parameter type or the return type of a function the inferred
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@Approx qualifier. Each call site to a specializable function can then bind to one
of the versions of the callee. The DECAF compiler generates constraints to con-
vey that every call must invoke exactly one specialized version.

For example, in this context for a call to sqrt:
@Approx(0.9) float a = ...;

@Approx(0.8) float r = sqrt(a);

The compiler generates constraints resembling:
pa = 0.9 pr = 0.8 pr ≤ pcall

(pcall ≤ pret1 ∧ parg1 ≤ pa) ∨ (pcall ≤ pret2 ∧ parg2 ≤ pa)

Here, pret1 and pret2 denote the reliability of sqrt’s return value in each of two
versions of the function while parg1 and parg2 denote the argument. This disjunc-
tion constrains the invocation to be compatible with at least one of the versions.

The compiler also generates constraint variables—not shown above—that con-
tain the index of the version “selected” for each call site. When inferring types for
sqrt itself, the compiler generates copies of the constraints for the body of the
function corresponding to each potential specialized version. Each constraint
system binds to a different set of variables for the arguments and return value.

DECAF’s optimization procedure produces specialization sets that minimize
the overall objective function. The compiler generates code for each function
version and adjusts each call to invoke the selected version.

Like unbounded function inlining, unbounded specialization can lead to a
combinatorial explosion in code size. To avoid this, DECAF constrains each
function to at most k versions, a compile-time parameter. It also ensures that all
specialized function versions are live—bound to at least one call site—to prevent
the solver from “optimizing” the program by producing dead function variants
and reducing their operator probabilities to zero.

The compiler also detects recursive calls that lead to cyclic dependencies and
emits an error. Recursion requires that parameter and return types be specified
explicitly.

4.5 optional dynamic tracking

A static approach to constraining reliability avoids run-time surprises but be-
comes an obstacle when control flow is unbounded. Case-by-case solutions for
specific forms of control flow could address some limitations of static tracking
but cannot address all dynamic behavior. Instead, we opt for a general dynamic
mechanism.

Inspired by languages with gradual and optional typing [209], we provide op-
tional run-time reliability tracking via a dynamic type. The data-dependent loop
in Section 4.2’s Euclidean distance function is one examplewhere dynamic track-
ing fits. Another important pattern where static approaches fall short is conver-
gent algorithms, such as simulated annealing, that iteratively refine a result:
@Approx float result = ...;

while (fitness(result) > epsilon)

result = refine(result);
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In this example, the result variable flows into itself. A conservative static ap-
proach, such as our type inference, would need to infer the degenerate type
@Approx(0.0) float for result. Fundamentally, since the loop’s trip count is
data-dependent, purely static solutions are unlikely to determine an appropriate
reliability level for result. Previous work has acknowledged this limitation by
abandoning guarantees for any code involved in dynamically bounded loops [29].

To cope with these situations, we add optional dynamic typing via a @Dyn type
qualifier. The compiler augments operations involving @Dyn-qualified typeswith
bookkeeping code to compute the probability parameter for each result. Ev-
ery dynamically tracked value has an associated dynamic correctness probability
field that is managed transparently by the compiler. This dynamic tracking fol-
lows the typing rules analogous to those for static checking. For example, an ex-
pression x +0.9 y where both operands have type @Dyn float produces a new
@Dyn float; at run time, the bookkeeping code computes the dynamic correct-
ness as the product of x’s dynamic probability value, y’s probability, and the op-
erator’s probability, 0.9.

Every dynamic type@Dyn τ is a supertype of its static counterparts@Approx τ

and @Approx(p) τ. When a statically typed value flows into a dynamic variable,
as in:
@Approx(0.9) x = ...;

@Dyn y = x;

The compiler initializes the run-time probability field for the variable y with x’s
static reliability, 0.9.

Flows in the opposite direction—from dynamic to static—require an explicit
dynamic cast called a checked endorsement. For an expression e of type @Dyn τ,
the programmerwrites check(p, e) to generate code that checks that the value’s
dynamic probability is at least p and produce a static type @Approx(p) τ. If the
check succeeds, the static type is sound. If it fails, the checked endorsement raises
an exception. The program can handle these exceptions to take corrective action
or fall back to reliable re-execution.

This dynamic tracking strategy ensures that run-time quality exceptions are
predictable. In a program without (unchecked) endorsements, exceptions are
raised deterministically: the program either always raises an exception or never
raises one for a given input. This is because control flow is fully reliable and the
dynamic probability tracking depends only on statically-determined operator
probabilities, not the dynamic outcomes of approximate operations.

In our experience, @Dyn is only necessarywhen an approximate variable forms
a loop-carried dependency. Section 4.8 gives more details on the placement and
overhead of the @Dyn qualifier.

interaction with inference Like explicitly parameterized types, DE-
CAF’s inferred static types can interact bidirectionally with the @Dyn-qualified
types. When a value with an inferred type flows into a dynamic type, as in:
@Approx x = ...;

@Dyn y = x;
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The assignment into y generates no constraints on the type of x; any inferred
type can transition to dynamic tracking. (The compiler emits a warnings when
no other code constrains x, a situation that can also arise in the presence of en-
dorsements. See the next section.)

Inference can also apply when transitioning from dynamic to static tracking
with a checked endorsement. DECAF provides a check(e) variant that omits
the explicit probability threshold and infers it. This inferred parameter is useful
when other constraints apply, as in the last line of the Euclidean distance example
above:
return sqrt(check(total));

Theresult of the sqrt call needs tomeet the programmer’s @Approx(0.9) float

constraint on the return type, but the correctness probability required on total

to satisfy this demand is not obvious—it depends on the implementation of sqrt.
The compiler can infer the right check threshold, freeing the programmer from
manual tuning.

Operatorswith @Dyn-typedoperations cannot be inferred. Instead, operations
on dynamic values are reliable by default; the programmer can explicitly anno-
tate intermediate operations to get approximate operators.

4.6 using the language

This sectiondetails twopractical considerations inDECAFbeyond the coremech-
anisms of inference, specialization, and dynamic tracking.

constraint warnings In any type inference system, programmers can
encounter unintended consequences when constraints interact in unexpected
ways. To guard against two common categories of mistakes, the DECAF com-
piler emits warnings when a program’s constraint system ether allows a probabil-
ity variable to be 0.0 or forces a probability to 1.0. Each case indicates a situation
that warrants developer attention.

An inferred probability of 0.0 indicates that a variable is unconstrained—no
dependency chain connects the value to an explicit annotation. Unconstrained
types can indicate dead code, but they can also signal some legitimate uses that
require additional annotation. If an inferred variable flows only into endorse-
ments and @Dyn variables, and never into explicitly annotated types, it will have
no constraints. Without additional annotation, the compilerwill use themost ag-
gressive approximation parameter available in the hardware. The programmer
can add explicit probabilities to constrain these cases.

Conversely, an inferred probability of 1.0—i.e., no approximation at all—can
indicate a variable that flows into itself, as in the iterative refinement example in
the previous section or the total accumulation variable in the earlier Euclidean
distance example. This self-flow pattern also arises when updating a variable as
in x = x + 1 where x is an inferred @Approx int. In these latter situations, a
simple solution is to introduce a new variable for the updated value (approximat-
ing a static single assignment transformation). More complex situations require
a @Dyn type.
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hardware profiles While DECAF’s types and inference are formulated
using a continuous range of probabilities, realistic approximate hardware is likely
to support only a small number of discrete reliability levels [59, 213]. The opti-
mal number of levels remains an open question, so different machines will likely
provide different sets of operation probabilities. A straightforward and portable
approach to exploiting this hardware is to round each operation’s probability
up to the nearest hardware-provided level at deployment time. When there is
no sufficiently accurate approximation level, a reliable operation can be soundly
substituted.

We also implement and evaluate an alternative approach that exploits the hard-
ware profile of the intended deployment platform at compile time. The compiler
can use such an a priori hardware specification to constrain each variable to one
of the available levels. The SMT solver can potentially find a better valuation
of operator probabilities than with post-hoc rounding. (This advantage is anal-
ogous to integer linear programming, where linear programming relaxation fol-
lowed by rounding typically yields a suboptimal but more efficient solution.)

In our evaluation, we study the effects of finite-level hardware with respect to
a continuous ideal and measure the advantage of a priori hardware profiles.

4.7 formalism

A key feature in DECAF is its conservative quality guarantee. In the absence of
unchecked endorsements, a DECAF program’s probability types are sound: an
expression’s static type gives a lower bound on the actual run-time probability
that its value is correct. The soundness guarantee applies even to programs that
combine static and dynamic tracking. To make this guarantee concrete, we for-
malize a core of DECAF and prove its soundness.

The formal language represents a version of DECAF where all types have been
inferred. Namely, the core language consists of the syntax in Figure 6a. It ex-
cludes the inferred expressions and types in Figure 6b but includes approximate
operators, dynamic tracking, and endorsements. (While we define the semantics
for both kinds of endorsements for completeness, we will prove a property for
programs having only checked endorsements. Unchecked endorsements are an
unsound escape hatch.)

The core language also includes one expression that is unnecessary in the full
version of DECAF: track(p, e). This expression is a cast from any static type
@Approx(p′) τ to its dynamically-tracked equivalent, @Dyn τ. At run time, it
initializes the dynamic probability field for the expression. In the full language,
the compiler can insert this coercion transparently, as with implicit int-to-float
coercion in Java or C.

This section gives an overview of the formalism’s type system, operational se-
mantics, and main soundness theorem. Appendix B gives the full details and
proofs.
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types There are two judgments inDECAF’s type system: one for expressions,
Γ ⊢ e : T, and another for statements, Γ ⊢ s : Γ′, which builds up the static
context Γ′.

One important rule gives the static type for operators, which multiplies the
probabilities for both operands with the operator’s probability:

Γ ⊢ e1 : @Approx(p1) τ1

Γ ⊢ e2 : @Approx(p2) τ2 τ3 = optype(τ1, τ2) p′ = p1 · p2 · pop

Γ ⊢ e1 ⊕pop e2 : @Approx(p′) τ3

Here, optype is a helper judgment defining operators’ unqualified types.

operational semantics We present DECAF’s run-time behavior using
operational semantics: small-step for statements and large-step for expression
evaluation. Both sets of semantics are nondeterministic: the operators in DE-
CAF can produce either a correct result number, c, or a special error value, de-
noted□.

To track the probability that a value is correct (that is, not□), the judgments
maintain a probability map S for all defined variables. There is a second proba-
bility map, D, that reflects the compiler-maintained dynamic probability fields
for @Dyn-typed variables. Unlike D, the bookkeeping map S is an artifact for
defining our soundness criterion—it does not appear anywhere in our imple-
mentation.

The expression judgment H; D; S; e ⇓p V indicates that the expression e eval-
uates to the value V and is correct with probability p. We also use a second
judgment, H; D; S; e ⇓p V, pd, to denote dynamically-tracked expression eval-
uation, where pd is the computed shadow probability field. As an example, the
rules for variable lookup retrieve the “true” probability from the S map and the
dynamically-tracked probability field from D:

var
v ̸∈ D

H; D; S; v ⇓S(v) H(v)

var-dyn
v ∈ D

H; D; S; v ⇓S(v) H(v), D(v)

The statement step judgment is H; D; S; s −→ H′; D′; S′; s′. The rule for mu-
tation is representative:

H; D; S; e ⇓p V

H; D; S; v := e −→ H, v 7→ V; D; S, v 7→ p; skip

It updates both the heap H and the bookkeeping map S. A similar rule uses the
dynamically-tracked expression judgment and also updates D.

soundness To express our soundness property, we define a well-formedness
criterion that states that a dynamic probability field map D and a static context
Γ together form lower bounds on the “true” probabilities in S. We write this
property as ⊢ D, S : Γ.

Definition 1 (Well-Formed). ⊢ D, S : Γ iff for all v ∈ Γ,
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• If Γ(v) = @Approx(p) τ, then p ≤ S(v) or v /∈ S.

• If Γ(v) = @Dyn τ, then D(v) ≤ S(v) or v /∈ S.

The soundness theorem states that D and S remain well-formed through the
small-step statement evaluation semantics.

Theorem 1 (Soundness). For all programs s with no endorse expressions, for all
n ∈ N where ·; ·; ·; s −→n H; D; S; s′, if · ⊢ s : Γ, then ⊢ D, S : Γ.

See Appendix B for the full proof of the theorem. The appendix also states an era-
sure theorem to show that S does not affect the actual operation of the program:
its only purpose is to define soundness for the language.

4.8 evaluation

We implemented DECAF and evaluated it using a variety of approximate appli-
cations. The goals of this evaluation were twofold: to gain experience with DE-
CAF’s language features; and to apply it as a testbed to examine the implications
of application-level constraints for hardware research.

4.8.1 Implementation

We implemented a type checker, inference system, and runtime for DECAF as
an extension to Java. The implementation extends the simpler EnerJ type sys-
tem [180] and is similarly based on Java 8’s extensible type annotations [56]. The
compiler usesAST instrumentation and a runtime library to implement dynamic
tracking for the @Dynqualifier. For Java arrays, the implementation uses conser-
vative object-granularity type checking and dynamic tracking.

The compiler generates constraints for the Z3 SMT solver [52] to check sat-
isfiability, emit warnings, and tune inferred operator probabilities. The con-
straint systems exercise Z3’s complete solver for nonlinear real arithmetic. To
stay within the reach of this complete solver, we avoided generating any integer-
valued constraints, which can quickly cause Z3’s heuristics to reject the query as
potentially undecidable.

Z3 does not directly support optimization problems, so we use a straightfor-
ward search strategy to minimize the objective function. The linear search ex-
ecutes queries repeatedly while reducing the bound on the objective until the
solver reports unsatisfiability or times out (after 1 minute in our experiments).
Theoptimization strategy’s dependence on real-time behaviormeans that the op-
timal solutions are somewhat nondeterministic. Also, more complex constraint
systems can time out earlier and lead to poorer optimization results—meaning
that adding constraints meant to improve the solution can paradoxically worsen
it. In practice, we observe this adverse effect for two benchmarks where hard-
ware constraints cause an explosion in solver time (see below).

We optimize programs according to a static proxy for a program’s overall ef-
ficiency (see Section 4.4). Our evaluation tests this objective’s effectiveness as a
static proxy for dynamic behavior by measuring dynamic executions.
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4.8.2 Experimental Setup

Weconsider an approximate processor architecturewhere arithmetic operations
may have a probability of failure, mirroring recent work in hardware design [59,
89, 213, 223]. Because architecture research on approximate computing is at
an early stage, we do not model a specific CPU design: there is no consensus
in the literature surrounding which reliability parameters are best or how error
probabilities translate into energy savings. Instead, we design our evaluation to
advance the discussion by exploring the constraints imposed by language-level
quality demands. We explore error levels in a range commensurate with current
proposals—i.e., correctness probabilities 99% and higher—to inform the specific
parameters that hardware should support. Researchers can use this platform-
agnostic data to evaluate architecture designs.

We implemented a simulation infrastructure that emulates such a machine
with tunable instruction reliability. The simulator is based on the freely available
implementation from EnerJ (Chapter 3), which uses a source-to-source transla-
tion of Java code to invoke a run-time library that injects errors and collects
execution statistics. To facilitate simulation, three pieces of data are exported
at compile time and imported when the runtime is launched. Every operator
used in an approximate expression is exported with its reliability. When an op-
erator is encountered, the simulator looks up its reliability or assumes reliable
execution if the operator is not defined. To facilitate @Dyn expression tracking,
the compiler exports each variable’s reliability and the runtime imports this data
to initialize dynamic reliability fields. Finally, the run-time uses a mapping from
invocations to function variants to look up the reliabilities specialized functions.

Performance statistics were collected on a 4-core, 2.9 GHz Intel Xeon ma-
chinewith 2-way SMT and 8GBRAMrunning Linux. We usedOpenJDK1.7.0’s
HotSpot VM and Z3 version 4.3.1.

4.8.3 Benchmarks and Annotation

We evaluate 8 of the Java benchmarks from the evaluation of EnerJ (see Sec-
tion 3.6). Table 4 lists the applications and statistics about their source code and
annotations.

The original EnerJ annotations distinguish approximation-tolerant variables
(using EnerJ’s @Approx) from reliable variables (the default). To adapt the pro-
grams forDECAF,we leftmost of these type annotations as the inferred @Approx
annotation. On the output of each benchmark and on a few salient boundaries
between software components, we placed concrete @Approx(p) reliability re-
strictions. These outputs have a variety of types, including single values, arrays
of pixels, and strings. Informed by compiler warnings, we used @Dyn for vari-
ables involved in loop-carried dependencies where static tracking is insufficient
alongwith check() casts to transition back to static types. Finally, we parameter-
ized some @Approx annotations to add constraints where theywere lacking—i.e.,
when inferred values flow into endorsements or @Dyn variables exclusively.
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For each application, we applied the @Approx(0.9) qualifier to the overall out-
put of the computation. This and other explicit probability thresholds dictate the
required reliability for the program’s operations, whichwemeasure in this evalu-
ation. We believe these constraints to be representative of practical deployments,
but deployment scenarios with looser or tighter output quality constraints will
lead to correspondingly different operator probability requirements.

4.8.4 Results

We use these benchmarks to study the implications of our benchmarks on the
design of approximate hardware. Key findings (detailed below) include:

• By tuning a application to match a specific hardware profile, a compiler
can achieve better efficiency than with hardware-oblivious optimization.
Hardware-targetedoptimization improves efficiency evenon a simple two-
level approximate architecture.

• Most benchmarks can make effective use of multiple operator probabili-
ties. Processors should provide at least two probability levels for approx-
imate operations to maximize efficiency.

• Operator correctness probabilities between 1.0− 10−2 and 1.0− 10−8

are most broadly useful. Probabilities outside this range benefit some
benchmarks but are less general.

These conclusions reflect the characteristics of our benchmarks and their anno-
tations, which in turn are based on recent work on approximate computing.

4.8.5 Sensitivity to Hardware Reliability Levels

An ideal approximate machine would allow arbitrarily fine-grained reliability
tuning to exactlymatch the demands of every operation in any application. Real-
istically, however, an architecture will likely need to provide a fixed set of prob-
ability levels. The number of levels will likely be small to permit efficient in-
struction encoding. We use DECAF to evaluate the impact of this restriction by
simulating different hardware configurations alongside the ideal, continuously
approximable case.

We simulate architectural configurations with two to eight levels of reliability.
A two-level machine has one reliable operation mode (p = 1.0) and one ap-
proximate mode, for which we choose p = 0.99. This configuration resembles
the Truffle microarchitecture, which provides only one approximate mode [59].
We evaluate multi-level configurations that each add a probability level with one
more “nine”: p = 0.999, p = 0.9999, and so on, approaching fully reliable op-
eration. Architecture proposals suggest that even low probabilities of error can
yield energy savings [78, 86, 90].

solving vs. rounding levels To run a DECAF-compiled program on
realistic approximate hardware, two strategies are possible for selecting the prob-
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Figure 7: Sensitivity to hardware restrictions for two representative bench-
marks. The horizontal axes show the probability levels while the ver-
tical axes reflect the fraction of all approximate operations in an exe-
cution assigned to each level. The rounded executions were assigned to
levels after solving without restrictions; the solved executions used the
hardware profile during type inference.
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ability level for each operation. A simplistic approach rounds the inferred prob-
abilities up to the nearest level. The compiler can potentially do better by using
the SMT solver to apply hardware constraints during type inference if the de-
ployment architecture is known ahead of time.

Figure 7 compares the two approaches, denoted solving and rounding, for two
of our benchmarks on two-, three-, and four-level machines. Constrained solv-
ing shifts the distribution toward lower probabilities in each of the three ma-
chines. When mc runs on a three-level machine, for example, the simple round-
ing strategy rarely uses the lowest p = 0.99 reliability level; if we instead inform
the solver that this level is available, the benchmark can use it for a third of its ap-
proximate operations. A similar effect arises for raytracer, for which the solver
assigns the lowest reliability level to about half of the operations executed while
rounding makes the majority of operations fully reliable.

These differences suggest that optimizing an approximate program for a spe-
cific hardware configuration can enable significant energy savings, even for sim-
ple approximate machines with only two probability levels. DECAF’s solver-based
tuning approach enables this kind of optimization.

While solving for hardware constraints can lead to better efficiency at run
time, it can also be more expensive at compile time. The SMT queries for most
benchmarks took only a few minutes, but two outliers—sor and zxing—took
much longer when level constraints were enabled. For sor, solving succeeded
for machine configurations up to four levels but exceeded a 30-minute timeout
for larger level counts; zxing timed out even in the two-level configuration. In
the remainder of this evaluation, we use the more sophisticated solving scheme,
except for these cases where solving times out and we fall back to the cheaper
rounding strategy.

probability granularity More hardware probability levels can enable
greater efficiency gains by closely matching applications’ probability require-
ments. Figure 8 depicts the allocation of approximate operations in benchmark
executions to reliability levels for a range of hardware configurations from 2 to
8 levels. In this graphic, white and lighter shades indicate more reliable execu-
tion and correspondingly lower efficiency gains; darker shades indicate more
opportunity for energy savings.

Five of the eight benchmarks use multiple operator probability levels below
1.0 when optimized for hardware that offers this flexibility. This suggests that
multi-level approximate hardware designs like QUORA [213] can unlock more
efficiency gains in these benchmarks than simpler single-probability machines
like Truffle [59]. The exceptions are imagefill, lu, and smm, where a single prob-
ability level seems to suffice for the majority of operations.

Most of our benchmarks exhibit diminishing returns after a certain number of
levels. For example, mc increases its amount of approximation up to four levels
but does not benefit from higher level counts. Similarly, imagefill’s benefits do
not increase after six levels. In contrast, raytracer and zxing see improvements
for configurations up to eight levels.
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Figure 9: Approximate operation probabilities on an ideal continuous machine.
The gray boxes show the probability range accommodated by our sim-
ulated discrete-level machines, while the white box represents higher-
reliability operations and the black boxes are lower-reliability oper-
ations. The hatched box indicates approximate operations that are
forced to execute reliably by program constraints, even on ideal “con-
tinuous” hardware.

In an extreme case, smm falls back to reliable execution for nearly all of its
operations in every configuration we simulated except for the eight-level ma-
chine. This suggests that a two-level machine would suffice for this benchmark,
provided the single approximate operation probability were high enough. On
the other hand, specializing a two-level architecture to this outlier would limit
potential efficiency gains for other applications.

Increasing reliability levels do not strictly lead to efficiency benefits in DE-
CAF’s solver-based approach. For sor, the added constraints for more granular
hardware levels lead to a more complex SMT solver query and eventually time-
outs. After four levels, the solver failed to optimize the benchmark and we fell
back to the naïve rounding strategy, which leads to lower efficiency gains. These
timeouts are partially due toDECAF’s straightforward encoding of program and
hardware constraints; future work on optimizing DECAF’s constraint systems
for efficient solving could make larger level counts more tractable.

comparison to ideal An ideal approximate architecture that features ar-
bitrary probability levels could offermore flexibility at the extremes of the proba-
bility range. To evaluate the importance of higher and lower levels, we simulated
an ideal continuous machine. Figure 9 shows the fraction of approximate oper-
ations in executions of each benchmark that used probabilities below the range
of our realistic machines (below 99% probability) and above the range (above
p = 1.0− 10−8). The figure also shows the operations that executed with prob-
ability exactly 1.0 even on this continuous architecture, indicating that theywere
constrained by program requirements rather than hardware limitations.
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For all but one application, most operations lie in the range of probabilities
offered by our discrete machine simulations. Only three benchmarks show a
significant number of operations with probabilities below 99%, and one out-
lier, imagefill, uses these low-probability operations for nearly all of its ap-
proximable computations. The only benchmark that significantly uses higher-
probability operations is zxing, where about 20% of the operations executed had
a probability greater than 1.0− 10−8. Among our benchmarks, the 0.99 ≤ p ≤
0.99999999 probability range suffices to capture most of the flexibility offered
by an ideal machine.

example energy model Thegoal ofmeasuring error probabilities in this
evaluation is to allow hardware designers to plug in energy models. To give
a sense of the potential savings, we apply a simple energy model based on En-
erJ [180]: a correctness probability of 0.99 yields 30% energy savings over a pre-
cise operation, p = 10−4 saves 20%, p = 10−6 saves 10%, and other levels are
interpolated. More optimistic hardware proposals exist (e.g., Venkataramani et
al. [213]), but EnerJ’s conservative CPU-based model serves as a useful point of
comparison. On an eight-level machine, the total operation energy saved is:

Benchmark Rounded Solved

fft <1% <1%
imagefill 7% 22%
lu <1% 9%
mc 5% 23%
raytracer 1% 20%
smm 2% 2%
sor 12% —
zxing 1% —

The table shows the modeled energy reduction for both the hardware-oblivious
rounding strategy and the platform-specific solving strategy (except where the
solver timed out). The results reflect the above finding that solving yields better
savings than rounding after the fact.

4.8.6 Interprocedural Inference and Specialization

In all of our benchmarks, we used the inferred @Approx qualifier on function
parameters and return types to let the compiler propagate constraints interpro-
cedurally. This let uswrite simpler annotations that directly encoded our desired
output correctness constraints and avoid artificially aligning themwith function
boundaries. In some benchmarks—namely, lu and zxing—multiple call sites to
these inferred functions allowed the compiler to specialize variants and improve
efficiency.

In lu, for example, specialization was critical to making the benchmark take
advantage of approximate hardware. That benchmark uses a utility function that
copies approximate arrays. The factorization routine has three calls to the copy-
ing function, and each of the intermediate arrays involved have varying impact
on the output of the benchmark. When we limit the program to k = 1 function
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variants—disabling function specialization—all three of these intermediates are
constrained to have identical correctness probability, and all three must be as
reliable as the least tolerant among them. As a result, the benchmark as a whole
exhibits very little approximate execution: more than 99% of its approximate
operations are executed reliably (p = 1.0). By allowing k = 2 function special-
izations, however, the compiler reduces the fraction to 8%, and k = 3 special-
izations further reduce it to 7%. A similar pattern arises in the zxing benchmark,
where utility functions on its central data structure—a bit-matrix class used to
hold black-and-white pixel values—are invoked fromdifferent contexts through-
out the program.

4.8.7 Dynamic Tracking

The @Dyn type qualifier lets programmers request dynamic probability tracking,
in exchange for run-time overhead, when DECAF’s static tracking is too con-
servative. Table 4 shows the number of types we annotated with @Dyn in each
benchmark. Dynamic tracking was necessary at least once in every benchmark
except one (imagefill). Most commonly, @Dyn applied in loops that accumu-
late approximate values. For example, zxing has a loop that searches for image
patterns that suggest the presence of parts of a QR code. The actual detection
of each pattern can be statically tracked, but the loop also accumulates the total
size of the image patterns. Since the loop’s trip count depends on the input im-
age, dynamic tracking was necessary for precision: no nonzero static bound on
the size variable’s probability would suffice.

Table 4 also shows the fraction of operations in an execution of each bench-
mark that required dynamic tracking. In five of our eight benchmarks, less than
1% of the operations in the program need to be dynamically tracked, suggesting
that energy overhead would be minimal. In the remaining three benchmarks, a
significant portion of the application’s approximate and reliable operations re-
quired dynamic tracking. (Recall that operations on @Dyn-typed variables are
reliable by default but still require propagation of probability information.) In
the worst case, fft uses dynamic tracking for 55% of the operations in its execu-
tion.

In a simple implementation, each dynamically tracked operation expands out
to two operations, so the percentage of dynamically tracked operations is equiv-
alent to the overhead incurred. An optimizing compiler, however, can likely co-
alesce and strength-reduce the multiplications-by-constants that make up track-
ing code. In fft, for example, an inner loop reads two array elements, updates
them each with a series of four approximate operations, and writes them back.
A standard constant-propagation optimization could coalesce the four tracking
operations to a single update. In other cases, such as zxing’s pattern-search loop
described above, the correctness probability loss is directly proportional to the
loop trip count. Standard loop optimizations could hoist these updates out of
the loop and further reduce overhead.
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4.8.8 Tool Performance

Table 4 lists the running time of the inference system for each benchmark. The
total time includes time spent on the initial system-satisfiability query, the opti-
mization query series, parsing and analyzing the Java source code, and checking
for DECAF constraint warnings. Most of the time is spent in optimization, so
it can be faster to produce a satisfying but suboptimal type assignment. The op-
timization queries have a timeout of one minute, so the final SMT query in the
series can take at most this long; for several benchmarks, the solver returns un-
satisfiable before this timeout is reached. The compiler typically runs in about
1–20 minutes. One outlier is fft, whose constraint system is fast to solve be-
cause of the benchmark’s reliance on dynamic tracking.

These measurements are for a continuous configuration of the system rather
than a more expensive level-constrained version. Solver times for hardware-
constrained inference are comparable, except for the twobenchmarksmentioned
above that scale poorly and eventually time out: sor and zxing.

4.9 discussion

DECAF is a quality-focused complement to EnerJ. The basic idea is simple: gen-
eralize EnerJ’s all-or-nothing approximation binary to a continuum of accuracy
levels. Type inference, code specialization, and optional dynamic typing all ex-
tend the core idea to make the full system ergonomic.

DECAF’s type-inference approach in particular holds an important lesson for
convenient quality control mechanisms: programmers should be able to choose
where to control quality explicitly and, conversely, where to leave the details up
to the compiler. The next chapter, on probabilistic assertions, departs from a
type-based paradigm but preserves the same philosophy: it lets programmers
constrain quality where it makes the most sense.





5
PROBAB IL I ST IC ASSERT IONS

5.1 introduction

Traditional assertions express logical properties that help programmers design
and reason about the correctness of their program. Verification tools guarantee
that every execution will satisfy an assertion, such as the absence of null derefer-
ences or a legal value range for a variable. However, many applications produce
or consume probabilistic data, such as the relevance of a document to a search,
the distance to the nearest coffee shop, or the estimated arrival time of the next
bus. From smartphones with sensors to robots to machine learning to big data
to approximate computation, many applications use probabilistic values.

Current assertion languages and verification tools are insufficient in this do-
main. Traditional assertions do not capture probabilistic correctness because
they demand that a property hold on every execution. Recent work on infer-
ence in probabilistic programming languages builds language abstractions to
aid programmers in describing machine learning models but does not deal with
verification of probabilistic correctness properties [69, 129, 149, 159]. Sankara-
narayanan et al. [184] address the verification of programs in probabilistic pro-
gramming languages through polyhedral volume estimation, but this approach
limits the domain to programs with linear arithmetic over constrained proba-
bility distributions. In contrast, this work defines a semantics for computing in
mainstream languages over a broader set of distributions with sampling func-
tions but does not verify programs.

We propose probabilistic assertions (passerts), which express probabilistic pro-
gramproperties, and probabilistic evaluation, which verifies them. A passert state-
ment is a probabilistic logical statement over random variables. Probabilistic eval-
uation extracts, optimizes, and evaluates the distribution specified in a passert by
combining techniques from static verification, symbolic execution, and dynamic
testing.

A probabilistic assertion:
passert e, p, cf

means that the probability that the Boolean expression e holds in a given exe-
cution of the program should be at least p with confidence cf. The parameters
p (defaults to 0.5) and cf (defaults to 95%) are optional. Our analysis estimates
the likelihood that e is true, bounds any error in that estimate, and determines
whether that estimate is significantly different from p. For example, consider the

71



72 probabilistic assertions

following function, which adds Gaussian noise to users’ true locations to protect
their privacy.
def obfuscate_location(location):

noise = random.gauss(0,1)

d = distance(location, location + noise)

passert d < 10, 0.9, 95%

return location + noise

To ensure that obfuscation does not change a user’s true location too much, the
programmer asserts that the Euclidean distance between the true and obfuscated
location should be within 10 miles at least 90% of the time with 95% confidence.
While occasional outliers are acceptable, the programmer wants to ensure that
the common case is sufficiently accurate and therefore useful.

A traditional assertion—assert d < 10—does not express this intent. Since
the Gaussian distribution has a non-zero chance of adding any amount of noise,
some executionswillmake d greater than 10. Since these infrequent outlier cases
are possible, traditional verification must conclude that the assertion does not
hold.

Probabilistic evaluation checks the probabilistic logical statement over random
variables expressed by the passert. It first performs distribution extraction, which
is a symbolic execution that builds a Bayesian network, a directed, acyclic graph-
ical model. Nodes represent random variables from the program and edges be-
tweennodes represent conditional dependences between those randomvariables.
This process defines a probabilistic semantics in which all variables are distribu-
tions. Constants (e.g., x = 3) are point-mass distributions. Random distribu-
tions, both simple (uniform, Gaussian, etc.) and programmer-defined, are repre-
sented symbolically. Other variables are defined in terms of these basic distribu-
tions.

For example, let L, D, and N be the random variables corresponding to the
variables location, d, and noise in the above program. The passert constrains
the probability Pr[D < 10] given that L is a point-mass distribution and that N
is drawn from a Gaussian:

Pr[D < 10 | L = location, N ∼ N (0, 1)] > 0.9

This inequality constrains the probability of correctness for a particular input
location. Alternatively, programmers may express a distribution over expected
input locations by, for example, setting the location variable to sample from a
uniform distribution. The passert then measures the likelihood that the obfus-
cation will yield acceptable results for uniformly distributed input locations:

Pr[D < 10 | L ∼ U , N ∼ N (0, 1)] > 0.9

Our key insight is that, with this probabilistic semantics for passerts, we can
optimize the Bayesian network representation and significantly improve the ef-
ficiency of verification. Using known statistical properties, our optimizations
produce a simplified but equivalent Bayesian network. For example, we exploit
identities of common probability distributions and Chebyshev’s inequality. In



5.1 introduction 73

def obfuscate_
location(location):
  noise =
random.gauss(0,1)
  d = distance(l,
    location + noise)
  passert d < 10, 0.9
  return location+noise

✓
✓probabilistic 

program

Bayesian 
network IR

simplified
network

samples verification

distribution 
extraction optimization

exact 
check

sampling hypothesis test

§5.2.1

§5.2.2 §5.2.2

§5.1
§3, §4

probabilistic or 
concrete input

Figure 10: MAYHAP’s workflow to verify probabilistic assertions.

some cases, these simplifications are sufficient to facilitate direct computation
and verify the passert precisely. Otherwise, we sample the simplified Bayesian
network and perform a hypothesis test to statistically verify the passert. We use
acceptance sampling, a form of hypothesis testing, to bound the chance of both
false positives and false negatives subject to a confidence level. Programmers
can adjust the confidence level to trade off between analysis time and verifica-
tion accuracy.

We implement this approach in a tool called MAYHAP that takes C and C++
programs with passerts as inputs. MAYHAP emits either true, false, or unveri-
fiable along with a confidence interval on the assertion’s probability. Figure 10
gives anoverview. We implement the entire toolchain forMAYHAP in theLLVM
compiler infrastructure [101]. First, MAYHAP transforms a probabilistic C/C++
program into a Bayesian network that expresses the program’s probabilistic se-
mantics. For program inputs, developers provide concrete values or describe
input distributions. MAYHAP optimizes the Bayesian-network representation
using statistical properties and then either evaluates the network directly or per-
forms sampling.

We implement case studies that check the accuracy of approximate programs.
We also explore domains beyond approximate computing where probabilistic
correctness is also important: using data from sensors and obfuscating data for
user privacy. We show that passerts express their correctness properties and
that MAYHAP offers an average speedup of 24× over stress testing with rote
sampling. MAYHAP’s benefits over simple stress testing—repeated execution
of the original program—are threefold. First, statistical simplifications to the
Bayesian network representation reduce the work required to compute each
sample: for example, reducing the sum of two Gaussian distributions into a sin-
gle Gaussian halves the necessary number of samples. Second, distribution ex-
traction has the effect of partially evaluating the probabilistic program to slice
away the non-probabilistic parts of the computation. Sampling the resulting
Bayesian network eliminates wasteful re-execution of deterministic code. Third,
our approach either directly evaluates thepassertor derives a number of samples
sufficient for statistical significance. It thereby provides statistical guarantees on
the results of sampling that blind stress testing does not guarantee.
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5.2 programming model

This section presents an intuitive view of programs as probabilistic computa-
tions over random variables. For our purposes, a probabilistic program is an
ordinary imperative program that calls sampling functions for probability dis-
tributions [95]. Consider this simple program:
x = random.uniform(0,1)

w = 0.9

passert x < w, 0.90

This program samples from a uniformdistribution, ranging from0 to 1, assigns a
concrete value to w, and then asserts that the sample is less than 0.9 using the com-
parison x < w with 90% probability. An invocation of random.uniform returns
one sample from the distribution. The language provides a library of sampling
functions for common distributions, such as uniform, Gaussian, and Bernoulli
distributions. Programmers may define sampling functions for new distribu-
tions using arbitrary code.

Programmerswrite specifications of correctness inpasserts. Theabovepassert
is satisfiedbecause the probability that a randomsample fromU (0, 1) is less than
0.9 is exactly 90%.

To formalize this reasoning, we represent programs as Bayesian networks. A
Bayesian network is a directed, acyclic graphical model wherein nodes represent
random variables and edges represent conditional dependence between those
random variables.

< X < W

UX 0.9 W

Much like an expression tree, each node in the Bayesian network corresponds to
a value produced by the program. Unlike an expression tree, however, each node
represents a distribution rather than a single value. This network, for example,
contains three random variables (X, W , and X < W), one for each expression
executed in the program (random.uniform(0,1), 0.9, and x < w). The directed
edges represent how these random variables conditionally depend on one an-
other. For example, the node for the random variable X < W has edges from
two other nodes: X and W.

Because each variable is dependent only on its parents in a Bayesian network,
the probability distributions for each node are defined locally. In our example,
the distribution for the X < W node, a Bernoulli random variable, is:

Pr[X < W | X ∼ U , W = 0.9]

Computing the distribution for X < W requires only the distributions for its
parents, X and W. In this case, both parents are leaves in the Bayesian network:
a uniform distribution and a point-mass distribution.

One way to compute the distribution is to sample it. Sampling the root node
consists of generating a sample at each leaf and then propagating the values
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through the graph. Since Bayesian networks are acyclic, every node generates
only a single value per sample and the running time of each sample is bounded.

In this example, we can exploit the Bayesian network formulation to simplify
the graph and compute an exact solution without sampling. By definition, when
X is uniformly distributed, for any constant c ∈ [0, 1], Pr[X < c] = c. Using
this statistical knowledge, we replace the tree in our example with a single node
representing a Bernoulli distribution with probability 0.9.

The Bayesian network abstraction for probabilistic programs yields two ma-
jor advantages. First, it gives a probabilistic semantics to programs and passert
statements. Appendix C formalizes our probabilistic semantics and proves that
sampling the Bayesian representation is equivalent to sampling the original pro-
gram. Second, we exploit probabilistic algebras and statistical properties of ran-
dom variables to optimize the verification process. In some cases, we verify
passerts without sampling. Section 5.4.1 introduces these optimizations.

5.3 distribution extraction

Given a program with a passert e and either a concrete input or a distribution
over inputs, MAYHAP performs a probabilistic evaluation by building and opti-
mizing a Bayesian-network representation of the statements required to evalu-
ate the passert. This section describes distribution extraction, which is the first
step in this process. Distribution extraction produces a symbolic Bayesian net-
work representation that corresponds to the slice of the program contributing
to e. MAYHAP treats randomness as symbolic and deterministic components as
concrete. The process is similar to symbolic execution and to lazy evaluation in
functional languages.

Distribution extraction produces a Bayesian network that is equivalent to the
original program but is more amenable to statistical optimizations (enumerated
in the next section). Appendix C formalizes the process and proves an equiva-
lence theorem.

distributions as symbolic values MAYHAPperforms a forwardpass
over the program, concretely evaluating deterministic computations and intro-
ducing symbolic values—probability-distribution expression trees—to represent
probabilistic values. For example, the following statement:
a = b + 2

computes a concretely when b is not probabilistic. If, prior to the above state-
ment, the program assigns b = 5, then we perform the addition and set a = 7.
However, if b = gaussian(), we add a node to the Bayesian network, represent-
ing b symbolically as a Gaussian distribution. We then create a sum node for a
with two parents: b’s Gaussian and 2’s constant (point mass) distribution.

As this mixed symbolic and concrete execution proceeds, it eagerly evaluates
any purely deterministic statements but builds a Bayesian-network representa-
tion of the forward slice of any probabilistic statements. This process embodies
a symbolic execution in which the symbolic values are probability distributions.
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Our approach differs from typical symbolic execution in how it handles control
flow (see below).

When the analysis reaches a statement passert e, the tool records the Bayesian
network rooted at e. It then optimizes the network and samples the resulting
distribution. Compared to sampling the entire program repeatedly, sampling the
extracted distribution can be more efficient even without optimizations since it
eliminates redundant, non-probabilistic computation.

conditionals When conditionals and loops are based on purely concrete
values, distribution extractionproceeds downone side of the control flowbranch
as usual. When conditions operate on probabilistic variables, the analysis must
capture the effect of both branch directions.

To analyze the probability distribution of a conditional statement, we produce
conditional probabilities based on control-flow divergence. For example, con-
sider this simple program:
if a:

b = c

else:

b = d

in which a is probabilistic. Even if both c and d are discrete, the value of b is
probabilistic since it depends on the value of a. We can write the conditional
probability distributions Pr[B] for b conditioned on both possible values for a:

Pr[B | A = true] = Pr[C]

Pr[B | A = false] = Pr[D]

Instead, to enable more straightforward analysis, we marginalize the condition a
to produce an unconditional distribution for b. Using marginalization, we write
the unconditional distribution Pr[B] as:

Pr[B] = ∑
a

Pr[B | A = a]Pr[A = a]

= Pr[B | A = true] · Pr[A = true]

+ Pr[B | A = false] · Pr[A = false]

= Pr[C] · Pr[A = true] + Pr[D] · (1− Pr[A = true])

This expression computes the distribution for b as a function of the distributions
for a, c, and d. Intuitively, the probabilistic evaluation rewrites the condition to
read b = a * c + (1 - a) * d. This algebraic representation enables some
optimizations described in Section 5.4.1.

loops and external code Loops with probabilistic conditions can, in
general, run for an unbounded number of iterations. Representing unbounded
execution would induce cycles in our graphical model and violate the acyclic
definition of a Bayesian network. For example, consider a loop that accumulates
samples and exits when the sum reaches a threshold:
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v = 0.0

while v < 10.0:

v += random.uniform(-0.5, 1.0)

If the random sample is negative in every iteration, then the loop will never exit.
The probability of this divergence is small but non-zero.

Prior work has dealt with probabilistic loops by restricting the program to
linear operators [184]. MAYHAP relaxes this assumption by treating a loop as a
black box that generates samples (i.e., the loop may run for an unbounded but
finite number of iterations), similar to a known probability distribution such
as random.uniform. This representation avoids creating cycles. In particular,
MAYHAP represents a loop body with a summary node, where variables read by
the loop are edges into the node and variables written by the loop are edges out
of the node.

In practice, many loops have non-probabilistic bounds. For example, we eval-
uated an image filter (sobel) that loops over the pixel array and applies a proba-
bilistic convolution to each window. The nested loops resemble:
for x in 0..width:

for y in 0..height:

filter(image[x][y])

While the computedpixel array contains probabilistic data, the dimensionswidth
and height are fixed for a particular image. MAYHAP extracts complete distri-
butions from these common concrete-bounded loops without black-box sam-
pling.

MAYHAP uses a similar black-box mechanism when interfacing with library
code whose implementation is not available for analysis—for example, when
passing a probabilistic value to the cos() function from the C standard library.
This straightforward approach prevents statistical optimizations inside the li-
brary function or loop body but lets MAYHAP analyze more programs.

analyzing loops with probabilistic path pruning We propose
another way to analyze loops with probabilistic bounds by building on the path
pruning techniques used in traditional symbolic execution. Typically, path prun-
ing works by proving that some paths are infeasible. If the analysis determines
that a path constraint is unsatisfiable, it halts exploration of that path. Proba-
bilistic evaluation instead needs to discover when a given path is unlikely rather
than impossible, i.e., when the conditions that lead to following this path at run
time have a probability that falls below a threshold. We propose tracking a path
probability expression for each explored path and periodically sampling these
distributions to prune unlikely paths. This extension handles general probabilis-
tic control flow in programs that are likely to terminate eventually. Intuitively,
the more iterations the loop executes, the less likely it is to execute another itera-
tion. Programs with a significant probability of running forever before reaching
a passert can still prevent the analysis from terminating, but this behavior likely
indicates a bug. We leave the evaluation of this more precise analysis to future
work.
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5.4 optimization and hypothesis testing

To verify a conditional in a passert, probabilistic evaluation extracts a symbolic
representation of the conditional, optimizes this representation, and evaluates
the conditional. The previous sections described the distribution extraction step
and this section describes our optimization and evaluation steps.

Optimizations simplify the Bayesian network by applying known statistical
properties tomake verificationmore efficient. In restricted cases, these optimiza-
tions simplify the Bayesian network to a closed-form Bernoulli representing the
condition in the passert and we thus evaluate the passert exactly. In the general
case, we use sampling and hypothesis testing to verify it statistically.

5.4.1 Optimizing Bayesian Networks

This section enumerates the statistical properties that MAYHAP applies to sim-
plify distributions.

closed-form operations over known distributions MAYHAP
exploits closed-form algebraic operations on the common Gaussian, uniform,
andBernoulli distributions. For example, if X ∼ N(µx, σ2

x) andY ∼ N(µy, σ2
y )

then X + Y ∼ N(µx + µy, σ2
x + σ2

y ). Likewise, if X ∼ N(µx, σ2
x) then

X + 3 ∼ N(µx + 3, σ2
x). MAYHAP optimizes closed form addition of Gaus-

sians and scalar shifts or scaling of Gaussians, uniforms, and Bernoullis. We note
there are many distributions and operations which we do not yet encode (e.g.,
a sum of uniform distributions is an Irwin–Hall distribution). Expanding the
framework to capture a larger catalog of statistical properties is left to future
work.

inequalities over known distributions MAYHAP uses the cumu-
lative distribution function (CDF) for known distributions to simplify inequali-
ties. The CDF for a real-valued random variable X is the function FX such that
FX(x) = Pr[X < x], which provides a closed-form mechanism to evaluate
whether a distribution is less than a constant. For example, if X ∼ U(0, 1)
and the programmer writes the inequality X < 0.9, we reduce the inequality to
a Bernoulli because FUniform(0.9) = Pr[X < 0.9] = 0.9.

central limit theorem The sum of a large number of independent ran-
dom variables with finite variance tends to a Gaussian. MAYHAP uses the Cen-
tral Limit Theorem to reduce loops which compute a reduction over random
variables into a closed-form Gaussian which samples from the body of the loop.
This transformation resemblesMisailovic et al.’s “meanpattern” [132]. It is partic-
ularly effective on the sobel application used in our evaluation, which averages
the errors for each pixel in an array. MAYHAP reduces this accumulation to a
single Gaussian.
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expectation propagation The prior optimizations approximately pre-
serve a program’s semantics: the transformedBayesiannetwork is approximately
equivalent to the original Bayesian network. However, using statistical laws that
apply to inequalities over random variables, it suffices to instead compute only
the expected value and variance of a distribution. MAYHAP uses this insight
to further simplify Bayesian networks by exploiting (1) the linearity of expected
value and (2) statistical properties of inequality.

First, MAYHAP uses the linearity of expectation to produce simpler distribu-
tions with the same expected value as the original distribution. This is an im-
portant optimization because verifying a passert amounts to calculating the ex-
pected value of its underlying Bernoulli distribution. For example, the Bayesian
network for D + D, which computes two independent samples from D, is not
equivalent to the Bayesian network induced from 2 · D. So an optimization
resembling traditional strength reduction does not compute the correct distri-
bution. However, these two Bayesian networks have the same expected value.
Specifically, expectation has the property E[A + B] = E[A] + E[B] for all dis-
tributions A and B. When only the expected value is needed, MAYHAP opti-
mizes D + D to 2 · D. A similar property holds for variance when the random
variables are uncorrelated.

The reasoning extends to comparisons via Chebyshev’s inequality. Given the
expectation µ and variance σ2 of a randomvariable, Chebyshev’s inequality gives
a bound on the probability that a sample of a random variable deviates by a
given number of standard deviations from its expected value. For example, for
a program with passert x >= 5, distribution extraction produces a Bayesian
network of the form X ≥ 5. Using the linearity of expectation, suppose we
statically compute that σ = 3 and µ = 1 for X. Chebyshev’s inequality states:

Pr[|X− µ| ≥ kσ] ≤ 1
k2

We want to bound the probability that x ≥ 5. Since we have µ and σ, we can
rewrite this condition as:

x ≥ µ + 2σ

x− µ ≥ 2σ

So the passert condition states that x deviates from its mean by at least 2 stan-
dard deviations. Using k = 2 in Chebyshev’s inequality gives the bound:

Pr[X ≥ 5] ≤ 1
22

We now have a bound on the probability (and hence the expectation) of the in-
equality x >= 5.

5.4.2 Verification

This section describes how we use an extracted and simplified Bayesian network
to verify passerts using (1) exact (direct) evaluation or (2) sampling and statistical
hypothesis testing.
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5.4.2.1 Direct Evaluation

In some cases, simplifications on the probability distribution are sufficient to
fully evaluate a passert. For example, MAYHAP simplifies the sobel application
in our evaluation to produce a distribution of the form ∑n D < c. The Cen-
tral Limit Theorem optimization replaces the sum with a Gaussian distribution,
which then enables the inequality computation to produce a simple Bernoulli
distribution with a known probability. When dealing with a single Bernoulli,
no sampling is necessary. MAYHAP reports the probability from the simplified
distribution.

5.4.2.2 Statistical Verification via Sampling

In the general case, optimizations do not completely collapse a probability dis-
tribution. Instead, MAYHAP samples the resulting distribution to estimate its
probability.

MAYHAPuses acceptance sampling to bound any error in its verification [235].
All passert statements are logical properties over random variables and there-
fore Bernoulli random variables. Assume Xi ∼ Bernoulli(p) is an indepen-
dent sample of a passert where p is the true probability of the passert, the value
MAYHAP is estimating. Let X = X1 + X2 + . . .+ Xn be the sum of n indepen-
dent samples of the passert and let the empirical expected value, E[X] = X =

X/n, be an estimate of p.1 To bound error in its estimate, MAYHAP computes
Pr

[
X ∈ [p− ϵ, p + ϵ]

]
≥ 1− α. In words, it tests whether there is at most

an α chance that MAYHAP’s estimate of p is wrong. Otherwise, MAYHAP’s es-
timate of p is within ϵ of the truth. A programmer can control the likelihood
of a good estimate—or the confidence—by decreasing α. Likewise, a programmer
can control the accuracy of the estimate by decreasing ϵ. Because MAYHAP uses
sampling, it provides statistical guarantees by testing whether its confidence in-
terval for X includes p± ϵ. In concert, these parameters let a programmer trade
off false-positives and false-negatives with sample size.

In particular, given α and ϵ, MAYHAP uses the two-sided Chernoff bound to
compute n, the minimum number of samples required to satisfy a given level of
confidence and accuracy [41]. The two-sided Chernoff bound is an upper-bound
on the probability that an estimate, X, deviates from its true mean, p:

Pr
[
|X− p| ≥ ϵp

]
≤ 2e−

ϵ2
2+ϵ np

The left-hand side of the equality is α by definition and the worst case (the most
samples required) occurs when p = 1. Solving for n yields:

n ≥ 2 + ϵ

ϵ2 ln
2
α

For example, at a confidence 95% and an accuracy of 3%:

n ≥ 2 + 0.03
0.032 ln

2
0.05

1 This section uses X instead of E[X] for notational convenience.
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Figure 11: Hypothesis tests for three different passert statements.

meaning that MAYHAP needs to take at least n = 8321 samples. Note that this
bound is an over-approximation of the true number of samples required for a
given level of confidence and accuracy—it only relies on α and ϵ and ignores how
good an estimate X is of p. An extension, which we leave to future work, is to
useWald’s sequential sampling to iteratively compute Pr

[
X ∈ [p− ϵ, p + ϵ]

]
≥

1− α after each sample [221]. Because this approach uses the current estimate
of X relative to p, it is often able to stop samplingwell before reaching our upper
bound [234].

statistical guarantees MAYHAP turns a passert statement into a hy-
pothesis test in order to bound error in its estimate. If the property is sufficiently
likely to hold, MAYHAP verifies the passert as true. Likewise, if the passert is
verified as false, the programmer needs to iterate, either by changing the pro-
gram to meet the desired specification or by correctly expressing the probabilis-
tic property of the program.

For example, suppose MAYHAP estimates Pr
[
Xi ∈ [p− ϵ, p + ϵ]

]
≥ 1− α

for three distinct, hypothetical passert statements (i.e., i ∈ [0, 1, 2]). We pic-
torially show these three estimates in Figure 11. Each estimate shows Xi as a
point and lines depict the confidence region of that estimate. Because the confi-
dence region of X0 is below 0.5, MAYHAP verifies this assertion as false (i.e., the
passert rarely holds). Likewise, because X2 − ϵ ≥ 0.5, MAYHAP verifies this
assertion as true (i.e., the passert often holds).

However, at this confidence level and accuracy, MAYHAP is unable to verify
X1 as its confidence region and thus estimate overlaps with 0.5± ϵ. Thus, MAY-
HAP labels this assertion as unverifiable. To verify this assertion as true or false,
the programmer must increase either the confidence or accuracy (or both). In
this situation, MAYHAP initiates a dialog with the programmer for guidance on
how to proceed.

5.5 implementation

We implementedMAYHAPusing theLLVMcompiler infrastructure [101]. MAY-
HAP compiles source programswritten in C andC++ to the LLVM intermediate
language, probabilistically evaluates the resulting bitcode programs by extract-
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ing probability distributions, optimizes the resulting distributions, and then eval-
uates the passert distributions either exactly or with sampling.

language and interface To use the verifier system, the programmer
adds a passert to her program and annotates certain functions as probability dis-
tributions or uses a provided library of common distributions. Both constructs
are implemented as C macros provided by a passert.h header: PASSERT(e)

marks an expression thatMAYHAPwill evaluate and DISTRIBUTIONmarks func-
tions that should be treated as a symbolic probability distribution.

To invoke MAYHAP, the programmer provides arguments comprising the
source files, command-line arguments for the program under test, and optional
α and ϵ values that control confidence and accuracy. MAYHAP reports a con-
fidence interval on the output probability and the results of the hypothesis test
(true, false, or unverifiable).

distribution extraction The distribution extraction analysis is imple-
mented as an instrumented interpreter of LLVM bitcode programs. MAYHAP
maintains a symbolic heap and stack. Each symbolic value is a pointer into an ob-
ject graph representing a Bayesian network. Nodes in the graph correspond to
the expression tree language of our formalism: they can be samples, arithmetic
operations, comparisons, constants, or conditionals.

The implementation conserves space by coalescing identical expression trees.
For example, consider the values e1 = {s1 + s2} and e2 = {(s1 + s2) + s3}
consisting of sums of samples. In a naive implementation of probabilistic evalua-
tion, thesewould be independent trees that refer to a global set of samples at their
leaves. Instead, MAYHAP implements e2 as a sum node with two children, one
of which is the node for e1. In this sense, MAYHAP maintains a global Bayesian
network for the execution in which values are pointers into the network.

Nodes in the Bayesian network can become unreachable when heap values
are overwritten and as stack frames are popped. MAYHAP reclaims memory in
these cases by reference-counting all nodes in the Bayesian network. The root set
consists of stack and heap values. Since Bayesian networks are acyclic, reference
counting is sufficient.

Whenoperating onnon-probabilistic values (e.g., when evaluating1+ 2),MAY-
HAP avoids constructing nodes in the Bayesian network and insteadmaintains a
concrete heap and stack. WeuseLLVM’s bitcode interpreter [115] to perform the
concrete operations. This process can be viewed as an optimization on Bayesian
networks for operations over point-mass distributions.

conditionals Conditionals appear as branches in LLVM IR. MAYHAP an-
alyzes conditionals by symbolically executing both sides of the branch and merg-
ing the resulting heap updates. When the analysis encounters a branch, it finds
the immediate post-dominator (ipdom) in the control-flow graph—intuitively,
the join point—and begins by taking the branch. In this phase, it buffers all heap
writes in a (scoped) hash table. Then, when the ipdom is reached, control returns
to the branch and follows the not-taken direction. Writes in this phase do not
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go into the scope for the current conditional: they propagate to the global heap
or, if execution is in a nested outer conditional, to the enclosing hash table scope.
When the ipdom is reached the second time, the buffered writes are merged into
the outer heap using conditional nodes.

probabilistic pointers MAYHAP partially supports symbolic pointers
for probabilistic array indexing. Programs can load and store fromarr[i]where
i is probabilistic, which MAYHAP handles with a probabilistic extension of the
theory of arrays. Pointers and array indices must be finite discrete distributions
so we can enumerate the set of locations to which a pointer p might refer, i.e.,
those addresses where p’s distribution has non-zero probability. Loading from
a symbolic pointer p yields a distribution that reflects the set of values at each
such location, while storing to p updates each location to compose its old and
new value under a conditional distribution.

bayesian network optimizations MAYHAP performs statistical op-
timizations as transformations on the Bayesian network representation as out-
lined in Section 5.4.1. The optimizations we implemented fall into three broad
categories, which we characterize empirically in the next section.

The first category consists of arithmetic identities, including binary operators
on constants, comparisons with extremes (e.g., C’s FLT_MAX), and addition or
multiplicationwith a constant zero. These optimizations do not exploit the prob-
abilistic properties of the Bayesian network but compose with more sophisti-
cated optimizations and enhance the tool’s partial-evaluation effect. The next
category consists of operations on known probability distributions, including
the addition of twonormal distributions, addition ormultiplicationwith a scalar,
comparison between distributions with disjoint support, comparison between
twouniformdistributions, and comparisonwith a scalar (i.e., CDFqueries). These
optimizations exploit our probabilistic viewof the program to applywell-known
statistical properties of common distributions. The final optimization we evalu-
ate is the Central Limit Theorem, which collapses a summation of distributions
into a single normal.

Some optimizations, such as basic arithmetic identities, are performed oppor-
tunistically on-the-fly during analysis to reduce MAYHAP’s memory footprint.
Others, such as the Central Limit Theorem transformation, operate only on the
complete graph. Internally, the on-line optimizer also collapses deep trees of
commutative arithmetic operators into “fat” sum and product nodes with many
children. This rewriting helps the optimizer identify constants that can be coa-
lesced and inverse nodes that cancel each other out.

verification As described in Section 5.4.2, the prior optimizations often
produce Bayesian networks that MAYHAP can directly evaluate. In other cases,
MAYHAP must sample the optimized Bayesian network, in which case MAY-
HAP generates LLVM bitcode that samples from the Bayesian network. The tool
then compiles the generated program tomachine code and executes it repeatedly
to perform statistical verification.
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5.6 evaluation

This section describes our experience expressing passerts in a variety of proba-
bilistic programs and using MAYHAP to verify them.

5.6.1 Benchmarks

We evaluate passerts in five probabilistic programs from three domains: sensors,
differential privacy, and approximate computing. Table 5 summarizes the set of
programs and the passert statements we added to each.

Programs that compute with noisy sensor data, such as GPS, accelerometers,
and video game motion sensors, behave probabilistically [21, 149]. To demon-
strate our approach on this class of applications, we implemented a common
mobile-phone application: estimating walking speed [21]. gpswalk processes a
series of noisy coordinate readings from a mobile phone and computes the walk-
ing speed after each reading. The GPS error follows a Rayleigh distribution and
is determined by the sensor’s uncertainty estimate. As Bornholt et al. [21] note,
this kind of sensing workload can produce wild results when an individual loca-
tion reading is wrong. The passert checks that the computed velocity is below a
maximum walking speed.

Differential privacy obfuscates personal data at the cost of accuracy [15, 122,
135, 163, 170]. To study how MAYHAP works on this class of application, we
implemented two benchmarks. salary reads a list of 5000 salaries ofWashington
state public employees and computes their average.2 The program obfuscates
each salary by adding a normal distribution (σ2 = 3000) to simulate a situation
where each employee is unwilling to divulge his or her exact salary. The passert
checks whether the obfuscated average is within 25 dollars of the true average.
We also evaluate a version of the program, salary-abs, where the input salaries
are drawn from a uniform distribution instead of read from a file. This variant
highlights a scenario where specific inputs are unavailable and we instead want
to check a passert given an input probability distribution.

The final class of applications is drawn from prior work on approximate com-
puting: kmeans, sobel, hotspot, and inversek2j represent programs running on
approximate hardware [34, 59, 139]. sobel implements the Sobel filter, an image
convolution used in edge detection. kmeans is a clustering algorithm. hotspot
simulates thermal activity on amicroprocessor. inversek2j uses inverse kinemat-
ics to compute a robotic arm’s joint angles given a target position. Both kmeans
and hotspot are drawn from the Rodinia 2.4 benchmark suite [39] while sobel
and inversek2j are approximate applications from Esmaeilzadeh et al. [60]. In all
cases, we add random calls that simulate approximate arithmetic operations on
inner computations. The passert bounds the error of the program’s overall out-
put. For most benchmarks, the error is measured with respect to the output of a
precise version of the computation, but in inversek2j, we use the corresponding
forward kinematics algorithm to check the result.

2 Source: http://fiscal.wa.gov/

http://fiscal.wa.gov/
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sis and execution time. Times are averaged over 5 executions. We
elide error bars as they are very small.

For both approximate and data privacy programs, we compare a precise ver-
sion of a function’s output with a perturbed version. In the sensing workload,
gpswalk, the data is intrinsically noisy, so there is no “ground truth” to compare
against. For the purposes of this evaluation, wemanually extended the programs
to compute both results. A simple “desugaring” step could help perform this
transformation automatically by duplicating the code, removing randomization
from one copy, and returning both results.

5.6.2 Performance

To evaluate MAYHAP’s performance benefits, we compare its total running time
against using a simple stress testing baseline. The baseline checker adds a for

loop around the entire probabilistic program and counts the number of times the
passert expression is true. The time taken for a MAYHAP verification includes
the time to extract and optimize a probability distribution and to repeatedly sam-
ple the result. We test all programs with a confidence of α = 0.05 and an accu-
racy of ϵ = 0.01, which leads to 74147 samples. (Recall from Section 5.4.2.2
that the sample count depends only on the α and ϵ parameters and so we sample
all programs the same number of times.) Table 5 lists the absolute running times
and Figure 12 visualizes the normalized performance. The timings are averaged
over 5 executions collected on a dual-core 2 GHz Intel Core 2 Duo with 4 GB of
memory. On average, MAYHAP verification takes 4.2% as long as the strawman
checker, for a speedup of 24×.

For most benchmarks, MAYHAP’s time is almost exclusively spent on distri-
bution extraction and optimization, which means optimizations are effective at
producing a very small distribution that can be sampled much more efficiently
than the original program. The exception is gpswalk, where the analysis exe-
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cuted in 1.6 seconds but sampling the resulting distribution took over a minute.
That program’s probability distribution consists of thousands of independent
Rayleigh distributions, each with a different parameter as reported by the GPS
sensor, so it cannot take advantage of optimizations that exploit many samples
from identical distributions.

effect of optimizations We evaluated a variant of MAYHAP with op-
timizations disabled. This version simply performs distribution extraction and
samples the resulting distribution. The middle bars labeled N in Figure 12 show
the normalized running time of this non-optimizing MAYHAP variant.

The effectiveness of the optimizations varies among the benchmarks. On one
extreme, optimizations reduce the execution time for salary from 81 seconds
to a fraction of a second. The unoptimized Bayesian network for salary-abs is
slightly less efficient than the original program. The Central Limit Theorem op-
timization applies to both and greatly reduces the amount of sampled computa-
tion. On the other hand, simply evaluating the extracted distribution delivers a
benefit for gpswalk, reducing 537.0 to 62 seconds and then optimizations fur-
ther reduce this time to just 59.0 seconds. In a more extreme case, enabling op-
timizations adds to the analysis time for hotspot but fails to reduce its sampling
time. These programs benefit from eliminating the deterministic computations
involved in timestamp parsing and distance calculation.

confidence--performance trade-off Via the confidence and accu-
racy parameters α and ϵ, MAYHAP provides rough estimates quickly or more
accurate evaluations using more samples. To evaluate this trade-off, we lowered
the parameter settings, α = 0.10 and ϵ = 0.05, which leads to 2457 samples
(about 3% compared to the more accurate settings above). Even accounting for
analysis time, MAYHAP yields a harmonic mean 2.3× speedup over the baseline
in this relaxed configuration.

5.7 discussion

Probabilistic assertions express quality constraints, not only for approximate
programming but for any computational domain that uses randomness to do its
work. In contrast to the other quality-focusedwork in this dissertation, the prob-
abilistic assertion verification workflow in this chapter makes the closest con-
nections to traditional statistical reasoning. It is also the most general approach:
the techniques applies to “probabilistic programming languages” as defined by
Kozen [95]: ordinary languages extended with random calls. In exchange for
its generality, the approach makes weaker guarantees than, for example, Chap-
ter 4’s conservative probability bounds: the basis in sampling always leaves room
for false positives. A healthy ecosystem for approximate programming will need
techniques from across the strength–generality continuum.
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6
APPROX IMATE STORAGE

6.1 introduction

The majority of work on approximate system architectures focuses on compu-
tation [34, 59, 97, 103, 139, 180]. The idea of accuracy–efficiency trade-offs ex-
tends naturally to storage: error tolerance in both transient and persistent data is
present in a broad range of application domains, from server software to mobile
applications.

Meanwhile, the semiconductor industry is beginning to encounter limits to
further scaling of common memory technologies like DRAM and flash memory.
As a result, new memory technologies and techniques are emerging. Multi-level
cells, which pack more than one bit of information in a single cell, are already
commonplace and phase-change memory (PCM) is imminent. But both PCM
and flash memory wear out over time as cells degrade and become unusable.
Furthermore, multi-level cells are slower to write due to the need for tightly con-
trolled iterative programming.

Memories traditionally address wear-out issues and implement multi-level
cell operation in ways that ensure perfect data integrity 100% of the time. This
has significant costs in performance, energy, area, and complexity. These costs
are exacerbated as memories move to smaller device feature sizes along with
more process variation. By relaxing the requirement for perfectly precise storage—
and exploiting the inherent error tolerance of approximate applications—failure-
prone and multi-level memories can gain back performance, energy, and capac-
ity.

We propose techniques that exploit data accuracy trade-offs to provide approx-
imate storage. In essence, we advocate exposing storage errors up to the applica-
tionwith the goal ofmaking data storagemore efficient. Wemake this safe by: (1)
exploiting application-level inherent tolerance to inaccuracies; and (2) providing
an interface that lets the application control which pieces of data can be subject
to inaccuracies while offering error-free operation for the rest of the data. We
propose two basic techniques. The first technique uses multi-level cells in a way
that enables higher density or better performance at the cost of occasional inac-
curate data retrieval. The second technique uses blocks with failed bits to store
approximate data; to mitigate the effect of failed bits on overall value precision,
we prioritize the correction of higher-order bits.

Approximate storage applies to both persistent storage (files or databases) as
well as transient data stored in main memory. We explore the techniques in the

91
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context of PCM, which may be used for persistent storage (replacing hard disks)
or as main memory (replacing DRAM) [102, 156, 237], but the techniques gener-
alize to other technologies such as flash memory. We simulate main-memory
benchmarks and persistent-storage datasets and find that our techniques im-
prove write latencies by 1.7× or extend device lifetime by 23% on average while
trading off less than 10% of each application’s output quality.

6.2 interfaces for approximate storage

While previous work has considered reducing the energy spent on DRAM and
SRAM storage [59, 113, 180], modern non-volatilememory technologies also ex-
hibit properties that make them candidates for storing data approximately. By
exploiting the synergy between these properties and application-level error tol-
erance, we can alleviate some of these technologies’ limitations: limited device
lifetime, low density, and slow writes.

Approximate storage augments memory modules with software-visible pre-
cision modes. When an application needs strict data fidelity, it uses traditional
precise storage; the memory then guarantees a low error rate when recovering
the data. When the application can tolerate occasional errors in some data, it
uses the memory’s approximate mode, in which data recovery errors may occur
with non-negligible probability.

This work examines the potential for approximate storage in PCM and other
solid-state, non-volatile memories. For both categories of data, the application
must determine which data can tolerate errors and which data needs “perfect”
fidelity. Following EnerJ’s example, we assume that safety constraints need to be
part of the programming model, since approximating data indiscriminately can
easily lead to broken systems (see Section 1.2.2).

Thenext sections describe the approximation-aware programmingmodels for
mainmemory and persistentmass storage alongwith the hardware–software in-
terface features common to both settings. In general, each block (of some appro-
priate granularity) is logically in either precise or approximate state at any given
time. Every read andwrite operation specifieswhether the access is approximate
or precise. These per-request precision flags allow the storage array to avoid the
overhead of storing per-block metadata. The compiler and runtime are respon-
sible for keeping track of which locations hold approximate data. Additionally,
the interface may also allow software to convey the relative importance of bits
within a block, enabling more significant bits to be stored with higher accuracy.

As the evaluation of EnerJ in Chapter 3 found, different applications can tol-
erate different error rates. And while applications could likely exploit approx-
imation most effectively by using specific error rates for specific data items, as
in DECAF (Chapter 4), we explore a simpler hardware–software interface that
applies a uniform policy to all approximate data in the program. Empirically, we
find that this level of control is sufficient to achieve good quality trade-offs for
the applications we evaluate.
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6.2.1 Approximate Main Memory

PCM and other fast, resistive storage technologies may be used as main mem-
ories [102, 156, 237]. Previous work on approximate computing has examined
applications with error-tolerant memory in the context of approximate DRAM
and on-chip SRAM [59, 113, 180]. This work has found that a wide variety of ap-
plications, from image processing to scientific computing, have large amounts
of error-tolerant stack and heap data. We extend the programming model and
hardware–software interfaces developed by this previous work for our approx-
imate storage techniques.

Programs specify data elements’ precision at the programming language level
using EnerJ’s type annotation system [180]. Using these types, the compiler can
statically determine whether each memory access is approximate or precise. Ac-
cordingly, it emits load and store instructions with a precision flag as in the Truf-
fle ISA [59].

6.2.2 Approximate Persistent Storage

We also consider interfaces for persistent storage: filesystems, database manage-
ment systems (DBMSs), or, more recently, flat address spaces [47, 220].

Use cases for approximate mass storage range from server to mobile and em-
bedded settings. A datacenter-scale image or video search database, for example,
requires vast amounts of fast persistent storage. If occasional pixel errors are
acceptable, approximate storage can reduce costs by increasing the capacity and
lifetime of each storage module while improving performance and energy effi-
ciency. On a mobile device, a context-aware application may need to log many
days of sensor readings to model user behavior. Here, approximate storage can
help relieve capacity constraints or, by reducing the cost of accesses, conserve
battery life.

We assume a storage interface resembling a key–value store or a flat address
space with smart pointers (e.g., NV-heaps [47] or Mnemosyne [220]), although
the design also applies to more complex interfaces like filesystems and relational
databases. Each object in the store is either approximate or precise. The preci-
sion level is set when the object is created (and space is allocated). This constant
precision level matches the software model for current approximation-aware
programming interfaces such as EnerJ [180].

6.2.3 Hardware Interface and Allocation

In both deployment scenarios, the interface to approximate memory consists of
read andwrite operations augmentedwith a precision flag. In themain-memory
case, these operations are load and store instructions (resembling Truffle’s stl.a
and ldl.a [59]). In the persistent storage case, these are blockwise read andwrite
requests.

The memory interface specifies a granularity at which approximation is con-
trolled. In PCM, for example, this granularity may be a 512-bit block. The com-
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piler and allocator ensure that precise data is always stored in precise blocks. (It
is safe to store approximate data in precise blocks.)

To maintain this property, the allocator uses two mechanisms depending on
whether the memory supports software control over approximation. With soft-
ware control, as in Section 6.3, the program sets the precision state of each block
implicitly via the flags on write instructions. (Reads do not affect the precision
state.) In a hardware-controlled setting, as in Section 6.4, the operating system
maintains a list of approximate blocks reported by the hardware. The allocator
consults this list when reserving space for new objects. Section 6.4.2 describes
this OS interface in more detail.

In the main memory case and when using object-based persistent stores like
NV-heaps [47], objects may consist of interleaved precise and approximate data.
To support mixed-precision objects, the memory allocator must lay out fields
across precise and approximate blocks. To accomplish this, the allocator can use
one of two possible policies: ordered layout or forwarding pointers. In ordered lay-
out, heterogeneous objects lay out their precise fields (and object header) first; ap-
proximate fields appear at the end of the object. When an object’s range of bytes
crosses one or more block boundaries, the blocks that only contain approximate
fields may be marked as approximate. The prefix of blocks that contain at least
one precise byte must conservatively remain precise. With forwarding pointers,
in contrast, objects are always stored in precise memory but contain a pointer
to approximate memory where the approximate fields are stored. This approach
incurs an extra memory indirection and the space overhead of a single pointer
per heterogeneous object but can reduce fragmentation for small objects.

To specify the relative priority of bits within a block, accesses can also include
a data element size. The block is then assumed to contain a homogenous array
of values of this size; in each element, the highest-order bits are most important.
For example, if a programstores an array of double-precisionfloating point num-
bers in a block, it can specify a data element size of 8 bytes. The memory will
prioritize the precision of each number’s sign bit and exponent over its mantissa
in decreasing bit order. Bit priority helps the memory decide where to expend
its error protection resources to minimize the magnitude of errors when they
occur.

6.3 approximate multi-level cells

PCMandother solid-statememoriesworkby storing an analog value—resistance,
in PCM’s case—and quantizing it to expose digital storage. In multi-level cell
(MLC) configurations, each cell stores multiple bits. For precise storage in MLC
memory, there is a trade-off between access cost and density: a larger number
of levels per cell requires more time and energy to access. Furthermore, pro-
tections against analog sources of error like drift can consume significant error
correction overhead [146]. But, where perfect storage fidelity is not required,
performance and density can be improved beyond what is possible under strict
precision constraints.
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Figure 13: The range of analog values in a precise (a) and approximate (b) four-
level cell. The shaded areas are the target regions for writes to each
level (the parameter T is half the width of a target region). Unshaded
areas are guard bands. The curves show the probability of reading a
given analog value after writing one of the levels. ApproximateMLCs
decrease guard bands so the probability distributions overlap.

v1 v2

target range

actual step
ideal step

pr
ob

ab
ilit

y

cell value

Figure 14: A single step in an iterative program-and-verify write. The value
starts at v1 and takes a step. The curve shows the probability distri-
bution from which the ending value, v2, is drawn. Here, since v2 lies
outside the target range, another step must be taken.

An approximate MLC configuration relaxes the strict precision constraints on
iterative MLC writes to improve their performance and energy efficiency. Cor-
respondingly, approximateMLCwrites allow for denser cells under fixed energy
or performance budgets. Since PCM’s write speed is expected to be substantially
slower than DRAM’s, accelerating writes is critical to realizing PCM as a main-
memory technology [102]. Reducing the energy spent on writes conserves bat-
tery power in mobile devices, where solid-state storage is commonplace.

Our approach to approximate MLC memory exploits the underlying analog
medium used to implement digital storage. Analog reads and writes are inher-
ently imprecise, so MLCs must incorporate guard bands that account for this
imprecision and prevent storage errors. These guard bands lead to tighter tol-
erances on target values, which in turn limit the achievable write performance.
ApproximateMLCs reduce or eliminate guard bands to speed up iterative writes
at the cost of occasional errors. Figure 13 illustrates this idea.

6.3.1 Multi-Level Cell Model

Thebasis forMLC storage is an underlying analog value (e.g., resistance for PCM
or charge for flash memory). We consider this value to be continuous: while
the memory quantizes the value to expose digital storage externally, the inter-
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nal value is conceptually a real number between 0 and 1.1 To implement digital
storage, the cell has n discrete levels, which are internal analog-domain values
corresponding to external digital-domain values. As a simplification, we assume
that the levels are evenly distributed so that each level is the center of an equally-
sized, non-overlapping band of values: the first level is 1

2n , the second is 3
2n , and

so on. In practice, values can be distributed exponentially, rather than linearly,
in a cell’s resistance range [23, 145]; in this case, the abstract value space cor-
responds to the logarithm of the resistance. A cell with n = 2 levels is called
a single-level cell (SLC) and any design with n > 2 levels is a multi-level cell
(MLC).

Writes and reads to the analog substrate are imperfect. A write pulse, rather
than adjusting the resistance by a precise amount, changes it according to a prob-
ability distribution. During reads, material nondeterminism causes the recov-
ered value to differ slightly from the value originally stored and, over time, the
stored value can change due to drift [231]. Traditional (fully precise) cells are
designed to minimize the likelihood that write imprecision, read noise, or drift
cause storage errors in the digital domain. That is, given any digital value, a write
followed by a read recovers the same digital value with high probability.

Put more formally, let v be a cell’s internal analog value. A write operation for
a digital value d first determines ld, the value level corresponding to d. Ideally,
the write operation would set v = ld precisely. Realistically, it sets v to w(ld)

where w is an error function introducing perturbations from the ideal analog
value. Similarly, a read operation recovers a perturbed analog value r(v) and
quantizes it to obtain a digital output.

The number of levels, n, and the access error functions, w and r, determine
the trade-off space of performance, density, and reliability for the cell.

write error function A single programming pulse typically has poor
precision due to process variation and nondeterministic material behavior. As a
result, MLC designs for both flash and PCM adopt iterative program-and-verify
(P&V) mechanisms [155, 203]. In PCM, each P&V iteration adjusts the cell’s re-
sistance and then reads it back to check whether the correct value was achieved.
Theprocess continues until an acceptable resistance value has been set. Tomodel
the latency and error characteristics of iterative writes, we consider the effect of
each step to be drawn from a normal distribution. The write mechanism deter-
mines the ideal pulse size but applies that pulsewith some error added. Figure 14
illustrates one iteration in this process.

Two parameters control the operation of the P&V write algorithm. First, it-
eration terminates when the stored value is within a threshold distance T from
the target value. Setting T < 1

2n as in Figure 13 provides guard bands between
the levels to account for read error. The value of T dictates the probability that a
read error will occur. Second, the variance of the normal distribution governing
the effect of each pulse is modeled as a constant proportion, P, of the intended

1 At small feature sizes, quantum effects may cause values to appear discrete rather than continuous.
We do not consider these effects here.
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def w(vt):

v = 0

while |vt − r(v)| > T:
step = vt − v
v += N(step, P·step)

return v

Figure 15: Pseudocode for the write error function, w, in PCM cells. Here,
N(µ, σ2) is a normally distributed random variable with average µ

and variance σ2. The parameter T controls the termination criterion
and P reflects the precision of each write pulse.

step size. These parameters determine the average number of iterations required
to write the cell.

Figure 15 shows the pseudocode for writes, which resembles the PCM pro-
gramming feedback control loop of Pantazi et al. [144]. Section 6.5.2 describes
our methodology for calibrating the algorithm’s parameters to reflect realistic
PCM systems.

Each constituent write pulse in a PCM write can either increase or decrease
resistance [144, 145, 147]. Flash memory write pulses, in contrast, are unidirec-
tional, so writes must be more conservative to avoid costly RESET operations in
the case of overprogramming [201].

read error function Reading froma storage cell is also imprecise. PCM
cells are subject to both noise, random variation in the stored value, and drift, a
gradual unidirectional shift [152]. We reuse the model and parameters of Yeo et
al. [231]. Namely, the sensed analog value r(v) is related to thewritten value v as
r(v) = v+ log10 t ·N(µr, σ2

r )where t is the time, in seconds, elapsed since the
cell was written. The parameters µr and σr are the mean and standard deviation
of the error effect respectively.

The same error function, with t equal to the duration of a write step, is used
to model errors during the verification step of the write process. We use t =

250 ns [85, 153] for this case.

read quantization A read operation must determine the digital value
corresponding to the analog value r(v). We assume reads based on a successive
approximation analog-to-digital converter (ADC), which has been proposed for
PCM systems that can vary their level count [155]. The latency for a successive
approximation ADC is linear in the number of bits (i.e., log n).

model simplifications While this model is more detailed than some re-
cent work, which has used simple closed-form probability distributions to de-
scribe program-and-verify writes [85, 153], it necessarily makes some simplifi-
cations over the full complexity of the physics underlying PCM.
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(a) Concatenation code
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(b) Striping code

Figure 16: Two codes for storing 16-bit numbers in four 4-bit cells. Each color
indicates a different cell. A single-level error leads to a bit flip in the
indicated position. In (a), this is the lowest-order bit in the white cell.
In (b), the white cell holds the binary value 0111, which is one level
away from 1000.

For simplicity, our model does not incorporate differential writes, a technique
that would allow a write to begin without an initial RESET pulse [85]. The write
algorithm also does not incorporate the detection of hard failures, which is typi-
cally accomplished by timing out after a certain number of iterations [203]. Hard
failure detection is orthogonal to the approximate MLC technique.

We measure write performance improvement in terms of the number of it-
erations per write. While some MLC write techniques use different durations
for differently sized pulses [23, 141, 144], we expect the pulses to have approx-
imately the same average time in aggregate. Previous work, for example, has
assumed that each step takes 250 nanoseconds [85, 153]. Furthermore, since our
evaluation focuses on performance and energy, we do not model any potential
lifetime benefits afforded by the technique’s reduction in write pulses.

Finally, our model assumes for simplicity that the value range has uniform
guard band sizes: in terms of ourmodel, the threshold T is constant among levels.
Asymmetric guard bands could exploit the fact that drift is unidirectional. This
optimization is orthogonal to the approximate MLC technique, which simply
decreases the size of guard bands relative to their nominal size.

6.3.2 Encoding Values to Minimize Error

MLC systems typically divide the bits from a single cell among differentmemory
pages [203]. Using this technique, some pages consist of high-order bits from
many cells while other pages consist entirely of low-order bits. In approximate
MLCs, low-order bits are the least reliable. So this traditional strategy would
lead to pages with uniformly poor accuracy. Here, we use a different approach
in order to represent all approximate values with acceptable accuracy.

If each cell has n levels, then individual cells can each represent log n bits. If
a program needs to store log n-bit numbers, then the error characteristics of
a single cell are advantageous: a single-level error—when the cell stores l − 1
or l + 1 after attempting to write l—corresponds to a integer error of 1 in the
stored value.

But we also need to combine multiple cells to store larger numbers. We con-
sider two approaches. Concatenation (Figure 16a) appends the bits from the
constituent cells to form each word. Striping (Figure 16b) interleaves the cells
so that the highest-order bits of each cell all map to the highest-order bits of the
word.
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An ideal code would make errors in high bits rare while allowing more errors
in the low bits of aword. With the straightforward concatenation code, however,
a single-level error can cause a high-order bit flip: the word’s log n-th most sig-
nificant bit is the least significant bit in its cell. The striping code mitigates high-
bit errors but does not prevent them. In the example shown in Figure 16b, the
white cell stores the value 0111, so a single-level error can change its value to
1000. This error causes a bit flip in the word’s most significant bit. (Gray cod-
ing, which some current MLC systems use [85], does not address this problem:
single-level errors are as likely to cause flips in high-order bits as in low-order
bits.) We evaluate both approaches in Section 6.6 and find, as expected, that the
striping code mitigates errors most effectively.

6.3.2.1 Defining an Optimal Code

While the above bit-striping approach works well and is straightforward to im-
plement, it is not necessarily optimal: there may exist other coding schemes that
furthermitigate error. Better codes have the potential to benefit any approximate-
computing technique that uses analog and multi-level substrates: not only stor-
age but also networking and communication channels. Future work should ex-
plore strategies for deriving error-optimal codes.

As a first step in this direction, this section formalizes the notion of error-
minimizing, multi-level codes. The two simple codes discussed above are points
in a large space of possible codes. We also define the average error of a code as a
way to quantify the code’s error-mitigating power.

Codes represent b-bit numbers (i.e., the first 2b integers) using digits drawn
from an alphabet of n symbols. A codeword w = ⟨v1, v2, . . . , vb/ log n⟩ is a
vector of numbers 0 ≤ v < n where n is the number of levels per cell. Assuming
n is a power of two whose base divides b, there are nb/ log n = 2b codewords, so
a code is bijection between the first 2b integers and the 2b codewords.

Let the distance d(w, w′) between two codewords be the l1 norm, or the city
block distance between the two vectors. We assume that the analog medium
confuses words with a smaller distance between them more often than more dis-
tant words. Specifically, the probability that w is written and w′ is subsequently
recovered is inversely proportional to d(w, w′).

A code is a function c where c(i) is the codeword that represents the integer
i. (The domain of c is the integers 0 ≤ i < 2b.) The inverse, c−1(w), decodes a
vector to the represented integer.

Let A(w) be the randomprocess that introduces these analog storage or trans-
mission errors into a codeword. The overall average error of a code c is:

E
[
|i− c−1(A(c(i)))|

]
An optimal code is one that minimizes this expected value when i is drawn from
a uniform distribution (or some other sensible distribution).

An exhaustive search for the optimal code by this definition is intractable:
there are 2b! possible codes for b-bit numbers. Recent work [81] has used a
constraint formulation to search a subset of codes that reorder bits, but more so-
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phisticated schemesmay exist that nonetheless have practical circuit-level imple-
mentations. Future work should develop search strategies for low-error codes
in the enormous space of possible mappings.

6.3.3 Memory Interface

MLC blocks can be made precise or approximate by adjusting the target thresh-
old of write operations. For this reason, the memory array must know which
threshold value to use for each write operation. Rather than storing the preci-
sion level as metadata for each block of memory, we encode that information
in the operation itself by extending the memory interface to include precision
flags as described in Section 6.2. This approach, aside from eliminating meta-
data space overhead, eliminates the need for a metadata read on the critical path
for writes.

Read operations are identical for approximate and precisememory, so the pre-
cision flag in read operations goes unused. A different approximate MLC design
could adjust the cell density of approximate memory; in this case, the precision
flag would control the bit width of the ADC circuitry [155].

overheads Since nometadata is used to control cells’ precision, this scheme
carries no space overhead. However, at least one additional bit is necessary in
each read and write request on the memory interface to indicate the operation’s
precision. If multiple threshold values are provided to support varying precision
levels, multiple bits will be needed. Additional circuitry may also be necessary to
permit a tunable threshold value during cell writes. Our performance evaluation,
in Section 6.5, does not quantify these circuit area overheads.

6.4 using failed memory cells

PCM, along with flash memory and other upcoming memory technologies, suf-
fers from cell failures during a device’s deployment—it “wears out.” Thus, tech-
niques for hiding failures from software are critical to providing a useful lifes-
pan for a memory [102]. These techniques typically abandon portions of mem-
ory containing uncorrectable failures and use only failure-free blocks [154, 186,
190]. By employing otherwise-unusable failed blocks to store approximate data,
it is possible to extend the lifetime of an array as long as sufficient intact capacity
remains to store the application’s precise data.

The key idea is to use blocks with exhausted error-correction resources to
store approximate data. Previous work on approximate storage in DRAM [113]
and SRAM [59] has examined soft errors, which occur randomly in time and
space. If approximate data is stored in PCM blocks with failed cells, on the
other hand, errors will be persistent. That is, a value stored in a particular failed
block will consistently exhibit bit errors in the same positions. We can exploit
the awareness of failure positions to provide more effective error correction via
bit priorities.
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6.4.1 Prioritized Bit Correction

In an error model incorporating stuck-at failures, we can use error correction
to concentrate failures where they are likely to do the least harm. For example,
when storing a floating-point number, a bit error is least significant when it oc-
curs in the low bits of the mantissa and most detrimental when it occurs in the
high bits of the exponent or the sign bit. In a uniform-probability error model,
errors in each location are equally likely, while a deterministic-failure model af-
fords the opportunity to protect a value’s most important bits.

A correction scheme like error-correcting pointers (ECP) [186] marks failed
bits in a block. Each block has limited correction resources; for example, when
the technique is provisioned to correct two bits per block (ECP2), a block be-
comes unusable for precise storagewhen three bits fail. For approximate storage,
we can use ECP to correct the bits that appear in high-order positions within
words and leave the lowest-order failed bits uncorrected. As more failures ap-
pear in this block, only the least-harmful stuck bits will remain uncorrected.

6.4.2 Memory Interface

A memory module supporting failed-block recycling determines which blocks
are approximate and which may be used for precise storage. Unlike with the
approximate MLC technique (Section 6.3), software has no control over blocks’
precision state. To permit safe allocation of approximate and precise data, the
memorymust inform software of the locations of approximate (i.e., failed) blocks.

When the memory module is new, all blocks are precise. When the first uncor-
rectable failure occurs in a block, the memory issues an interrupt and indicates
the failed block. This is similar to other systems that use page remapping to re-
tire failed segments of memory [83, 237]. The OS adds the block to a pool of
approximate blocks. Memory allocators consult this set of approximate blocks
when laying out data in the memory. While approximate data can be stored in
any block, precise data must be allocated in memory without failures. Eventu-
ally, when too many blocks are approximate, the allocator will not be able to find
space for all precise data—at this point, the memory module must be replaced.

To provide traditional error correction for precise data, the memory system
must be able to detect hard failures after each write [186]. We reuse this exist-
ing error detection support; the precision level of the write operation (see Sec-
tion 6.2) determines the action taken when a failure is detected. When a fail-
ure occurs during a precise write, the module either constructs ECP entries for
all failed bits if sufficient entries are available or issues an interrupt otherwise.
When a failure occurs during an approximate write, no interrupt is issued. The
memory silently corrects as many errors as possible and leaves the remainder
uncorrected.

Tomake bit prioritization work, the memorymodule needs information from
the software indicating which bits are most important. Software specifies this
using a value size associated with each approximate write as described in Sec-
tion 6.2. Thevalue size indicates the homogenous byte-width of approximate val-
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ues stored in the block. If a block represents part of an array of double-precision
floating point numbers, for example, the appropriate value size is 8 bytes. This
indicates to the memory that the bits at index i where i ≡ 0 mod 64 are most
important, followed by 1 mod 64, etc. When a block experiences a new failure
and the memory module must choose which errors to correct, it masks the bit
indices of each failure to obtain the index modulo 64. It corrects the bits with
the lowest indices and leaves the remaining failures uncorrected.

This interface for controlling bit prioritization requires blocks to contain ho-
mogeneously sized values. In our experience, this is a common case: many of
the applications we examined use approximate double[] or float[] arrays that
span many blocks.

overheads Like the approximate MLC scheme, failed-block recycling re-
quires additional bits for each read and write operation in the memory interface.
Messages must contain a precision flag and, to enable bit priority, a value size
field. The memory module must incorporate logic to select the highest-priority
bits to correct in an approximate block; however, this selection happens rarely
because it need only occur when new failures arise. Finally, to correctly allo-
cate new memory, the OS must maintain a pool of failed blocks and avoid using
them for precise storage. This block tracking is analogous to the way that flash
translation layers (FTLs) remap bad blocks.

6.5 evaluation

Approximate storage trades off precision for performance, durability, and den-
sity. To understand this trade-off in the context of real-world approximate data,
we simulate both of our techniques and examine their effects on the quality of
data sets and application outputs. We use application-specific metrics to quan-
tify quality degradation (see Section 1.2.1).

We first describe the main-memory and persistent-data benchmarks used in
our evaluation. We then detail the MLC model parameters that dictate perfor-
mance and error rates of the approximate MLC technique. Finally, we describe
the model for wear-out used in our evaluation of the failed-block recycling tech-
nique.

6.5.1 Applications

We use two types of benchmarks in our evaluation: main-memory applications
and persistent data sets. The main-memory applications are programs that mix
some approximate data and some precise control data. The persistent-storage
benchmarks are static data sets that can be stored 100% approximately.

For themain-memory applications, we adapt the annotated benchmarks from
the evaluation of EnerJ in Chapter 3. An in-house simulator based on the one
used in EnerJ’s evaluation (Section 3.6) intercepts loads and stores to collect ac-
cess statistics and inject errors. We examine eight of the EnerJ-annotated bench-
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marks: jmeint, raytracer, zxing), and the SciMark2 kernels (fft, lu, mc, smm, and
sor). We use the same output-quality metrics as in the EnerJ evaluation.

For persistent storage, we examine four new sets of approximate data. The
first, sensorlog, consists of a log of mobile-phone sensor readings from an ac-
celerometer, thermometer, photodetector, and hydrometer. The data is used in
a decision tree to infer the device’s context, so our quality metric is the accuracy
of this prediction relative to a fully-precise data set. The second, image, stores
a bitmap photograph as an array of integer RGB values. The quality metric is
the mean error of the pixel values. The final two data sets, svm and ann, are
trained classifiers for handwritten digit recognition based on a support vector
machine and a feed-forward neural network. In both cases, the classifiers were
trained using standard algorithms on the “pendigits” data set from the UCI Ma-
chine Learning Repository [13]. The data set consists of 3498 training samples
and 7494 testing samples, each of which comprises 16 features. Then, the clas-
sifier parameters (support vectors and neuron weights, respectively) are stored
in approximate memory. The SVM uses 3024 support vectors; the NN is config-
ured with a sigmoid activation function, two hidden layers of 128 neurons each,
and a one-hot output layer of 10 neurons. We measure the recognition accuracy
of each classifier on an unseen test data set relative to the accuracy of the precise
classifier (95% for svm and 80% for ann). Unlike the main-memory applications,
which consist of a mixture of approximate and precise data, the persistent data
sets are entirely approximate.

6.5.2 MLC Model Parameters

To assess our approximate MLC technique, we use the model described in Sec-
tion 6.3.1. The abstract model has a number of parameters that we need to select
for the purposes of simulation. To set the parameters, we use values from the
literature on MLC PCM configurations. Since our architecture-level model of
iterative program-and-verify writes is original, we infer its parameters by cali-
brating them to match typical write latencies and error rates.

For a baseline (precise) MLC PCM cell, we need a configuration where errors
are improbable but not impossible. We choose a conservative baseline raw bit er-
ror rate (RBER) of 10−8, which comports with RBERs observed in flashmemory
today [26, 127].

We first select parameters for the read model in Section 6.3.1, which incorpo-
rates the probabilistic effects of read noise and drift. For the parameters µr and
σr , we use typical values from Yeo et al. [231] normalized to our presumed 0.0–
1.0 value range. Specifically, for PCM,we choose µr = 0.0067 and σr = 0.0027.
Since the read model incorporates drift, it is sensitive to the retention time be-
tween writes and reads. Retention time can be short in a main-memory deploy-
ment and much longer when PCM is used for persistent storage. As an interme-
diate value, we consider retention for t = 105 seconds, or slightly more than
one day. Note that this retention time is pessimistic for the main-memory case:
in our experiments, every read experiences error as if it occurred 105 seconds
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after the preceding write. In real software, the interval between writes and sub-
sequent reads is typically much lower.

We model a 4-level (2-bit) PCM cell. To calibrate the write model, we start
from an average write time of 3 cycles as suggested by Nirschl et al. [141] and
a target RBER of 10−8. We need values for the parameters T and P that match
these characteristics. We choose our baseline threshold to be 20% of the largest
threshold that leads to non-overlapping values (i.e., T = 0.025); this leads to
about 3 iterations per write. Setting P = 0.035 leads to an error probability on
the order of 10−8 for a retention time of 105 seconds.

6.5.3 Wear-Out Model

To evaluate the effect of using blocks with failed cells for approximate storage,
we simulate single-level PCM. In single-level PCM, bits become stuck indepen-
dently as their underlying cells fail. Withmulti-level designs, in contrast, a single
cell failure can cause multiple bits to become stuck, so bit failures are not inde-
pendent. Assuming that the memory assigns bits from a given cell to distinct
pages [203] and that wear leveling randomly remaps pages, failures nonetheless
appear independent in multi-level PCM. So a multi-level failure model would
closely resemble our single-level model with an accelerated failure rate.

We evaluate PCMwith 2-bit error-correcting pointers (ECP) [186]. While pre-
cise configurations of the ECP technique typically use 6-bit correction, approx-
imate storage can extend device lifetime without incurring as much overhead
as a fully precise configuration. Approximate blocks also use the bit priority as-
signment mechanism from Section 6.4.1: where possible, ECP corrections are
allocated to higher-order bits within each value in the block.

To understand the occurrence of stuck bits in failed blocks, we need a realistic
model for the rate at which cells wear out over time. To this end, we simulate
a PCM array for trillions of writes and measure the distribution of cell failures
among blocks. The statistical simulator is adapted from Azevedo et al. [12] and
assumes an average PCM cell lifetime of 108 writes (although the first failure
occurs much earlier). We use separate workloads to simulate wear in a main-
memory setting and in a persistent-storage setting.

main-memory wear To model wear in main-memory PCM deployments,
we simulate the above suite of main-memory applications and gather statistics
about theirmemory access patterns, including the relative size of each program’s
approximate vs. precise data and the frequency of writes to each type ofmemory.
We then take the harmonic mean of these statistics to create an aggregate work-
load consisting of the entire suite. We run a statistical PCM simulation based on
these application characteristics, duringwhich all blocks start out precise. When
a block experiences its first uncorrectable cell failure, it is moved to the approx-
imate pool. Failed blocks continue to be written and experience additional bit
failures because they store approximate data. Periodically, we record the amount
ofmemory that remains precise alongwith the distribution of failures among the
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Figure 17: Distribution of uncorrectable cell failures using ECP2 among 512-bit
blocks after the entire memory has been overwritten 3.2× 107 times
under the main-memory wear model. (At this stage, half of the blocks
have at least one uncorrectable failure.)

approximate blocks. We simulate each application under these measured failure
conditions.

As an example, Figure 17 depicts the error rate distribution for the wear stage
at which 50% of the memory’s blocks have at least one failure that is uncor-
rectable using ECP2—i.e., half the blocks are approximate. In this stage, most
of the blocks have only a few uncorrectable failures: 39% of the approximate
blocks have exactly one such failure and only 1.7% have six or more.

persistent-storage wear For our persistent-storage data sets, all data
is approximate. So we simulate writes uniformly across all of memory, both
failed and fully-precise. This corresponds to a usage scenario in which the PCM
array is entirely dedicated to persistent storage—no hybrid transient/persistent
storage is assumed. Aswith themain-memorywearmodel, we periodically snap-
shot the distribution of errors among all blocks and use these to inject bit errors
into stored data.

6.6 results

We evaluate both sets of benchmarks under each of our two approximate storage
techniques. We first measure the approximate MLC mechanism.

6.6.1 Approximate MLC Memory

In our approximate MLC experiments, we map all approximate data to simu-
lated arrays of two-bit PCM cells. We run each benchmark multiple times with
differing threshold (T) parameters. We use T values between 20% and 90% of the
maximum threshold (i.e., the threshold that eliminates guard bands altogether).
For each threshold, we measure the average number of iterations required to
write a random value. This yields an application-independent metric that is di-
rectly proportional to write latency (i.e., inversely proportional to performance).
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(a) Main memory with approximate MLC.
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(b) Persistent data with approximate MLC.

Figure 18: Output degradation for each benchmark using the approximateMLC
technique. The horizontal axis shows the average number of itera-
tions per write. The vertical axis is the output quality loss as defined
by each application’s quality metric. Quality loss is averaged over 100
executions in (a) and 10 in (b); the error bars show the standard error
of the mean.

Configurations with fewer iterations per write are faster but cause more errors.
So, for each application, the optimal configuration is the one that decreaseswrite
iterations the most while sacrificing as little output quality as possible. Faster
writes help close PCM’s performance gapwith DRAM in themain-memory case
and improve write bandwidth in the persistent-data case [102, 112].

approximate main memory Figure 18a relates write performance to ap-
plication output quality loss. For configurations with fewer write iterations—to
the right-hand side of the plot—performance improves and quality declines. The
leftmost point in the plot is the nominal configuration, in which writes take 3.03
iterations on average and errors are rare. Reducing the number of iterations
has a direct impact on performance: a 50% reduction in iterations leads to 2×
improvement in write speed.

The error for each application stays low for several configurations and then
increases sharply when hardware errors become too frequent. The raytracer
benchmark exhibits quality loss below 2% up to the configuration with 1.71 iter-
ations per write on average, a 1.77× speedup over the baseline. Even the least
tolerant application, fft, sees only 4% quality loss when using an average of 2.44
iterations per write (or 1.24× faster than the baseline). This variance in toler-
ance suggests that different applications have different optimal MLC configura-
tions. Approximate memories can accommodate these differences by exposing
the threshold parameter T for tuning.

To put these speedups in the context of the whole application, we show the
fraction of dynamic writes that are to approximate data in Figure 19. Most
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Figure 19: Proportions of approximate writes and approximate data in each
main-memory benchmark.

applications use approximate writes for more than half of their stores; jmeint
in particular has 98% approximate writes. One application, zxing, has a large
amount of “cold” approximate data and benefits less from accelerating approxi-
mate writes.

persistent storage Figure 18b shows the quality degradation for each
persistent data set when running on approximate MLC memory. The persistent
data setswe examine aremore tolerant than themain-memory benchmarks. The
sensor logging application, for instance, exhibits only 5% quality degradation in
the configuration with 1.59 iterations per write (1.91× faster than the baseline)
while the bitmap image has only 1% quality degradation even in the most aggres-
sive configuration we examined, in which writes take 1.41 cycles (2.14× faster
than the baseline). The neural network classifier, ann, experiences less than 10%
recognition accuracy loss when using 1.77× faster writes; svm, in contrast, saw
negligible accuracy loss in every configuration we measured.

Overall, in the configurations with less than 10% quality loss, the benchmarks
see 1.7× faster writes to approximate cells over precise cells on average.

This write latency reduction benefits application performance and memory
system power efficiency. Since write latency improvements reduce contention
and therefore also impact read latency, prior evaluations have found that they
can lead to large IPC increases [74, 85]. Since fewer programming pulses are
used per write and write pulses make up a large portion of PCM energy, the
overall energy efficiency of the memory array is improved.

impact of encoding Section 6.3.2 examines two different strategies for
encoding numeric values for storage on approximate MLCs. In the first, the bits
from multiple cells are concatenated to form whole words; in the second, each
value is “striped” across constituent cells so that the highest bits of the value map
to the highest bits of the cells. The results given above use the latter encoding,
but we also evaluated the simpler code for comparison.
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The striped code leads to better output quality on average. For three inter-
mediate write speeds, using that code reduces the mean output error across all
applications from 1.1% to 0.4%, from 3.6% to 3.0%, and from 11.0% to 9.0% with
respect to the naive code.

We also performed two-sample t-tests to assess the difference in output quality
between the two coding strategies for each of 13 write speed configurations. For
nearly every application, the striped code had a statistically significant positive
effect on quality more often than a negative one. The only exception is mc, a
Monte Carlo simulation, in which the effect of the striped code was inconsistent
(positive at some write speeds and negative for others).

While the striped code is imperfect, as discussed in Section 6.3.2, it fares better
than the naive code in practice since it lowers the probability of errors in the
high-order bits of words.

density increase We experimentedwith addingmore levels to an approx-
imate MLC. In a precise MLC, increasing cell density requires more precise
writes, but approximate MLCs can keep average write time constant. Our ex-
periments show acceptable error rates when six levels are used (and no other
parameters are changed). A non-power-of-two MLC requires additional hard-
ware, similar to binary-coded decimal (BCD) circuitry, to implement even the
naive code from Section 6.3.2 but can still yield density benefits. For example,
a 512-bit block can be stored in ⌈ 512

log 6⌉ = 199 six-level cells (compared to 256
four-level cells). With the same average number of write iterations (3.03), many
of our benchmarks see little error: jmeint, mc, raytracer, smm, and the four
persistent-storage benchmarks see error rates between 0.1% and 4.2%. The other
benchmarks, fft, lu, sor, and zxing, see high error rates, suggesting that density
increase should only be used with certain applications.

impact of drift Previous work has suggested that straightforward MLC
storage in PCM can be untenable over long periods of time [231]. Approximate
storage provides an opportunity to reduce the frequency of scrubbing necessary
by tolerating occasional retention errors. To study the resilience of approximate
MLCstorage to drift, we varied themodeled retention time (the interval between
write and read) and examined the resulting application-level quality loss. Recall
that the results above assume a retention time of 105 seconds, or about one day,
for every read operation; we examined retention times between 101 and 109

seconds (about 80 years) for an intermediate approximate MLC configuration
using an average of 2.1 cycles per write.

Figure 20 depicts the application output quality for a range of time intervals.
For the main-memory applications in Figure 20a, in which typical retention
times are likely far less than one day, we see little quality loss (1% or less) for
retention times of 104 seconds or shorter. As above, these simulations assume
the same drift interval for every read. In this sense, the results are pessimistic
since many reads are to recently written data and therefore incur less error from
drift.
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(a) Drift for main-memory applications.
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(b) Drift impact for persistent data sets.

Figure 20: Application output quality over time using the approximate MLC
technique using 2.1 cycles per write. Drift causes errors to increase
in proportion to the time since the last write to the PCM cell.

For the persistent-storage benchmarks in Figure 20b, in contrast, longer re-
tention times are the norm. In that setting, quality loss remains under 10% for
at least 106 seconds and, for all benchmarks except ann, through 107 seconds.
The most tolerant data set, image, remains below 10% error for 109 seconds of
drift. The persistent-storage benchmarks tend to be more resilient to drift be-
cause the stored data tends to be uniformly error tolerant: every neuron weight
or every pixel contributes equally to the quality of the output. This uniformity
contrasts with the main-memory applications, where certain “hot” data struc-
tures are more critical for quality and therefore tolerate less error.

A longer retention time means scrubbing can be done less frequently. The
above results report the quality impact of one retention cycle: the persistent-
storage benchmarks, for example, lose less than 10% of their quality when 106

seconds, or about 11 days, elapse after they are first written tomemory assuming
no scrubbing occurs in that time. Eleven more days of drift will compound addi-
tional error. While the results suggest that the more error-tolerant applications
can tolerate longer scrubbing cycles, we do not measure how error compounds
over longer-term storage periods with infrequent scrubbing.

bit error rate To add context to the output quality results above, we also
measured the effective bit error rate (BER) of approximate MLC storage. The
BER is the probability that a bit read from approximatememory is different from
the corresponding last bit written. Across the write speeds we examined, error
rates range from 3.7× 10−7 to 8.4% in the most aggressive configuration. To
put these rates in perspective, if the bit error rate is p, then a 64-bit block will
have at least 2 errors with probability ∑64

i=2 B(i, 64, p) where B is the binomial
distribution. At a moderately aggressive write speed configuration with an aver-
age of 1.9 steps, approximate MLC storage has an error rate of 7.2× 10−4, so
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Figure 21: Lifetime extension for each application. Each bar represents the num-
ber of writes to the entire array at which the application can no longer
run, normalized to the point of array failure in fully-precise mode.
The black bar indicates when there is not enough precise memory
available. The gray bar shows when the application’s output quality
degrades more than 10%.

0.1% of 64-bit words have 2 or more errors. This high error rate demonstrates
the need for application-level error tolerance: even strong ECC with two-bit
correction will not suffice to provide precise storage under such frequent errors.

6.6.2 Using Failed Blocks

We evaluate the failed-block recycling technique by simulating benchmarks on
PCM arrays in varying stages of wear-out. As the memory device ages and cells
fail, some blocks exhaust their error-correction budget. Approximate data is
then mapped onto these blocks. Over the array’s lifetime, bit errors in approxi-
mate memory become more common. Eventually, these errors impact the appli-
cation to such a degree that the computation quality is no longer acceptable, at
which point the memory array must be replaced. We quantify the lifetime exten-
sion afforded by this technique, beginning with the main-memory applications.

Toquantify lifetime extension, we assume amemorymodulewith a 10% “space
margin”: 10% of the memory is reserved to allow for some block failures before
the array must be replaced. In the baseline precise configuration, the array fails
when the fraction of blocks that remain precise (having only correctable failures)
drops below 90%. In the approximate configuration, programs continue to run
until there is not enough space for their precise data or quality drops below a
threshold.

approximate main memory Figure 21 depicts the lifetime extension af-
forded by using failed blocks as approximate storage. For each application, we
determine the point in the memory’s lifetime (under the wear model described
in Section 6.5.3) at which the program can no longer run. We consider two ter-
mination conditions: when the amount of precise memory becomes insufficient
(i.e., the proportion of approximate memory exceeds the application’s propor-
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(a) Main memory using failed blocks.
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(b) Persistent data sets using failed blocks.

Figure 22: Output quality degradation for each benchmark when using the
failed-block recycling technique. The horizontal axis is the number
of complete overwrites the array has experienced, indicating the stage
of wear-out. The vertical axis is an application-specific error metric.

tion of approximate data) and when the application’s output quality degrades
more than 10%. Each bar in the figure shows the normalized number of writes
to the memory when application failure occurs.

With quality degradation limited to 10%, the benchmarks see lifetime exten-
sions ranging from 2% (zxing) to 39% (raytracer) with a harmonic mean of 18%.
With quality unconstrained, the mean lifetime extension is 34%, reflecting the
fact that this technique leads to gradually decreasing quality as the memory ar-
ray ages.

To help explain these results, Figure 22a shows the quality degradation for
each application at various points during the memory array’s wear-out. The
most error-tolerant application, raytracer, sees little quality degradation under
all measured wear stages. Some applications are limited by the amount of ap-
proximate data they use. Figure 19 shows the proportion of bytes in each ap-
plication’s memory that is approximate (averaged over the execution). Some ap-
plications, such as mc, are tolerant to error but only have around 50% approxi-
mate data. In other cases, such as zxing and fft, bit errors have a large effect on
the computation quality. In fft in particular, we find that a single floating-point
intermediate value that becomes NaN can contaminate the Fourier transform’s
entire output. This suggests that the application’s precision annotations, which
determine which data is stored approximately, may be too aggressive.

persistent storage Figure 22b shows the quality degradation for each
data set at different points during the lifetime of the memory. The memory’s
intermediate wear-out conditions come from the persistent-storage wearmodel
described in Section 6.5.3. In a fully-precise configuration, the memory fails
(exceeds 10% failed blocks) at about 3.4 × 107 overwrites, or at the left-hand
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side of the plot. Recall that, in these persistent-storage benchmarks, the data is
stored 100% approximately; no precise storage is used.

As with the main-memory storage setting, quality decreases over time as er-
rors become more frequent. But these benchmarks are more tolerant to stuck
bits than the main-memory applications. For image, quality loss is below 10%
in all wear stages; for sensorlog, it remains below10%until the array experiences
5.0× 107 writes, or 42% later than precise array failure. The two machine learn-
ing classifiers, ann and svm, each see lifetime extensions of 17%. This tolerance
to stuck bits makes the failed-block recycling technique particularly attractive
for persistent storage scenarios with large amounts of numeric data.

Overall, across both categories of benchmarks, we see a harmonic mean life-
time extension of 23% (18% for the main-memory benchmarks and 36% for the
persistent-storage data sets) when quality loss is limited to 10%. Recent work
has demonstrated PCM arrays with a random write bandwidth of 1.5 GB/s [32];
for a 10 GB memory constantly written at this rate, these savings translate to
extending the array’s lifetime from 5.2 years to 6.5 years.

impact of bit priority Theabove results use our type-aware prioritized
correction mechanism (Section 6.4.1). To evaluate the impact of bit prioritiza-
tion, we ran a separate set of experimentswith thismechanismdisabled tomodel
a system that just corrects the errors that occur earliest. We examine the differ-
ence in output quality at each wear stage and perform a two-sample t-test to
determine whether the difference is statistically significant (P < 0.01).

Bit prioritization had a statistically significant positive impact on output qual-
ity for all benchmarks except mc. In sensorlog, for example, bit prioritization
decreases quality loss from 2.3% to 1.7% in an early stage of wear (the leftmost
point in Figure 22b). In fft, the impact is larger: bit prioritization reduces 7.3%
quality loss to 3.3% quality loss. Aswith encoding for approximateMLCs, the ex-
ception is mc, whose qualitywas (statistically significantly) improved in only 4 of
the 45wear stages wemeasuredwhile it was negatively impacted in 6wear stages.
This benchmark is a simple Monte Carlo method and hence may sometimes ben-
efit from the entropy added by failed bits. Overall, however, we conclude that bit
prioritization has a generally positive effect on storage quality.

impact of ecp budget The above experiments use a PCM configuration
with error-correcting pointers (ECP) [186] configured to correct two stuck bits
per 512-bit block at an overhead of 21 extra bits per block. More aggressive
error correction improves the endurance of both fully-precise and approximate
memory and amplifies the opportunity for priority-aware correction in interme-
diate wear stages. To quantify the effect of increasing error correction budgets,
we also evaluated an ECP6 configuration (61 extra bits per block).

Moving from ECP2 to ECP6 extends the lifetime of a precise memory array
by 45% under main-memory wear or 17% under persistent-storage wear. Our
results for approximate main-memory storage with ECP2 provide a portion of
these benefits (18% lifetime extension) without incurring any additional correc-
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tion overhead. In the persistent-storage case, the lifetime extension for approxi-
mate storage (36%) is greater than for increasing the ECP budget.

6.7 discussion

Approximate storage exposes newefficiency–accuracy trade-offs in a systemcom-
ponent that otherworkon system-level approximation steers around: mainmem-
ory and persistent storage. As DRAM scaling begins to falter, PCM and other
resistive memories will become crucial to satisfying increasing memory needs.
The two techniques in this chapter offer one way to work around these new
technologies’ novel quirks: wear-out and slow writes, especially in multi-level
cell configurations.

Thiswork also poses one important unsolved problem (see Section 6.3.2): how
should we encode approximate data for approximate channels? The vast body of
work on coding theory for error correction tends to assume that we need to re-
cover the data exactly—or, more generally, that every bit in a message is equally
important. Encoding data to minimize the numerical error in the decoded values
remains an important, and unexplored, counterpoint to traditional error correc-
tion.





7
AN OPEN-SOURCE APPROX IMAT ION
INFRASTRUCTURE

7.1 introduction

Approximate computing includes a diverse spectrum of implementation tech-
niques, spanning both hardware and software: everything from adjusting nu-
merical representations to exploiting analog circuits. Some work relies on pro-
grammers for manual reasoning to control approximation’s potential effects [60,
113, 164, 194], while other work proposes automated transformation based on
code patterns or exhaustive search [14, 176, 177]. Manual code editing can be te-
dious and error-prone, especially since important safety invariants are at stake.
Conversely, full automation eliminates a crucial element of visibility and control.
Programmers must trust the automated system; they have no recourse when op-
portunities are missed or invariants are broken.

This chapter describes ACCEPT (an Approximate C Compiler for Energy and
Performance Trade-offs), a framework for approximation that balances automa-
tion with programmer guidance. ACCEPT is controlled because it preserves pro-
grammer intention expressed via code annotations. A static analysis rules out
unintended side effects. The programmer participates in a feedback loop with
the analysis to enable more approximation opportunities. ACCEPT is practical
because it facilitates a range of approximation techniques that work on currently
available hardware. Just as a traditional compiler framework provides common
tools to support optimizations, ACCEPT’s building blocks help implement au-
tomatic approximate transformations based on programmer guidance and dy-
namic feedback.

ACCEPT’s architecture combines static and dynamic components. The fron-
tend, built atop LLVM [101], extends the syntax of C and C++ to incorporate an
APPROX keyword that programmers use to annotate types, as in Chapter 3. AC-
CEPT’s central analysis, approximatability, identifies coarse-grained regions of
code that can affect only approximate values. Coarse region selection is crucial
for safe approximation strategies: client optimizations use the results to trans-
form code and offload to accelerators while preserving static safety properties.
After compilation, an autotuning component measures program executions and
uses heuristics to identify program variants thatmaximize performance and out-
put quality. To incorporate application insight, ACCEPT furnishes program-
mers with feedback to guide them toward better annotations.

115
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Figure 23: Overview of the ACCEPT compiler workflow.

ACCEPT is an end-to-end framework that makes existing proposals for ap-
proximate program transformations practical and disciplined. Its contributions
are:

• A programming model for program relaxation that combines lightweight
annotations with compiler analysis feedback to guide programmers to-
ward effective relaxations;

• An autotuning system that efficiently searches for a program’s best approx-
imation parameters;

• A core analysis library that identifies code that can be safely relaxed or
offloaded to an approximate accelerator;

• Aprototype implementationdemonstrating bothpure-software optimiza-
tions and hardware acceleration using an off-the-shelf FPGA part.

We evaluate ACCEPT across three platforms: a standard Intel-based server; a
mobile SoC with an on-chip FPGA, which we use as an approximate accelerator;
and an ultra-low-power, energy-harvesting embedded microcontroller where
performance is critical to applications’ viability. The experiments demonstrate
average speedups of 2.3×, 4.8×, and 1.5× on the three platforms, respectively,
with quality loss under 10%.

We also report qualitatively on the programming experience. NoviceC++pro-
grammerswere able to applyACCEPT to legacy software to obtainnew speedups.
ACCEPT’s combination of static analysis and dynamic measurement alleviates
much of the manual labor from the process of applying approximation without
sacrificing transparency or control.

The ACCEPT framework is open source and ready for use as research infras-
tructure. It provides the necessary language and compiler support to prototype
and evaluate new strategies for approximation, reducing the need to reinvent
these components for each new research evaluation.

7.2 overview

To safely and efficiently harness the potential of approximate programs, AC-
CEPT combines three main techniques: (1) a programmer–compiler feedback
loop consisting of source code annotations and an analysis log; (2) a compiler
analysis library that enables a range of automatic program relaxations; and (3)
an autotuning system that uses dynamic measurements of candidate program
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relaxations to find the best balances between efficiency and quality. The final
output is a set of Pareto-optimal versions of the input program that reflect its
efficiency–quality trade-off space.

Figure 23 illustrates how these components make up ACCEPT’s workflow.
Two feedback loops control the impact of potentially destructive program relax-
ations: a static feedback loop providing conservative guarantees and a comple-
mentary dynamic feedback loop that measures real program behavior to choose
the best optimizations. A key hypothesis of this work is that neither static nor
dynamic constraints are sufficient, since dynamic measurements cannot offer
guarantees and static constraints do not capture the full complexity of relation-
ships among relaxations, performance, and output quality. Together, however,
the two feedback loopsmake ACCEPT’s optimizations both controlled and prac-
tical.

safety constraints and feedback Because program relaxations can
have outsized effects on program behavior, programmers need visibility into—
and control over—the transformations the compiler applies. To give the program-
mer fine-grained control over relaxations, ACCEPT extends EnerJ’s lightweight
annotation system (see Chapter 3). ACCEPT gives programmers visibility into
the relaxation process via feedback that identifies which transformations can be
applied andwhich annotations are constraining it. Through annotation and feed-
back, the programmer iterates toward an annotation set that unlocks new per-
formance benefits while relying on an assurance that critical computations are
unaffected.

automatic program transformations Based onprogrammer anno-
tations, ACCEPT’s compiler passes apply transformations that involve only ap-
proximate data. To this end, ACCEPT provides a common analysis library that
identifies code regions that canbe safely transformed. WebringACCEPT’s safety
analysis, programmer feedback, and automatic site identification to existingwork
on approximate program transformations [60, 131, 134, 164, 165, 194, 197].

autotuning While a set of annotationsmay permitmany different safe pro-
gram relaxations, not all of them are beneficial. A practical systemmust help pro-
grammers choose from among many candidate relaxations for a given program
to strike an optimal balance between performance and quality. ACCEPT’s au-
totuner heuristically explores the space of possible relaxed programs to identify
Pareto-optimal variants.

7.3 annotation and programmer feedback

This sectiondescribesACCEPT’s annotations and feedback,whichhelp program-
mers balance safety with approximation. Rather than proving theoretical accu-
racy guarantees for restricted programming models as in other work [132, 182,
239], ACCEPT’s workflow extends mainstream development practices: it com-
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bines lightweight safety guarantees, programmer insight, and testing to apply
approximation to general code.

7.3.1 Annotation Language

The programmer uses annotations to communicate to the compiler which parts
of a program are safe targets for program relaxation. ACCEPT adapts the type
system of EnerJ from Chapter 3. We originally designed EnerJ to bound the ef-
fects of unreliable hardware components that introduce errors at a fine grain;
here, we extend the idea to coarse-grained compiler transformations. This way,
ACCEPT follows the best-of-both-worlds principle in Section 1.2.5: it combines
a fine-grained programming model with more efficient, coarse-grained approx-
imation techniques.

information flow and endorsement ACCEPT’s information-flow
type system is directly derived from EnerJ’s. The noninterference property from
Chapter 3 applies to ACCEPT’s type-qualifier extension for type-safe subsets of
C and C++. Undefined behavior in C and C++ remains undefined in ACCEPT:
programs that violate type safety can also violate ACCEPT’s guarantees.

The annotations consist of an APPROX keyword, a type qualifier marking ap-
proximate values, and an ENDORSE keyword, which casts from an approximate
type to its precise equivalent. See Section 3.2 for background on these two con-
structs.

pointer types As outlined in Section 3.2.5, covariant reference types can
lead to unsoundness. As with object types in EnerJ, therefore, pointer and C++
reference types in ACCEPT are invariant in the referent type. The language does
not permit approximate pointers—i.e., addresses must be precise.

implicit flow Control flow provides an avenue for approximate data to
affect precise data without a direct assignment. For example, if (a) p = 5; al-
lows the variable a to affect the value of p. Like EnerJ, ACCEPTprohibits approx-
imate values from being used in conditions—specifically, in if, for, do, while,
and switch statements and in the ternary conditional-expression operator. Pro-
grammers can use endorsements to explicitly circumvent this restriction.

escape hatches ACCEPT decides whether program relaxations are safe
based on the effects of the statements involved. Section 7.4 goes into more de-
tail, but at a high level, code can be relaxed if its externally visible effects are
approximate. For example, if a is a pointer to an APPROX int, then the state-
ment *a = 5; has an approximate effect on the heap. Escape hatches from this
sound reasoning are critical in a practical system that must handle legacy code.
To enable or disable specific optimizations, the programmer can override the
compiler’s decision about a statement’s effects using two annotations. First, the
ACCEPT_PERMIT annotation forces a statement to be considered approximate and
ACCEPT_FORBID forces it to be precise, forbidding any relaxations involving it.
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These two annotations represent escape hatches from ACCEPT’s normal rea-
soning and thus violate the safety guarantees it normally provides. Qualitatively,
when annotating programs, we use these annotations much less frequently than
the primary annotations APPROX and ENDORSE. We find ACCEPT_PERMIT to be
useful when experimentally exploring program behavior before annotating and
in system programming involving memory-mapped registers. Conversely, the
ACCEPT_FORBID annotation is useful for marking parts of the program involved
in introspection. Section 7.7.4 gives more detail on these experiences.

7.3.2 Programmer Feedback

ACCEPT takes inspiration from parallelizing compilers that use a development
feedback loop to help guide the programmer toward parallelization opportuni-
ties [77, 168]. It provides feedback through an analysis log that describes the relax-
ations that it attempted to apply. For example, for ACCEPT’s synchronization-
elision relaxation, the log lists every lexically scoped lock acquire/release pair in
the program. For each relaxation opportunity, it reports whether the relaxation
is safe—whether it involves only approximate data—and, if it is not, identifies the
statements that prevent the relaxation from applying. We call these statements
with externally visible precise effects blockers.

ACCEPT reports blockers for each failed relaxation-opportunity site. For ex-
ample, during the annotation of one program in our evaluation, ACCEPT exam-
ined this loop:

650 double myhiz = 0;

651 for (long kk=k1; kk<k2; kk++) {

652 myhiz += dist(points->p[kk], points->p[0],

653 ptDimension) * points->p[kk].weight;

654 }

The store to the precise (by default) variable myhiz prevents the loop from being
approximable. The analysis log reports:
loop at streamcluster.cpp:651

blockers: 1

* streamcluster.cpp:652: store to myhiz

Examining that loop in context, we found that myhiz was a weight accumulator
that had little impact on the algorithm, so we changed its type from double to
APPROX double. On its next execution, ACCEPT logged the following message
about the same loop, highlighting a new relaxation opportunity:
loop at streamcluster.cpp:651

can perforate loop

The feedback loop between the programmer’s annotations and the compiler’s
analysis log strikes a balance with respect to programmer involvement: it helps
identify new relaxation opportunities while leaving the programmer in control.
Consider the alternatives on either end of the programmer-effort spectrum: On
one extreme, suppose that a programmer wishes to speed up a loop by manually
skipping iterations. The programmer can easily misunderstand the loop’s side
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effects if it indirectly makes system calls or touches shared data. On the other
extreme, unconstrained automatic transformations are even more error prone:
a tool that removes locks can easily create subtle concurrency bugs. Combining
programmer feedbackwith compiler assistance balances the advantages of these
approaches.

7.4 analysis and relaxations

ACCEPT takes an annotated program and applies a set of program transforma-
tions to code that affects only data marked approximate. We call these transfor-
mations relaxations because they trade correctness for performance. To deter-
mine relaxation opportunities from type annotations, ACCEPT uses an analysis
called approximatability. This section describes ACCEPT’s implementations of
several program relaxations drawn from the literature and how approximatabil-
ity analysis makes them safe. As a framework for approximation, ACCEPT is
extensible to relaxations beyond those we describe here.

7.4.1 Approximatability Analysis

ACCEPT provides a core program analysis that client optimizations use to en-
sure safety. This analysis must reconcile a fundamental difference between the
language’s safety guarantees and the transformation mechanisms: the program-
mer specifies safety in terms of fine-grained annotations on individual data el-
ements, but program relaxations affect coarse-grained regions of code such as
loop bodies or entire functions. Rather than resort to opaque and error-prone
code-centric annotation, ACCEPT bridges this gap by analyzing the side effects
of coarse-grained code regions.

ACCEPT’s analysis library determines whether it is safe to approximate a re-
gion of code. Specifically, the approximatability analysis checks, for a region of
interest (e.g., a loop body), whether its side effects are exclusively approximate or
may include precise data—in other words, whether it is pure with respect to precise
data. Approximatability is the key criterion for whether a relaxation can apply.
In ACCEPT, every relaxation strategy consults the approximatability analysis
and optimizes only approximatable code. A region is approximatable if it:

• contains no stores to precise variables thatmay be read outside the region;

• does not call any functions that are not approximatable; and

• does not include an unbalanced synchronization statement (locking with-
out unlocking or vice versa).

The analysis begins with the conservative assumption that the region is not ap-
proximatable and asserts otherwise only if it can prove approximatability. Func-
tions whose definitions are not available are conservatively considered not ap-
proximatable. This includes standard-library functions, such as printf, where
input and output make code unsafe to approximate.

For example, this code:
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Algorithm 1: Candidate region selection.
Input: function f
Output: set of approximatable regions R in f

1 foreach basic block B in f do
2 foreach block B′ strictly post-dominated by B do
3 if B′ dominates B then
4 region← formRegionBetween(B′, B)
5 if region is approximatable then
6 R← R ∪ {region}
7 end
8 end
9 end
10 end

int p = ...;

APPROX int a = p * 2;

is approximatable if and only if the variable p is never read outside this code
region. External code may, however, read the variable a since it is marked as ap-
proximate. Together with the information-flow type system, the approximata-
bility restriction ensures that code transformations influence only approximate
data. Since only the approximate valuea escapes the approximatable block above,
dependent code must also be marked as APPROX to obey the typing rules: any
code that treats a as precise is a type error. Optimizations that affect only ap-
proximatable code uphold ACCEPT’s contract with the programmer: that ap-
proximation must affect only variables explicitly marked as approximate.

We implement the core approximatability analysis conservatively using SSA
definition–use chains and a simple pointer-escape analysis. Section 7.6 gives
more implementation details.

7.4.2 Target Region Selection

Accelerator-style program transformations work best when they target larger
regions of code. To help optimizations identify profitable targets, ACCEPT can
enumerate a function’s replaceable approximate code regions. A candidate re-
gion is a set of instructions that is approximatable, forms control flow with a
single entry and a single exit, and has identifiable live-ins and live-outs. Client
optimizations, such as the neural acceleration described in Section 7.4.3.3, can
enumerate the candidate regions in a program to attempt optimization. Approx-
imatability analysis enables region selection by proving that chunks of code are
cleanly separable from the rest of the program.

Region selection meets the needs of accelerators that do not access memory
directly and therefore require statically identifiable inputs and outputs; patterns
such as dynamic array updates cannot be offloaded. The same analysis can be
adapted to superoptimizers and synthesizers that need to operate on delimited
subcomputations. For example, a variable-accuracy superoptimizer such as the
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floating-point extension to STOKE [187] could use ACCEPT’s region selection
to search for tractable optimization targets in a large program. Each fragment
could be optimized independently and spliced back into the program.

Algorithm 1 shows how ACCEPT enumerates candidate regions. The algo-
rithm uses dominance and post-dominance sets to identify pairs of basic blocks
B1 and B2 where B1 dominates B2 and B2 post-dominates B1. The portion of
the control-flow graph between these pairs represent all the single-entry, single-
exit portions of a function. For a function with n blocks, the enumeration needs
n2 approximatability checks in the worst case—but typically fewer because the
LLVMcompiler infrastructure pre-computes the dominator andpost-dominator
trees.

7.4.3 Safe Approximate Relaxations

To demonstrate ACCEPT’s flexibility as a framework, we implement three ap-
proximation strategies from the literature using approximatability analysis.

7.4.3.1 Loop Perforation

Sidiroglou et al. propose loop perforation, which exploits the fact that many pro-
grams tolerate some skipping of loop iterationswithout significant quality degra-
dation [194]. A perforated loop includes a parameter, the perforation factor, that
governs how often an iteration can be skipped at run time.

ACCEPT considers a loop safe to perforate if its body is approximatable and
free of early exits (i.e., break statements), which can cause nontermination if
skipped. To perforate a loop, ACCEPT inserts a counter and code to increment
and check it in each loop iteration. To minimize the overhead of loop perfora-
tion, ACCEPT requires the perforation factor p to be a power of two to enable
bitwise tests against the counter. The loop body executes once every p iterations.

7.4.3.2 Synchronization Elision

In parallel programs, inter-thread synchronization constructs—locks, barriers,
semaphores, etc.—are necessary for program predictability but threaten scala-
bility. Recent research has proposed to strategically reduce synchronization in
approximate programs [131, 134, 164, 165]. Even though removing synchroniza-
tion can add data races and other nondeterminism to previously race-free or de-
terministic programs, this recent work has observed that the “incorrectness” is
often benign: the resulting lost updates and atomicity violations can sometimes
only slightly change the program’s output.

ACCEPT can elide calls to locks (mutexes) and barriers from the pthreads li-
brary. To permit the elision of a lock acquire–release pair, ACCEPT requires
that the critical section—the code between the acquire and release—be approx-
imatable. To elide pthread_barrier_wait() synchronization, ACCEPT looks
for pairs of calls whose intervening code is approximatable, in such cases remov-
ing the first call (the second call remains to delimit the end of the region).
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7.4.3.3 Neural Acceleration

Recentwork has shown how to accelerate approximate programswith hardware
neural networks [16, 40, 204]. Neural acceleration uses profiled inputs and out-
puts from a region of code to train a neural network that mimics the code. The
original code is then replaced with an invocation of an efficient hardware accel-
erator implementation, theNeural ProcessingUnit (NPU) [60, 137, 197]. But the
technique has thus far required manual identification of candidate code regions
and insertion of offloading instructions. ACCEPT automates the process.

ACCEPT implements an automatic neural acceleration transform that uses
an existing configurable neural-network implementation for an on-chip field-
programmable gate array (FPGA) [137]. ACCEPTuses approximate region selec-
tion (Section 7.4.2) to identify acceleration targets, then trains a neural network
on execution logs for each region. It then generates code to offload executions
of the identified region to the accelerator. The offload code hides invocation
latency by constructing batched invocations that exploit the high-bandwidth in-
terface between the CPU and FPGA. We target a commercially available FPGA-
augmented system on a chip (SoC) and do not require specialized neural hard-
ware.

7.4.3.4 Other Client Relaxations

The three optimizations above demonstrate ACCEPT’s breadth as a framework
for realizing ideas from approximate-computing research. We have also used
ACCEPT to prototype two other optimizations, not described here: an approxi-
mate alias analysis that unlocks secondary compiler optimizations such as loop-
invariant code motion and vectorization for approximate data, and approximate
strength reduction that aggressively replaces expensive arithmetic operations
with cheaper shifts and masks that are not exactly equivalent. Other optimiza-
tions from the literature are also amenable to ACCEPT’s architecture, including
approximate parallelization [131], float-to-fixed conversion [1], bit-width reduc-
tion [173, 210], GPU pattern replacement [176], and alternate-algorithm selec-
tion [7, 14].

7.5 autotuning search

The autotuner is a test harness in which ACCEPT explores the space of possible
program relaxations through empirical feedback. We call a particular selection
of relaxations and associated parameters (e.g., loop perforation with factor p) a
relaxation configuration. The autotuner heuristically generates relaxation configu-
rations and identifies the ones that best balance performance and output quality.
The programmer also provides multiple inputs to the program. ACCEPT vali-
dates relaxation configurations by running them on fresh inputs to avoid over-
fitting.

Because the definition of quality is application dependent, ACCEPT relies on
programmer-provided quality metrics that measure output accuracy, as in previ-
ous work [14, 27, 59, 60, 133, 180]. The quality metric is another program that
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(1) reads the outputs from two different executions of the program being trans-
formed and (2) produces an error score between 0.0 (outputs are identical) and
1.0 (outputs are completely different), where the definitions of “identical” and
“different” are application dependent.

A naïve method of exploring the space of relaxation configurations is to enu-
merate all possible configurations. But the space of possible relaxation configu-
rations is exponential in the number of relaxation opportunities and therefore
infeasible to even enumerate, let alone evaluate empirically. We instead use a
heuristic that prioritizes a limited number of executions that are likely to meet
a minimum output quality.

ACCEPT’s heuristic configuration search consists of two steps: it vets each re-
laxation opportunity individually and then composes relaxations to create com-
posites.

vetting individual relaxations In the first step, the autotuner sepa-
rately evaluates each relaxation opportunity ACCEPT’s analysis identified. Even
with ACCEPT’s static constraints, it is possible for some relaxations to lead to
unacceptably degraded output or zero performance benefit. When the program-
mer uses escape hatches such as ENDORSE incorrectly, approximation can affect
control flow or even pointers and hence lead to crashes. ACCEPT vets each re-
laxation opportunity to disqualify unviable or unprofitable ones.

For each relaxation opportunity, the autotuner executes the program with
only that relaxation enabled. If the output error is above a threshold, the run-
ning time averaged over several executions is slower than the baseline, or the
program crashes, the relaxation is discarded. Then, among the surviving relax-
ations, the autotuner increases the aggressiveness of any optimizations that have
parameters. (In our prototype, only loop perforation has a variable parameter:
the perforation factor p.) The autotuner records the range of parameters for
which each opportunity site is “good”—when its error is below a threshold and
it offers speedup over the original program—along with the running time and
quality score. These parameters are used in the next step to create composite
configurations.

composite configurations After evaluating each relaxation opportu-
nity site individually, ACCEPT’s autotuner composes multiple relaxations to
produce the best overall program configurations. For a program of even mod-
erate size, it is infeasible to try every possible combination of component relax-
ations. ACCEPT heuristically predicts which combinations will yield the best
performance for a given quality constraint and validates only the best predic-
tions experimentally.

To formulate a heuristic, ACCEPT hypothesizes that relaxations compose lin-
early. That is, we assume that two program relaxations that yield output error
rates e1 and e2, when applied simultaneously, result in an error of e1 + e2 (and
that performance will compose similarly). Different relaxations can in practice
compose unpredictably, but this simplifying assumption is a tractable approxi-
mation that ACCEPT later validates with real executions.
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The configuration-search problem is equivalent to the 0/1 Knapsack Problem.
In the Knapsack formulation, each configuration’s output error is its weight and
its performance benefit 1− 1

speedup is its value. The goal is to find the configura-
tion that provides the most total value subject to a maximum weight capacity.

The Knapsack Problem is NP-complete and intractable even for programs
with only a fewdozenpotential relaxations. Instead, ACCEPTuses awell-known
approximation algorithm [51] to sort the configurations by their value-to-weight
ratio and greedily selects configurations in rank order up to an error budget. To
account for our simplifying assumptions, we use a range of error budgets to pro-
duce multiple candidate composites. The algorithm is dominated by the sort-
ing step, so its running time is O(n log n) in the number of vetted relaxation-
opportunity sites (and negligible in practice). Like other candidate configura-
tions, the composites are executed repeatedly to measure their true output qual-
ity and speedup.

7.6 implementation

ACCEPT extends the LLVM compiler infrastructure [101] and has three main
components: (1) a modified compiler frontend based on Clang [46] that aug-
mentsCandC++with an approximation-aware type system; (2) a programanaly-
sis and set of LLVM optimization passes that implement program relaxations;
and (3) a feedback and autotuning system that automatically explores quality–
efficiency trade-offs.

7.6.1 Type System

We implemented our approximation-aware type system, alongwith the syntactic
constructs APPROX and ENDORSE, as an extension to the Clang C/C++ compiler.

pluggable types layer We modified Clang to support pluggable types in
the style of Cqual [66] and Java’s JSR-308with its accompanying Checker Frame-
work [56, 148]. Pluggable types allow a compiler’s built-in type system to be over-
laidwith arbitrary qualifiers and typing rules. Syntactically, we provide aGNUC
__attribute__(()) construct that specifies the type qualifiers for any variable,
field, parameter, function, or method definition. Our pluggable type library im-
plements a bottom-up AST traversal with an interface for defining typing rules.
Finally, the compiler emits LLVM IR bitcode augmented with per-instruction
metadata indicating the qualifiers on the value of each SSA operation. For exam-
ple, when the result of the expression a + b has the type APPROX float, it emits
an add instruction reflecting the qualifier. This representation allows LLVM’s
compiler passes, which have access only to the IR and not to the AST, to use the
programmer-provided qualifier information.

approximation-aware type system The primary language constructs
in ACCEPT’s EnerJ-inspired type system are the APPROX type qualifier and the
ENDORSE explicit type conversion. Both are provided asmacros in a C header file.
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TheAPPROXmacro expands to an__attribute__(()) construct, andENDORSE(e)
expands to anopaqueCcommaexpressionwith amagic number that the checker
recognizes and interprets as a cast. The type checker itself follows a standard
information-flow implementation: most expressions are approximate if any of
their subexpressions is approximate; ACCEPT checks types and emits errors in
assignments, function calls, function returns, and conditionals.

The escape hatches ACCEPT_PERMIT and ACCEPT_FORBID are parsed from C-
style comments.

7.6.2 Analysis and Relaxations

Approximatability (Section 7.4.1) and region selection (Section 7.4.2) are imple-
mented as LLVM analysis passes. The ACCEPT prototype includes three relax-
ations, also LLVM passes, that consume the analysis results. The approximatabil-
ity analysis offers methods that check whether an individual LLVM IR instruc-
tion is approximate, whether an instruction points to approximate memory, and
whether a code region (function or set of basic blocks) is approximatable. The
region-selection analysis offers methods to enumerate approximatable regions
of a function that can be treated specially, e.g., offloaded to an accelerator.

We special-case the C memory-management intrinsics memcpy and memset to
assign them appropriate effects. For example, memset(p,v,n) where p has type
APPROX float * is considered approximatable because it behaves as a store to
p.

The loop-perforation and synchronization-elision relaxations (Section7.4) use
approximatability analysis to determine whether a loop body or critical section
can be considered approximate. Loop perforation generates a counter and mask
to skip iterations; and synchronization elision deletes lock and barrier call in-
structions. Neural acceleration uses region selection to identify target code and
subsequently generates inline ARM assembly to buffer data and communicate
with the FPGA over a coherent bus.

7.6.3 Autotuning

ACCEPT’s autotuning system is implemented separately from the compiler com-
ponent. It communicates with the compiler via command-line flags and a pass-
generated configuration file that enumerates the program’s relaxation opportu-
nities.

The programmer provides a quality metric to the autotuner in the form of a
Python script that defines a score function, which takes as input two execution
outputs and produces an error value between 0.0 and 1.0.

The autotuner’s heuristic search consists ofmany independent program execu-
tions, so it is embarrassingly parallel. ACCEPT optionally distributes the work
across a cluster of machines to accelerate the process. Workers on each clus-
ter node receive a configuration, compile the program, execute it, and return the
output and timing statistics. Themaster node coordinates the search and reports
results.
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Application Description Quality Metric LOC APPROX ENDORSE

canneal VLSI routing Routing cost 3144 91 8
fluidanimate Fluid dynamics Particle distance 2138 30 47
streamcluster Online clustering Cluster center distance 1122 51 24
x264 Video encoding Structural similarity 22018 300 69
sobel Sobel filter Mean pixel difference 154 7 5

zynq-blackscholes Investment pricing Mean relative error 318 50 10
zynq-inversek2j Inverse kinematics Euclidean distance 67 6 6
zynq-sobel Sobel filter Mean pixel difference 356 16 7

msp430-activity Activity recognition Classification rate 587 19 5

Table 6: The approximate applications used in our evaluation. The final two
columns show source code annotation counts.

7.6.4 Neural Acceleration

We evaluate ACCEPT’s approximate region selection using a Neural Processing
Unit (NPU) accelerator implemented on an on-chip FPGA (Section 7.4.3.3). The
design is based on recent work that implements an NPU based on systolic ar-
rays [60, 137].

7.7 evaluation

We evaluated ACCEPT’s effectiveness at helping programmers to tune programs.
We collected applications from domains known to be resilient to approximation,
annotated each programusingACCEPT’s feedbackmechanisms, and applied the
autotuner to produce relaxed executables. We examined applications targeting
three platforms: a standard x86 server system, a mobile SoC augmented with an
FPGA for neural acceleration, and a low-power, embedded sensing device.

7.7.1 Applications

Table 6 lists the applications we use in this evaluation. Since there is no stan-
dard suite of benchmarks for evaluating approximate-computing systems, we
collect approximable applications from multiple sources, following the lead of
other work in the area [40, 60, 133, 180, 204]. Five programs—canneal, fluidani-
mate, streamcluster, x264, and zynq-blackscholes—are from the PARSEC par-
allel benchmark suite [19]. They implement physical simulation, machine learn-
ing, video, and financial algorithms. Another program, sobel alongwith its ARM
port zynq-sobel, is an image convolution kernel implementing the Sobel filter, a
common component of image processing pipelines. The final program, msp430-
activity, is an activity-recognition workload that uses a naïve Bayesian classi-
fier to infer a physical activity from a sequence of accelerometer values on an
MSP430 microcontroller [205].

We selected programs for three deployment platforms—a server, amobile SoC,
and a microcontroller—which we describe in detail below. In one case, sobel,
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Figure 24: WISP sensing platform [178].

we examine two versions: a conventional implementation for the server and a
version ported to the bare-metal (OS-free) environment of the SoC.

To evaluate the applications’ output accuracy, we develop application-specific
qualitymetrics as in priorwork on approximate computing [14, 59, 60, 133, 180].
Table 6 lists the metric for each program. In one case, fluidanimate, the bench-
mark shipped with an output-comparison tool.

We annotated each benchmark by inserting type annotations and interacting
with the compiler’s feedback mechanisms to identify fruitful optimizations. Ta-
ble 6 shows the source code annotation density. Section 7.7.4 reports qualita-
tively on our experiences with the annotation process.

To validate the generality of ACCEPT’s program relaxations, we used one set
of inputs (the training set) during autotuning and a distinct input set (the testing
set) to evaluate the final speedup and quality loss.

7.7.2 Experimental Setup

Each application targets one of three evaluation platforms: an x86 server, an
ARM SoC with an integrated FPGA, and an embedded sensing system. The
server platform is a dual-socket, 64-bit, 2.8 GHz Intel Xeon machine with two-
way simultaneous multithreading and 4 GB memory. During autotuning, we
distributed work across a cluster of 20 of these Xeon machines running Red
Hat Enterprise Linux 6.5 with kernel version 2.6.32. The FPGA-augmented SoC
is included to demonstrate the NPU relaxation, which requires programmable
logic. We implemented the neural-network accelerator (Section 7.6.4) on a Xil-
inx Zynq-7020 part, which includes a dual-core ARM Cortex-A9 and an FPGA
fabric on a single TSMC 28 nm die. Full details on the accelerator implementa-
tion can be found in [137]. Finally, for the embedded msp430-activity workload,
we used the WISP [178] device depicted in Figure 24. The WISP incorporates
a prototype MSP430FR5969 “Wolverine” microcontroller with 2 KB of SRAM
and 64KB of nonvolatile ferroelectric RAM (FRAM) along with an onboard ac-
celerometer. The WISP can harvest energy from radio waves, but we powered
it via its JTAG interface to ensure reliable, repeatable runs connected to our test
harness.

Only the Zynq platform supports ACCEPT’s neural acceleration optimization.
The server and microcontroller benchmarks used the other two optimizations,
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Application Sites Composites Total Optimal Error Speedup

canneal 5 7 32 11 1.5–15.3% 1.1–1.7×
fluidanimate 20 13 82 11 <0.1% 1.0–9.4×
streamcluster 23 14 66 7 <0.1–12.8% 1.0–1.9×
x264 23 10 94 3 <0.1–0.8% 1.0–4.3×
sobel 6 5 21 7 <0.1–26.7% 1.1–2.0×
zynq-blackscholes 2 1 5 1 4.3% 10.2×
zynq-inversek2j 3 2 10 1 8.9% 17.4×
zynq-sobel 6 2 27 4 2.2–6.2% 1.1–2.2×
msp430-activity 4 3 15 5 <0.1% 1.5×

Table 7: Tuning statistics and resulting optimal configurations for each bench-
mark.

loop perforation and synchronization elision, while the Zynq experiments ex-
plored all three.

We compiled all applications with LLVM’s standard -O2 optimizations in ad-
dition to ACCEPT’s program relaxations. Wemeasured performance by reading
the system clock before and after a region of interest that excluded the loading of
data files from disk and dumping of results. (This region of interest was already
defined for the PARSEC benchmarks.) To obtain accurate time measurements,
we ran each configuration five times and averaged the running times.

7.7.3 Results

Figure 25a plots the speedup (versus precise execution) of the best-performing
relaxed versions that ACCEPT found for each application with output error un-
der 10%. Speedups in the figure range from 1.3× (canneal) to 17.4× (zynq-
inversek2j) with a harmonic mean of 2.3× across all three platforms.

Figure 25 shows the speedup for relaxed versions with only one type of op-
timization enabled. Not every optimization applies to every benchmark: no-
tably, neural acceleration applies only to the Zynq benchmarks, and synchro-
nization elision applies only to the two benchmarks that use fine-grained lock-
and barrier-based synchronization. Loop perforation is the most general relax-
ation strategy and achieves a 1.9× average speedup across 7 of the benchmarks.
Synchronization elision applies to fluidanimate and streamcluster, for which it
offers speedups of 3% and 1.2× respectively. The optimization reduces lock con-
tention, which does not dominate the running time of these benchmarks. Neu-
ral acceleration offers the largest speedups, ranging from 2.1× for zynq-sobel
to 17.4× for zynq-inversek2j.

ACCEPT’s feedback system explores a two-dimensional trade-off space be-
tween output quality and performance. For each benchmark, ACCEPT reports
Pareto-optimal configurations rather than a single “best” relaxed executable; the
programmer can select the configuration that strikes the best quality–performance
balance for a particular deployment. Figure 26 shows ACCEPT’s Pareto frontier
for each benchmark where the frontier contains at least two points. (Config-
urations are considered “optimal” when no other configuration has both better
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Figure 26: Pareto frontiers for benchmarks with at least two optima.

speedup and better output quality up to the standard error of the mean, so some con-
figurations that appear suboptimal are included in the figure due to uncertainty.)
Table 7 shows the range of output error rates and speedups in the frontiers.

We highlight canneal as an example. For this program, ACCEPT identifies
11 configurations with output error ranging from 1.5% to 15.3% and speedup
ranging from 1.1× to 1.7×. Using this Pareto frontier output, the developer
can choose a configuration with a lower speedup in error-sensitive situations or
a more aggressive 1.7× speedup if higher error is considered acceptable for a
deployment.

One benchmark, fluidanimate, exhibits especially low error even under ag-
gressive optimization; the configuration with the best speedup, which removed
two locks and perforated nine loops, had overall error (change in final particle
positions) under 0.00001%. For msp430-activity, error remained at 0% in all
acceptable configurations.

autotuner characterization Table 7 shows the number of relaxation
opportunities (labeled sites), the number of composite configurations considered,
the total number of configurations explored (including parameter-tuning config-
urations), and the number of optimal configurations on the output Pareto fron-
tier for each benchmark. For streamcluster, a moderately sized benchmark by
code size, exhaustive exploration of the 23 optimizations would have required
more than 8 million executions; instead, ACCEPT’s search heuristic considered
only 14 composites to produce 7 optimal configurations.

ACCEPT’s heuristics help make its profiling step palatable. On our 20-node
evaluation cluster for the server applications, the total end-to-end optimization
time was typically within a few minutes: times ranged from 14 seconds (sobel)
to 11 minutes (x264) with an average of 4 minutes. Tuning for the Zynq and
MSP430 platforms was not parallelized and took 19 minutes on average and 5
minutes, respectively.
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accelerator power and energy Wemeasuredpoweruse on theZynq
system, including its FPGA and DRAM, using a Texas Instruments UCD9240
power supply controller while executing each benchmark in a loop to reach a
steady state. Compared to baseline ARM-core–only execution where the FPGA
is not programmed and inactive, power overheads range from from 8.6% (zynq-
sobel) to 22.6% (zynq-blackscholes). The zynq-sobel benchmark exhibits lower
power overhead because a larger percentage of the programexecutes on theCPU,
putting less load on the FPGA. When we account for the performance gains, en-
ergy savings range from 2× (zynq-sobel) to 15.7× (zynq-inversek2j).

7.7.4 Experiences

This section reports qualitatively on our experiences using ACCEPT to optimize
the benchmarks. The programmers included three undergraduate researchers,
all of whomwere beginnerswithC andC++ and new to approximate computing,
as well as graduate students familiar with the field.

quality metrics The first step in tuning a program with ACCEPT is to
write a quality metric. In some cases, the program included code to assess out-
put quality. For each remaining case, the programmer wrote a simple Python
program (54 lines at most) to parse the program’s output and compute the dif-
ference between two outputs.

Like any specification, a quality metric can be subtle to write correctly. Al-
though it was not an intended use case, programmers found ACCEPT’s dynamic
feedback to be helpful in debugging quality metrics. In one instance, ACCEPT
reported suspiciously low error for some configurations; these results revealed
a quality metric that was ignoring certain missing values in the output and was
therefore too permissive.

iterated annotations One option when annotating a program for AC-
CEPT is to first analyze an unannotated program to enumerate all potential opti-
mization sites. However, the programmers preferred to provide an initial anno-
tation set by finding the “core” approximable data in the program—e.g., the vec-
tor coordinates in streamcluster or the pixels in sobel. With this data marked as
approximate, the type checker reports errors when this data flows into variables
that are not yet marked; for each such error, programmers decided whether to
add another APPROX annotation or to stop the flow of approximation with an
ENDORSE annotation.

Next, programmers expanded the annotation set to enable more optimiza-
tions. Using ACCEPT’s analysis log (Section 7.3.2), they looked for optimiza-
tions that could almost apply—those that indicated only a small number of block-
ers.

A persistent consideration was the need to balance effort with potential re-
ward. The programmers focused their attention on parts of the code most likely
to provide good quality–efficiency trade-offs. In some cases, it was helpful to
take “shortcuts” to program relaxations to test their viability beforemaking them
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safe. If the programmer was unsure whether a particular lock in a program was
contended, for example, it was useful to try eliding that lock to see whether it of-
fered any speedup. Programmers used the ACCEPT_PERMIT annotation temporar-
ily for an experiment and then, if the optimization proved beneficial, removed
the escape-hatch annotation and added the safer APPROX and ENDORSE annota-
tions.

These experiences highlighted the dual importance of both static and dynamic
feedback inACCEPT. Especiallywhen the programmer is unfamiliarwith the ap-
plication’s architecture, the static type errors and conservative approximatability
analysis helped highlight unexpected interactions between components. How-
ever, test runs were critical in discovering whether a given subcomputation is
important to an algorithm, either in terms of performance or output accuracy.
Both components help alleviate the “manual labor” otherwise necessary to rea-
son about hidden program effects or repeatedly invoke and analyze measure-
ment runs.

code navigation and heuristics For large programs, programmers
reported a need to balance their time between learning the application’s archi-
tecture and trying new optimizations. (We anticipate that a different strategy
would be appropriate when the programmer is already familiar with the code
before annotation.) One programmer used a call-graph visualizer to find code
closely related to the main computation. In general, moremodular code was eas-
ier to annotate: when effects are encapsulated, the volume of code related to an
optimization is smaller and annotations are more local.

Programmers relied on ACCEPT’s analysis feedback for hints about where
time would be best spent. They learned to scan for and ignore reports involv-
ing memory allocation or system calls, which are rarely fruitful approximation
opportunities. Relaxation sites primarily involved with large data arrays were
typically good targets.

systems programming The escape hatches from ACCEPT’s safety analy-
sis were useful for abstracting low-level systems code. In msp430-activity, a
routine manipulates memory-mapped registers to read from an accelerometer.
The pointers involved in communicating with the memory-mapped peripheral
are necessarily precise, but the reading itself is approximate and safe to relax.
The ACCEPT_PERMIT escape hatch enabled its optimization. This annotation sug-
gests a pattern in systems programming: the language’s last-resort annotations
can communicate approximation information about opaque low-level code to
ACCEPT.

self-checking code The complementary escape hatch, ACCEPT_FORBID,
was useful for one specific pattern: when benchmarks include code to evaluate
their own quality. For example, x264 computes a standard image quality met-
ric and canneal evaluates the total design fitness at every iteration. Program-
mers used ACCEPT_FORBID to ensure that this code, despite involving approxi-
mate data, was never corrupted.



134 an open-source approximation infrastructure

7.8 discussion

ACCEPT differs from the other projects in this dissertation in its focus on a ro-
bust, open-source, end-to-end implementation. Thegoal is to demonstrate that a
common compiler infrastructure can address the common concerns for a wide
variety of realistic approximation techniques—in the same way that a classical
compiler infrastructure like LLVM provides all the tools that an intrepid com-
piler hacker needs to build new optimizations. This level of generality required
that we solve two common challenges: balancing programmer insight with au-
tomation, and bridging the gap between fine-grained annotations and coarse-
grained optimizations.

The ACCEPT source code and documentation is available online at:
http://sampa.cs.washington.edu/accept

http://sampa.cs.washington.edu/accept
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RETROSPECT IVE

Approximate computing research is still in its early stages. This dissertation re-
examines traditional abstractions in hardware and software and argues that they
should include a notion of computational quality. It develops five principles for
the design of approximation-aware abstractions:

application-specific result quality Inmanydomains, applications
come with correctness constraints that are not binary: there are better outputs
andworse outputs. But as with traditional correctness criteria, there is no single,
universal “soft” quality criterion. A key principle in this work is that program-
mers should express quality metrics to quantify an output’s usefulness on a con-
tinuous scale. Quality metrics are essential not only to the design of tools that
constrain correctness, but also to the empirical evaluation of any approximation
technique.

safety vs. quality The abstractions in this dissertation benefit from de-
composing correctness into two complementary concerns: quality, the degree of
accuracy for approximate values, and safety, whether to allow any degree of ap-
proximation at all. While this zero-versus-nonzero distinction may at first seem
artificial, it decomposes many intractable problems into two smaller problems
that can be tractably solved using different tools. EnerJ (Chapter 3) and DECAF
(Chapter 4) demonstrate this separation of concerns: information flow types are
best suited for safety, and constraint-solving numerical type inference is best
suited for quality. Using a single technique for both would be less effective.

hardware–software co-design Approximation is a cross-cutting con-
cern. While both hardware and software techniques hold promise, a good rule of
thumb is to never do hardware without software. Hardware techniques that work
opaquely—without incorporating any information at all from the application—
are easy to design but doomed to failure. An approximate memory (Chapter 6)
that can flip any bit with any probability, for example, ignores the software’s
complex needs for different levels of reliability for different kinds of data. Re-
searchers should always design hardware techniques with the programming ab-
straction in mind.

programming with probabilistic reasoning Manyof the best pro-
posals for approximate-computing techniques are inherently probabilistic: an
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analog circuit [197] or a noisy memory write (Chapter 6), for example, are non-
deterministic by nature. Even when approximation strategies themselves are
deterministic, correctness criteria can often be best expressed using probabili-
ties: the chance that a randomly selected input has high quality, or the chance
that an individual pixel in an image is wrong. In both cases, approximation calls
for programming languages to add constructs reflecting probability and statis-
tics. Chapter 4 develops a type-system approach to probabilistic reasoning, and
Chapter 5 explores a new way for programmers to express general probabilistic
bounds.

granularity of approximation Approximation techniques work by
replacing some accurate part of a program with a cheaper, less accurate counter-
part. A critical dimension in these techniques is the granularity of components
they replace. Approaches that replace individual arithmetic operations [59] can
be general andflexible, but their efficiency gains tend to be small. Coarse-grained
replacement techniques, such as neural acceleration [60], can bemore complex to
apply but tend to offer larger gains. The ACCEPT compiler framework in Chap-
ter 7 represents a step toward unifying an intelligible fine-grained programming
abstraction with powerful coarse-grained approximation strategies.

These principles should guide the next phase of research on new abstractions for
approximation.



9
PROSPECT IVE

The research on approximate computing during this decade has askedmore ques-
tions than it has answered. To bring approximationmainstream, the community
will need to address a swath of open problems.

composition Current tools for approximate programmability are stuck in
a whole-program paradigm. ACCEPT’s compiler analyses and auto-tuner ma-
chinery, from Chapter 7, assume that they can observe the entire application at
once. Probabilistic assertions, from Chapter 5, fundamentally describe whole-
program properties: they constrain a chance that an execution from program
entry has a certain property. This whole-program perspective on result quality
prevents approximate computing from participating in some of the most pow-
erful concepts in programming: local abstractions, separation of concerns, and
libraries. A recent exception is Carbin et al.’s Rely language [29], where accuracy
is a relationship between module inputs and module outputs. The next stage of
research should continue to define what composition means in an approximate
context.

everyday approximation Although the buzzword is new, approximate
computing is far from a new idea. Approximation is a fundamental in some do-
mains of computer science. Digital signal processing pipelines incorporate ac-
curacy parameters at every stage; work on real-time graphics gets good-enough
results more cheaply than an ideal renderer; and there is an entire subfield in the-
oretical computer science that designs approximation algorithms for intractable
problems. All of these approaches are approximations, but they look very differ-
ent from the kind of system-level approximations in this dissertation. Program-
ming models for approximate computing can learn lessons from these more es-
tablished disciplines. And the new techniques developed for approximate com-
puting may also be portable in the opposite direction: they could help bring pro-
grammability to areas where approximation has traditionally been difficult to
reason about.

high-performance computing & fault tolerance Approximate
computing is not the same as fault tolerance, but there are clear connections.
High-performance computing infrastructures are often large enough that silent
failures are a fact of life; and, meanwhile, many HPC applications can tolerate
some errors. Approximate computing researchers should build a bridge to do-
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main expertise in HPC. Ideally, approximate programming techniques could
help express the latent tolerance in HPC systems while constraining the poten-
tial for numerical instability and other failure modes.

defining quality One of the principles of this research is that programs
have application-specific quality metrics. Determining exactly what constitutes
“quality” for a given application, however, can be deceptively difficult. Consider
defects in images: how many pixels can be wrong, and by what amount, before
the user notices? Are larger areas of slight discoloration better than smaller areas
of more intense errors? What makes users care more about the quality of certain
photographs than others? These questions are subjective, context sensitive, and
poorly defined, but they are critical to determining whether an approximation
is successful. For approximate computing to succeed, we need better method-
ologies for deriving quality metrics. As a first step, we have started preliminary
work that applies crowdsourcing to measure human perception of quality. Re-
searchers should also study software engineers’ de facto processes for assessing
output quality in approximate application domains.

connections to probabilistic programming Languages for app-
roximate programming usually need to incorporate probabilistic semantics. Re-
cently, the programming languages research community has developed a focus
another area that combines programmingwith probability: probabilistic program-
ming languages [18, 33, 69, 93, 94, 150, 225].1 So far, this direction has assumed
a relatively narrow focus: making it easier to express and work with machine-
learning models. But the two research areas should cross-pollinate: techniques
from one should apply to problems from the other. Researchers should seek fun-
damental ideas that underly the two sets of programmability challenges.

Evenwith these outstanding challenges, approximate computing research has an
important role to play in the next era of computer system design. As the semi-
conductor industry exhausts its traditional approaches to scaling performance,
and as it becomesmore expensive for hardware to enforce reliability, approxima-
tion will begin to look less like an academic curiosity. It will become harder to
justify preserving abstractions that are oblivious to the resilience in many high-
profile applications, and it will become easier to explain the complexity of better
abstractions that incorporate approximation.

1 For general background on probabilistic programming, see probabilistic-programming.org.

http://probabilistic-programming.org/
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APPENDIX : SEMANT ICS AND THEOREMS





A
ENER J : NONINTERFERENCE PROOF

a.1 type system

This appendix gives the full formalism for EnerJ, the programming language for
approximate computing from Chapter 3. It is based on the EnerJ paper’s accom-
panying technical report [179].

This section introduces the core type system, which is made up of type quali-
fiers that extend Featherweight Java [82]. Section A.2 describes the big-step oper-
ational semantics that define the language’s runtime system. Section A.3 proves
a number of properties about the language, the most important of which is non-
interference (intuitively, that the precise part of the program is unaffected by the
approximate part).

a.1.1 Ordering

We introduce a strict ordering on the language’s type qualifiers:

q <:q q′ ordering of precision qualifiers

q ̸=top

q <:q lost q <:q top q <:q q

Subclassing is standard:

C⊑ C′ subclassing
class Cid extends C′ { _ _ } ∈Prg

Cid⊑ C′
class C . . . ∈ Prg

C⊑ C
C⊑ C1 C1 ⊑ C′

C⊑ C′

Subtyping combines these two and adds a special case for primitives:

T <: T′ subtyping
q <:q q′ C⊑ C′

q C <: q′ C′
q <:q q′

q P <: q′ P precise P <: approx P

We use the method ordering to express that we can replace a call of the sub-
method by a call to the super-method, i.e. for our static method binding:

ms <: ms′ invocations of method ms can safely be replaced by calls to ms′
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T′ <: T Tk
k
<: T′k

k

T m(Tk pid
k
) precise<: T′ m(T′k pid

k
) approx

a.1.2 Adaptation

The context qualifier depends on the context and we need to adapt it, when the
receiver changes, i.e. for field accesses and method calls.

We need to be careful and decide whether we can represent the new qualifier.
If not, we use lost.

q ▷ q′ = q′′ combining two precision qualifiers
q′=context ∧ (q∈ {approx, precise, context})

q ▷ q′ = q

q′=context ∧ (q∈ {top, lost})
q ▷ q′ = lost

q′ ̸=context

q ▷ q′ = q′

To combine whole types, we adapt the qualifiers:

q ▷ T = T′ precision qualifier - type combination
q ▷ q′ = q′′

q ▷ q′ C = q′′ C
q ▷ q′ = q′′

q ▷ q′ P = q′′ P

The same logic follows for methods:

q ▷ ms = ms′ precision qualifier - method signature combination

q ▷ T = T′ q ▷ Tk
k = T′k

k

q ▷ T m(Tk pid
k
) q′ = T′ m(T′k pid

k
) q′

a.1.3 Look-up Functions

The declared type of a field can be looked-up in the class declaration:

FType(C, f ) = T look up field f in class C

class Cid extends _ { _ T f; _ _ } ∈Prg
FType(Cid, f ) = T

For a qualified class type, we also need to adapt the type:

FType(qC, f ) = T look up field f in reference type qC

FType(C, f ) = T1 q ▷ T1 = T
FType(q C, f ) = T

Note that subsumption in the type rule will be used to get to the correct class
that declares the field. Methods work similarly.
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MSig(C, m, q) = ms look up signature of method m in class C

class Cid extends _ { _ _ms { e } _ } ∈Prg
MName(ms)=m ∧ MQual(ms)=q

MSig(Cid, m, q) = ms

MSig(qC, m) = ms look up signature of method m in reference type qC

MSig(C, m, q) = ms q ▷ ms = ms′

MSig(q C, m) = ms′

a.1.4 Well-formedness

A well-formed expression:

sΓ ⊢ e : T expression typing
sΓ ⊢ e : T1 T1 <: T

sΓ ⊢ e : T
qC OK

sΓ ⊢ null : qC sΓ ⊢ L : precise P

sΓ(x)=T
sΓ ⊢ x : T

q C OK
q∈ {precise, approx, context}

sΓ ⊢ new q C() : T

sΓ ⊢ e0 : q C FType(q C, f ) = T
sΓ ⊢ e0.f : T

sΓ ⊢ e0 : q C FType(q C, f ) = T
lost /∈ T sΓ ⊢ e1 : T

sΓ ⊢ e0.f := e1 : T

sΓ ⊢ e0 : q C q∈ {precise, context, top}
MSig(precise C, m) = T m(Ti pid

i
) precise

lost /∈ Ti
i sΓ ⊢ ei

i : Ti
i

sΓ ⊢ e0.m(ei
i) : T

sΓ ⊢ e0 : approx C
MSig(approx C, m) = T m(Ti pid

i
) approx

lost /∈ Ti
i sΓ ⊢ ei

i : Ti
i

sΓ ⊢ e0.m(ei
i) : T

sΓ ⊢ e0 : approx C
MSig(approx C, m) = None

MSig(precise C, m) = T m(Ti pid
i
) precise

lost /∈ Ti
i sΓ ⊢ ei

i : Ti
i

sΓ ⊢ e0.m(ei
i) : T

sΓ ⊢ e : _ q C OK
sΓ ⊢ (q C) e : T

sΓ ⊢ e0 : q P sΓ ⊢ e1 : q P
sΓ ⊢ e0 ⊕ e1 : q P

sΓ ⊢ e0 : precise P sΓ ⊢ e1 : T sΓ ⊢ e2 : T
sΓ ⊢ if(e0) {e1} else {e2} : T

Note how lost is used to forbid invalid field updates and method calls.
Well-formed types:

T OK well-formed type
class C . . . ∈ Prg

q C OK q P OK

Well-formed classes just propagate the checks and ensure the superclass is
valid:
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Cls OK well-formed class declaration
sΓ= {this 7→ context Cid}
sΓ ⊢ fd OK sΓ, Cid ⊢md OK
class C . . . ∈ Prg

class Cid extends C { fd md } OK class Object {} OK

Fields just check their types:

sΓ ⊢ T f; OK well-formed field declaration
T OK

sΓ ⊢ T f; OK

Methods check their type, the body expression, overriding, and the method
qualifier:

sΓ, C ⊢md OK well-formed method declaration
sΓ= {this 7→ context C}
sΓ′=

{
this 7→ context C, pid 7→ Ti

i}
T, Ti

i OK sΓ′ ⊢ e : T C ⊢m OK
q∈ {precise, approx}

sΓ, C ⊢ T m(Ti pid
i
) q { e } OK

Overriding checks for all supertypes C′ that a helper judgment holds:

C ⊢m OK method overriding OK
C⊑ C′ =⇒ C, C′ ⊢m OK

C ⊢m OK
This helper judgment ensures that if both methods are of the same precision,

the signatures are equal. For a precise method we allow an approximate version
that has relaxed types:

C, C′ ⊢m OK method overriding OK auxiliary
MSig(C, m, precise) = ms0 ∧ MSig(C′, m, precise) = ms′0 ∧ (ms′0=None ∨ ms0=ms′0)
MSig(C, m, approx) = ms1 ∧ MSig(C′, m, approx) = ms′1 ∧ (ms′1=None ∨ ms1=ms′1)
MSig(C, m, precise) = ms2 ∧ MSig(C′, m, approx) = ms′2 ∧ (ms′2=None ∨ ms2 <: ms′2)

C, C′ ⊢m OK

An environment simply checks all types:

sΓ OK well-formed static environment
sΓ=

{
this 7→ q C, pid 7→ Ti

i}
q C, Ti

i OK
sΓ OK

Finally, a program checks the contained classes, the main expression and type,
and ensures that the subtyping hierarchy is acyclic:

⊢ Prg OK well-formed program
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Prg=Clsi
i
, C, e

Clsi OK i
context C OK

{this 7→ context C} ⊢ e : _
∀C′, C′′. ((C′ ⊑ C′′ ∧ C′′ ⊑ C′) =⇒ C′=C′′)

⊢ Prg OK

a.2 runtime system

a.2.1 Helper Functions

h + o = (h′, ι) add object o to heap h resulting in heap h′ and fresh address ι

ι /∈dom(h) h′=h⊕ (ι 7→ o)
h + o = (h′, ι)

h[ι.f := v] = h′ field update in heap
v=nulla ∨ (v=ι′ ∧ ι′ ∈dom(h))
h(ι)=

(
T, fv

)
f ∈ dom

(
fv
)

fv
′=fv[f 7→ v]

h′=h⊕
(

ι 7→
(

T, fv
′))

h[ι.f := v] = h′

h(ι)=
(

T, fv
)

fv(f )=(q′, rL′)

fv
′=fv[f 7→ (q′, rL)] h′=h⊕

(
ι 7→

(
T, fv

′))
h[ι.f := (q, rL)] = h′

a.2.2 Runtime Typing

In the runtime system we only have precise and approx. The context qualifier
is substituted by the correct concrete qualifiers. The top and lost qualifiers are
not needed at runtime.

This function replaces context qualifier by the correct qualifier from the en-
vironment:

sTrT(h, ι, T) = T′ convert type T to its runtime equivalent T′

q=context =⇒ q′=TQual(h(ι)↓1)
q ̸=context =⇒ q′=q

sTrT(h, ι, q C) = q′ C

q=context =⇒ q′=TQual(h(ι)↓1)
q ̸=context =⇒ q′=q

sTrT(h, ι, q P) = q′ P

We can assign a type to a value, relative to a current object ι. For a reference
type, we look up the concrete type in the heap, determine the runtime represen-
tation of the static type, and ensure that the latter is a subtype of the former. The
null value can be assigned an arbitrary type. And for primitive values we ensure
that the runtime version of the static type is a supertype of the concrete type.
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h, ι ⊢ v : T type T assignable to value v
sTrT(h, ι0, q C) = q′ C
h(ι)↓1 =T1 T1 <: q′ C

h, ι0 ⊢ ι : q C h, ι0 ⊢ nulla : q C

sTrT(h, ι0, q′ P) = q′′ P
rL∈P q P <: q′′ P

h, ι0 ⊢ (q, rL) : q′ P

a.2.3 Look-up Functions

Look-up a field of an object at a given address. Note that subtyping allows us to
go to the class that declares the field:

FType(h, ι, f ) = T look up type of field in heap
h, ι ⊢ ι : q C FType(q C, f ) = T

FType(h, ι, f ) = T

Look-up themethod signature of amethod at a given address. Subtyping again
allows us to go to any one of the possible multiple definitions of the methods. In
a well-formed class, all these methods are equal:

MSig(h, ι, m) = ms look up method signature of method m at ι

h, ι ⊢ ι : q C MSig(q C, m) = ms
MSig(h, ι, m) = ms

For the method body, we need the most concrete implementation. This first
function looks for a method with the given name and qualifier in the given class
and in sequence in all super classes:

MBody(C, m, q) = e look up most-concrete body of m, q in class C or a superclass
class Cid extends _ { _ _ms { e } _ } ∈Prg
MName(ms)=m ∧ MQual(ms)=q

MBody(Cid, m, q) = e
class Cid extends C1 { _ msn { en }

n
} ∈Prg

MName(msn) ̸=m
n

MBody(C1, m, q) = e
MBody(Cid, m, q) = e

To look up the most concrete implementation for a method at a given address,
we have three cases to consider. If it’s a precise method, look it up. If it’s an
approximate method, try to find an approximate method. If you are looking for
an approximate method, but couldn’t find one, try to look for a precise methods:

MBody(h, ι, m) = e look up most-concrete body of method m at ι

h(ι)↓1 =precise C MBody(C, m, precise) = e
MBody(h, ι, m) = e

h(ι)↓1 =approx C MBody(C, m, approx) = e
MBody(h, ι, m) = e

h(ι)↓1 =approx C MBody(C, m, approx) = None
MBody(C, m, precise) = e

MBody(h, ι, m) = e
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Get the field values corresponding to a given reference type. For fields of ref-
erence type, just use the null value. For fields of a primitive type, we need to look
up the declared type of the field in order to determine the correct qualifier for
the value.

FVsInit(qC) = fv initialize the fields for reference type qC

q∈ {precise, approx}
∀f ∈ refFields(C) . fv(f )=nulla
∀f ∈ primFields(C) . (FType(q C, f ) = q′ P ∧ fv(f )=(q′, 0))

FVsInit(q C) = fv

a.2.4 Semantics

The standard semantics of our programming language:

rΓ ⊢ h, e ⇝ h′, v big-step operational semantics

rΓ ⊢ h, null ⇝ h, nulla rΓ ⊢ h,L ⇝ h, (precise, rL)

rΓ(x)=v
rΓ ⊢ h, x ⇝ h, v

sTrT(h, rΓ(this) , q C) = q′ C
FVsInit(q′ C) = fv
h +

(
q′ C, fv

)
= (h′, ι)

rΓ ⊢ h, new q C() ⇝ h′, ι

rΓ ⊢ h, e0 ⇝ h′, ι0 h′(ι0.f )=v
rΓ ⊢ h, e0.f ⇝ h′, v

rΓ ⊢ h, e0 ⇝ h0, ι0
rΓ ⊢ h0, e1 ⇝ h1, v

h1[ι0.f := v] = h′
rΓ ⊢ h, e0.f := e1 ⇝ h′, v

rΓ ⊢ h, e0 ⇝ h0, ι0
rΓ ⊢ h0, ei

i ⇝ h1, vi
i

MBody(h0, ι0, m) = e MSig(h0, ι0, m) = _ m(_ pid
i
) q

rΓ′=
{
precise; this 7→ ι0, pid 7→ vi

i}
rΓ′ ⊢ h1, e ⇝ h′, v

rΓ ⊢ h, e0.m(ei
i) ⇝ h′, v

rΓ ⊢ h, e ⇝ h′, v
h′, rΓ(this) ⊢ v : q C

rΓ ⊢ h, (q C) e ⇝ h′, v

rΓ ⊢ h, e0 ⇝ h0, (q, rL0)
rΓ ⊢ h0, e1 ⇝ h′, (q, rL1)

rΓ ⊢ h, e0 ⊕ e1 ⇝ h′, (q, rL0 ⊕ rL1)

rΓ ⊢ h, e0 ⇝ h0, (q, rL) rL̸=0
rΓ ⊢ h0, e1 ⇝ h′, v

rΓ ⊢ h, if(e0) {e1} else {e2} ⇝ h′, v

rΓ ⊢ h, e0 ⇝ h0, (q, 0) rΓ ⊢ h0, e2 ⇝ h′, v
rΓ ⊢ h, if(e0) {e1} else {e2} ⇝ h′, v

rΓ ⊢ h, e ⇝ h′, v h′ ∼= h̃′ v ∼= ṽ
rΓ ⊢ h, e ⇝ h̃′, ṽ

A program is executed by instantiating the main class and then evaluating the
main expression in a suitable heap and environment:

⊢ Prg ⇝ h, v big-step operational semantics of a program
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FVsInit(precise C) = fv
∅ +

(
precise C, fv

)
= (h0, ι0)

rΓ0= {precise; this 7→ ι0} rΓ0 ⊢ h0, e ⇝ h, v

⊢ Cls, C, e ⇝ h, v

We provide a checked version of the semantics that ensures that we do not
have an interference between approximate and precise parts:

rΓ ⊢ h, e ⇝c h′, v checked big-step operational semantics
rΓ ⊢ h, null ⇝ h, nulla
rΓ ⊢ h, null ⇝c h, nulla

rΓ ⊢ h,L ⇝ h, (precise, rL)
rΓ ⊢ h,L ⇝c h, (precise, rL)

rΓ ⊢ h, x ⇝ h, v
rΓ ⊢ h, x ⇝c h, v

rΓ ⊢ h, new q C() ⇝ h′, ι
rΓ ⊢ h, new q C() ⇝c h′, ι

rΓ ⊢ h, e0 ⇝c h′, ι0
rΓ ⊢ h, e0.f ⇝ h′, v
rΓ ⊢ h, e0.f ⇝c h′, v

rΓ ⊢ h, e0 ⇝c h0, ι0 h(ι0)↓1 =q C
rΓ↓1 =q′ (q=q′ ∨ q′=precise)

rΓ ⊢ h0, e1 ⇝c h1, v
rΓ ⊢ h, e0.f := e1 ⇝ h′, v

rΓ ⊢ h, e0.f := e1 ⇝c h′, v

rΓ ⊢ h, e0 ⇝c h0, ι0
rΓ ⊢ h0, ei

i ⇝c h1, vi
i

MBody(h0, ι0, m) = e MSig(h0, ι0, m) = _ m(_ pid
i
) q

rΓ′=
{
precise; this 7→ ι0, pid 7→ vi

i}
rΓ′ ⊢ h1, e ⇝c h′, v
rΓ ⊢ h, e0.m(ei

i) ⇝ h′, v
rΓ ⊢ h, e0.m(ei

i) ⇝c h′, v

rΓ ⊢ h, e ⇝c h′, v
rΓ ⊢ h, (q C) e ⇝ h′, v
rΓ ⊢ h, (q C) e ⇝c h′, v

rΓ ⊢ h, e0 ⇝c h0, (q, rL0)
rΓ ⊢ h0, e1 ⇝c h′, (q, rL1)
rΓ ⊢ h, e0 ⊕ e1 ⇝ h′, (q, rL0 ⊕ rL1)
rΓ ⊢ h, e0 ⊕ e1 ⇝c h′, (q, rL0 ⊕ rL1)

rΓ ⊢ h, e0 ⇝c h0, (q, rL) rL̸=0
rΓ′=rΓ(q) rΓ′ ⊢ h0, e1 ⇝c h′, v

rΓ ⊢ h, if(e0) {e1} else {e2} ⇝ h′, v
rΓ ⊢ h, if(e0) {e1} else {e2} ⇝c h′, v

rΓ ⊢ h, e0 ⇝c h0, (q, rL) rL=0
rΓ′=rΓ(q) rΓ′ ⊢ h0, e2 ⇝c h′, v

rΓ ⊢ h, if(e0) {e1} else {e2} ⇝ h′, v
rΓ ⊢ h, if(e0) {e1} else {e2} ⇝c h′, v

a.2.5 Well-formedness

A heap is well formed if all field values are correctly typed and all types are valid:

h OK well-formed heap
∀ι ∈ dom(h) , f ∈ h(ι)↓2 . (FType(h, ι, f ) = T ∧ h, ι ⊢ h(ι.f ) : T)
∀ι ∈ dom(h) . (h(ι)↓1 OK ∧ TQual(h(ι)↓1) ∈ {precise, approx})

h OK
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This final judgment ensures that the heap and runtime environment corre-
spond to a static environment. It makes sure that all pieces match up:

h, rΓ : sΓ OK runtime and static environments correspond
rΓ=

{
precise; this 7→ ι, pid 7→ vi

i}
sΓ=

{
this 7→ context C, pid 7→ Ti

i}
h OK sΓ OK

h, ι ⊢ ι : context C
h, ι ⊢ vi

i : Ti
i

h, rΓ : sΓ OK

a.3 proofs

The principal goal of formalizing EnerJ is to prove a non-interference property
(Theorem 4). The other properties listed in this section support that proof.

a.3.1 Type Safety

Theorem 2 (Type Safety).

1. ⊢ Prg OK
2. h, rΓ : sΓ OK
3. sΓ ⊢ e : T
4. rΓ ⊢ h, e ⇝ h′, v

 =⇒
{

I. h′, rΓ : sΓ OK
I I. h′, rΓ(this) ⊢ v : T

We prove this by rule induction on the operational semantics.

Case 1: e=null

The heap is not modified so I. trivially holds.
The null literal statically gets assigned an arbitrary reference type. The null

value can be assigned an arbitrary reference type.

Case 2: e=L
The heap is not modified so I. trivially holds.
A primitive literal statically gets assigned type precise or a supertype. The eval-

uation of a literal gives a precise value which can be assigned any primitive type.

Case 3: e=x
The heap is not modified so I. trivially holds.
We know that 2. that the environments correspond and therefore that the

static type of the variable can be assigned to the value of the variable.

Case 4: e=new qC()

For I. we only have to show that the newly created object is valid. The initial-
ization with the null or zero values ensures that all fields are correctly typed.

The type of the new object is the result of sTrT on the static type.

Case 5: e=e0.f
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The heap is not modified so I. trivially holds.
We know from 2. that the heap is well formed. In particular, we know that the

values stored for fields are subtypes of the field types.
We perform induction on e0 and then use Lemma 1 to adapt the declared field,

which is checked by the well-formed heap, to the adapted field type T.

Case 6: e=e0.f := e1

We perform induction on e0 and e1. We know from 3. that the static type of e1

is a subtype of the adapted field type. We use Lemma 2 to adapt the type to the
declaring class to re-establish that the heap is well formed.

Case 7: e=e0.m(e)
A combination of cases 6 and 7.

Case 8: e=(qC) e
By induction we know that the heap is still well formed.
4. performs a runtime check to ensure that the value has the correct type.

Case 9: e=e0 ⊕ e1

By induction we know that the heap is still well formed.
The type matches trivially.

Case 10: e=if(e0) {e1} else {e2}

By induction we know that the heap is still well formed.
The type matches by induction.

a.3.2 Equivalence of Checked Semantics

We prove that an execution under the unchecked operational semantics has an
equivalent execution under the checked semantics.

Theorem 3 (Equivalence of Checked Semantics).

1. ⊢ Prg OK
2. h, rΓ : sΓ OK
3. sΓ ⊢ e : T
4. rΓ ⊢ h, e ⇝ h′, v

 =⇒ I. rΓ ⊢ h, e ⇝c h′, v

We prove this by rule induction on the operational semantics.
The checked operational semantics is only different from the unchecked se-

mantics for the field write, method call, and conditional cases. The other cases
trivially hold.

Case 1: e=if(e0) {e1} else {e2}

We know from 3. that the static type of the condition is always precise. There-
fore, rΓ′ is well formed and we can apply the induction hypothesis on e1 and e2.

Case 2: e=e0.m(e)
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From the proof of type safety we know that the values in rΓ′ are well formed.
We are using precise as the approximate environment. Therefore, rΓ′ is well
formed and we can apply the induction hypothesis on e.

Case 3: e=e0.f := e1

Weknow from2. that q′=precise. Therefore, the additional checkpasses.

a.3.3 Non-Interference

To express a non-interference property, we first define a relation ∼= on values,
heaps, and environments. Intuitively, ∼= denotes an equality that disregards ap-
proximate values. The relation holds only for values, heaps, and environments
with identical types.

Where v and ṽ are primitive values, v ∼= ṽ iff the values have the same type qP
and either q = approx or v = ṽ. For objects, ι ∼= ι̃ iff ι = ι̃. For heaps, h ∼= h̃
iff the two heaps contain the same set of addresses ι and, for each such ι and
each respective field f , h(ι. f ) ∼= h̃)(ι. f ). Similarly, for environments, rΓ ∼= r̃Γ

iff rΓ(this) ∼= r̃Γ(this) and, for every parameter identifier pid, rΓ(pid) ∼=
r̃Γ(pid).

We can now state our desired non-interference property.

Theorem 4 (Non-Interference).

1. ⊢ Prg OK ∧ ⊢ h, rΓ : sΓ
2. sΓ ⊢ e : T
3. rΓ ⊢ h, e⇝ h′, v
4. h ∼= h̃ ∧ rΓ ∼= r̃Γ

5. ⊢ h̃, r̃Γ : sΓ

 =⇒

 I. r̃Γ ⊢ h̃, e→ h̃′, ṽ
I I. h′ ∼= h̃′
I I I. v ∼= ṽ

The non-interference property follows from the definition of the checked se-
mantics, which are shown to hold in Theorem 3 given premises 1, 2, and 3. That
is, via Theorem 3, we know that rΓ ⊢ h, e ⇝c h′, v. The proof proceeds by rule
induction on the checked semantics.

Case 1: e=null

The heap is unmodified, so h = h′ and h̃′ = h̃. Because h ∼= h̃, trivially
h′ ∼= h̃′ (satisfying I I.).

Both v = null and ṽ = null, so I I I. also holds.

Case 2: e=L
As above, the heap is unmodified and v = ṽ because literals are assigned

precise types.

Case 3: e=x
Again, the heap is unmodified. If x has precise type, then v = ṽ and I I I. holds.

Otherwise, both v and ṽ have approximate type so v ∼= ṽ vacuously. (That is,
v ∼= ṽ holds for any such pair of values when their type is approximate.)

Case 4: e=new qC()
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In this case, a new object o is created with address v and h′ = h⊕ (v 7→ o).
Because v has a reference type and ṽ has the same type, v ∼= ṽ. Furthermore,
h̃′ = h⊕ (ṽ 7→ o), so h ∼= h̃.

Case 5: e=e0.f
The heap is unmodified in field lookup, so I I. holds by induction. Also by

induction, e0 resolves to the same address ι under h as under h̃ due to premise 4.
If h(ι. f ) has approximate type, then I I I. holds vacuously; otherwise v = ṽ.

Case 6: e=e0.f := e1

Apply induction to both subexpressions (e0 and e1). Under either heap h or h̃,
the first expression e0 resolves to the same object o. By type safety, e1 resolves to
a value with a dynamic type compatible with the static type of o’s field f .

If the value is approximate, then the field must have approximate type and
the conclusions hold vacuously. If the value is precise, then induction implies
that the value produced by e1 must be v = ṽ, satisfying I I I. Similarly, the heap
update to h is identical to the one to h̃, so h̃ ∼= h̃′.

Case 7: e=e0.m(e)
As inCase 5, let e0 map to o in both h and h̃. The samemethodbody is therefore

looked up by MBody and, by induction on the evaluation of the method body,
the conclusions all hold.

Case 8: e=(qC) e
Induction applies directly; the expression changes neither the output heap nor

the value produced.

Case 9: e=e0 ⊕ e1

The expression does not change the heap. If the type of e0⊕ e1 is approximate,
then I I I. hold vacuously. If it is precise, then both e0 and e1 also have precise
type, and, via induction, each expression produces the same literal under h and
rΓ as under h̃ and r̃Γ. Therefore, v = ṽ, satisfying I I I.

Case 10: e=if(e0) {e1} else {e2}

By type safety, e0 resolves to a valuewith precise type. Therefore, by induction,
the expression produces the same value under heap h and environment rΓ as
under the equivalent structures h̃ and r̃Γ. The rule applied for rΓ ⊢ h, e⇝ h′, v
(either cos_cond_t or cos_cond_f) also applies for r̃Γ ⊢ h̃, e→ h̃′, ṽ because
the value in the condition is the same in either case. That is, either e1 is evaluated
in bot settings or else e2 is; induction applies in either case.

a.3.4 Adaptation from a Viewpoint

Lemma 1 (Adaptation from a Viewpoint).

1. h, ι0 ⊢ ι : q C
2. h, ι ⊢ v : T

}
=⇒ ∃T′. q ▷ T = T′ ∧

h, ι0 ⊢ v : T′
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This lemma justifies the type rule and the method result in .
Case analysis of T:

Case 1: T=q′ C′ or T=q′ P where q′ ∈ {precise, approx, top}
In this case we have that T′=T and the viewpoint is irrelevant.

Case 2: T=context C′ or T=context P

Case 2a: q∈ {precise, approx}
We have that T′=q C′ or T′=q P, respectively.
2. uses the precision of ι to substitute context. 1. gives us the type for ι. To-

gether, they give us the type of v relative to ι0.

Case 2b: q∈ {lost, top}
We have that T′=lost C′ or T′=lost P, respectively.
Such a T′ is a valid type for any value.

a.3.5 Adaptation to a Viewpoint

Lemma 2 (Adaptation to a Viewpoint).

1. h, ι0 ⊢ ι : q C
2. q ▷ T = T′

3. lost /∈ T′

4. h, ι0 ⊢ v : T′

 =⇒ h, ι ⊢ v : T

This lemma justifies the type rule and the requirements for the types of the pa-
rameters in .

Case analysis of T:

Case 1: T=q′ C′ or T=q′ P where q′ ∈ {precise, approx, top}
In this case we have that T′=T and the viewpoint is irrelevant.

Case 2: T=context C′ or T=context P
We have that T′=q C′ or T′=q P, respectively. 3. forbids lost from occurring.
1. gives us the precision for ι and 4. for v, both relative to ι0. From 2. and 3.

we get the conclusion.





B
PROBAB IL ITY TYPES : SOUNDNESS PROOF

This appendix expands on the formalism for DECAF, the probability-types lan-
guage in Chapter 4. We present the full syntax, static semantics, and dynamic se-
mantics for the core PROB language. We prove a soundness theorem that embod-
ies the probability type system’s fundamental accuracy guarantee. This appendix
corresponds to the appendix for the main DECAF paper in OOPSLA 2015 [22].

b.1 syntax

We formalize a core of PROB without inference. The syntax for statements, ex-
pressions, and types is:

s ≡ T v := e | v := e | s ; s | if e s s |while e s | skip

e ≡ c | v | e⊕p e | endorse(p, e) | check(p, e) | track(p, e)

⊕ ≡ + | − | × | ÷
T ≡ q τ

q ≡ @Approx(p) | @Dyn
τ ≡ int | float
v ∈ variables, c ∈ constants, p ∈ [0.0, 1.0]

For the purpose of the static and dynamic semantics, we also define values V,
heaps H, dynamic probability maps D, true probability maps S, and static con-
texts Γ:

V ≡ c |□
H ≡ · | H, v 7→ V

D ≡ · | D, v 7→ p

S ≡ · | S, v 7→ p

Γ ≡ · | Γ, v 7→ T

We define H(v), D(v), S(v), and Γ(v) to denote variable lookup in these maps.

b.2 typing

The type system defines the static semantics for the core language. We first give
typing judgments first for expressions and then for statements.

179
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b.2.1 Operator Typing

We introduce a helper “function” that determines the unqualified result type of
a binary arithmetic operator.

optype(τ1, τ2) = τ3

optype(τ, τ) = τ optype(int, float) = float optype(float, int) = float

Now we can give the types of the binary operator expressions themselves. There
are two cases: one for statically-typed operators and one for dynamic tracking.
The operands may not mix static and dynamic qualifiers (recall that the compiler
inserts track casts to introduce dynamic tracking when necessary).

Γ ⊢ e : T

op-static-types
Γ ⊢ e1 : @Approx(p1) τ1

Γ ⊢ e2 : @Approx(p2) τ2 τ3 = optype(τ1, τ2) p′ = p1 · p2 · pop

Γ ⊢ e1 ⊕pop e2 : @Approx(p′) τ3

op-dyn-types
Γ ⊢ e1 : @Dyn τ1 Γ ⊢ e2 : @Dyn τ2 τ3 = optype(τ1, τ2)

Γ ⊢ e1 ⊕p e2 : @Dyn τ3

In the static case, the output probability is the product of the probabilities for
the left-hand operand, right-hand operand, and the operator itself. Section 4.3
gives the probabilistic intuition behind this rule.

b.2.2 Other Expressions

The rules for constants and variables are straightforward. Literals are given the
precise (p = 1.0) type.

const-int-types
c is an integer

Γ ⊢ c : @Approx(1.0) int

const-float-types
c is not an integer

Γ ⊢ c : @Approx(1.0) float

var-types
T = Γ(v)

Γ ⊢ v : T

Endorsements, both checked and unchecked, produce the explicitly requested
type. (Note that check is sound but endorse is potentially unsound: our main
soundness theorem, at the end of this appendix, will exclude the latter from
the language.) Similarly, track casts produce a dynamically-tracked type given
a statically-tracked counterpart.

endorse-types
Γ ⊢ e : q τ

Γ ⊢ endorse(p, e) : @Approx(p) τ

check-types
Γ ⊢ e : @Dyn τ

Γ ⊢ check(p, e) : @Approx(p) τ

track-types
Γ ⊢ e : @Approx(p′) τ p ≤ p′

Γ ⊢ track(p, e) : @Dyn τ
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b.2.3 Qualifiers and Subtyping

A simple subtyping relation, introduced in Section 4.3, makes high-probability
types subtypes of their low-probability counterparts.

T1 ≺ T2

subtyping
p ≥ p′

@Approx(p) τ ≺ @Approx(p′) τ

Subtyping uses a standard subsumption rule.
subsumption
T1 ≺ T2 Γ ⊢ e : T1

Γ ⊢ e : T2

b.2.4 Statement Typing

Our typing judgment for statements builds up the context Γ.

Γ1 ⊢ s : Γ2

skip-types

Γ ⊢ skip : Γ

seq-types
Γ1 ⊢ s1 : Γ2 Γ2 ⊢ s2 : Γ3

Γ1 ⊢ s1; s2 : Γ3

decl-types
Γ ⊢ e : T v /∈ Γ

Γ ⊢ T v := e : Γ, v : T

mutate-types
Γ ⊢ e : T Γ(v) = T

Γ ⊢ v := e : Γ

if-types
Γ ⊢ e : @Approx(1.0) τ Γ ⊢ s1 : Γ1 Γ ⊢ s2 : Γ2

Γ ⊢ if e s1 s2 : Γ

while-types
Γ ⊢ e : @Approx(1.0) τ Γ ⊢ s : Γ′

Γ ⊢ while e s : Γ

The conditions in if and while statements are required to have the precise type
(p = 1.0).

b.3 operational semantics

We use a large-step operational semantics for expressions and small-step seman-
tics for statements. Both are nondeterministic: values produced by approximate
operators can produce either an error value□ or a concrete number.

b.3.1 Expression Semantics

There are two judgments for expressions: one for statically typed expressions
and one where dynamic tracking is used. The former, H; D; S; e ⇓p V, indi-
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cates that the expression e produces a value V, which is either a constant c or
the error value □, and p is the probability that V ̸= □. The latter judgment,
H; D; S; e ⇓p V, pd, models dynamically-tracked expression evaluation. In ad-
dition to a value V, it also produces a computed probability value pd reflecting
the compiler’s conservative bound on the reliability of e’s value. That is, p is the
“true” probability that V ̸= □ whereas pd is the dynamically computed conser-
vative bound for p.

In these judgments, H is the heap mapping variables to values and D is the
dynamic probability map for @Dyn-typed variables maintained by the compiler.
The S probability map is used for our type soundness proof: it maintains the
actual probability that a variable is correct.

constants Literals are always tracked statically.

const

H; D; S; c ⇓1.0 c

variables Variable lookup is dynamically trackedwhen the variable is present
in the tracking map D. The probability S(v) is the chance that the variable does
not hold□.

var
v ̸∈ D

H; D; S; v ⇓S(v) H(v)

var-dyn
v ∈ D

H; D; S; v ⇓S(v) H(v), D(v)

endorsements Unchecked (unsound) endorsements apply only to statically-
tracked values and do not affect the correctness probability.

endorse
H; D; S; e ⇓p V

H; D; S; endorse(pe, e) ⇓p V

checked endorsements Checked endorsements apply to dynamically-
tracked values and produce statically-tracked values. The tracked probability
must meet or exceed the check’s required probability; otherwise, evaluation gets
stuck. (Our implementation throws an exception.)

check
H; D; S; e ⇓p V, p1 p1 ≥ p2

H; D; S; check(p2, e) ⇓p V

tracking The static-to-dynamic cast expression allows statically-typed val-
ues to be combinedwith dynamically-tracked ones. The tracked probability field
for the value is initialized to match the explicit probability in the expression.

track
H; D; S; e ⇓p V

H; D; S; track(pd, e) ⇓p V, pd
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operators Binary operators can be either statically tracked or dynamically
tracked. In each case, either operand can be the error value or a constant. When
either operand is □, the result is □. When both operands are non-errors, the
operator itself can (nondeterministically) produce either □ or a correct result.
The correctness probability, however, is the same for all three rules: intuitively,
the probability itself is deterministic even though the semantics overall are non-
deterministic.

In these rules, c1⊕ c2 without a probability subscript denotes the appropriate
binary operation on integer or floating-point values. The statically-tracked cases
are:

op
H; D; S; e1 ⇓p1 c1 H; D; S; e2 ⇓p2 c2 p = p1 · p2 · pop

H; D; S; e1 ⊕pop e2 ⇓p c1 ⊕ c2

op-operator-incorrect
H; D; S; e1 ⇓p1 c1 H; D; S; e2 ⇓p2 c2 p = p1 · p2 · pop

H; D; S; e1 ⊕pop e2 ⇓p □

op-operands-incorrect
H; D; S; e1 ⇓p1 □ or H; D; S; e2 ⇓p2 □ p = p1 · p2 · pop

H; D; S; e1 ⊕pop e2 ⇓p □

Thedynamic-tracking rules are similar, with the additional propagation of the
conservative probability field.

op-dyn
H; D; S; e1 ⇓p1 c1, pd1 H; D; S; e2 ⇓p2 c2, pd2 p = p1 · p2 · pop

H; D; S; e1 ⊕pop e2 ⇓p c1 ⊕ c2, pd1 · pd2 · pop

op-dyn-operator-incorrect
H; D; S; e1 ⇓p1 c1, pd1 H; D; S; e2 ⇓p2 c2, pd2 p = p1 · p2 · pop

H; D; S; e1 ⊕pop e2 ⇓p □, pd1 · pd2 · pop

op-dyn-operands-incorrect
H; D; S; e1 ⇓p1 □, pd1 or H; D; S; e2 ⇓p2 □, pd2 p = p1 · p2 · pop

H; D; S; e1 ⊕pop e2 ⇓p □, pd1 · pd2 · pop

b.3.2 Statement Semantics

The small-step judgment for statements is H; D; S; s −→ H′; D′; S′; s′.

assignment The rules for assignment (initializing a fresh variable) take ad-
vantage of nondeterminism in the evaluation of expressions to nondeterministi-
cally update the heap with either a constant or the error value,□.
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H; D; s −→ H′; D′; s′

assign
H; D; S; e ⇓p V

H; D; S; @Approx(p′) τ v := e −→
H, v 7→ V; D; S, v 7→ p; skip

assign-dyn
H; D; S; e ⇓p V, pd

H; D; S; @Dyn τ v := e −→
H, v 7→ V; D, v 7→ pd; S, v 7→ p; skip

Mutation works like assignment, but existing variables are overwritten in the
heap.

mutate
H; D; S; e ⇓p V

H; D; S; v := e −→ H, v 7→ V; D; S, v 7→ p; skip

mutate-dyn
H; D; e ⇓p V, pd

H; D; v := e −→ H, v 7→ V; D, v 7→ pd; S, v 7→ p; skip

sequencing Sequencing is standard and deterministic.

seq-skip

H; D; S; skip;s −→ H; D; S; s

seq
H; D; S; s1 −→ H′; D′; S′; s′1

H; D; S; s1;s2 −→ H′; D′; S′; s′1;s2

if and while The type system requires conditions in if and while control
flow decisions to be deterministic (p = 1.0).
if-true

H; D; S; e ⇓1.0 c c ̸= 0

H; D; S; if e s1 s2 −→ H; D; S; s1

if-false
H; D; S; e ⇓1.0 c c = 0

H; D; S; if e s1 s2 −→ H; D; S; s2

while

H; D; S; while e s −→ H; D; S; if e (s;while e s) skip

b.4 theorems

The purpose of the formalism is to express a soundness theorem that shows that
PROB’s probability types act as lower bounds on programs’ run-time probabili-
ties. We also sketch the proof of a theorem stating that the bookkeeping probabil-
ity map, S, is eraseable: it is used only for the purpose of our soundness theorem
and does not affect the heap.

b.4.1 Soundness

The soundness theorem for the language states that the probability types are
lower bounds on the run-time correctness probabilities. Specifically, both the
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static types @Approx(p) and the dynamically tracked probabilities in D are lower
bounds for the corresponding probabilities in S.

To state the soundness theorem, we first define well-formed dynamic states.
We write ⊢ D, S : Γ to denote that the dynamic probability field map D and the
actual probability map S are well-formed in the static context Γ.

Definition 2 (Well-Formed). ⊢ D, S : Γ iff for all v ∈ Γ,

• If Γ(v) = @Approx(p) τ, then p ≤ S(v) or v /∈ S.

• If Γ(v) = @Dyn τ, then D(v) ≤ S(v) or v /∈ S.

We can now state and prove the soundness theorem. We first give the main
theorem and then two preservation lemmas, one for expressions and one for
statements.

Theorem 5 (Soundness). For all programs s with no endorse expressions, for all
n ∈ N where ·; ·; ·; s −→n H; D; S; s′, if · ⊢ s : Γ, then ⊢ D, S : Γ.

Proof. Induct on the number of small steps, n. When n = 0, both conditions
hold trivially since v /∈ · for all v.

For the inductive case, we assume that:

·; ·; ·; s −→n H1; D1; S1; s1

and:
H1; D1; S1; s1 −→ H2; D2; S2; s2

and that ⊢ D1, S1 : Γ. We need to show that ⊢ D2, S2 : Γ also. The Statement
Preservation lemma, below, applies and meets this goal.

The first lemma is a preservation property for expressions. We will use this
lemma to prove a corresponding preservation lemma for statements, which in
turn applies to prove the main theorem.

Lemma 3 (Expression Preservation). For all expressions e with no endorse expres-
sions where Γ ⊢ e : T and where ⊢ D, S : Γ,

• If T = @Approx(p) τ, and H; D; S; e ⇓p′ V, then p ≤ p′.

• If T = @Dyn τ, and H; D; S; e ⇓p′ V, p, then p ≤ p′.

Proof. Induct on the typing judgment for expressions, Γ ⊢ e : T.

case op-static-types Here, e = e1 ⊕pop e2 and T = @Approx(p) τ. We
also have types for the operands: Γ ⊢ e1 : @Approx(p1) τ1 and Γ ⊢ e2 :
@Approx(p2) τ2.

By inversion on H; D; S; e ⇓p′ V (in any of the three operator cases op, op-
operator-incorrect, or op-operands-incorrect), p′ = p′1 · p′2 · pop where
H; D; S; e1 ⇓p′1

V1 and H; D; S; e2 ⇓p′2
V2.

By applying the induction hypothesis to e1 and e2, we have p1 ≤ p′1 and p2 ≤
p′2. Therefore, p1 · p2 · pop ≤ p′1 · p′2 · pop and, by substitution, p ≤ p′.
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case op-dyn-types The case for dynamically-tracked expressions is similar.
Here, e = e1 ⊕pop e2 and T = @Dyn τ, and the operand types are Γ ⊢ e1 :
@Dyn τ1 and Γ ⊢ e2 : @Dyn τ2.

By inversion on H; D; S; e ⇓p′ V, p (in any of the cases op-dyn, op-dyn-
operator-incorrect, or op-dyn-operands-incorrect), p′ = p′1 · p′2 · pop,
p = pd1 · pd2 · pop where H; D; S; e1 ⇓p′1

V1, pd1 and H; D; S; e2 ⇓p′2
V2, pd2.

By applying the induction hypothesis to e1 and e2, we have pd1 ≤ p′1 and
pd2 ≤ p′2. Therefore, pd1 · pd2 · pop ≤ p′1 · p′2 · pop and, by substitution, p ≤ p′.

cases const-int-types and const-float-types Here, we have that Γ ⊢
e : @Approx(p) τ where τ ∈ {int, float} and p = 1.0.

By inversion on H; D; S; e ⇓p′ V we get p′ = 1.0.
Because 1.0 ≤ 1.0, we have p ≤ p′.

case var-types Here, e = v, Γ ⊢ v : T. Destructing T yields two subcases.

• Case T = @Approx(p) τ: By inversion on H; D; S; e ⇓p′ V we have
p′ = S(V).

The definition of well-formedness gives us p ≤ S(V).

By substitution, p ≤ p′.

• Case T = @Dyn τ: By inversion on H; D; S; e ⇓p′ V, p, we have p′ =
S(V) and p = D(V).

Well-formedness gives us D(V) ≤ S(V).

By substitution, p ≤ p′.

case endorse-types The expression e may not contain endorse expressions
so the claim hold vacuously.

case check-types Here, e = check(p, ec).
By inversion on H; D; S; e ⇓p′ V, we have H; D; S; ec ⇓p′ V, p′′, and p ≤

p′′.
By applying the induction hypothesis to H; D; S; ec ⇓p′ V, p′′, we get p′′ ≤

p′.
By transitivity of inequalities, p ≤ p′.

case track-types Here, e = track(pt, et), Γ ⊢ et : @Approx(p′′), and p ≤
p′′.

By inversion on H; D; S; e ⇓p′ V, p, we get H; D; S; et ⇓p′ V.
By applying the induction hypothesis to H; D; S; et ⇓p′ V, we get p′′ ≤ p′.
By transitivity of inequalities, p ≤ p′.

case subsumption The case where T = @Approx(p) τ applies. There is
one rule for subtyping, so we have Γ ⊢ e : @Approx(ps) τ where ps ≥ p. By
induction, ps ≤ p′, so p ≤ p′.
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Finally, we use this preservation lemma for expressions to prove a preserva-
tion lemma for statements, completing the main soundness proof.

Lemma4 (Statement Preservation). For all programs s with no endorse expressions,
if Γ ⊢ s : Γ′, and ⊢ D, S : Γ, and H; D; S −→ H′; D′; S′, then ⊢ D′, S′ : Γ′.

Proof. We induct on the derivation of the statement typing judgment, Γ ⊢ s : Γ′.

cases skip-types, if-types, and while-types In these cases, Γ = Γ′, D =

D′, and S = S′, so preservation holds trivially.

case seq-types Here, s = s1; s2 and the typing judgments for the two com-
ponent statements are Γ ⊢ s1 : Γ2 and Γ2 ⊢ s2 : Γ′. If s1 = skip, then
the case is trivial. Otherwise, by inversion on the small step, H; D; S; s1 −→
H′; D′; S′; s′1 and, by the induction hypothesis, ⊢ D′1, S′1 : Γ.

case decl-types The statement s is Tv := e where Γ ⊢ e : T and Γ′ =
Γ, v : T. We consider two cases: either T = @Approx(p) τ or T = @Dyn τ. In
either case, the expression preservation lemma applies.

In the first case, H; D; S; e ⇓p′ V where p ≤ p′ via expression preservation
and, by inversion, S′ = S, v 7→ p and D′ = D. Since S′(v) = p ≤ p′, the
well-formedness property ⊢ D, S : Γ′ continues to hold.

In the second case H; D; S; e ⇓p′ V, pd where pd ≤ p′. By inversion, S′ =
S, v 7→ p and D′ = D, v 7→ pd. Since D′(v) = pd ≤ p′, we again have
⊢ D, S : Γ′.

case mutate-types The case where s is v := e proceeds similarly to the
above case for declarations.

b.4.2 Erasure of Probability Bookkeeping

We state (and sketch a proof for) an erasure property that shows that the “true”
probabilities in our semantics, called S, do not affect execution. This property
emphasizes that S is bookkeeping for the purpose of stating our soundness result—
it corresponds to no run-time data. Intuitively, the theorem states that the steps
taken in our dynamic semantics are insensitive to S: that S has no effect onwhich
H′, D′, or s′ can be produced.

In this statement, Dom(S) denotes the set of variables in the mapping S.

Theorem 6 (Bookkeeping Erasure). If H; D; S1; s −→n H′; D′; S′1; s′, then for
any probability map S2 for which Dom(S1) = Dom(S2), there exists another map
S′2 such that H; D; S2; s −→n H′; D′; S′2; s′.

Proof sketch. The intuition for the erasure property is that no rule in the semantics
uses S(v) for anything other than producing a probability in the ⇓p judgment,
and that those probabilities are only ever stored back into S.

The proof proceeds by inducting on the number of steps, n. The base case
(n = 0) is trivial; for the inductive case, the goal is to show that a single step pre-
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serves H′, D′, and s′ when the left-hand probability map S is replaced. Two lem-
mas show that replacing S with S′ in the expression judgments leads to the same
result value V and, in the dynamically-tracked case, the same tracking probabil-
ity pd. Finally, structural induction on the small-step statement judgment shows
that, in every rule, the expression probability affects only S itself.



C
PROBAB IL I ST IC ASSERT IONS : EQU IVALENCE PROOF

This appendix expands on the semantics for probabilistic assertions, in Chap-
ter 5, and gives the full proof of the associated theorem. It is based on the digital
material accompanying the paper on probabilistic assertions in PLDI 2014 [183].

c.1 semantics

This section formalizes a simple probabilistic imperative language, PROBCORE,
and MAYHAP’s distribution extraction process. We describe PROBCORE’s syn-
tax, a concrete semantics for nondeterministic run-time execution, and a symbolic
semantics for distribution extraction. Executing a PROBCORE program under
the symbolic semantics produces a Bayesian network for a passert statement.
We prove this extracted distribution is equivalent to the original program under
the concrete semantics, demonstrating the soundness of MAYHAP’s core analy-
sis.

c.1.1 Core Language

PROBCORE is an imperative languagewith assignment, conditionals, and loops.
Programs use probabilistic behavior by sampling from a distribution and storing
the result, written v ← D. Without loss of generality, a program is a sequence
of statements followed by a single passert, since we may verify a passert at any
program point by examining the program prefix leading up to the passert.

Figure 27defines PROBCORE’s syntax for programsdenoted P, which consist
of conditionals C, expressions E, and statements S. For example, we write the
location obfuscator from earlier as:

P ≡ S ; ; passert C

C ≡ E < E | E = E | C ∧ C | C ∨ C | ¬C

E ≡ E + E | E ∗ E | E÷ E | R |V
S ≡ V := E |V ← D | S ; S | skip | if C S S |while C S

R ∈ R, V ∈ Variables, D ∈ Distributions

Figure 27: Syntax of PROBCORE.
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locationX ← Longitude; locationY ← Latitude;

noiseX ← Gauss[0, 1]; noiseY ← Gauss[0, 1];

newX := locationX + noiseX; newY = locationY + noiseY;

dSquared := ((locationX - newX) * (locationY - newY))

+ ((locationY - newY) * (locationY - newY));;

passert dSquared < 100

We draw the Longitude and Latitude inputs from opaque distributions and
noise from Gauss[0, 1]. The entirety of Gauss[0, 1] is an opaque label; 0 and
1 are not expressions in our simple language.

c.1.2 Concrete Semantics

The concrete semantics for PROBCORE reflect a straightforward execution in
which each sampling statement V ← D draws a new value. To represent dis-
tributions and sampling, we define distributions as functions from a sufficiently
large set of drawsS . Thedraws are similar to the seedof a pseudorandomnumber
generator: a sequence Σ of draws dictates the probabilistic behavior of PROB-
CORE programs.

We define a large-step judgment (H, e) ⇓c v for expressions and conditions
and a small-step semantics (Σ, H, s) →c (Σ′, H′, s′) for statements. In the
small-step semantics, the heap H consists of the variable-value bindings (queried
with H(v)) and Σ is the sequence of draws (destructed with σ : Σ′). The result
of executing a program is a Boolean declaring whether or not the condition in
the passert was satisfied at the end of this particular execution.

The rules for most expressions and statements are standard. The rules for ad-
dition and assignment are representative:

plus
(H, e1) ⇓c v1 (H, e2) ⇓c v2

(H, e1 + e2) ⇓c v1 + v2

assign
(H, e) ⇓c x

(Σ, H, v := e)→c (Σ, (v 7→ x) : H, skip)

Figure 28 gives the full set of rules for the concrete semantics. The rule for the
sampling statement, V ← D, consumes a draw σ from the head of the sequence
Σ. It uses the draw to compute the sample, d(σ).

sample
Σ = σ : Σ′

(Σ, H, v← d)→c (Σ′, (v 7→ d(σ)) : H, skip)

Theresult of an executionunder the concrete semantics is the result of thepassert
condition after evaluating the program body. We use the standard definition of
→∗c as the reflexive, transitive closure of the small step judgment:

passert
(Σ, H0, s)→∗c (Σ′, H′, skip) (H′, c) ⇓c b

(Σ, H0, s ; ; passert c) ⇓c b
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plus
(H, e1) ⇓c v1 (H, e2) ⇓c v2

(H, e1 + e2) ⇓c v1 + v2

mult
(H, e1) ⇓c v1 (H, e2) ⇓c v2

(H, e1 ∗ e2) ⇓c v1v2

divd
(H, e1) ⇓c v1 (H, e2) ⇓c v2

(H, e1 ÷ e2) ⇓c v1/v2

real

(H, r) ⇓c r

varb

(H, v) ⇓c H(v)

lt
(H, e1) ⇓c v1 (H, e2) ⇓c v2

(H, e1 < e2) ⇓c v1 < v2

eq
(H, e1) ⇓c v1 (H, e2) ⇓c v2

(H, e1 = e2) ⇓c v1 = v2

and
(H, c1) ⇓c b1 (H, c2) ⇓c b2

(H, c1 ∧ c2) ⇓c b1 ∧ b2

or
(H, c1) ⇓c b1 (H, c2) ⇓c b2

(H, c1 ∨ c2) ⇓c b1 ∨ b2

neg
(H, c) ⇓c b

(H,¬c) ⇓c ¬b

assign
(H, e) ⇓c x

(Σ, H, v := e)→c (Σ, (v 7→ x) : H, skip)

sample
Σ = σ : Σ′

(Σ, H, v← d)→c (Σ′, (v 7→ d(σ)) : H, skip)

progn
(Σ, H, s1)→c (Σ′, H′, s′1)

(Σ, H, s1; s2)→c (Σ′, H′, s′1; s2)

prog1

(Σ, H, skip; s2)→c (Σ, H, s2)

when
(H, c) ⇓c true

(Σ, H, if c s1 s2)→c (Σ, H, s1)

unless
(H, c) ⇓c false

(Σ, H, if c s1 s2)→c (Σ, H, s2)

while

(Σ, H, while c s)→c (Σ, H, if c (s; while c s) skip)

passert
(Σ, H0, s)→∗c (Σ′, H′, skip) (H′, c) ⇓c b

(Σ, H0, s ; ; passert c) ⇓c b

Figure 28: The concrete semantics. We use a big-step operational semantics
for conditions and expressions, and a small-step operational seman-
tics for statements and programs. Both use a heap H, which stores
variable-value bindings. The small-step operational semantics uses a
stream Σ of draws.
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c.1.3 Symbolic Semantics

While the concrete semantics above describe PROBCORE program execution,
the symbolic semantics in this section describe MAYHAP’s distribution extrac-
tion. Values in the symbolic semantics are expression trees that representBayesian
networks. The result of a symbolic execution is the expression tree correspond-
ing to the passert condition, as opposed to a Boolean.

The language for expression trees includes conditions denoted Co , real-valued
expressions Eo , constants, and distributions:

Co ≡ Eo < Eo | Eo = Eo | Co ∧ Co | Co ∨ Co | ¬Co

Eo ≡ Eo + Eo | Eo ∗ Eo | Eo ÷ Eo | R | ⟨D, Eo⟩ | if Co Eo Eo

R ∈ R, D ∈ Distributions

Instead of the stream of draws Σ used in the concrete semantics, the symbolic
semantics tracks a stream offset and the distribution D for every sample. Differ-
ent branches of an if statement can sample a different number of times, so the
stream offset may depend on a conditional; thus, the stream offset in ⟨d, n⟩ is an
expression in Eo and not a simple natural number. The symbolic semantics does
not evaluate distributions, so the draws themselves are not required. Expression
trees do not contain variables because distribution extraction eliminates them.

The symbolic semantics again has big-step rules ⇓s for expressions and condi-
tions and small-step rules→s for statements. Instead of real numbers, however,
expressions evaluate to expression trees in Eo and the heap H maps variables to
expression trees. For example, the rules for addition and assignment are:

plus
(H, e1) ⇓s {x1} (H, e2) ⇓s {x2}

(H, e1 + e2) ⇓s {x1 + x2}

assign
(H, e) ⇓s {x}

(n, H, v := e)→s (n, (v 7→ {x}) : H, skip)

The syntax {x} represents an expression in Eo , with the brackets intended to
suggest quotation or suspended evaluation. Figure 29 lists the full set of rules.

The rule for samples produces an expression tree that captures the distribution
and the current stream offset:

sample

(n, H, v← d)→s (n + 1, (v 7→ {⟨d, n⟩}) : H, skip)

Each sample statement increments the stream offset, uniquely identifying a sam-
ple expression tree. This enumeration is crucial. For example, enumerating sam-
ples distinguishes the statement x ← d; y := x + x from a similar program
using two samples: x1 ← d; x2 ← d; y := x1 + x2. This approach to num-
bering samples resembles naming in Wingate et al. [225].

The symbolic semantics must consider both sides of an if statement. For each
if statement, we need to merge updates from both branches and form condi-
tional expression trees for conflicting updates. We introduce a function merge,
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plus
(H, e1) ⇓s x1 (H, e2) ⇓s x2

(H, e1 + e2) ⇓s {x1 + x2}

mult
(H, e1) ⇓s x1 (H, e2) ⇓s x2

(H, e1 ∗ e2) ⇓s {x1 ∗ x2}
divd
(H, e1) ⇓s x1 (H, e2) ⇓s x2

(H, e1 ÷ e2) ⇓s {x1 ÷ x2}

real

(H, r) ⇓s {r}

varb

(H, v) ⇓s H(v)

lt
(H, e1) ⇓s x1 (H, e2) ⇓s x2

(H, e1 < e2) ⇓s {x1 < x2}

eq
(H, e1) ⇓s x1 (H, e2) ⇓s x2

(H, e1 = e2) ⇓s {x1 = x2}
and
(H, c1) ⇓s x1 (H, c2) ⇓s x2

(H, c1 ∧ c2) ⇓s {x1 ∧ x2}

or
(H, c1) ⇓s x1 (H, c2) ⇓s x2

(H, c1 ∨ c2) ⇓s {x1 ∨ x2}
neg

(H, c) ⇓s x

(H,¬c) ⇓s {¬x}

assign
(H, e) ⇓s {x}

(n, H, v := e)→s (n, (v 7→ {x}) : H, skip)

sample

({n}, H, v← d)→s ({n + 1}, (v 7→ {⟨d, n⟩}) : H, skip)

progn
(n, H, s1)→s (n′, H′, s′1)

(n, H, s1; s2)→s (n′, H′, s′1 ; s2)

prog1

(n, H, skip; s2)→s (n, H, s2)

if
(H, c) ⇓s {x}

(n, H, bt)→∗s (mt, Ht, skip) (n, H, b f )→∗s (m f , H f , skip)

(n, H, if c bt b f )→s ({if x mt m f })merge(Ht, H f , {x}), skip)

while

(n, H, while c s)→ (n, H, if c (while c s))

while0
(H, c) ⇓s {x} ∀Σ, (Σ, {x}) ⇓o false

(n, H, while c s)→ (n, H, skip)

passert
(0, H0, s)→∗s (n, H′, skip) (H′, c) ⇓s {x}

(H0, s ; ; passert c) ⇓s {x}

Ht(v) = a H f (v) = b a ̸= b

merge(Ht, H f , {x})(v) = {if x a b}

Ht(v) = a H f (v) = b a = b

merge(Ht, H f , {x})(v) = a

Figure 29: The symbolic semantics produce an expression tree. We use a big-step
style for conditions and expressions, and small-step style for state-
ments. Each big step has the form (H, e) ⇓s {se} or (H, c) ⇓s {sc},
where e ∈ E, c ∈ C, and se ∈ Eo , and sc ∈ Co . H maps variables to
expressions in Eo .
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which takes two heaps resulting from two branches of an if along with the con-
dition and produces a new combined heap. Each variable that does not match
across the two input heaps becomes an {if c a b} expression tree in the output
heap. The definition of merge is straightforward and its post-conditions are:

Ht(v) = a H f (v) = b a ̸= b

merge(Ht, H f , {x})(v) = {if x a b}

Ht(v) = a H f (v) = b a = b

merge(Ht, H f , {x})(v) = a

Using the merge function, we write the rule for if statements:
if
(H, c) ⇓s {x} (H, bt)→∗s (Ht, skip) (H, b f )→∗s (H f , skip)

(n, H, if c bt b f )→s (n, merge(Ht, H f , {x}), skip)

Our symbolic semantics assumes terminating while loops. Symbolic execu-
tion of potentially-unbounded loops is a well-known problem and, accordingly,
our formalism only handles loops with non-probabilistic conditions. A simple
but insufficient rule forwhile is:

while

(n, H, while c s)→ (n, H, if c (while c s))

This rule generates infinite expression trees and prevents the analysis from ter-
minating. We would like our analysis to exit a loop if it can prove that the loop
condition is false—specifically, when the condition does not depend on any prob-
ability distributions. To capture this property, we add the following rule:

while0
(H, c) ⇓s {x} ∀Σ, (Σ, {x}) ⇓o false

(n, H, while c s)→ (n, H, skip)

Here, the judgment (Σ, {x}) ⇓o v denotes evaluation of the expression tree
{x} under the draw sequence Σ. This rule applies when MAYHAP proves that
an expression tree evaluates to false independent of the random draws. In our
implementation, MAYHAP proves simple cases, when an expression tree con-
tains no samples, and uses black-box sampling otherwise. Section 5.3 describes
a more precise analysis that bounds path probabilities, but we leave its formal-
ization to future work.

We can now define the symbolic evaluation of programs:
passert
(0, H0, s)→∗s (n, H′, skip) (H′, c) ⇓s {x}

(H0, s ; ; passert c) ⇓s {x}
To evaluate the resulting expression tree requires a sequence of draws Σ but no
heap. Figure 30 shows the full set of rules. As an example, the rules for addition
and sampling are representative:

plus
(Σ, e1) ⇓o v1 (Σ, e2) ⇓o v2

(Σ, e1 + e2) ⇓o v1 + v2

sample

(Σ, ⟨d, k⟩) ⇓o d(σk)
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(Σ, e1) ⇓o v1 (Σ, e2) ⇓o v2

(Σ, e1 + e2) ⇓o v1 + v2

(Σ, e1) ⇓o v1 (Σ, e2) ⇓o v2

(Σ, e1 ∗ e2) ⇓o v1 ∗ v2

(Σ, e1) ⇓o v1 (Σ, e2) ⇓o v2

(Σ, e1 ÷ e2) ⇓o v1 ÷ v2 (Σ, r) ⇓o r

(Σ, n) ⇓o k

(Σ, ⟨d, n⟩) ⇓o d(σk)

(Σ, e1) ⇓o v1 (Σ, e2) ⇓o v2

(Σ, e1 < e2) ⇓o v1 < v2

(Σ, e1) ⇓o v1 (Σ, e2) ⇓o v2

(Σ, e1 = e2) ⇓o v1 = v2

(Σ, c1) ⇓o b1 (Σ, c2) ⇓o b2

(Σ, c1 ∧ c2) ⇓o b1 ∧ b2

(Σ, c1) ⇓o b1 (Σ, c2) ⇓o b2

(Σ, c1 ∨ c2) ⇓o b1 ∨ b2

(Σ, c) ⇓o b

(Σ,¬c) ⇓o ¬b

(Σ, c) ⇓o true (Σ, e1) ⇓o v

(Σ, if c e1 e2) ⇓o v

(Σ, c) ⇓o false (Σ, e2) ⇓o v

(Σ, if c e1 e2) ⇓o v

Figure 30: The semantics for our simple expression language. Σ is a stream of
draws, and σk is the k-th element of Σ.

c.2 theorem and proof

Theorem7. Let (0, H0, p) ⇓s {x}, where x is a finite program. Then (Σ, H0, p) ⇓c

b if and only if (Σ, x) ⇓o b.

Intuitively, this theorem is true because the distribution extraction ⇓s is just a
call-by-need lazy evaluation, and ⇓o is the projection of ⇓c over this lazy evalu-
ation. We prove the theorem formally here.

The proof of this theorem proceeds by structural induction on p. First, a few
lemmas establish corresponding properties for conditionals, expressions, then
statements, and finally programs.

Lemma 5. For e ∈ E, let (Hs, e) ⇓s {x}, and suppose that for every variable a,
(Σ, Hs(a)) ⇓e Hc(a). Then (Hc, e) ⇓c v if and only if (Σ, x) ⇓o v.

Proof. The proof is by induction on e. The condition on Hs and Hc is necessary
because Hs maps variables to expressions in Eo , while Hc maps variables to real
numbers. Note that Σ is unbound; this is because, while Σ is necessary for sam-
pling distributions in Eo , expressions in E do not involve sampling. We examine
each of five cases individually.

e1 + e2 Let (Hs, e1) ⇓s {x1} and (Hs, e2) ⇓s {x2}. Also let (Hc, e1) ⇓c v1 and
(Hc, e2) ⇓c v2, so that (Hc, e1 + e2) ⇓c v1 + v2 = v. By the definition
of ⇓s, (Hs, e1 + e2) ⇓s {x1 + x2}, and by induction (Σ, x1) ⇓o v1 and
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(Σ, x2) ⇓o v2. Then by the definition of ⇓o , (Σ, x) = (Σ, x1 + x2) ⇓o

v1 + v2 = v. Thus this case is established.

r (Hs, r) ⇓s {r} and (Σ, r) ⇓c r; on the other hand, (Hc, r) ⇓c r. Thus
this case is established.

v (Hs, v) ⇓s Hs(v), while (Hc, v) ⇓c Hc(v). But by hypothesis, we have
that (Σ, Hs(v)) ⇓e Hc(a), so this case is established.

The cases for e1 ∗ e2, e1 ÷ e2, and e1 ÷ e2 are all analogous to the addition
expression, e1 + e2.

These are all the cases present in the definition of E, so the lemma is com-
plete.

Lemma 6. For c ∈ C, let (Hs, c) ⇓s {x}, and suppose that for every variable a,
(Σ, Hs(a)) ⇓e Hc(a). Then (Hc, c) ⇓c b if and only if (Σ, x) ⇓o b.

Proof. We again use induction, on c. We examine each of five cases individually.

e1 < e2 By the definition of ⇓s, {x} = {x1 + x2}. Let (Hc, e1) ⇓c v1 and
(Hc, e2) ⇓c v2, so that b = [v1 < v2]. By lemma 5, (Σ, x1) ⇓o v1 and
(Σ, x2) ⇓o v2, so (Σ, x) ⇓o [v1 < v2] = b. Thus this case is established.

e1 = e2 This case is analogous to e1 < e2.

c1 ∧ c2 Let (Hs, c1) ⇓s {x1} and (Hs, c2) ⇓s {x2}. Also let (Hc, c1) ⇓c b1 and
(Hc, c2) ⇓c b2, so that (Hc, c1 ∧ c2) ⇓c b1 ∧ b2 = v. By the definition
of ⇓s, (Hs, c1 ∧ c2) ⇓s {x1 ∧ x2}, and by induction (Σ, x1) ⇓o b1 and
(Σ, x2) ⇓o b2. Then by the definition of ⇓o , (Σ, x) = (Σ, x1 ∧ x2) ⇓o

b1 + b2 = b. Thus this case is established.

c1 ∨ c2 This case is analogous to c1 ∧ c2.

¬c1 Let (Hs, c1) ⇓s {x1} and (Hc, c1) ⇓c b1, so that (Hc,¬c1) ⇓c ¬b1. By
the definition of ⇓s, (Hs,¬c1) ⇓s {¬x1}, and by induction (Σ, x1) ⇓o

b1, so that (Σ, x) ⇓o ¬b1 = b. Thus this case is established.

These are all the cases present in the definition of C, so the lemma is com-
plete.

We now prove a lemma which establishes equivalence for statements that do
not containwhile loops.

Lemma 7. Let (n, Hs, s) →s (m, H′s, s′), where s contains no while statements.
Also suppose that (Σ, n) ⇓o l and (Σ, m) ⇓o l + k. Furthermore let Hc be such that
(Σ, Hs(v)) ⇓o Hc(v) for all variables v. Then (Σ, Hc, s)→∗c (Σ′, H′c, s′), where
Σ = σ1 : σ2 : · · · : σk : Σ′. Furthermore, (Σ, H′s(v)) ⇓o H′c(v) for all v.

Proof. A few difficulties arise when attempting a naive induction:

• While⇓c and→c consume an element of Σ, ⇓s and→s simply increment
an offset. Our induction must show that this offset is correctly handled.
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• While→c only evaluates one side of an if statement,→s evaluates both.
Proving that this is sound requires proving that the “merge” function cor-
rectly unifies the two branches.

• Non-terminatingwhile loops, especially those involving sampling, are dif-
ficult to handle in the induction. The statement of the lemma guarantees
that the while loop must terminate (since→∗s requires a finite number of
steps), but the possibility for while loops to not terminate still complicates
the proof.

Thefirst problem is avoided by the statement of the lemma: we require that the
symbolic semantics increment the sequence offset by exactly asmany elements as
the concrete semantics consumes. The second problem requires a careful analy-
sis of the “merge” function. This is also why we assume a single step in→s but
a number of steps in→∗c . Finally, the last problem is avoided by a nested induc-
tion over the number of times the while loop is unrolled. Since we assume the
symbolic semantics terminate, the loop must at some point unroll fully, so the
induction is founded.

As mentioned, we induct over the number of steps taken by→∗s . At each step,
we assume that the future steps will satisfy the statement of the lemma. We con-
sider each case individually.

v := e Assume that (Hc, e) ⇓c xc, so that (Σ, Hc, v := e) →c (Σ, (v 7→ x) :
Hc, skip). Furthermore, suppose (Hs, e) ⇓s {xs}, so that (n, Hs, v :=
e) →s (n, (v 7→ xs) : Hs, skip). By lemma 5, (Σ, xs) ⇓o xs. But then,
for all variables v, we have (Σ, ((v 7→ xs) : Hs)(v′)) ⇓o ((v 7→ xc) :
Hc)(v′) for all v′. If we set Σ′ = Σ and k = 0, we find that in this case
our theorem is proven.

v← d Let Σ = σ : Σ′. Then (Σ, Hc, v ← d) →c (Σ′, (v 7→ d(σ)) :
Hc, skip)On the other hand, in the symbolic semantics, ({n}, Hs, v←
d)→s ({n + 1}, (v 7→ ⟨d, n⟩) : Hs, skip).

We can see that if (Σ, {n}) ⇓o l, then (Σ, {n + 1}) ⇓o l + 1, forcing
k = 1. Indeed, Σ = σ1 : Σ′. Furthermore, since (Σ, ⟨d, n⟩) ⇓o d(σ1) =

d(σ), we know that for all v′, (Σ, ((v 7→ ⟨d, n⟩) : Hs)(v′)) ⇓o ((v 7→
d(σ)) : Hc)(v′). So this case is established.

skip Since there are no symbolic steps for skip, the lemma is vacuously true.

s1; s2 This statement has two cases: where s1 is skip, and where it is not. If
s1 is skip, the case is trivial, so suppose s1 is not skip. Furthermore, let
(n, Hs, s1) →s (m′, H′s, s′1). By induction, we also have (Σ, Hc, s1) →∗c
(Σ′′, H′c, s′1), with the expected properties relating Σ′ and k, and H′c and
H′s. But then since:

(n, Hs, s1; s2)→s (m′, H′s, s′1; s2)

and
(Σ, Hc, s1; s2)→∗c (Σ′′, H′c, s′1; s2)
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this case is established with m = m′ and Σ′ = Σ′′. (We omit the lemma
that s1 →∗ s′1 implies s1; s2 →∗ s′1; s2, with the expected behavior of the
other parameters.)

if c s1 s2 Per Lemma 6, we know that if (Hc, c) ⇓c b, and (Hs, c) ⇓s {xs}, then
(Σ, xs) ⇓o b. Now consider two sub-cases: b is true, and b is false. If b
is true, then for all expressions yt and y f , the expression if xs yt y f must
evaluate to the same result as yt; otherwise if b is false, to the same result
as y f .

Now, depending on b, either:

(Σ, Hc, if c s1 s2)→ (Σ′, H′c, s1)

or:
(Σ, Hc, if c s1 s2)→ (Σ′, H′c, s2)

We know that:
(n, Hs, s1)→∗s (mt, Hst, skip)

and
(n, Hs, s2)→∗s (m f , Hs f , skip)

But then by induction, we know that (Σ, Hc, s1)→∗c (Σt, Hct, skip) or
(Σ, Hc, s2) →∗c (Σ f , Hc f , skip), where the relationship of Σt to mt, of
Σ f to m f , of Hct to Hst, and of Hc f to Hs f are as expected. Thus, when
(n, Hs, if c s1 s2)→ (m, H′s, skip), we know that (Σ, Hc, if c s1 s2)→
(Σ′, H′c, skip) as required, where Σ′ is Σt or Σ f depending on the condi-
tion, and where H′c is Hct or Hc f , again depending on the loop condition.

All that remains to prove is that the symbolic inference rule for the if rule
correctly combines Hst and Hs f , and likewise correctly combines mt and
m f . Recall that b is the value of the loop condition, and the loop con-
ditional evaluates symbolically to xs. We do a case analysis on b. First,
suppose b is true. Then Σ′ = Σt, so we know that Σ′ = σ1 : · · · σk :
Σ′ where (Σ, m) = (Σ, if xs mt m f ) ⇓o k. Similarly, since H′s =

merge(Hs f , Hst, xs), we know that for all variables v:

(Σ, H′s(v)) = (Σ, merge(Hst, Hs f , xs)(v))

This is equal to either (Σ, if xs (Hst(v)) (Hs f (v))) or (Σ, Hst(v)), both
of which evaluate to Hct(v) = H′c(v) because xs evaluates to b which is
true, and because (Σ, Hst(v)) = Hct(v) by induction. The case where b
is false is analogous to the case where b is true.

Thus this case is established.

This was the last remaining case (we assume that s1 contains no while state-
ments), so the lemma is done.

We now extend the equivalence to programs that contain while loops. We
require that the symbolic evaluation terminate.
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Lemma 8. Let (n, Hs, s) →∗s (m, H′s, skip). Further suppose that for all vari-
ables v, (Σ, Hs(v)) ⇓o Hc(v). Then (Σ, Hc, s)→∗c (Σ′, H′c, skip), and further-
more for all variables v, (Σ, H′s(v)) = H′c(v) and also Σ = σ1 : · · · : σk : Σ′,
where (Σ, m) ⇓o l + k (where (Σ, n) ⇓o l).

Proof. We proceed by structural induction on s.

v := e There are nowhile loops in this statement, so it follows from lemma 7.

v← d Analogous to v := e.

skip Analogous to v := e.

s1; s2 We must have (n, Hs, s1) →∗s (n′, H′′s , skip), so by induction we also
have (Σ, Hc, s1) →∗c (Σ′′, H′′c , skip), with the usual relation between
Σ′′ and n′, and between H′′s and H′′c . By induction, (n′, H′′s , s2) →∗s
(m, H′s, skip) implies (Σ′′, H′′c , s2)→∗c (Σ′, H′c, skip).
Thus, (Σ, Hc, s1; s2)→∗c (Σ′, H′c, skip), and this case is established.

if c s1 s2 If (n, Hs, if c s1 s2) →∗ (n′, H′s, skip), we must have (n, Hs, s1) →∗
(nt, H′st, skip) and (n, Hs, s2) →∗ (n f , H′s f , skip). Then, analogously
to the argument in lemma 7, this case can be established.

while c s There are two inference rules concerning the symbolic semantics ofwhile
loops, so we must prove that both are sound.
First consider the rule While0. If it applies, we must have (Σ, x) ⇓o

false for (Hs, c) ⇓s {x}, and thus (by lemma 6) (Hc, c) ⇓c false. Then
(Σ, Hc, while c s)→∗ (Σ, Hc, skip).
But by assumption, (n, Hs, while c s) → (n, Hs, skip), so the induc-
tive statement holds.
Second, consider the rule While in the symbolic semantics. It is identical
to the corresponding rule for while, so by induction this case is estab-
lished.

These are all the cases for S, so the lemma is proven.

Finally, we can prove our Theorem 7.

Theorem8. Let (0, H0, p) ⇓s {x}, where x is a finite program. Then (Σ, H0, p) ⇓c

b if and only if (Σ, x) ⇓o b.

Proof. First, note that Hc = Hs = H0, so that (Σ, Hs(v)) ⇓o Hc(v) for all v
(by the rule for constants).

Let the program p be s ; ; passert c. If (0, H0, p) ⇓s {x}, then (0, H0, s)→∗s
(n, Hs, skip). Then by lemma 8, (Σ, H0, s) →∗s (Σ′, Hc, skip, with the ex-
pected relation between Hc and Hs. But then due to this relation, if (Hs, c) ⇓s

{y}, (Hc, c) ⇓c b if and only if (Σ, y) ⇓o b (the lemma to prove this would be
a straightforward induction over y).

Thus, (Σ, H0, p) ⇓c b if andonly if (Σ, x) ⇓o b, andour theorem is proven.

While complex, this theoremshows that the distribution extractionperformed
by MAYHAP is sound.
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